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ABSTRACT

Most existing implementations of full-waveform inver-
sion (FWI) are limited to acoustic approximations. In this
paper, we present an algorithm for time-domain elastic
FWI in laterally heterogeneous VTI (transversely isotropic
with a vertical symmetry axis) media. The adjoint-state
method is employed to derive the gradients of the objective
function with respect to the stiffness coefficients and then to
a chosen set of VTI parameters. To test the algorithm, we
introduce Gaussian anomalies in the Thomsen parameters
of a homogeneous VTI medium and perform 2D FWI of
multicomponent transmission data for two different model
parameterizations. To analyze the sensitivity of the objective
function to the model parameters, the Fréchet kernel of FWI
is obtained by linearizing the elastic wave equation using the
Born approximation and employing the asymptotic Green’s
function. The amplitude of the kernel (“radiation pattern”)
yields the angle-dependent energy scattered by a perturba-
tion in a certain model parameter. Then we convert the gen-
eral expressions into simple approximations for the radiation
patterns of P- and SV-waves in VTI media. These analytic
developments provide valuable insight into the potential of
multicomponent elastic FWI and help explain the numerical
results for models with Gaussian anomalies in the VTI
parameters.

INTRODUCTION

Full-waveform inversion (FWI) is a technique for estimating
subsurface properties by using recorded seismic waveforms.
Depending on the problem and availability of forward-modeling al-
gorithms, FWI can be performed in the time domain (Gauthier,
1986; Kolb et al., 1986; Mora, 1987; Bunks et al., 1995) or fre-

quency domain (Song and Williamson, 1995; Song et al., 1995;
Pratt, 1999; Pratt and Shipp, 1999). Evaluation of the gradient of
the objective function is often based on the adjoint-state method,
as described in Bamberger et al. (1982), Tarantola (1984a), Fichtner
et al. (2006), and Liu and Tromp (2006).
FWI has been extended to anisotropic media, but is applied typ-

ically in the acoustic approximation (Plessix and Rynja, 2010; Gho-
lami et al., 2011, 2013; Plessix and Cao, 2011; Shen, 2012). A critical
issue for anisotropic FWI is model parameterization. Thomsen nota-
tion, widely used in velocity analysis for VTI media, includes the
vertical P- and S-wave velocities, VP0 and VS0, and the anisotropy
coefficients ε, δ, and γ. The anisotropy parameters are often re-
placed in FWI by the P-wave normal-moveout (NMO) velocity
(Vnmo¼VP0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δ

p
) and horizontal velocity (Vhor ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffi
1þ 2

p
ε).

In the case of multiparameter inversion, the results strongly de-
pend on the parameterization and the type of input data (for exam-
ple, diving waves, near-offset or far-offset reflections). Plessix and
Cao (2011) evaluate the sensitivity of the FWI objective function to
different parameters by performing singular value decomposition
(SVD) of the Fréchet derivative (or “sensitivity”) matrix. Another
method of analyzing sensitivity is by computing the Fréchet kernel
for a point scatterer in the subsurface (Eaton and Stewart, 1994;
Prieux et al., 2013; Alkhalifah and Plessix, 2014). The amplitude
of the kernel as a function of the scattering angle (called the “radi-
ation pattern”) reveals the sensitivity of FWI to a model parameter
for a certain range of angles.
Gholami et al. (2013) use finite differences to compute the Fré-

chet kernel for a point diffractor embedded in a homogeneous
acoustic VTI space. An analytic description of the radiation patterns
associated with a VTI perturbation in a homogeneous isotropic
medium is presented by Alkhalifah and Plessix (2014). They study
the radiation patterns for two parameterizations (Vnmo, η, δ, and
Vhor, η, ε; η ¼ ðε − δÞ∕ð1þ 2δÞ is the anellipticity coefficient)
and conclude that either parameter set can be used when the inver-
sion is carried out with a hierarchic approach.
Plessix and Cao (2011) also perform acoustic FWI of diving

