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ABSTRACT

Although full-waveform inversion (FWI) has shown signifi-
cant promise in reconstructing heterogeneous velocity fields,
most existing methodologies are limited to acoustic models.
We extend FWI to multicomponent (PP and PS) data from aniso-
tropic media, with the current implementation limited to a stack
of horizontal, homogeneous VTI (transversely isotropic with a
vertical symmetry axis) layers. The algorithm is designed to es-
timate the interval vertical P- and S-wave velocities (VP0 andVS0)
and Thomsen parameters ε and δ from long-spread PP and PSV
reflections. The forward-modeling operator is based on the aniso-
tropic reflectivity technique, and the inversion is performed in the
time domain using the gradient (Gauss-Newton) method. We em-
ploy nonhyperbolic semblance analysis and Dix-type equations
to build the initial model. To identify the medium parameters
constrained by the data, we perform eigenvalue/eigenvector

decomposition of the approximate Hessian matrix for a VTI layer
embedded between isotropic media. Analysis of the eigenvectors
shows that the parameters VP0, VS0, ε, and δ (density is assumed
to be known) can be resolved not only by joint inversion of PP
and PS data, but also with PP reflections alone. Although the in-
version becomes more stable with increasing spreadlength-to-
depth (X∕Z) ratio, the parameters of the three-layer model are
constrained even by PP data acquired on conventional spreads
(X∕Z ¼ 1). For multilayered VTI media, the sensitivity of the
objective function to the interval parameters decreases with depth.
Still, it is possible to resolve VP0, VS0, ε, and δ for the deeper
layers using PP-waves, if the ratioX∕Z for the bottom of the layer
reaches two. Mode-converted waves provide useful additional
constraints for FWI, which become essential for smaller spreads.
The insights gained here by examining horizontally layered mod-
els should help guide the inversion for heterogeneous TI media.

INTRODUCTION

Transversely isotropic media with a vertical axis of symmetry
(VTI) can be described by the vertical P- and S-wave velocities,
VP0 and VS0, and the Thomsen parameters ε, δ, and γ. However,
traveltime analysis of PP-wave reflection data typically yields just
the P-wave normal-moveout velocity Vnmo;P and anellipticity coef-
ficient η (Alkhalifah and Tsvankin, 1995).
Tsvankin and Thomsen (1995) show that all four parameters of

horizontally layered VTI media responsible for propagation of
P- and SV-waves (VP0, VS0, ε, and δ) can be obtained from
long-spread PP- and SS (SVSV)-wave traveltimes. Shear waves,
however, are not excited in offshore surveys, and their quality
on land is often unsatisfactory. Therefore, here we consider joint

inversion of PP-waves and converted PSV modes (hereafter, de-
noted by PS; there is no P-to-SH conversion in laterally homo-
geneous VTI media). The replacement of pure SS reflections
with PS-waves, however, complicates velocity analysis because
even long-spread traveltimes of PP- and PS-waves are insufficient
for constraining the interval parameters VP0, VS0, ε, and δ of
layer-cake VTI models (Grechka and Tsvankin, 2002).
Here, we examine the feasibility of reconstructing stratified VTI

models in depth using full-waveform inversion (FWI) of PP and PS
data. FWI can be performed either in the time domain (Gauthier,
1986; Kolb et al., 1986; Mora, 1987; Bunks et al., 1995) or fre-
quency domain (Song and Williamson, 1995; Song et al., 1995;
Pratt, 1999; Pratt and Shipp, 1999). It is typically based on gradient
estimation by zero-lag crosscorrelation of the source and residual
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receiver wavefields, as described in Tarantola (1984). Most existing
algorithms are designed for isotropic, acoustic media, and they
operate primarily with diving waves. Numerical experiments per-
formed by Lee et al. (2010) show that isotropic FWI applied to
anisotropic models gives unsatisfactory results. In order to extend
FWI to anisotropic media, it is highly beneficial to combine PP-
wave data with PS- or SS-waves, which requires using elastic mod-
els. Taking elasticity into account also makes it possible to properly
model reflection amplitudes and take advantage of matching the
entire waveform rather than just phase information.
Plessix and Rynja (2010) implement FWI for VTI media in the

