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ABSTRACT

Seismic wave propagation in attenuative media can be ef-
ficiently modeled with ray-based methods. We present a
methodology to generate reflection data from attenuative an-
isotropic media using the Kirchhoff scattering integral and
summation of Gaussian beams. The Green’s functions are
computed in the reference elastic model by Gaussian-beam
summation, and the influence of attenuation is incorporated
as a perturbation along the central ray. The reflected P-wave
is obtained by substituting the approximate Green’s func-
tions into the Kirchhoff scattering integral. Numerical exam-
ples for a transversely isotropic medium above a horizontal
reflector and for a structurally complex acoustic model with
a salt body confirm the accuracy of the method.

INTRODUCTION

Attenuation analysis may provide seismic attributes sensitive to
the physical properties of the subsurface. Reliable attenuation mea-
surements have become feasible with acquisition of high-quality
reflection and borehole data.
A prerequisite for estimating attenuation coefficients from seis-

mic data is accurate and efficient modeling of wave propagation in
heterogeneous attenuative media. Attenuation makes the stiffness
tensor complex, which leads to amplitude decay along seismic rays
and velocity dispersion. In the presence of attenuation, the stress
tensor is obtained by convolving the time-domain stiffness tensor
(called the relaxation tensor) with the strain tensor (Carcione, 1990),
which complicates finite-difference modeling of wave propagation
in the time domain. Further, simulation of a frequency-independent
quality factor (constant-Q model, e.g., Kjartannson, 1979) requires
superimposing various relaxation mechanisms (Xu and McMechan,

1998; Ruud and Hestholm, 2005) — a costly operation for
finite-difference modeling. The approach based on the Fourier pseu-
dospectral method proposed by Carcione (2010) avoids the compu-
tation of relaxation functions, but it is restricted to viscoacoustic
media. Although the reflectivity method (Schmidt and Tango, 1986)
can be used to calculate exact synthetic seismograms, the model has
to be composed of horizontal, homogeneous layers.
A computationally fast alternative is ray tracing, which can gen-

erate asymptotic Green’s functions in elastic and attenuative media
(Červený, 2001). The so-called complex ray theory developed for
attenuative models treats ray trajectories and parameters computed
along the ray as complex quantities (Thomson, 1997; Hanyga
and Seredyňska, 2000). However, numerical implementation of
the complex ray theory in seismic modeling is difficult. Ray tracing
in attenuative media can also be performed using perturbation
methods, which involve computation of rays in a reference elastic
medium with the influence of attenuation included as a perturbation
along the ray (Gajewski and Pšenčik, 1992; Červený and Pšenčik,
2009; Shekar and Tsvankin, 2012).
Synthetic seismograms of reflected waves in heterogeneous me-

dia can be efficiently computed using the Kirchhoff scattering in-
tegral (Chapman, 2004). However, this method typically requires
two-point ray tracing, which can produce inaccurate results for mul-
tivalued traveltimes (multipathing). Alternatively, the asymptotic
Green’s functions required in the Kirchhoff scattering integral can
be found by summation of Gaussian beams (Červený, 2001;
Bleistein, 2008). Gaussian-beam summation eliminates the need for
two-point ray tracing and can accurately handle multipathing. It can
also produce finite-frequency sensitivity kernels for amplitude in-
version (Yomogida and Aki, 1987). Liu and Palacharla (2010) show
that using Gaussian beams to perform Q-compensating Kirchhoff
migration can better restore the amplitude and frequency content of
images than single-arrival Kirchhoff imaging.
Here, we present a methodology for computing 2.5D ray syn-

thetic seismograms from attenuative anisotropic media. First, we
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describe the Kirchhoff scattering integral for purely elastic models
and show how it should be modified in the presence of attenuation.
Then, we review the method of summation of Gaussian beams and its
application to computation of the asymptotic “two-point” Green’s
functions in attenuative media. Finally, the algorithm is implemented
for heterogeneous transversely isotropic (TI) media and its accuracy
is illustrated with numerical examples.