waves and small-offset reflection data generated for a synthetic
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VTI model and test different parameterizations with the goal of up-
dating the low-wavenumber component of the model. They show
that the combination of Vnmo, Vhor, and δ provides “slightly better”
results than Vnmo, η, and δ. Using data from Valhall field, Prieux
et al. (2011) update the velocity VP0 with acoustic FWI, while keep-
ing ε and δ fixed. These results are used as a benchmark to compare
the velocity fields obtained with and without taking anisotropy into
account. Warner et al. (2013) estimate VP0 by performing 3D acous-
tic FWI of field data from the North Sea with fixed profiles of ε
and δ.
Anisotropic acoustic algorithms, however, do not properly handle

reflection amplitudes and cannot be applied to multicomponent
data. Elastic FWI of synthetic multicomponent surface data (con-
sisting of both diving waves and reflections) for VTI media is per-
formed by Lee et al. (2010), but suboptimal parameterization in
terms of the stiffness coefficients causes ambiguity in their results.
In our previous work (Kamath and Tsvankin, 2013), we invert

multicomponent reflection data (PP- and PSV-waves) from a hori-
zontally layered VTI model for the interval Thomsen parameters
VP0, VS0, ε, and δ. Although PP-waves alone may be sufficient
to resolve VP0, VS0, ε, and δ, stable interval parameter estimation
for layers at depth requires employing long-offset data (with the
spreadlength-to-depth ratio reaching at least two) or the addition
of PS-waves. Inversion of multicomponent data benefits from using
a multiscale approach (Bunks et al., 1995), which reduces the sen-
sitivity to the choice of the initial model.
Here, we introduce an extension of elastic FWI to laterally

heterogeneous VTI media and study the sensitivity of the inversion
to two different sets of model parameters. To compute the gradient
of the objective function, we adapt the results of Liu and Tromp
(2006) obtained with the adjoint-state method. Sensitivity analysis
is performed by deriving the Fréchet kernel for elastic FWI using
the Born and WKBJ approximations and an asymptotic represen-
tation of the Green’s function. The kernel, obtained for arbitrarily
anisotropic media, is then used to obtain the radiation patterns for
the relevant model parameters. The developed algorithm is applied
to transmission data generated for a homogeneous VTI background
model with Gaussian anomalies in the Thomsen parameters. The
inversion results are explained using the P- and SV-wave radiation
patterns for a VTI scatterer.

METHODOLOGY

Full-waveform inversion for VTI media

Time-domain implementations of FWI are designed to minimize
the following objective function:

F ¼ 1

2

XN
r¼1

kuðxr; tÞ − dðxr; tÞk2; (1)

where N is the number of receivers, uðxr; tÞ is the data (displace-
ment) computed for a trial model, and dðxr; tÞ is the displacement
recorded at receiver location xr. Equation 1 implies summation
over multiple shots for the same receiver array. Although the rela-
tionship between the model and the data is nonlinear, a perturbation
in the model is assumed to be linearly related to the perturbation in
data:

Δm ¼ −α JTΔd; (2)

where J is the Fréchet derivative matrix, T denotes transposition,
and Δd is the perturbation in the data. The model update Δm is
computed as the gradient of the objective function, JTΔd, scaled
by the coefficient α (which can be found from line search).
If the number of unknowns is relatively small (as for layered VTI

media studied by Kamath and Tsvankin, 2013), the Fréchet matrix
can be computed explicitly by perturbing each model parameter,
which makes it possible to update the model using equation 2.

