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ABSTRACT

Important insights into point-source radiation in attenua-
tive anisotropic media can be gained by applying asymptotic
methods. Analytic description of point-source radiation can
help in the interpretation of the amplitude-variation-with-
offset response and physical-modeling data. We derive the
asymptotic Green’s function in homogeneous, attenuative,
arbitrarily anisotropic media using the steepest-descent meth-
od. The saddle-point condition helps describe the behavior
of the slowness and group-velocity vectors of the far-field
P-wave. Numerical results from the asymptotic analysis
compare well with those obtained by the ray-perturbation
method for P-waves in transversely isotropic media.

INTRODUCTION

Velocity and attenuation anisotropy significantly influence the
radiation pattern of seismic waves excited by a point source. A
proper correction for the source directivity can help improve the
robustness of amplitude-variation-with-offset (AVO) and attenua-
tion analysis. Point-source radiation in homogeneous anisotropic
media has been mostly studied for nonattenuative materials using
asymptotic and numerical methods (e.g., Tsvankin and Chesnokov,
1990; Gajewski 1993; Wang and Achenbach, 1994; Červený,
2001). Zhu (2006) presents an analytic and numerical study of
point-source radiation in 2D homogeneous, attenuative, transverse-
ly isotropic (TI) media. Vavryčuk (2007) derives the asymptotic
Green’s function for homogeneous, attenuative media with arbitrary
anisotropic symmetry by formally extending the results of Wang
and Achenbach (1994) obtain for elastic media.
In attenuative media, the Christoffel matrix becomes complex-

valued because the stiffnesses acquire an imaginary part (Carcione,
2007; Borcherdt, 2009). Although many results derived for elastic

models can be generalized for attenuative media, there are several
important differences. In particular, the saddle-point condition in-
volves complex-valued slowness and group-velocity vectors, whose
real and imaginary parts can have different directions; hence, the
properties of these vectors have to be clearly defined. Here, we
present a rigorous derivation of the saddle-point condition and the
Green’s function in attenuative anisotropic media.
We start by reviewing the definitions of the attenuation coeffi-

cient, group velocity, and other key signatures in attenuative media.
Then the integral expression for the Green’s function in homo-
geneous attenuative anisotropic media is evaluated by the steepest-
descent method. The saddle-point condition is used to study the
influence of attenuation on the properties of the far-field P-wave.
Finally, we compare the P-wave group-velocity, polarization, and
slowness vectors obtained from our asymptotic analysis for TI me-
dia with those found from the ray-perturbation theory (Červený and
Pšenčík, 2009).

BASIC DEFINITIONS

In attenuative media, the density-normalized stiffness tensor ~aijkl
is complex-valued (complex quantities are denoted here by the tilde
sign on top):

~aijkl ¼ aRijkl − iaIijkl. (1)

The components of the frequency-domain displacement vector ~u for
plane waves propagating in attenuative media can be written as

~ui ¼ ~giUeiωðt− ~p·xÞ; (2)

where ~g represents the polarization vector,U is the scalar amplitude,
and the slowness vector ~p ¼ pR þ i pI consists of the real-valued
propagation (pR) and attenuation (pI) vectors. The wave vector ~k
is related to the slowness vector by ~k ¼ ω ~p. The orientations of
pR and pI can be different, and the angle between pR and pI is called
the inhomogeneity (or attenuation) angle ξ (Červený and Pšenčík,
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2005; Behura and Tsvankin, 2009; Tsvankin and Grechka, 2011).
Plane waves can satisfy the wave equation for a range of values of ξ,
except for those corresponding to certain “forbidden directions”
(Krebes and Le, 1994; Červený and Pšenčík, 2005; Carcione,
2007).
For waves excited by point sources, however, the inhomogeneity

angle is determined by medium properties and boundary conditions
(Zhu, 2006; Vavryčuk, 2007). In reflection/transmission problems
for plane waves, the inhomogeneity angle for reflected and trans-
mitted modes is constrained by Snell’s law and can reach values of
up to 90° (Hearn and Krebes, 1990; Červený, 2007; Behura and
Tsvankin, 2009).
Zhu and Tsvankin (2006) define the phase attenuation coefficient

Aph as

Aph ¼ jkIj
jkRj : (3)

The angle-dependent phase quality factor Qph is related to Aph by

Qph ¼ 1

2Aph
: (4)

Following Carcione (2007), Červený and Pšenčík (2008) derive the
following expression for the “group” quality factor:

Qgr ¼ pR · FR

2pI · FR ; (5)

where FR denotes the real part of the Poynting vector. The real part
of the complex-valued Poynting vector is parallel to the group-
velocity vector. The time-averaged energy flux is given by

FR
i ¼ κRe½ ~aijkl ~pl ~g�j ~gk�; (6)

where the asterisk denotes the complex conjugate, κ is a constant,
and the components of the complex-valued polarization vector ~g are
normalized using the condition ~g · ~g ¼ 1. Equation 5 involves a
projection of the attenuation and propagation vectors onto the
Poynting vector, so Qgr quantifies the energy decay along the ray-
path. Definitions similar to that in equation 5 have been used to
introduce the group attenuation coefficient (e.g., Behura and Tsvan-
kin, 2009). For weakly attenuative media, the quality factor Qgr is
independent of the inhomogeneity angle and coincides with the
quality factor corresponding to the phase attenuation coefficient
for ξ ¼ 0 (Qph, see equation 4). This result was derived independ-
ently by Behura and Tsvankin (2009) and Červený and Pšenčík
(2008, 2009). Behura and Tsvankin (2009) also show that the group
attenuation coefficient remains practically independent of the inho-
mogeneity angle even for strong attenuation.