acoustic approximation to invert for Vnmo;P, η, and δ. Lee et al.
(2010) estimate the stiffness coefficients of 2D VTI media by fre-
quency-domain elastic FWI of multicomponent data and conclude
that it is difficult to obtain good estimates of the coefficient C13.
Parameterization in terms of the stiffnesses, however, is not optimal
for inversion purposes (Tsvankin, 2012) and creates trade-offs that
can be avoided by using Thomsen (1986) notation. Single- and mul-
tiparameter acoustic FWI for VTI media are performed by Gholami
et al. (2011). In the former case, they estimate only one velocity
(VP0, Vnmo;P, or the horizontal velocity Vhor;P), while the long-wave-
length variations of ε and δ are fixed at the correct values. They also
invert for two velocities (Vhor;P and VP0) under the assumption that
the long-wavelength spatial variation of δ is known. Gholami et al.
(2011) demonstrate that the single-parameter inversion provides a
good estimate of the unknown velocity, while multiparameter inver-
sion suffers from nonuniqueness. Plessix and Cao (2011) imple-
ment acoustic FWI for diving waves and near-offset reflections
to reconstruct the long-wavelength components of the P-wave
NMO and horizontal velocities in VTI media.
Chang and McMechan (2009) present a feasibility study of FWI

for a horizontal anisotropic layer sandwiched between isotropic me-
dia. In addition to TI layers with a vertical (VTI) and horizontal
(HTI) symmetry axis, they also consider a layer of orthorhombic
symmetry. They use multicomponent data to invert for the vertical
P- and S-wave velocities, anisotropy parameters, and density of the
anisotropic layer as well as for the parameters of the underlying
isotropic half-space. They conclude that wide-azimuth reflections
from the top and bottom of the anisotropic layer are needed for sta-
ble interval parameter estimation.
Here, we develop an FWI algorithm for multicomponent data

from horizontally layered VTI media. PP and PS reflections from
all interfaces are inverted simultaneously, which mitigates down-
ward error propagation through the model. First, we describe appli-
cation of moveout inversion to building the initial model from just
PP-wave moveout or from the combination of PP and PS reflection
traveltimes. Then we analyze the Hessian matrix for layered VTI
models to identify the parameters constrained by input data ac-
quired for a realistic range of spreadlength-to-depth (X∕Z) ratios.
Finally, the inversion algorithm is applied separately to PP data
alone and to the combination of PP and PS reflections to evaluate
the feasibility of building VTI depth models from different sets of
input data.

METHODOLOGY

We model PP- and PS (PSV)-waves excited by a point explosive
source with the anisotropic reflectivity method (Mallick and Frazer,
1990) using a Ricker wavelet with a peak frequency of 15 Hz. The
data include free-surface multiples, but direct arrivals are not mod-

eled. In practice, reflection data are sorted into common-midpoint
gathers to minimize reflection-point dispersal. However, here, FWI
operates on a single shot gather because the medium is horizontally
layered. Both the horizontal and vertical displacement components
are used for inverting PP-waves and the combination of PP and PS
data. The algorithm is tested for different spreadlengths with the
receiver spacing kept constant at 25 m. The parameters of the first
layer (or the overburden) are assumed to be known and are fixed at
the correct values during the inversion.

Building the initial model

To obtain the initial model, we employ widely used moveout-
inversion techniques. Time processing of PP reflection data in
VTI media is fully controlled by the parameters Vnmo;P and η, which
can be estimated from PP-wave traveltimes:

Vnmo;P ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
; (1)

η ¼ ε − δ

1þ 2δ
: (2)

The long-spread reflection moveout of PP-waves in a horizontal
VTI layer is well described by the nonhyperbolic equation of Al-
khalifah and Tsvankin (1995):

t2 ¼ t2P0 þ
x2

V2
nmo;P

−
2 η x4

V2
nmo;P ½t2P0V2

nmo;P þ ð1þ 2 η Þ x2� ; (3)

where x is the offset and tP0 is the two-way zero-offset time. The
velocity Vnmo;P controls the moveout on conventional spreads,
while η is responsible for deviation from hyperbolic moveout
in long-spread data. In moveout inversion, the parameter η
is often replaced with the P-wave horizontal velocity
Vhor;P ¼ Vnmo;P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 η

p
.