METHODOLOGY

Kirchhoff scattering integral

Suppose the wavefield is excited by a point impulsive force
located at xs and aligned with the xk-axis, and the receiver is lo-
cated at xr. The nth-component of the displacement field re-
flected from surface Σ is given in the frequency domain by (Čer-
vený, 2001)

Gnkðxr;xs;ωÞ¼−iω
Z
Σ
Wiqðx0ÞGinðx0;xs;ωÞGqkðx0;xr;ωÞdΣ;

(1)

where x 0 are points on surface Σ and the source- and receiver-side
Green’s functions [Ginðx 0; xs;ωÞ and Gqkðx 0; xr;ωÞ, respectively]
are computed for a smoothed medium. Throughout this paper, low-
ercase Roman indices take values from one to three and Einstein
summation convention is implied. The weighting function Wiqðx 0Þ
is represented as

Wiqðx 0Þ ¼ að1Þijqlðnjpr
l − nlps

jÞð1þ RÞ; (2)

where að1Þijql is the local density-normalized stiffness tensor in the
medium immediately above the reflector, n is the normal to the re-
flector, ps and pr are the source- and receiver-side slowness vectors
at the scattering point, respectively, and R is the angle-dependent
reflection coefficient.
Equation 1 is valid for an arbitrary scattering surface, and all

Green’s functions have to be computed in 3D. However, if we as-
sume that the medium properties do not vary in the x2-direction,
and the [x1, x3]-plane is a plane of symmetry, equation 1 can be
rewritten in a 2.5D form. Then, the surface integral in equation 1
can be reduced to a line integral by the method of stationary
phase (Bleistein, 1984). Following Bleistein (1986), we apply
the stationary-phase method to obtain the 2.5D form of the integral
in equation 1:

Gnkðxr; xs;ωÞ ¼ −i
ffiffiffiffiffiffiffiffiffi
2πω

p

×
Z
C; x2¼0

1ffiffiffi
σ

p Wiqðx 0ÞGinðx 0; xs;ωÞGqkðx 0; xr;ωÞds; (3)

where the Green’s functions are defined in 2.5D, the scatterer is
reduced to the curve C that lies in the [x1, x3]-plane, ds is an ele-
mentary arclength along C, and function σ accounts for out-of-
plane phenomena:

σ ¼
�

1

∂2Tðx 0; xsÞ∕∂x22
þ 1

∂2Tðx 0; xrÞ∕∂x22

�
x2 ¼ 0

; (4)

Tðx 0; xsÞ is the traveltime from the source to the scatterer and
Tðx 0; xrÞ is the traveltime from the receiver to the scatterer. The
second-order spatial derivatives of the traveltime functions may be
calculated by dynamic ray tracing (Appendix A).
Equations 1–4 can be extended to attenuative media by making

the stiffness tensor complex and replacing the elastic Green’s func-
tions with their viscoelastic counterparts. Although the reflection
coefficient and slowness vector also become complex in attenuative
media, we compute these quantities for the reference elastic medi-
um. Unless attenuation is anomalously high, plane-wave reflection
coefficients are not significantly distorted in attenuative media (Be-
hura and Tsvankin, 2009b). Although the complex-valued slowness
vectors at the reflector can somewhat change the weighting function
defined in equation 2, they do not significantly contribute to the
displacement computed from equation 3 because attenuation is a
propagation phenomenon.

Asymptotic Green’s function as a sum of Gaussian
beams

Although the Green’s functions in equation 3 can be com-
puted by two-point ray tracing (Bulant, 1996), that method cannot
accurately handle multipathing and requires a search for the ray
connecting the source and receiver. A more rigorous approach to
modeling asymptotic Green’s functions involves summation of
Gaussian beams (Červený, 2001). Here, we start with analysis of
2.5D elastic anisotropic Green’s functions and then describe the
modifications needed for extending the methodology to attenuative
media.
The Green’s function Gðx 0; xs;ωÞ can be found as a sum of

Gaussian beams (Červený, 2001):

Gikðx 0; xs;ωÞ ¼ Φðθ0Þ
Z

uik½Rðγ þ θ0Þ�dγ; (5)

where uik½Rðγ þ θ0Þ� represents a single Gaussian beam concen-
trated around the central ray Rðγ þ θ0Þ and Φðθ0Þ is the angle-
dependent weighting function. Suppose that ray Rðθ0Þ with the ini-
tial (at the source xs) take-off phase angle θ0 with respect to the
horizontal illuminates a point close to x 0 (Figure 1). The range of
integration in equation 5 is then chosen to be symmetric over γ ¼ 0,
and the Green’s function is obtained by summation over a fan of
beams centered around the phase angle θ0. Note that θ0 does not
appear in the argument of the Green’s function in equation 5 be-
cause θ0 implicitly depends on xs and x 0 (Figure 1).
Červený (2001) derives the weighting function Φðθ0Þ for hetero-

geneous media by evaluating the Gaussian integral. However, that
result is valid only for “regular ray regions” that do not include
caustics. Alternatively, the weighting function may be calculated in
an asymptotic sense (Bleistein, 2008). Although the asymptotic
function Φðθ0Þ for heterogeneous media is approximate, it re-
mains stable even in regions with caustics. The asymptotic
angle-dependent weighting function for anisotropic media is de-
rived in Appendix B (equation B-9). In isotropic media, the weight-
ing function is independent of angle.
To evaluate the contribution of the Gaussian beam centered

around ray Rðγ þ θ0Þ to Gðx 0; xs;ωÞ, we consider point x 0 0 closest
to x 0 on Rðγ þ θ0Þ (Figure 1). Then, the contribution uik½Rðγ þ θ0Þ�
to Gðx 0; xs;ωÞ is (Červený and Pšenčik, 2010)
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uikðx 0; xs;ωÞ ¼ giðx 0 0Þgkðx 0 0Þ