ASYMPTOTIC GREEN’S FUNCTION
IN HOMOGENEOUS ATTENUATIVE

ANISOTROPIC MEDIA

Here, we derive the asymptotic Green’s function in the frequency
domain for a homogeneous, attenuative, arbitrarily anisotropic medi-
um. The analysis is valid for all three wave modes (P, S1, and S2),
but it breaks down in the vicinity of S-wave singularities where the
Christoffel equation has two equal or close eigenvalues. According

to the causality principle, the stiffnesses in attenuative media should
be, in general, frequency-dependent (Aki and Richards, 1980).
Although we do not explicitly account for velocity dispersion,
the following analysis is valid for a frequency-dependent stiffness
tensor.
The exact Green’s function for each mode can be found as the sol-

ution of the viscoelastic wave equation (Appendix A, equation A-9):

Gknðx;x0;ωÞ

¼ iω
ð2πÞ2

Z
∞

−∞

Z
∞

−∞

�
~Skn

∂½detð ~Γ−IÞ�∕∂p3

�
p3¼ ~pr

3

e ω R ~ϕ dp1dp2; (7)

where the x3-axis points in the source-receiver direction and

~ϕ ¼ i ~pr
3: (8)

Here, R is the source-receiver distance, pj are the slowness compo-

nents, ~Γik ¼ ~aijklpjpl is the Christoffel matrix, I is the identity ma-

trix, ~Skn are the cofactors of the matrix ~Γ − I, and ~pr
3 ¼ ~p3ðp1; p2Þ

is the solution of the complex-valued Christoffel equation
det½ ~aijklpjpl − δik� ¼ 0 corresponding to the mode of interest.
If we assume that ωR∕v ≫ 1 (v is the average of the group veloc-

ity over all angles), Gkn (equation 7) can be evaluated by iterative
application of the steepest-descent method (Bleistein, 2012). The
saddle-point condition satisfied at ½ ~ps

1; ~p
s
2� is

∂ ~ϕ
∂p1

¼ ∂ ~ϕ
∂p2

¼ 0: (9)

The iterative steepest-descent method yields:

Gknðx; x0;ωÞ ¼
1

2πR
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j det ~Φ 0 0j
q ~Skn

∂½detð ~Γ − IÞ�∕∂p3

× exp

�
iωR ~pr

3 −
i
2
arg½det ~Φ 0 0�

�
; (10)

where ~Φ 0 0 is the Hessian matrix of the second-order partial deriv-
atives of ~ϕ with respect to p1 and p2; all quantities are obtained at
the saddle point.
We now discuss the identification of the saddle point ½ ~ps

1; ~p
s
2�.

Equation 9 implies that

�
∂ ~p3ðp1; p2Þ

∂p1

�
~ps
1
; ~ps

2

¼ 0 (11)

and

�
∂ ~p3ðp1; p2Þ

∂p2

�
~ps
1
; ~ps

2

¼ 0: (12)

Each eigenvalue ~λðmÞ of the Christoffel matrix ~Γik ¼ ~aijklpjpl is a
function of the slowness vector (with ~p3 ¼ ~pr

3) (see Appendix B,
equation B-9):

~λðmÞ ¼ λð ~aijkl; ~pjÞ ¼ ~aijkl ~pj ~pl ~g
ðmÞ
i ~gðmÞ

k ; (13)
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where m takes values from 1 to 3 and ~gðmÞ denotes the correspond-
ing unit polarization vector introduced in Appendix B. The largest
eigenvalue ~λð1Þ ¼ 1 is obtained for the slowness vector of the fastest
mode (P-wave). The partial derivatives in equations 11 and 12 can
be calculated from the function λð ~aijkl; ~pjÞ (equation 13) using the
analytic implicit function theorem (Krantz and Parks, 2002):

�
∂ ~p3ðp1; p2Þ

∂p1

�
~ps
1
; ~ps

2

¼ −
�
∂λ∕∂p1

∂λ∕∂p3

�
~ps
1
; ~ps

2

(14)

and

�
∂ ~p3ðp1; p2Þ

∂p2

�
~ps
1
; ~ps

2

¼ −
�
∂λ∕∂p2

∂λ∕∂p3

�
~ps
1
; ~ps

2

; (15)

where ∂λ∕∂pj is given by equation B-10; ∂λ∕∂p3 ≠ 0 because the
x3-axis points in the source-receiver direction. Next, we introduce
the energy-velocity vector ~U (Vavryčuk, 2007) as

~Uj ¼
1

2

∂λ
∂pj

: (16)

Equations 14 and 15 imply that at the saddle point,

~U1 ¼ ~U2 ¼ 0. (17)

Hence, the real and imaginary parts of ~U are parallel to the vector
connecting the source and receiver (i.e., in our case to the x3-axis).
Note that Červený et al. (2008) arrived at the same conclusion for
weakly dissipative media using perturbation analysis. Equations 16
and 17 can be used to constrain the slowness vector ~p that corre-
sponds to the plane wave that makes the most significant contribu-
tion to the wavefield at the receiver location. It is convenient to
parametrize ~p in the following way (Červený and Pšenčík, 2005):

~p ¼ ~σ nþ i Dm; (18)

where n is a unit vector in the phase direction, ~σ is a complex-valued
quantity that corresponds to the projection of the slowness vector
onto the vector n, m is chosen to be perpendicular to n (i.e.,
n · m ¼ 0), and D is called the inhomogeneity parameter (Červený
and Pšenčík, 2005). For plane waves, ~σ is found as one of the sol-
utions of the Christoffel equation corresponding to a particular
mode, whereas D can vary between zero and infinity. The param-
eters ~σ and D are determined by the saddle-point condition for
point-source radiation. Therefore, we use the condition in equa-
tion 17 to set up the following constrained optimization problem
for ~σ and D:

Minimize ~U2
1 þ ~U2

2; subject to ~λð1Þ ¼ 1: (19)

This problem is nonlinear, and the values of ~σ and D at the global
minimum yield the slowness vector at the saddle point.
Equation 10 can be simplified once the saddle point has been

found. From equations 16, 17, and B-15, we have

~p3
~U3 ¼ ~λð1Þ ¼ 1: (20)