Equation 3 remains valid for layered VTI media, with Vnmo;P and
η becoming effective quantities for the stack of layers above the
reflector. For spreadlength-to-depth ratios X∕Z reaching 1.5 – 2,
equation 3 can be used to perform 2D semblance scanning and
estimate the effective parameters Vnmo;P and η (Grechka and Tsvan-
kin, 1998). Then the interval velocity Vnmo;P is found from the
conventional Dix equation and the interval η from the Dix-type
equation given in Grechka and Tsvankin (1998) and Tsvankin
(2012). If the offset range is wide enough to record head waves,
the interval Vhor;P can be estimated directly from the head-wave
moveout (Tsvankin, 2012).
The initial value of δ is set to zero, which allows us to find the

parameters VP0 and ε from Vnmo;P and η. The density ρ and shear-
wave vertical velocity VS0 (if only PP data are available) for the
initial model are supposed to be found from well logs. Potentially,
the accuracy of the initial model can be improved by using velocity-
independent layer stripping (Wang and Tsvankin, 2009).
For multicomponent data, it is necessary to identify the PP and

PS (PSV) reflections from the same interfaces (i.e., perform event
registration). The interval values of Vnmo;P and η can be calculated
from P-wave data as described above. To estimate the effective
PS-wave NMO velocity (Vnmo;PS), we apply a 2D semblance scan
based on equation 3 to long-spread PS data. In this case, η
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represents just a fitting parameter, but the equation is sufficiently
accurate to constrain Vnmo;PS, which replaces Vnmo;P (Xu and
Tsvankin, 2008). Then the effective NMO velocity Vnmo;SV of
the pure SS reflection can be found from (Seriff and Sriram, 1991)

2 tPS0V2
nmo;PS ¼ tP0V2

nmo;P þ tS0V2
nmo;SV; (4)

where tPS0 and tS0 are the zero-offset traveltimes of PS- and SS-
waves, respectively, so that tS0 ¼ 2tPS0 − tP0. The interval SV-wave
NMO velocity, obtained from the Dix equation, is given by

Vnmo;SV ¼ VS0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2σ

p
; (5)

where σ ≡ ðVP0∕VS0Þ2ðε − δÞ.
In principle, all four parameters (VP0; VS0; ε, and δ) can be found

from Vnmo;P, Vnmo;SV, VP0∕VS0 ¼ tS0∕tP0, and η. Although this pro-
cedure is known to be unstable (Grechka and Tsvankin, 2002), it
provides us with an acceptable initial model for FWI.

Inversion algorithm

We perform time-domain inversion of either PP data alone or the
combination of PP and PS reflections. The least-squares objective
function is defined as

FðmÞ ¼ 1

2
kdobs − dcalðmÞk2; (6)

where dobs is the observed data and dcalðmÞ is the data calculated for
a certain model m. Model updating is carried out via the Gauss-
Newton method,

Δm ¼ ½JTJ�−1 JTΔd; (7)

where J is the Fréchet derivative matrix obtained by perturbing each
model parameter, JTJ is the approximate Hessian, and Δd is the
difference between the observed data and those computed for a trial
model. Forward modeling is carried out with the anisotropic reflec-
tivity algorithm of Mallick and Frazer (1990) mentioned above,
based on the formulation introduced by Fryer and Frazer (1984).
The main advantage of that method is that it produces the exact
3D reflected wavefield for horizontally layered media including
all multiples and mode conversions. In addition, it is possible to
separate the wavefield and model either just PP reflections or PP
and mode-converted PS data.
Because the vertical velocities and anisotropy parameters do not