×
1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðxsÞcðx 0 0Þp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ~Wðx 0 0; xsÞ
q e−iω ~Tðx 0 0;xsÞ; (6)

where the angle-dependent P-wave phase velocity corresponding to
the ray Rðγ þ θ0Þ at the locations xs and x 0 0 is represented by cðxsÞ
and cðx 0 0Þ, respectively, g is the polarization vector, and ~Tðx 0; xsÞ is
the complex traveltime (Červený and Pšenčik, 2010):

~Tðx 0; xsÞ ¼ Tðx 0 0; xsÞ þ ðx 0 − x 0 0ÞTp½Rðγ þ θ0Þ�

þ 1

2
ðx 0 − x 0 0ÞT ~Mxðx 0 − x 0 0Þ; (7)

where the superscript T denotes the transpose, p is the slowness
vector corresponding to the ray Rðγ þ θ0Þ, and ~Mx is the complex-
valued matrix of the second traveltime derivatives found by trans-
forming the matrix ~M defined in Appendix A (equation A-15) to the
Cartesian coordinates (Červený and Pšenčik, 2010). The matrix
~Wðx 0 0; xsÞ depends on the initial value ~M0 of ~M:

~Wðx 0 0; xsÞ ¼ Q1ðx 0 0; xsÞ þQ2ðx 0 0; xsÞ ~M0; (8)

where Q1 and Q2 are computed by dynamic ray tracing in ray-
centered coordinates (see Appendix A). Matrix ~M0 is given by
equation A-16:

~M0 ¼ i
lω2

I; (9)

where I is the identity matrix and l represents the initial beam width.
The choice of l and the sampling of the parameter γ are discussed in
the next section.
If the medium is attenuative, equation 5 can be adapted to

obtain the viscoelastic Green’s function Gattðx 0; xs;ωÞ (Červený,
1985):

Gatt
ik ðx 0; xs;ωÞ ¼ Φðθ0Þ

Z
uattik ½Rðγ þ θ0Þ�dγ: (10)

The weighting function Φðθ0Þ remains unchanged from that in elas-
tic media, whereas uattik ðRÞ becomes

uattik ½Rðγ þ θ0Þ� ¼ uik½Rðγ þ θ0Þ�e−ωt�ðx 0; xsÞ; (11)

where uik½R0ðγÞ� is computed for the reference elastic medium and
t�ðx 0; xsÞ is a real-valued quantity called the dissipation factor
(Gajewski and Pšenčik, 1992), which accounts for the attenuation-
induced amplitude decay along the central ray. The factor t� can be
calculated using perturbation methods (Červený and Pšenčik, 2009;
Shekar and Tsvankin, 2012).

Implementation

The initial beam width for Gaussian beams in anisotropic media
can be chosen as (Alkhalifah, 1995)

l ¼ Vavg

fmin

; (12)

where Vavg represents the average of the horizontal and vertical
phase velocities over the entire model and fmin is the lowest fre-
quency of interest.
Next, we discuss the sampling of parameter γ in the summation of

Gaussian beams (equations 5 and 10). Following Hill (1990), Hale
(1992) derives the following expression for the sampling in the hori-
zontal slowness px:

dpx ¼
1

6l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fmin fmax

p ; (13)

where fmax is the highest frequency of interest. In TI media, the
velocity c is a function of angle, and the horizontal slowness can
be expressed as

px ¼
cosðγ þ θ0Þ
cðγ þ θ0Þ

: (14)

Using equations 13 and 14, the sampling dγ can be related to
dpx by

jdpxj ¼
���� sinðγ þ θ0Þ
cðγ þ θ0Þ

þ cosðγ þ θ0Þ
c2ðγ þ θ0Þ

dcðγ þ θ0Þ
dγ

����
γ¼ 0

jdγj

¼
���� sin θ0
cðθ0Þ

þ cos θ0
c2ðθ0Þ

dcðγ þ θ0Þ
dγ

����jdγj; (15)

the derivative dcðγ þ θ0Þ∕dγ is evaluated at γ ¼ 0.