The phase function at the saddle point (equation 8) can, therefore,
be written as

~ϕ ¼ i ~pr
3 ¼ i

1

~U3

: (21)

In elastic media, equation 16 defines the components of the group-
velocity vector. In attenuative media, the real and imaginary parts of
~U determine the traveltime and energy dissipation, respectively.
Using equations B-16 and 16, we have

~Skn
∂½detð ~Γ − IÞ�∕∂p3

¼
~Skn

~Sijð∂ ~Γij∕∂p3Þ
¼ ~gð1Þk ~gð1Þn

2 ~U3

. (22)

Equation 10 can then be rewritten as

Gknðx;x0;ωÞ¼
~gð1Þk ~gð1Þn

4πR ~U3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet ~Φ00j

q exp

�
i
ωR
~U3

−
i
2
arg½det ~Φ00�

�
;

(23)

where the components of the matrix ~Φ 0 0 are computed at the saddle
point using the implicit function theorem:

~Φ 0 0
MN ¼ −

�
∂2λ∕ð∂pM∂pNÞ

∂λ∕∂p3

�
~ps
1
; ~ps

2

; (24)

the indicesM and N take values from 1 to 2. The second-order par-
tial derivatives of λð ~aijkl; ~pjÞ can be evaluated using equation B-11.
Equation 23 was derived for a rotated coordinate frame with the

x3-axis pointing in the source-receiver direction. The Green’s func-
tion in a general (global) Cartesian coordinate frame takes the fol-
lowing form:

Gknðx;x0;ωÞ¼
~gð1Þk ~gð1Þn

4πRj ~Uj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet ~Φ 00j

q

×exp

�
i
ωR

j ~Uj −
i
2
arg½det ~Φ 0 0�

�
; (25)

where ~U is the energy-velocity vector in the source-receiver direc-
tion and j ~Uj denotes its complex-valued magnitude (j ~Uj ¼ ~U3 from
equation 16.
For TI media, equation 25 reduces to the expression for the Green’s

function derived by Zhu (2006). Although the asymptotic analysis
carried out above is similar to that presented by Vavryčuk (2007), we
proved (rather than assumed) that at the saddle point, the real and
imaginary parts of the energy-velocity vector are parallel to each other.

RAY-PERTURBATION ANALYSIS FOR
ANISOTROPIC ATTENUATIVE MEDIA

Here, we briefly review the ray-tracing methodology of Červený
and Pšenčík (2009), which is applicable in weakly attenuative, an-
isotropic, heterogeneous media with smooth spatial variations of the
stiffness tensor. We provide expressions for the ray-theoretical
Green’s function and analyze the orientation of the slowness vector
in homogeneous attenuative models. These results will be compared
to those obtained in the previous section.
Following Klimeš (2002), Červený and Pšenčík (2009) treat

the traveltime as a complex-valued quantity, with the real part

Point-source radiation WB27
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contributing to the phase (arrival time) and the imaginary part to the
dissipation along the ray. The traveltime and its spatial gradients are
computed as perturbations of the corresponding real-valued quan-
tities obtained along the ray traced in the reference elastic medium.
In the density-normalized stiffness tensor given by equation 1, the
real part aRijkl is treated here as corresponding to the reference elastic

medium, and the imaginary part aIijkl is the attenuation-related

perturbation.
We consider the linear perturbation HamiltonianHðαÞ defined in

Červený and Pšenčík (2009):

HðαÞ ¼ H0 þ α△H; (26)

with

△H ¼ ~H −H0; (27)

whereH0 and ~H are the Hamiltonians corresponding to the (elastic)
reference and (viscoelastic) perturbed medium, respectively. The
perturbation parameter is denoted by α; α ¼ 0 corresponds to
the reference elastic medium and α ¼ 1 to the perturbed attenuative
medium. The reference Hamiltonian H0 can be expressed through
the real-valued slowness (p0) and polarization (g0) vectors com-
puted for the reference model:

H0 ¼ 1

N
½aRijklp0

jp
0
l g

0
i g

0
k�N∕2; (28)

where N (integer) is the degree of the Hamiltonian. The perturbed

Hamiltonian ~H is given by

~H ¼ 1

N
½ ~aijklp0

jp
0
l ~gi ~gk�N∕2; (29)

where the complex polarization vector ~g is computed from the com-

plex Christoffel matrix ~Γik ¼ ~aijklp0
jp

0
l using equation B-8.

The traveltime and its spatial gradients can be expanded into a
perturbation series in terms of the parameter α:

τðαÞ ≈ τ0 þ α
∂τ
∂α

þ · · · (30)

and

∂τ
∂xi

≈
∂τ0

∂xi
þ α

�
∂2τ

∂xi ∂α

�
α¼ 0

þ · · · ; (31)

where all terms correspond to the reference medium. The second-
order partial derivatives in equation 31 can be computed using
dynamic ray tracing (Červený and Pšenčík, 2009). The first-order
approximation for the traveltime and the traveltime gradients in at-
tenuative media can be obtained by substituting α ¼ 1 and retaining
the first two terms of the expansion in equations 30 and 31. The real
part of the traveltime contributes to the phase (i.e., the arrival time of
the wave) and the imaginary part is responsible for the amplitude
decay along the ray. The real part of the traveltime gradient corre-
sponds to pR and the imaginary part to pI:

pR
i ¼ Re

�
∂τ
∂xi

�
≈ p0

i þ Re

�
∂2τ

∂xi ∂α

�
α¼ 0

(32)

and

pI
i ¼ Im

�
∂τ
∂xi

�
≈ Im

�
∂2τ

∂xi ∂α

�
α¼ 0

: (33)

The inhomogeneity angle can be computed from

cos ξ ¼ pI · pR

jpIjjpRj : (34)

An approximate ray-theoretical Green’s function in homo-
geneous, weakly attenuative media can be found by substituting
the complex-valued traveltime into the expression for the reference
elastic model (Gajewski and Pšenčík, 1992):