have the same units, it is more convenient to invert PP data for the
interval parameters VP0, Vnmo;P, Vhor;P, VP0∕VS0, and the density ρ.
In the case of joint inversion of PP and PS data, we estimate the
interval values of VP0, Vnmo;P, VS0, Vnmo;SV, and ρ. The initial val-
ues of VP0 and VS0 obtained from PP and PS data can be used to
calculate the initial VP0∕VS0 ratio for the inversion of PP-waves. If
only PP reflections are acquired, the initial VP0∕VS0 has to be
known a priori (e.g., from well logs).

INVERSION RESULTS

Model 1

First, the FWI algorithm is applied to the simple three-layer
model in Figure 1. The top layer is isotropic, and its velocities

and density are assumed to be known. The bottom half-space is also
known to be isotropic, but its parameters are estimated by FWI.
We perform tests for data with the spreadlength-to-depth ratio

X∕Z ranging from one to three. For X∕Z ¼ 1, the parameter η can-
not be constrained by PP reflection traveltimes, so the initial values
of ε and δ are set to zero. For larger spreads (X∕Z ¼ 1.5, 2, and 3),
inversion is performed with the initial parameters computed from
moveout inversion as described above.
The testing shows that the interval parameters VP0, VS0, ε, and δ

can be constrained by FWI, but the inversion is highly sensitive to
the starting model when the data include PP and PS reflections.
When PP and PS data are inverted jointly with the initial δ ¼ 0,
the algorithm converges to the correct values only for X∕Z ¼ 1.
For longer spreads, accurate inversion requires calculating the initial
δ from moveout inversion, even though errors in δ can reach 0.6.
This is likely due to the shape of the objective function, which
causes the inversion for the initial δ ¼ 0 to get trapped in local
minima. As discussed below, this problem can be mitigated by ap-
plying a multiscale approach.
To evaluate the sensitivity of the objective function to the model

parameters, we perform the eigenvector/eigenvalue decomposition
of the Hessian matrix (Plessix and Cao, 2011) for joint inversion of
PP and PS data. Each component of an eigenvector (called the “di-
rection cosine” and represented by the circles in Figure 2b) indicates
the relative sensitivity of the objective function to one of the model
parameters. The gradient of the objective function is a linear
combination of the eigenvectors weighted by the eigenvalues of
the Hessian (Figure 2a).
Figure 2b displays the eigenvectors associated with the four

largest eigenvalues. It shows that the objective function is most
sensitive to the layer thickness D (and hence to VP0 because the
vertical traveltimes are well constrained), followed by VS0, Vnmo;P,
and Vnmo;SV.
All our tests demonstrate that the objective function becomes

more complicated with the inclusion of density as an unknown
parameter, and the search gets trapped in local minima. In spite
of the relatively low sensitivity of the objective function to density
(Figure 2b), performing inversion with densities distorted by up to
10% results in unacceptable errors in all inverted parameters. In par-
ticular, the velocity VP0 and layer thicknesses are off by about 5%.

Figure 1. Three-layer model used in the tests. The parameters
of the top isotropic layer are VP ¼ 2800 m∕s, VS ¼ 1400 m∕s,
and ρ ¼ 1.8 g∕cm3. For the VTI layer, VP0 ¼ 3000 m∕s, VS0 ¼
1632 m∕s, ε ¼ 0.25, δ ¼ 0.1, and ρ ¼ 2.4 g∕cm3. For the bottom
half-space, VP ¼ 3400 m∕s, VS ¼ 1800 m∕s, and ρ ¼ 3.2 g∕cm3.
Interfaces (“Int.”) are numbered from top to bottom.
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Hence, in all subsequent tests, the interval densities are fixed at the
correct values. In practice, densities are often estimated from well-
log data, whereas in synthetic tests of FWI, they are typically fixed
at a constant value (e.g., Lee et al., 2010). In principle, density can
be better constrained using global optimization techniques such as
genetic algorithms (Padhi and Mallick, 2013). For realistic models
with a large number of parameters, however, global optimization is
extremely expensive.
Next, we generate only PP data for the same model and invert