Figure 1. Diagram illustrating the computation of the Green’s
function as a sum of Gaussian beams. The source exciting the
Green’s function is at point xs, and the receiver location is x 0.
The ray Rðθ0Þ defined by the take-off phase angle θ0 (generally
different from the ray angle) with respect to the horizontal axis
illuminates a point close to x 0. The points x 0 0 and x 0 0 0, located
on rays Rðθ0 þ γÞ and Rðθ0 − γÞ, respectively, are the closest points
to x 0. The Green’s function is obtained as a summation of Gaussian
beams centered around each ray in the range from Rðθ0 − γÞ to
Rðθ0 þ γÞ.
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We calculate the reflected wavefields in attenuative hetero-
geneous media using equation 3 with the source-to-scatterer and
scatterer-to-receiver Green’s functions obtained using equations 5
and 6. The Gaussian beams in attenuative media are computed
from equation 11. The ray tracing is performed in the frequency
domain and parametrized by the real-valued stiffness tensor for
the reference elastic medium and by the complex-valued stiffness
tensor for the attenuative medium. The beams are constructed
in the reference elastic medium, and the dissipation factor t� is
found as a perturbation along the central ray (Červený and
Pšenčik, 2009; Shekar and Tsvankin, 2012). The weighting func-
tion Φðθ0Þ for the summation of Gaussian beams is also calcu-
lated in the reference elastic medium. Likewise, the weighting
functions σ and Wiq for the Kirchhoff integral (equation 3) are
found from the quantities stored during the modeling of Gaussian
beams in the reference elastic medium. For TI models, the re-
flection coefficient R in equation 2 is obtained from the weak-
contrast, weak-anisotropy approximation for P-waves presented
by Rüger (1997).

SYNTHETIC TESTS

First, we verify the accuracy of the Gaussian beam summation
method in constructing the asymptotic Green’s function in un-
bounded media. Table 1 lists the velocity and attenuation parameters
for the two TI models used to test the Gaussian beam summation.
Model 1 is homogeneous, and model 2 has a vertical gradient (kz) in
the symmetry-direction (vertical) P-wave velocity VP0:

VP0ðzÞ ¼ VP0ð0Þ
�
1þ kzz

�
: (16)

Figure 2 compares the Green’s function computed from perturba-
tion ray theory (Červený and Pšenčik, 2009; Shekar and Tsvankin,
2012) and Gaussian beam summation (equation 11) for the two
TI models. Note that equation 11 also uses perturbation ray
theory to incorporate the contribution of attenuation. The two func-
tions are close to each other for model 1 (Figure 2a, 2c, and 2e),

whereas there is a noticeable deviation in the amplitudes for
model 2 (Figure 2b, 2d, and 2f), which has a vertical velocity
gradient. The asymptotic weighting function Φðθ0Þ (equation
B-9) is derived for a homogeneous, anisotropic medium with the
medium parameters corresponding to the surface. The strong ver-
tical velocity gradient combined with the velocity anisotropy is
responsible for the amplitude error for model 2. The displacement
computed from the beam summation exhibits a phase distortion
because only a finite number of Gaussian beams is taken into
account.
Next, the Gaussian-beam summation method is applied to a

structurally complicated but isotropic 2D model. Figure 3a displays
a P-wave velocity slice extracted from the SEG/EAGE acoustic
salt model (Aminzadeh et al., 1996); a smooth version of the
velocity model used to perform ray tracing is shown in Figure 3b.
The smoothing was performed over slowness using Seismic
Un*x (SU) (Stockwell, 1999) function “smooth3d,” which uses
a damped least-squares approach to preserve traveltimes. Rays
traced from a source at (6.72 km, 0.10 km) exhibit shadow zones
and multipathing because of the vertical and lateral velocity varia-
tions and, particularly, due to the presence of the salt body
(Figure 3b).
Figure 4 shows the seismograms of pressure at a depth of 3 km

generated by a source placed at (6.72 km, 0.10 km) in the model
from Figure 3. The section in Figure 4a was computed with the
SU finite-difference function “sufdmod2” for the model in Figure 3a.
The section in Figure 4b was obtained by Gaussian-beam summation
method for 2D acoustic media (Hill, 1990; Červený, 2001; Bleistein,
2008) applied to the smoothed model in Figure 3b. We then intro-
duced isotropic attenuation in the model with a spatially invariant
P-wave quality factor QP ¼ 10. The contribution of attenuation
was incorporated by combining perturbation ray theory with beam
summation, as discussed above; the resulting traces are plotted in
Figure 4c. Predictably, the waveforms in Figure 4c are wider
due to the influence of attenuation, which suppresses high
frequencies.
To gain insight into the performance of Gaussian-beam summa-