Gknðx; x0;ωÞ ¼
gk gn

4π R jUj ffiffiffiffiffiffiffijKjp exp

�
iωRe½~τ� þ i

π

2
ks

�

× expð−ω Im½~τ�Þ; (35)

where g is the polarization vector, R is the source-receiver distance,
jUj is the magnitude of group velocity, K is the Gaussian curvature
of the slowness surface, and ks quantifies the phase shift due to K.
Except for the complex traveltime ~τ, all quantities are computed for
the reference elastic medium.
The group quality factor responsible for energy decay along the

ray and corresponding to the linear perturbation Hamiltonian (equa-
tion 26) can be found from

ðQgrÞ−1 ¼ −2 Im ~H; (36)

where ~H is defined in equation 29. Červený and Pšenčík (2009) also
provide an approximation for the group-velocity components ~U i in
attenuative media:

~U i ¼
�
1 − i

1

2Qgr

�
U i; (37)

where U i is computed in the reference elastic medium. Hence, in
homogeneous, weakly attenuative media, ~τ ≈ R∕j ~Uj, and equa-
tion 35 can be rewritten as

Gknðx;x0;ωÞ¼
gk gn

4πR jUj ffiffiffiffiffiffiffijKjp exp

�
iω

R

j ~Ujþ i
π

2
ks

�
: (38)

Note that the complex-valued group velocity obtained from the per-
turbation analysis appears only in the exponential function, whereas
the polarization vector and the Gaussian curvature K of the slow-
ness surface, which control the magnitude of the Green’s function,
are computed for the reference elastic medium.

NUMERICAL EXAMPLES

In this section, the analytic results presented above are used to
study the Green’s function and the behavior of the slowness vector

WB28 Shekar and Tsvankin

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



in homogeneous, attenuative VTI media. Table 1 shows the param-
eters of the velocity and attenuation functions for four VTI models
similar to those in Zhu (2006).
First, we compare the P-wave group attenuation coefficients ob-

tained from the asymptotic analysis discussed above and perturba-
tion theory. The asymptotic coefficient is computed from equation 5
with the slowness ~p and the corresponding Poynting vector F ob-
tained from the asymptotic analysis. Equation 36 is used to find the
attenuation coefficient from perturbation analysis with the Hamil-
tonians of degrees N ¼ −1 and 2.
The example in Figure 1 shows that the group quality factor Qgr

(equation 5) obtained from the perturbation theory is close to the
asymptotic value; also, the quality factors for the two choices of
N coincide. Although the attenuation-anisotropy coefficients ϵQ
and δQ for models 3 and 4 are equal to zero, there is a slight angular
variation in Qgr for model 3; this is due to the combined effect of
velocity anisotropy and the difference between the values of QP0

and QS0 (Zhu and Tsvankin, 2006).
Substituting the slowness vector computed from the asymptotic

analysis into the Christoffel matrix and using equation B-8 yields
the plane-wave polarization vector that corresponds to the saddle-
point condition. Similarly, substituting the slowness vector obtained
by ray tracing in the reference medium into the Christoffel matrix
yields the polarization vector in the perturbation analysis. We found
that the asymptotic and perturbation approaches produce the polari-
zation vectors with close magnitudes.
Figure 2 displays the phase of the vertical component of the

polarization vector ~g3 (arg ~g3) computed from the asymptotic
and perturbation methods for models 1–4. The function arg ~g3
monotonically increases with the group angle ϕ for models 1–3,
whereas it is negligible for model 4 because the attenuation function
is isotropic. Note that the magnitude of ~g3 for angles approaching
90° (near the isotropy plane) is small, which dis-
torts the phase of ~g3. For all models, the asymp-
totic and perturbation methods yield similar
values of arg ~g3, with some deviations only for
large angles ϕ.
Next, we analyze the component G33 of the

Green’s function obtained from asymptotic
analysis (equation 23):

G33ðx;x0;ωÞ ¼
~gð1Þ3 ~gð1Þ3

4πRj ~Uj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet ~Φ00j

q

× exp

�
i
ωR

j ~Uj −
i
2
arg½det ~Φ00�

�
: (39)

The same component produced by the perturba-
tion approach has the form (equation 38):

G33ðx;x0;ωÞ ¼
gð1Þ3 gð1Þ3

4π RjUj
ffiffiffiffiffiffiffijKjp

× exp

�
iω

R

j ~Uj þ i
π

2
ks

�
:(40)

The polarization vector, group velocity, and
Hessian of the slowness surface in equation 39
are complex-valued. The only complex-valued

quantity in equation 40 is the perturbed group-velocity vector ~U,
which determines the attenuation along the ray. Our tests show that

the magnitude and argument of the energy-velocity vector ~U com-
puted from the asymptotic analysis (equation 16) are close to those
computed from perturbation analysis (equation 37). Also, the differ-
ence between the magnitudes of the Hessian of the slowness surface

(det ~Φ 0 0) in equation 39 and of the Gaussian curvature K in equa-
tion 40 is small.
Although the magnitudes of the complex-valued quantities (the

polarization vector, group velocity, and the Hessian of the slowness

Table 1. Homogeneous TI models with anisotropic velocity
and attenuation functions. The parameters VP0 and VS0 are
the P- and S-wave symmetry-direction velocities, QP0 and
QS0 are the P-wave and S-wave symmetry-direction quality
factors, and ϵQ and δQ are the attenuation-anisotropy
parameters defined in Zhu and Tsvankin (2006) and
Tsvankin and Grechka (2011).