for the parameters VP0, Vnmo;P, Vhor;P, and VP0∕VS0. For all spread-
lengths X∕Z, the algorithm converges to the correct parameters,
even though the initial value of δ is set to zero. Evidently, the
objective function has a simpler shape with fewer local minima,
if only PP data are included.
Interestingly, the inversion yields accurate parameter estimates

even for X∕Z ¼ 1 despite the absence of PS data (Figure 3a). This
is an unexpected result, especially because such spreadlengths are
not sufficient to constrain even the horizontal velocity (or the
parameter η) and, therefore, ε using reflection traveltimes. The data
misfit, normalized by the value at the first iteration, is shown in
Figure 3b. Apparently, the success of FWI is ensured by including
reflection amplitudes controlled by geometric spreading and reflec-
tion coefficient.

Indeed, angle dependence of the far-field amplitude of P-waves
excited by a point explosive source in a homogeneous, weakly
anisotropic TI medium can be written as (Tsvankin, 1995, 2012;
Xu et al., 2005)

APðθÞ ∼ 1 − 2ðε − δÞ sin2 2θ þ δ sin2 θ; (8)

where θ is the phase angle with the symmetry axis. For small angles
θ, the amplitude variation (i.e., the anisotropic geometric spreading)
is largely controlled by η ≈ ε − δ. Although equation 8 is derived for
a homogeneous medium, it also describes the behavior of the aniso-
tropic geometric-spreading factor in any TI layer crossed by the re-
flected ray (Tsvankin, 2012).
The PP-wave reflection coefficient at a boundary between two

VTI half-spaces in the weak-contrast, weak-anisotropy (jδj ≪ 1,
jεj ≪ 1) approximation is given by (Rüger, 1997, 2002)

R ¼ 1

2

ΔZ
Z

þ 1

2

�
ΔVP0

VP0

−
�
2VS0

VP0

�
2 ΔG
G

þ Δδ
�
sin2θ

þ 1

2

�
ΔVP0

VP0

þ Δε
�
sin2 θ tan2θ; (9)

where θ is the incidence phase angle, Z ¼ ρVP0 is the P-wave ver-
tical impedance, and G ¼ ρV2

S0 is the S-wave vertical rigidity
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Figure 2. (a) Eigenvalues of the Hessian matrix. (b) Components of
the eigenvectors (numbered 1 to 4) associated with the four largest
eigenvalues of the Hessian. The input data include PP and PS re-
flections for the model in Figure 1 for X∕Z ¼ 1.5. The superscript
(2) denotes the VTI layer and (3) the bottom isotropic half-space.
The thickness of the VTI layer is denoted by D.
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Figure 3. (a) Parameters of the VTI layer (circles) after each iter-
ation of FWI; the actual values are marked by the horizontal dashed
lines. The input data include PP reflections for the model in Figure 1
for X∕Z ¼ 1. (b) Data misfit computed from equation 6 and nor-
malized by the value for the initial model.

WC116 Kamath and Tsvankin

D
ow

nl
oa

de
d 

10
/1

4/
13

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



modulus. The difference between each parameter B (VP0, VS0, etc.)
below and above the reflector is denoted by ΔB ¼ B2 − B1, and the
average is B ¼ ðB1 þ B2Þ∕2. The first term in equation 9 is the nor-
mal-incidence reflection coefficient, also known as the AVO inter-
cept, which is equal to the fractional difference between the P-wave
impedances in the two media. The second term is responsible for
amplitude variation near the vertical and is called the AVO gradient.
It depends on the relative change in VP0 and G across the interface
and on the contrast in the parameter δ. Hence, PP-wave reflection
amplitudes at small offsets are sensitive to the jumps in VP0, VS0, ρ,
and δ.
Because the densities in all layers and the velocities in the shal-