tion, in Figure 5 we analyze individual traces from Figure 4a and 4b
extracted for the horizontal coordinate x in the range 5–9 km, which
corresponds to the region with the most significant energy in Fig-
ure 4a. Because the Gaussian-beam summation was performed for a
smooth model, it somewhat distorts the geometric spreading for the
model in Figure 3a. Moreover, the ray tracing used in the summa-
tion of beams does not take into account reflection/transmission co-
efficients and multiple scattering. Hence, the beam-summation
technique inevitably produces some errors in amplitudes. Also,
beam summation cannot reconstruct side lobes (or coda) visible
in the traces obtained by the finite-difference method (Figure 5) be-
cause the coda is generated mostly by internal scattering inside the
salt body.
However, in the parts of the model with a good ray coverage

(e.g., for 5 < x < 9 km; see Figure 3b), the main lobes of the traces
produced by the finite-difference and beam-summation methods al-
most coincide, except for a slight time shift caused by the smoothed
velocity model in beam summation (Figure 5b and 5c). For
regions with poor ray coverage, the beam-summation method
yields traces with multiple lobes absent on the finite-difference
seismograms. These errors are already visible in Figure 5a
and 5d, and become larger for x < 5 km and x > 9 km. If the

Table 1. Parameters of two VTI models used to test the
accuracy of Gaussian beam summation. Model 2 is vertically
heterogeneous with a constant gradient (kz) in VP0. The
attenuation-anisotropy parameters ϵQ and δQ are defined in
Zhu and Tsvankin (2006) and Tsvankin and Grechka (2011,
chapter 8).

Model 1 Model 2

VP0 (km/s) 3.00 3.00

VS0 (km/s) 1.50 1.50

kz (1/km) 0.0 1.50

ϵ 0.40 0.40

δ 0.25 0.25

QP0 10 10

QS0 10 10

ϵQ −0.40 −0.40
δQ −0.25 −0.25

WB54 Shekar and Tsvankin
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ray density is low, the Gaussian beams centered on successive rays
are out of phase and do not sum coherently.
The accuracy of the algorithm in accounting for attenuation

can be verified by computing the attenuation coefficients from

the modeled data. We apply the spectral-ratio method (Johnston
and Toksöz, 1981; Zhu et al., 2007), which operates with isolated
events, to the traces in Figure 4c. Because the attenuation function
for this model is spatially invariant, the slope of the logarithmic

a) b)

c) d)

e) f)

× ×

× ×

× ×

Figure 2. Comparison of the vertical displacement component computed using the Gaussian-beam summation method (red curves) and per-
turbation ray theory (black) for model 1 (a, c, and e) and model 2 (b, d, and f) from Table 1. The group angle with the vertical is (a and b) 0°, (c
and d) 30°, and (e and f) 60°; the propagation time is 1 s. The wavefield is excited by a vertical point force; the source signal is a Ricker wavelet
with a central frequency of 30 Hz.
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spectral ratio obtained by dividing the amplitude spectrum of an
event and the source spectrum yields the product of the traveltime
t along the raypath and the normalized P-wave attenuation coeffi-
cientAP ¼ 1∕ð2QPÞ (Behura and Tsvankin, 2009a). The estimated
attenuation coefficient is close to the actual one (AP ¼ 0.05) for a
range of x-values, but there are deviations for x < 5.5 km and x >
8.5 km (Figure 6) caused by the relatively sparse ray coverage in
these regions (Figure 3b).
In Figure 7, we test the accuracy of the Kirchhoff scattering in-

tegral combined with Gaussian-beam summation in generating re-
flection data for VTI media. Table 2 displays the velocity and
attenuation parameters for a model that includes two homogeneous
VTI layers separated by a horizontal reflector. The exact reflected

wavefield (Figure 7a) was computed with the reflectivity method
(Mallick and Frazer, 1990). The displacement obtained from the
Kirchhoff scattering integral (Figure 7b) almost coincides with
the exact solution, except for a small phase distortion (Figure 7c
and 7d).

DISCUSSION

The outlined method involves several approximations. The
Kirchhoff scattering integral itself is an asymptotic solution that
ignores multiple scattering (Chapman, 2004). The method of sum-
mation of Gaussian beams is limited to computing asymptotic
Green’s functions in smooth media and does not account for multi-
ples, scattering losses, and reflection/transmission coefficients.
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a) b)

Figure 3. (a) 2D velocity slice from the SEG/EAGE salt model. (b) The smoothed version of the model from panel (a) used for ray tracing. A
fan of rays originating from a shot with the horizontal position of 6.72 km and at a depth of 0.10 km with a 4° increment in the take-off angle is
plotted in black.

a) b) c)

Figure 4. Pressure field at depth of 3.0 km from a shot at (6.72 km, 0.10 km) computed with (a) finite-differences for the nonattenuative model
in Figure 3a and with the Gaussian-beam summation for the model in Figure 3b (b) without attenuation and (c) with a spatially invariant value
of QP ¼ 10.