Model 1 2 3 4

VP0 (km∕s) 3.00 3.00 3.00 3.00

VS0 (km∕s) 1.50 1.50 1.50 1.50

ϵ 0.10 0.40 0.40 0.40

δ 0.05 0.25 0.25 0.25

QP0 10 10 100 10

QS0 6 6 10 10

ϵQ −0.20 −0.45 0 0

δQ −0.10 −0.50 0 0

10 20 30 40 50 60 70 80 90

10.5

11

11.5

12

12.5

10 20 30 40 50 60 70 80 90

11

12

13

14

15

16

17

18

10 20 30 40 50 60 70 80 90
96.5

97

97.5

98

98.5

99

99.5

100

10 20 30 40 50 60 70 80 90
9.9

9.95

10

10.05

10.1

10.15

a) b)

c) d)

Figure 1. Comparison of the P-wave group quality factors (equation 5) as a function of
the group angle ϕ with the vertical obtained from the asymptotic (blue circles) and per-
turbation (red stars) analysis for (a) model 1, (b) model 2, (c) model 3, and (d) model 4.
The models are defined in Table 1.
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surface) in equation 39 are close to their real-valued counterparts in
equation 40, the phase of these quantities influence the phase of the
Green’s function.
The attenuation-induced phase distortion ϕd of the component

G33 in equation 39 can be expressed as

ϕd ¼ 2 arg½ ~gð1Þ3 � − 1

2
arg½det ~Φ 0 0� − arg½j ~Uj�: (41)

The values of ϕd for the models in Table 1 range between −5° and
5°, and hence do not significantly distort the phase of the Green’s

function (Figure 3). The other components of the Green’s function
exhibit properties similar to those of G33.
Figure 4 compares the inhomogeneity angle ξ computed from the

perturbation approach (equation 34) and the asymptotic analysis.
The values of ξ obtained by the two methods are close to one an-
other for models 1 and 3. There is a discrepancy for model 2, which
can be expected because P-wave attenuation for that model is
strongly anisotropic. Although both methods used here are approxi-
mate, the asymptotic analysis is expected to be more accurate
for models with strong attenuation and pronounced attenuation
anisotropy. Although model 4 has substantial attenuation and an
anisotropic velocity function, the inhomogeneity angle for that
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Figure 2. Phase of the vertical component ~g3 of
the polarization vector computed from the asymp-
totic (blue circles) and perturbation (red stars)
analysis for (a) model 1, (b) model 2, (c) model
3, and (d) model 4.
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Figure 3. Asymptotic (blue) and perturbation
(red) component G33 of the Green’s function
convolved with a Ricker wavelet of peak fre-
quency 10 Hz for (a) model 1, (b) model 2,
(c) model 3, and (d) model 4. The source-receiver
line makes an angle of 45° with the symmetry
axis, and the propagation time is 1 s.
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model vanishes because the components Qij of the phase quality
factor (defined in Zhu and Tsvankin, 2006) are identical (see Ap-
pendix C).

CONCLUSIONS

We presented a rigorous derivation of the asymptotic Green’s
function in homogeneous, attenuative, arbitrarily anisotropic media
using the steepest-descent method. Application of the saddle-point
condition helps identify the plane wave that makes the most signifi-
cant contribution to the displacement field of each mode. Our
results make it possible to evaluate the inhomogeneity angle and
describe the complex-valued group-velocity vector in the high-
frequency (far-field) approximation.
P-wave signatures obtained from our asymptotic analysis for TI

media were compared with the same quantities computed by ray-
perturbation theory. The asymptotic energy-velocity vector that de-
scribes the traveltime and attenuation along the ray is close to the
perturbed group-velocity vector. The inhomogeneity angles com-
puted from the saddle-point condition and perturbation theory differ
only for strongly attenuative models. Although complex-valued
quantities change the phase of the Green’s function in attenuative
media, the magnitude of the phase distortion is small even for mod-
els with strong attenuation anisotropy.
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APPENDIX A

EXACT GREEN’S FUNCTION FOR
ATTENUATIVE ANISO-

TROPIC MEDIA

Theviscoelasticwave equation in the frequency-
wavenumber domain for a homogeneous, attenu-
ative, anisotropic medium can be written as
(Zhu, 2006; Carcione, 2007)

ð ~aijkl kjkl − ω2δikÞ ~Ukðk;ωÞ ¼ ~fiðk;ωÞ;
(A-1)

whereω is the frequency, ~aijkl are the components
of the density-normalized stiffness tensor, kj are

the wavenumbers, ~U is the displacement vector,

and ~fðk;ωÞ is the body force per unit volume
(source term). Summation over repeated indices
(changing from 1 to 3) is implied.
The frequency-domain displacement can be

found as the triple Fourier integral:

~ukðx;ωÞ ¼
1

ð2πÞ3
Z

∞

−∞
~Ukðk;ωÞeikj xj dk; (A-2)

where dk ¼ dk1dk2dk3 and

~Ukðk;ωÞ ¼
~Bki

~fiðkj;ωÞ
det ~D

: (A-3)

The matrix ~D ( ~Dki ¼ ~aijkl kj kl − ω2δik) with cofactors ~Bki is
closely related to the Christoffel matrix. The source in equa-
tion A-1 can be defined as a point impulsive force applied at loca-
tion x0 parallel to the xn-axis:

~fiðk; ωÞ ¼ δine
−i kj x0j : (A-4)

The particle displacement from this source is the Green’s function
Gkn:

Gknðx;x0;ωÞ¼
1

ð2πÞ3
Z

∞

−∞

~Bkiδin
det ~D

eikjðxj−x
0
j Þdk: (A-5)

Following Červený (2001), we rotate the coordinate frame to align
the x3-axis with the source-receiver direction. Equation A-5 in the
rotated coordinate frame now reads