lowest layer are fixed at the correct values, the amplitude signatures
help resolve all VTI parameters for the model in Figure 1. In
particular, the normal-incidence reflection coefficient provides
constraints on VP0 in the VTI layer and the bottom half-space,
whereas amplitude variation with angle helps us estimate the other
parameters. Note that the P-wave AVO gradient (and the P-wave
reflection coefficient as a whole) includes the jump in the vertical
rigidity modulus G (equation 9), which creates a dependence of
the FWI objective function on VS0. Still, the objective function
for PP-wave inversion is not as sensitive to the VP0∕VS0 ratio as
it is to VP0 and D (Figure 4), partially because the exact P-wave
geometric-spreading factor in the 0° – 40° range typically changes

by less than 2% – 3% for the VP0∕VS0 ratio varying from 1.73 to 2.2
(Tsvankin, 2012). We conclude that FWI of PP reflections can
reconstruct the depth scale of this three-layer model even without
using long-offset data.
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Figure 5. (a) Eigenvalues of the Hessian matrix and (b) the com-
ponents of the eigenvectors (numbered 1 to 4) associated with the
four largest eigenvalues of the Hessian. The input data include PP
reflections for the model in Figure 1 for X∕Z ¼ 2. The data are con-
taminated with band-limited (10 – 25 Hz) random noise; the signal-
to-noise ratio is five.

0 2 4 6 8 10 12 14 16 18 20

3000

3200

V
P

0
(m

/s
)

Iteration

1400

1600

1800

V
S

0
(m

/s
)

0.15
0.2

0.25

0
0.05
0.1

ε

Figure 6. Parameters of the VTI layer (circles) after each iteration
of FWI. The input data include PP reflections for the model in
Figure 1 for X∕Z ¼ 2. The data are contaminated with band-limited
(10 – 25 Hz) random noise; the signal-to-noise ratio is five.
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Figure 4. (a) Eigenvalues of the Hessian matrix and (b) the com-
ponents of the eigenvectors (numbered 1 to 4) associated with the
four largest eigenvalues of the Hessian. The input data include PP
reflections for the model in Figure 1 for X∕Z ¼ 1.
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When larger offsets are included, the velocity Vhor;P (or η) is well
resolved even in the presence of random noise because it governs
the magnitude of nonhyperbolic moveout. Indeed, for X∕Z ¼ 2, the

eigenvector associated with the largest eigenvalue of the Hessian
points almost entirely in the direction of Vhor;P (Figure 5b). As
explained above, the amplitude signatures provide additional
information for accurate estimation of the parameters VP0, VS0,
ε, and δ. In particular, errors in the anisotropy coefficients ε and
δ do not exceed 0.02 (Figure 6).
In the inversion, we assign equal weights to the horizontal and

vertical displacement components. For PP-waves recorded on
conventional spreads (X∕Z ≤ 1.5), the largest eigenvalues of the
Hessian associated with the horizontal component (Hx) are much
smaller than those for the vertical component (Hz) (Figure 7).
Hence, as expected, the objective function for PP-wave inversion
on conventional spreads is more sensitive to the vertical displace-
ment. However, for a longer spread (X∕Z ¼ 2), the largest eigen-
values of Hx and Hz become comparable (Figure 8a). In addition,
the largest eigenvalue of Hx is three times or more the other eigen-
values, and the corresponding eigenvector points in the direction of
Vhor;P (Figure 8b). Therefore, assigning a larger weight to the hori-
zontal component in the objective function for long spreads may
result in a faster convergence toward the velocity Vhor;P.