WB56 Shekar and Tsvankin

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



The scope of this paper is restricted to P-waves, and the accuracy of
modeling mode conversions has not been studied. The influence of
attenuation is modeled using perturbation theory, which is valid for
weakly dissipative media. Numerical examples illustrating the ac-
curacy of the perturbation approach can be found in Shekar and
Tsvankin (2012).
It is well known that the presence of attenuation leads to velocity

dispersion, which causes phase distortions of seismic signals.
Although this paper does not treat velocity dispersion explicitly,
the method can be modified by introducing a complex-valued dis-
sipation factor with the real part computed from the perturbation
approach and the imaginary part obtained from a dispersion rela-
tion. However, although dispersion relations have been extensively
studied for acoustic media (Futterman, 1962; Liu et al., 1976; Kjar-
tannson, 1979), few studies are focused on anisotropic models (e.g.,
Jakobsen and Chapman, 2009).
In migration algorithms with Q-compensation, regularization

is necessary to mitigate the exponential amplitude increase at
high frequencies (Zhang et al., 2010). Likewise, amplitudes
may go to zero during forward modeling in attenuative media,
and it might be necessary to add constraints to our modeling
algorithm. Finally, as shown by the numerical testing above,
the accuracy of Green’s functions obtained from Gaussian-beam
summation for structurally complicated models varies with ray

coverage. This limitation of initial-value ray tracing may be
overcome by using wavefront-construction techniques that improve
illumination.

a) b)

c) d)

Figure 5. Traces (normalized by the maximum amplitude) from Figure 4a (produced by finite differences; black lines) and Figure 4b
(produced by Gaussian-beam summation; red) at horizontal positions of (a) 5, (b) 6, (c) 8, and (d) 9 km.

Figure 6. P-wave attenuation coefficient AP computed using the
traces from Figure 4c. The error bars mark two standard deviations
in AP (95% confidence intervals).
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CONCLUSIONS

We introduced a ray-based methodology for computing synthetic
seismograms of reflected waves from attenuative anisotropic media.
The wavefield is generated with the Kirchhoff scattering integral that
includes 2.5D asymptotic Green’s functions. Summation of Gaussian

beams is used to calculate the Green’s functions in the reference
purely elastic, anisotropic medium. The contribution of attenuation
to Gaussian beams is accounted for by perturbation ray theory.
The accuracy of the Gaussian-beam summation method in pro-

ducing Green’s functions was verified for a highly attenuative TI
layer and for a structurally complex acoustic model containing a
salt body. In regions with sufficient ray coverage, the waveforms
from the Gaussian-beam summation method compare well with
the finite-difference solution. The attenuation coefficient estimated
by the spectral-ratio method from the data generated with our
method is generally close to the actual value. Some distortions
in the reconstructed attenuation coefficients are caused by insuffi-
cient ray coverage related to the heterogeneity of the velocity field.
The performance of the algorithm was also analyzed by compar-

ing the wavefield produced by the Kirchhoff scattering integral for a
horizontally layered VTI medium with exact seismograms com-
puted using the reflectivity method. These examples confirm that

the proposed technique adequately models P-
wave reflections even in the presence of strong
anisotropic attenuation. The displacements ob-
tained by our method, however, exhibit minor
phase distortions due to a finite number of beams
used to generate the Green’s functions.
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APPENDIX A

DYNAMIC RAY TRACING AND
GAUSSIAN BEAMS IN
ANISOTROPIC MEDIA

In this appendix, we briefly review dynamic
ray tracing in anisotropic media and introduce
the quantities necessary for the construction of
Gaussian beams.
The eikonal equation in elastic, anisotropic,

heterogeneous media can be written as (Červený,
2001)

Gðxi; piÞ ¼ 1; (A-1)

where xi are the spatial coordinates and pi are the
components of the slowness vector. The solu-

tions of equation A-1 represent the eigenvalues of the Christoffel
equation:

det½Γik − G δik� ¼ 0; (A-2)

where Γik ¼ aijklpjpl are the components of the Christoffel matrix
and aijkl form the density-normalized stiffness tensor.

a) b)

c) d)

Figure 7. Vertical displacement for the model in Table 2 generated using (a) the reflec-
tivity method and (b) the Kirchhoff scattering integral. The wavefield is excited and
recorded on top of the model. The source is a vertical force at a horizontal position
of 0 km, and the receivers are placed on the surface between 0 and 3 km with a
25 m increment. The source signal is a Ricker wavelet with a central frequency of
10 Hz. The traces from the reflectivity method (black) and the Kirchhoff scattering in-
tegral (red) for the receiver at (c) 0 and (d) 3 km.