Gknðx; x0;ωÞ ¼
1

ð2πÞ3
Z

∞

−∞

~Bki δin
det ~D

eik3R dk; (A-6)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x01Þ2 þ ðx2 − x02Þ2 þ ðx3 − x03Þ2

q
is the source-

receiver distance. The Bond transformation has to be applied to
the stiffness tensor to account for the coordinate rotation. Note that
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Figure 4. P-wave inhomogeneity angle computed from the asymptotic (blue circles) and
perturbation (red stars) analysis for (a) model 1, (b) model 2, and (c) model 3.
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the components of the wave vector kj also correspond to the rotated
coordinate frame. For convenience, here we retain the symbols
introduced in the previous equations, which were defined in the un-
rotated coordinates.
The integral over k3 in equation A-6 can be extended into

the complex plane by representing the vertical wavenumber as
~k3 ¼ Re k3 þ i Im k3. The closed contour includes the real axis and
a semicircle with an infinitely large radius in the upper half-plane
(because R > 0). The integral can then be evaluated by the residue
theorem (i.e., by computing the residues at the poles), as described
by Aki and Richards (1980), Tsvankin and Chesnokov (1990), and
Tsvankin (1995). The poles correspond to the roots of the Christof-
fel equation for k3:

det ~D ¼ det½ ~aijkl kj kl − ω2 δik� ¼ 0. (A-7)

Equation A-7 is a sixth-order polynomial in k3 with complex co-
efficients that can have at most six distinct roots corresponding
to the up- and downgoing P-, S1-, and S2-waves.
For homogeneous (nondecaying) waves in unbounded nonattenua-

tive media, the roots of k3 lie on the real k3-axis. Then, the integral i
n equation A-6 can be evaluated by introducing small attenuation,
moving the roots to the complex plane, and applying the residue theo-
rem (Tsvankin, 1995). Alternatively, the integral over k3 can be
evaluated using Cauchy’s principal value (Bleistein, 1984).
In the presence of attenuation, the roots of equation A-7 lie away

from the real axis. The pole ~kr3 ¼ ~k3ðk1; k2Þ, which corresponds to a
certain mode (e.g., P-waves) and is located inside the integration
contour, yields the residue for that mode. Hence, the integral over
k3 in equation A-6 can be evaluated using the residue at the pole,
and the Green’s function is expressed as the following double
integral:

Gknðx;x0;ωÞ

¼ i
ð2πÞ2

Z
∞

−∞

Z
∞

−∞

�
~Bkn

∂ðdet ~DÞ∕∂k3

�
k3¼ ~kr3

ei ~k
r
3 Rx̂3 dk1 dk2. (A-8)

Substituting kj ¼ ωpj, where pj denotes the components
of the slowness vector, yields det ~D ¼ ω6 detð ~Γik − δikÞ, where
~Γik ¼ ~aijkl pj pl. The cofactors of ~Γ − I (I is the identity matrix)

are denoted by ~Skn and ~Bkn ¼ ω4 ~Skn. Equation A-8 can then be
written as

Gknðx;x0;ωÞ

¼ iω
ð2πÞ2

Z
∞

−∞

Z
∞

−∞

�
~Skn

∂½detð ~Γ− IÞ�∕∂p3

�
p3¼ ~pr

3

eiω R ~pr
3 dp1 dp2:

(A-9)

APPENDIX B

PROPERTIES OF THE CHRISTOFFEL MATRIX IN
ATTENUATIVE ANISOTROPIC MEDIA

Here, we summarize the properties of the eigenvalues and eigen-
vectors of the Christoffel matrix in attenuative anisotropic media.
These properties are used in the asymptotic and perturbation

analyses presented in the main text. The results in this appendix
are based on section 4.4 of Horn and Johnson (1990), which dis-
cusses complex symmetric matrices.
The components of the Christoffel matrix ~Γ in attenuative media

are given by (see the main text)

~Γik ¼ ~aijkl ~pj ~pl; (B-1)

where ~aijkl is the density-normalized complex stiffness tensor and ~p
is the complex-valued slowness vector.
The eigenvector-eigenvalue problem for matrix ~Γ can be written

as

~Γ ~V ¼ ~V ~Λ; (B-2)

where ~Λ is the diagonal matrix of the eigenvalues, and the columns
of ~V contain the corresponding eigenvectors. The matrix ~V is non-
singular (Horn and Johnson, 1990), so

~Γ ¼ ~V ~Λ ~V−1 (B-3)

and

~Λ ¼ ~V−1 ~Γ ~V : (B-4)

If the eigenvalues of the Christoffel matrix are distinct, the matrix ~V
satisfies

~VT ~V ¼ ~D; (B-5)

where ~D is a diagonal matrix. The Christoffel matrix can be diagon-
alized in the following way:

~Γ ¼ ~G ~Λ ~GT; (B-6)

and

~Λ ¼ ~GT ~Γ ~G ; (B-7)

with

~G ¼ ~V ~D−1∕2: (B-8)

The matrix ~G is complex orthonormal; i.e., ~GT ~G ¼ ~G ~GT ¼ I.
In purely elastic media ~D ¼ I, and consequently ~VT ¼ ~V−1 and

~V ¼ ~G. The eigenvector matrix ~V then includes the polarization

vectors of the three wave modes. Choosing the columns of ~G as
the polarization vectors helps extend expressions derived for elastic
media to attenuative models.
Next, we provide expressions for quantities related to the com-

plex Christoffel matrix used throughout this paper. The results be-
low are based on sections 3.6.2 and 4.14.1 of Červený (2001), with
the real-valued stiffness coefficients and slowness vector replaced
by the corresponding complex-valued quantities. We denote the ei-

genvalues (elements of ~Λ) by ~λð1Þ, ~λð2Þ, and ~λð3Þ, and the correspond-
ing polarization vectors (columns of ~G) by ~gð1Þ, ~gð2Þ, and ~gð3Þ. Using
equation B-7, the eigenvalue ~λð1Þ can be found as
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λð1Þ ¼ ~gð1Þi ~aijkl ~pj ~pl ~g
ð1Þ
k : (B-9)

Then, the derivatives ∂~λð1Þ∕∂ ~pn and ∂2 ~λð1Þ∕
�
∂ ~pn ∂ ~pq

�
take the

form:

∂~λð1Þ

∂ ~pn
¼ ∂ ~Γik

∂ ~pn
~gð1Þi ~gð1Þk ; (B-10)

∂2 ~λð1Þ

∂ ~pn ∂ ~pq
¼ ∂2 ~Γik

∂ ~pn ∂ ~pq
~gð1Þi ~gð1Þk þ 2

∂ ~Γik

∂ ~pn
~gð1Þi

∂ ~gð1Þk

∂ ~pq
; (B-11)

∂ ~Γik

∂ ~pn
¼ ð ~ainqk þ ~aiqknÞ ~pq; (B-12)

∂2 ~Γik

∂ ~pn ∂ ~pq
¼ ~ainqk þ ~aiqkn; (B-13)

and

∂ ~gð1Þk

∂ ~pq
¼

�
1

~λð1Þ − ~λð2Þ
∂Γin

∂ ~pq
~gð2Þi ~gð1Þn

�
~gð2Þk

þ
�

1

~λð1Þ − ~λð3Þ
∂ ~Γin

∂ ~pq
~gð3Þi ~gð1Þn

�
~gð3Þk : (B-14)

From equations B-9 and B-10, it follows that

~pn
∂λð1Þ

∂ ~pn
¼ 2 λð1Þ: (B-15)

Finally, the product ~gð1Þj ~gð1Þk can be expressed as

~gð1Þj ~gð1Þk ¼
~Sjk

Tr½ ~S� ; (B-16)

where ~Sjk represent the components of the cofactor matrix of

½ ~Γ − ~λð1ÞI�, and Tr½ ~S� is the trace of the cofactor matrix.

APPENDIX C

PERTURBATION ANALYSIS OF THE
INHOMOGENEITY ANGLE

In this section, we present expressions for the propagation and
attenuation vectors (and, hence, the inhomogeneity angle) in homo-
geneous, attenuative, anisotropic media using the method of pertur-
bation Hamiltonians introduced by Červený and Pšenčík (2009).
We also derive the conditions under which the inhomogeneity angle
vanishes.
The second-order partial derivative in equation 31 can be evalu-

ated using quadratures along the reference rays, as shown by Klimeš
(2002) and Červený and Pšenčík (2009):

∂2τ
∂xi ∂α

¼ ~TkðαÞ½Qray
ki �−1; (C-1)

with the vector TðαÞ given by

~TKðαÞ ¼ ~T 0
KðαÞ þ τ ~WiP

ray
iK ; K ¼ 1; 2; (C-2)

~Wi ¼
�
∂ ~H
∂pi

−
∂H0

∂pi

�
; (C-3)

and

~T3ðαÞ ¼ H0 − ~H: (C-4)

The index K changes from 1 to 2, and the lowercase index k from
1 to 3. The real-valued matrices Qray

ik (not to be confused with the
quality-factor matrix) and P ray

ik are computed using dynamic ray
tracing in the reference elastic medium:

Qray
ik ¼ ∂xi

∂ γk
; P ray

ik ¼ ∂p0
i

∂ γk
; (C-5)

γk denotes a certain ray parameter (e.g., the initial phase angle or the
traveltime along the ray). In equation C-2, the initial conditions
~T 0
KðαÞ are set to zero for a point source; for plane-wave propagation,
~T 0
KðαÞ may be chosen arbitrarily (Klimeš, 2002).
We now derive the conditions under which the inhomogeneity

angle vanishes in homogeneous media. Substituting equations 28
and 29 into equation C-3 yields

~Wi ¼ ~aijkl pk ~gj ~gl − aRijkl pk gj gl: (C-6)

For weakly dissipative media, we can use the approximation ~g ≈ g
and reduce equation C-6 to

~Wi ¼ −i aIijkl pk gj gl: (C-7)

For the special case of identical components of the phase quality
factor (i.e., a I

ijkl ¼ a R
ijkl∕Q), we have

~Wi ¼ −i
aRijkl
Q

pk gj gl ¼ −i
U i

Q
; (C-8)

where U i are the components of the group-velocity vector in the
reference elastic medium. Substituting equation C-8 into equa-
tion C-2, we obtain

~TKαðγ3Þ ¼ −iðγ3 − γ03Þ
U i

Q
Pray
iK ¼ 0; K ¼ 1; 2 (C-9)

because the group-velocity vector is orthogonal to the first two
columns of the matrix P ray and U iPiK ¼ 0 (Červený, 2001). Equa-
tions 32 and 33 for pR and pI then take the form:

pR
i ¼ p0

i þ Re½ ~T3α�p0
i (C-10)
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and

pI
i ¼ Im½ ~T3α�p0

i ; (C-11)

where p0
i ¼ ½Qray

3i �−1 (Červený, 2001). From equations C-10 and
C-11, it follows that pR and pI are parallel to p0. Hence, the inho-
mogeneity angle vanishes in the case of identical Qij components,
i.e., when the attenuation coefficients of all three modes are equal
and isotropic. Note that the velocity function may still be angle-
dependent (anisotropic). Furthermore, the inhomogeneity angle
also vanishes for isotropic velocity and attenuation functions with
different values of the quality factor for P- and S-waves. This can
be proved by considering the expression for the Hamiltonian in iso-
tropic media.

REFERENCES

Aki, K., and P. G. Richards, 1980, Quantitative seismology: Theory and
methods, vol. 1: W.H. Freeman and Company.

Behura, J., and I. Tsvankin, 2009, Role of the inhomogeneity angle in aniso-
tropic attenuation analysis: Geophysics, 74, no. 5, WB177–WB191, doi:
10.1190/1.3148439.

Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic
Press.

Bleistein, N., 2012, Saddle point contribution for an n-fold complex-valued
integral: Center for Wave Phenomena Research Report 741.

Borcherdt, R. D., 2009, Viscoelastic waves in layered media: Cambridge
University Press.

Carcione, J., 2007, Wave fields in real media: Theory and numerical sim-
ulation of wave propagation in anisotropic, anelastic, porous and electro-
magnetic media: Elsevier.