Model 2

Next, we test the algorithm on PP and PS data for a stratified
model that includes two VTI layers (Figure 9). Again, the param-
eters of the top (isotropic) layer are fixed at the correct values, and
the bottom half-space is known to be isotropic. As was the case for
the first model, convergence of the joint PP/PS inversion toward the
correct interval parameters is strongly dependent on the initial
parameters. If the initial value of δ is set to zero in each layer (which
causes a maximum error in δ of just 0.1), the inversion of PP and PS
data gets trapped in local minima.
The sensitivity of the inversion to the initial model can be reduced

by using a multiscale approach (Bunks et al., 1995). We apply four
high-cut filters (limited by 3, 7, 11, and 15 Hz) to the recorded and
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Figure 8. (a) Eigenvalues of the Hessian matrices associated with
the horizontal component (circles) and the vertical component
(diamonds). (b) Components of the eigenvectors (numbered 1 to
4) associated with the four largest eigenvalues ofHx. The input data
include PP reflections for the model in Figure 1 for X∕Z ¼ 2. The
data are contaminated with band-limited (10 – 25 Hz) random
noise; the signal-to-noise ratio is five.
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Figure 7. Eigenvalues of the Hessian matrices associated with the
horizontal displacement component (circles) and the vertical com-
ponent (diamonds). The input data include PP reflections for the
model in Figure 1 for X∕Z ¼ 1.

Figure 9. Model with two VTI layers sandwiched between
isotropic media. The parameters of layer 1 are VP ¼ 2800 m∕s,
VS ¼ 1400 m∕s, and ρ ¼ 1.8 g∕cm3; for layer 2, VP0 ¼
3000 m∕s, VS0 ¼ 1632 m∕s, ε ¼ 0.1, δ ¼ −0.05, and ρ ¼
2.1 g∕cm3; for layer 3, VP ¼ 3400 m∕s, VS ¼ 1800 m∕s, and
ρ ¼ 2.4 g∕cm3; for layer 4, VP0 ¼ 3700 m∕s, VS0 ¼ 2000 m∕s,
ε ¼ 0.25, δ ¼ 0.1, and ρ ¼ 2.8 g∕cm3; and for the bottom half-
space, VP ¼ 4300 m∕s, VS ¼ 2200 m∕s, and ρ ¼ 3.1 gm∕cm3.
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modeled data and run four iterations for each frequency range. The
low frequencies used in the beginning ensure that the objective
function has fewer local minima, which are far apart. Therefore,
after each update, the solution moves closer to the global minimum.
As a result, the algorithm operating with PP and PS data recorded

for X∕Z4 ¼ 1 (Z4 is the depth of the bottom of the model) con-
verges from the initial δ ¼ 0 to the correct values in just a few iter-
ations (Figure 10).
When only PP data are inverted, the objective function apparently

has a simpler shape (as for the first model), and the multiscale ap-
proach proved to be unnecessary. In the remaining tests, we focus
on PP-wave inversion and contaminate the input traces with band-
limited (10 – 25 Hz) random noise, as before. The eigenvector/
eigenvalue decomposition of the Hessian matrix indicates that
the objective function is most sensitive to the parameters VP0,
Vhor;P, and D of the shallow VTI layer and to the P-wave velocity
in the isotropic layer immediately below it. The influence of the
parameters of the deeper layers on the objective function is much
weaker.
If the maximum offset is equal to the depth of the bottom of the

model, the spreadlength-to-depth ratio for the bottom of the shallow
VTI layer (X∕Z2) is close to 2.2. Then the parameters of that layer
are well constrained (Figure 11a), but there are significant errors in ε
and δ for the deeper VTI layer (Figure 11b). As demonstrated
above, inversion for such spreadlengths becomes stable with the
addition of PS data (Figure 10).
However, for X∕Z4 ¼ 2, the parameters of both VTI layers are

accurately resolved with just PP-waves. Even in the presence of
moderate band-limited random noise, the velocity VP0 for the
deeper VTI layer is distorted by less than 2.2%, and the errors
in ε and δ do not exceed 0.03 (Figure 12b). Therefore, when data
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Figure 12. Parameters of (a) layer 2 and (b) layer 4 from the model
in Figure 9 after each iteration. The input data include PP
reflections; the spreadlength-to-depth ratios are X∕Z2 ≈ 4.5 and
X∕Z4 ¼ 2. The data are contaminated with band-limited
(10 – 25 Hz) random noise; the signal-to-noise ratio is 14.
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Figure 11. Parameters of (a) layer 2 and (b) layer 4 from the model
in Figure 9 after each iteration. The input data include PP reflec-
tions; the spreadlength-to-depth ratio for the bottom of layer 2 is
X∕Z2 ¼ 2.2 (for the bottom of the model, X∕Z4 ¼ 2). The data
are contaminated with band-limited (10 – 25 Hz) random noise;
the signal-to-noise ratio is 14.
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Figure 10. Parameters of layer 4 from the model in Figure 9 after
each iteration when inversion is performed using a multiscale
approach. The input data include PP and PS reflections; the spread-
length-to-depth ratio for the bottom of the model X∕Z4 ¼ 1.