Table 2. Parameters of a two-layer VTI model used to test
the Kirchhoff scattering integral.

Layer 1 Half-space

Thickness (km) 2.00 —
VP0 (km/s) 3.00 3.20

VS0 (km/s) 1.50 1.60

ϵ 0.20 0.10

δ 0.10 0.05

QP0 10 100

QS0 10 100

ϵQ 0.0 0.0

δQ 0.75 0.0

WB58 Shekar and Tsvankin

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



The kinematic ray-tracing equations are given by (Červený, 2001)

dxi
dτ

¼ 1

2

∂G
∂pi

(A-3)

and

dpi

dτ
¼ 1

2

∂G
∂xi

; (A-4)

where τ represents the traveltime (eikonal) along the ray.
The dynamic ray-tracing system in ray-centered coordinates can

be represented as (Červený, 2001)

dPNI

dτ
¼ −CNMQMI −DNMPMI (A-5)

and

dQNI

dτ
¼ ANMQMI þ BNMPMI; (A-6)

where the indices N, M, and I vary from one to two. Explicit ex-
pressions for matrices A, B, C, and D can be found in Červený
(2001). The matrices PMI and QNI are defined as

PNI ¼
∂pN

∂γI
(A-7)

and

QNI ¼
∂qN
∂γI

; (A-8)

where γI is a certain “ray parameter” (e.g., the phase angle of the
ray), qN are the coordinates tangent to the wavefront, and pN de-
notes the slowness vector in the ray-centered coordinate system:

pN ¼ ∂τ
∂qN

: (A-9)

The columns of P are unit vectors tangent to the wavefront, and
the columns of Q are unit vectors tangent to the slowness surface.
The 3 × 3 matrices P x and Q x correspond to P and Q in Cartesian
coordinates (Červený, 2001):

Px
ik ¼

∂pi

∂ γk
(A-10)

and

Qx
ik ¼

∂xi
∂ γk

: (A-11)

The first two columns of Px and Qx have the same meaning as the
two columns of P and Q, respectively, whereas Px

i3 ¼ dpi∕dτ and
Qx

i3 ¼ dxi∕dτ.
The solutions of equations A-5 and A-6 for the plane-wave initial

conditions (Q ¼ I, P ¼ 0; I is the identity matrix) are denoted by
Q1 and P1, and for the point-source initial conditions (Q ¼ 0,
P ¼ I) by Q2 and P2.
It is convenient to introduce the real-valued matrix M of the sec-

ond-order traveltime derivatives:

M ¼ PQ−1: (A-12)

As discussed in the main text (equation 7), the matrix M is used for
computing the paraxial traveltime. For the point-source initial con-
ditions,

M ¼ P2Q−1
2 : (A-13)

A Gaussian beam can be constructed using the solution of equa-
tions A-5 and A-6 with complex-valued initial conditions (Bleis-
tein, 2008):

Q ¼ lω2

c0
I; ~P ¼ i

c0
I; (A-14)

where l is the initial value of the beam width, ω is the angular fre-
quency, and c0 is the phase velocity at the source location corre-
sponding to the take-off phase angle. The matrix M becomes
complex-valued:

~M ¼ ½P1 þ ~M0 P2�½Q1 þ ~M0Q2�−1: (A-15)

The initial value of ~M is

~M0 ¼ i
lω2

I: (A-16)

The matrix ~M is used to construct the paraxial traveltime
(equation 7). Because ~M is complex-valued, the traveltime is
complex-valued as well, which leads to amplitude decay away from
the central ray.