Červený, V., 2001, Seismic ray theory: Cambridge University Press.
Červený, V., 2007, Reflection/transmission laws for slowness vectors in

viscoelastic anisotropic media: Studia Geophysica et Geodaetica, 51,
391–410, doi: 10.1007/s11200-007-0022-7.

Červený, V., L. Klimeš, and I. Pšenčík, 2008, Attenuation vector in hetero-
geneous, weakly dissipative, anisotropic media: Geophysical Journal
International, 175, 346–355, doi: 10.1111/j.1365-246X.2008.03850.x.

Červený, V., and I. Pšenčík, 2005, Plane waves in viscoelastic anisotropic
media — I: Theory: Geophysical Journal International, 161, 197–212,
doi: 10.1111/j.1365-246X.2005.02589.x.

Červený, V., and I. Pšenčík, 2008, Quality factor Q in dissipative anisotropic
media: Geophysics, 73, no. 4, T63–T75, doi: 10.1190/1.2937173.

Červený, V., and I. Pšenčík, 2009, Perturbation Hamiltonians in hetero-
geneous anisotropic weakly dissipative media: Geophysical Journal
International, 178, 939–949, doi: 10.1111/j.1365-246X.2009.04218.x.

Gajewski, D., 1993, Radiation from point sources in general anisotropic me-
dia: Geophysical Journal International, 113, 299–317, doi: 10.1111/j
.1365-246X.1993.tb00889.x.

Gajewski, D., and I. Pšenčík, 1992, Vector wavefield for weakly attenuating
anisotropic media by the ray method: Geophysics, 57, 27–38, doi: 10
.1190/1.1443186.

Hearn, D. J., and E. S. Krebes, 1990, On computing ray-synthetic seismo-
grams for anelastic media using complex rays: Geophysics, 55, 422–432,
doi: 10.1190/1.1442851.

Horn, R. A., and C. R. Johnson, 1990, Matrix analysis: Cambridge Univer-
sity Press.

Klimeš, L., 2002, Second-order and higher-order perturbations of travel time
in isotropic and anisotropic media: Studia Geophysica et Geodaetica, 46,
213–248, doi: 10.1023/A:1019802003257.

Krantz, S. G., and H. R. Parks, 2002, The implicit function theorem: Springer.
Krebes, E. S., and L. H. T. Le, 1994, Inhomogeneous plane waves and

cylindrical waves in anisotropic anelastic media: Journal of Geophysical
Research, 99, 899–919, doi: 10.1029/94JB02126.

Tsvankin, I., 1995, Seismic wavefields in layered isotropic media (course
notes): Samizdat Press.

Tsvankin, I., and E. M. Chesnokov, 1990, Synthesis of body wave seismo-
grams from point sources in anisotropic media: Journal of Geophysical
Research, 95, 11317–11331, doi: 10.1029/JB095iB07p11317.

Tsvankin, I., and V. Grechka, 2011, Seismology of azimuthally anisotropic
media and seismic fracture characterization: SEG.

Vavryčuk, V., 2007, Asymptotic Green’s function in homogeneous aniso-
tropic viscoelastic media: Proceedings of the Royal Astronomical Society,
463, 2689–2707, doi: 10.1098/rspa.2007.1862.

Wang, C. Y., and J. D. Achenbach, 1994, Elastodynamic fundamental
solutions for anisotropic solids: Geophysical Journal International, 118,
384–392, doi: 10.1111/j.1365-246X.1994.tb03970.x.

Zhu, Y., 2006, Seismic wave propagation in attenuative anisotropic media:
Ph.D. thesis, Colorado School of Mines.

Zhu, Y., and I. Tsvankin, 2006, Plane-wave propagation in attenuative trans-
versely isotropic media: Geophysics, 71, no. 2, T17–T30, doi: 10.1190/1
.2187792.

WB34 Shekar and Tsvankin

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.3148439
http://dx.doi.org/10.1190/1.3148439
http://dx.doi.org/10.1190/1.3148439
http://dx.doi.org/10.1007/s11200-007-0022-7
http://dx.doi.org/10.1007/s11200-007-0022-7
http://dx.doi.org/10.1111/j.1365-246X.2008.03850.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03850.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03850.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03850.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03850.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03850.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02589.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02589.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02589.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02589.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02589.x
http://dx.doi.org/10.1111/j.1365-246X.2005.02589.x
http://dx.doi.org/10.1190/1.2937173
http://dx.doi.org/10.1190/1.2937173
http://dx.doi.org/10.1190/1.2937173
http://dx.doi.org/10.1111/j.1365-246X.2009.04218.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04218.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04218.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04218.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04218.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04218.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb00889.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb00889.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb00889.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb00889.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb00889.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb00889.x
http://dx.doi.org/10.1190/1.1443186
http://dx.doi.org/10.1190/1.1443186
http://dx.doi.org/10.1190/1.1443186
http://dx.doi.org/10.1190/1.1442851
http://dx.doi.org/10.1190/1.1442851
http://dx.doi.org/10.1190/1.1442851
http://dx.doi.org/10.1023/A:1019802003257
http://dx.doi.org/10.1023/A:1019802003257
http://dx.doi.org/10.1029/94JB02126
http://dx.doi.org/10.1029/94JB02126
http://dx.doi.org/10.1029/JB095iB07p11317
http://dx.doi.org/10.1029/JB095iB07p11317
http://dx.doi.org/10.1098/rspa.2007.1862
http://dx.doi.org/10.1098/rspa.2007.1862
http://dx.doi.org/10.1098/rspa.2007.1862
http://dx.doi.org/10.1098/rspa.2007.1862
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03970.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03970.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03970.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03970.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03970.x
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03970.x
http://dx.doi.org/10.1190/1.2187792
http://dx.doi.org/10.1190/1.2187792
http://dx.doi.org/10.1190/1.2187792