FWI for horizontally layered VTI media WC119

D
ow

nl
oa

de
d 

10
/1

4/
13

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



include sufficiently long offsets, it is possible to invert for VP0, VS0,
ε, and δ with only PP reflections.

CONCLUSIONS

It is well known that the depth scale of horizontally layered VTI
models is not constrained by reflection traveltimes of PP- and PS
(PSV)-waves, even if long-spread data are acquired. Here, we show
that the P- and S-wave interval vertical velocities and anisotropy
parameters ε and δ of layer-cake VTI media can be estimated by
full-waveform inversion of reflection data.
Our gradient-based inversion algorithm operates in the time do-

main with either PP reflections or the combination of PP-waves
and mode-converted PS-waves. Modeling is carried out with the
anisotropic reflectivity method, which generates exact 3D multi-
component wavefields for laterally homogeneous anisotropic
media. The initial model for FWI is obtained from nonhyperbolic
moveout inversion followed by kinematic layer stripping. It should
be emphasized that our FWI algorithm estimates the parameters of
all layers simultaneously to mitigate downward error propagation.
The parameters of the first layer have to be fixed at the correct

values. Indeed, the near-surface velocity field on land often is
strongly heterogeneous and its influence can be removed using
static and datum corrections. Inverting for density increases the
nonlinearity of the objective function and creates multiple local
minima. Therefore, similar to most published FWI algorithms,
we assume density to be known a priori.
First, we examined the inversion for a single VTI layer sand-

wiched between isotropic media. If the densities are known, the
parameters VP0, VS0, ε, and δ are well constrained by PP-waves
alone. Interestingly, PP data produce accurate parameter estimates
even for conventional spreadlengths limited by the reflector depth
(X∕Z ¼ 1) due to additional constraints provided by the reflection
coefficient (which is sensitive to VS0) and geometric-spreading
factor.
Application of FWI to multilayered VTI models showed that the

sensitivity of the objective function to the interval parameters
decreases with depth. However, if the ratio X∕Z for the bottom
of the deepest VTI layer reaches two, its parameters can be obtained
from the inversion of PP reflections. Stable parameter estimation for
smaller spreads requires the inclusion of PS-waves.
Whereas combining PP data with PS reflections adds useful

constraints, it also increases sensitivity to the choice of the initial
model. We found that such sensitivity can be mitigated using a
multiscale approach, which also improves the convergence of the
algorithm.
The wavefields analyzed here are generated for a stack of homo-

geneous layers and, therefore, do not include diving waves. In prac-
tice, diving waves help constrain the low-wavenumber component
of the model, whereas reflections improve the spatial resolution. We
plan to include diving waves and reflected waves in our FWI
algorithm for laterally heterogeneous VTI media, which is currently
under development.
The FWI method for stratified VTI media can be generalized for

vertical symmetry planes of azimuthally anisotropic models (e.g.,
orthorhombic). However, geometric spreading in the symmetry
planes of orthorhombic media is influenced by azimuthal velocity
variations and has to be modeled in 3D.
The developed algorithm should be applicable to many onshore

reservoirs, such as unconventional shale plays, which are embedded

in horizontally layered sediments. Our inversion technique based on
the Gauss-Newton method cannot be directly extended to laterally
heterogeneous media. Still, the presented results provide useful
insights for designing inversion operators capable of handling more
complicated heterogeneous structures.
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