APPENDIX B

ASYMPTOTIC WEIGHTING FUNCTION Φ FOR
2.5D ANISOTROPIC MEDIA

In this section, we derive theweighting functionΦðθ0Þ for the sum-
mation of Gaussian beams. We assume that the medium properties do
not vary in the x2-direction, and the [x1, x3]-plane is a plane of sym-
metry; i.e., we treat the wave propagation in 2.5D. The analysis pre-
sented here is similar to that for isotropic media in Bleistein (2008).
Following Bleistein (2008), we consider equation 5 for a homo-

geneous anisotropic medium characterized by the medium proper-
ties at the source location xs. Substituting equation 6 into equation 5
(see the main text) for the summation of Gaussian beams yields

Gikðx 0;xs;ωÞ ¼Φðθ0Þ

×
Z

giðx 0 0Þgkðx 0 0Þ 1

4πcðxsÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ~Wðx 0 0;xsÞ
q e−iω ~Tðx 0 0;xsÞdγ:

(B-1)

The parameter γ represents the take-off phase angle measured with
respect to the central ray Rðθ0Þ, and the range of integration is
chosen to be symmetric over θ0 (Figure B-1). The ray correspond-
ing to the phase angle γ þ θ0 includes x 0 0, the point closest to x 0.
The traveltime ~Tðx 0 0; xsÞ is given by
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~Tðx 0 0; xsÞ ¼ ðx 0 − xsÞT p½Rðθ0 þ γÞ�

þ 1

2
ðx 0 − x 0 0ÞT ~Mxðx 0 − x 0 0Þ: (B-2)

In the high-frequency approximation, the integral in equation B-1
can be evaluated using the method of steepest descent. Applying the
saddle-point condition to the phase function ψ ¼ ~Tðx 0 0; xsÞ leads to

∂ψ
∂ γ

¼ ∂ ~Tðx 0 0; xsÞ
∂ γ

¼ 0. (B-3)

Substituting equation B-2 into B-3, we find

∂ ~Tðx 0 0; xsÞ
∂ γ

¼ ðx 0 − xsÞT
�
∂p½Rðθ0 þ γÞ�

∂ γ

�

þ 1

2
ðx 0 − x 0 0ÞT

�
∂ ~Mx

∂ γ

�
ðx 0 − x 0 0ÞT

−
�
∂x 0

∂ γ

�
T
~Mxðx 0 − x 0 0Þ: (B-4)

Using equations A-10 and A-11, equation B-4 can be rewritten as

∂ ~Tðx 0 0;xsÞ
∂γ

¼ ðx 0
i − xsi ÞPx

i1½Rðθ0þ γÞ� jp½Rðθ0þ γÞ�j

þ 1

2
ðxi 0 − xi 0 0ÞT

�
∂ ~Mx

ij

∂γ

�
ðxj 0 − xj 0 0ÞT

− jx 0 − x 0 0jQx
i1½Rðθ0þ γÞ� ~Mx

ijðxj 0 − xj 0 0Þ: (B-5)

Because the vectors formed by the first columns of Px and Qx are
perpendicular to the slowness surface and the wavefront, respec-
tively, the saddle-point condition is satisfied for x 0 ¼ x 0 0, i.e.,
for γ ¼ 0.
Next, it is necessary to evaluate the second derivative of the phase

function ψ at the saddle point:

∂2ψ
∂ γ2

����
γ¼ 0

¼ ∂2 ~Tðx 0 0; xsÞ
∂ γ2

����
γ¼ 0

¼ ðx 0
i − xsi Þ

�
∂Px

i1½Rðθ0 þ γÞ�
∂ γ

�
γ¼ 0

jp½Rðθ0Þ�j

þ jx 0 − x 0 0j2 Qx
i1½Rðθ0Þ�

�
∂ ~Mx

ij

∂ γ

�
γ¼ 0

Qx
j1½Rðθ0Þ�:

(B-6)

Note that the matrices Px and Qx in equation B-6 are computed for
the point-source initial conditions. The steepest-descent direction
with respect to the real axis is defined by ð1∕2Þ argð∂2ψ∕∂γ2Þjγ¼0.
Equation B-1 reduces to

Gikðx0;xs;ωÞ ¼
ffiffiffiffiffiffi
2π

ω

r
Φðθ0Þgiðx0Þgkðx0Þ

1

4πcðxsÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ~Wðx0;xsÞ
q

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂2ψ∕∂γ2jγ¼0

q expð−iω ~Tðx0;xsÞÞ: (B-7)

The weighting function Φðθ0Þ can be found by substituting the ray-
theoretical expression for Gðx 0; xs;ωÞ into equation B-7. The ray-
theoretical Green’s function in homogeneous anisotropic media is
given by (Červený, 2001)

Gðx 0; xs;ωÞ ¼ giðx 0Þgkðx 0Þ 1

4πcðxsÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½Q2ðx 0; xsÞ�p

× expð−iω ~Tðx 0; xsÞÞ:
(B-8)

Combining equations B-7 and B-8 allows us to obtain the weighting
function:

Φðθ0Þ ¼
ffiffiffiffiffiffi
ω

2π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½ ~Wðx 0; xsÞ�
det½Q2ðx 0; xsÞ�

∂2ψ
∂γ2

����
γ¼ 0

s
: (B-9)
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