Application of the adjoint-state method

Computation of the Fréchet derivatives for laterally hetero-
geneous media becomes prohibitively expensive because it involves
calculating as many forward models at each iteration as the number
of parameters (typically defined on a grid). Hence, instead of using
equation 2 it is more practical to calculate the gradient (JTΔd in
equation 2) of the objective function with the adjoint-state method,
which has been widely used in FWI (Tarantola, 1984b; Fichtner
et al., 2006; Liu and Tromp, 2006; Plessix, 2006). The model up-
date, which is a scaled version of the gradient, is then calculated
using steepest-descent or conjugate-gradient algorithms. Alterna-
tively, either the so-called BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method or its limited-memory equivalent, the L-BFGS
method (both are quasi-Newton techniques), can be employed to
scale the gradient by the inverse of an approximate Hessian matrix
(Pratt et al., 1998; Virieux and Operto, 2009).
The adjoint-state method is designed to compute the gradient of

the objective function using the so-called “adjoint wavefield.” Be-
cause the variable-density elastic wave equation is self-adjoint, it
can be solved for the adjoint wavefield with the data residuals
treated as sources (see Appendix A). The residuals at each time step
are injected “backward in time” (i.e., starting from the last time sam-
ple), which is commonly described as back-propagation of data re-
siduals. For 2D multicomponent data, the vertical and horizontal
displacement components of the data residuals should be injected
into the medium simultaneously. The gradient computation, as
shown in Appendix A, involves applying the imaging condition
to the spatial derivatives of the forward and adjoint wavefields.
Here, we assume that the properties of the VTI medium vary in

2D and consider only in-plane polarized waves (P and SV). Hence,
the model is described by four stiffness coefficients (written in the
Voigt notation): C11, C33, C13, and C55. However, description of
wave propagation and inversion of seismic data can be facilitated
by employing Thomsen parameters and their combinations (e.g.,
the anellipticity coefficient η, Alkhalifah and Tsvankin, 1995).
Lee et al. (2010), who parameterize the VTI model in terms of
the stiffnesses, are unable to resolve the coefficient C13, likely be-
cause of the tradeoff between C13 and C55 in P-wave kinematic sig-
natures (Tsvankin, 2012).
Kamath and Tsvankin (2013) could constrain the relevant Thom-

sen parameters (VP0, VS0, ε, and δ), although the algorithm operated
with the vertical velocities of P- and S-waves and the P-wave NMO
and horizontal velocities. Here we define the model either in terms
of the velocities VP0, VS0, Vnmo, and Vhor (parameterization I) or
using lnð1∕V2

P0Þ, lnð1∕V2
S0Þ, (1þ 2ε), and (1þ 2δ) (parameteriza-

tion II). The latter combination is an extension of Shen’s (2012)
parameterization to elastic media; also, in contrast to Shen
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(2012), we update the coefficient δ during the inversion rather than
keeping it fixed.
The gradients of the objective function (equation 1) with respect

to the elements of the stiffness tensor are derived in Appendix A
using the results of Liu and Tromp (2006):

∂F
∂cijkl

¼ −
ZT
0

∂ui
∂xj

∂ψk

∂xl
dt; (3)

where u andψ are the forward and adjoint displacement wavefields,
respectively. Using the chain rule, we can find the gradient for each
model parameter mn:

∂F
∂mn

¼
X
ijkl

∂F
∂cijkl

∂cijkl
∂mn

: (4)

The stiffness coefficients are expressed in terms of the velocities
(VP0, VS0, Vnmo, and Vhor) in equations A-18–A-21. Combining
equations 3, 4, and A-18–A-21 yields the gradients for parameter-
ization I (equations A-22–A-25). In a similar manner, we derive the
gradients for parameterization II (equations A-30–A-33).
FWI is implemented here in the time domain and the model is

updated using the steepest-descent method combined with a para-
bolic line-search algorithm. The same step length is used for all
medium parameters.

Radiation patterns for elastic FWI

To obtain expressions for radiation patterns produced by a scat-
terer in the subsurface, we consider an elastic, anisotropic homo-
geneous background medium with spatially varying perturbations
in the stiffness coefficients. It should be emphasized that the per-
turbed stiffnesses correspond to an arbitrarily anisotropic medium.
Afterwards, we obtain relatively simple expressions for the radia-
tion patterns assuming the background to be isotropic and the per-
turbations to have VTI symmetry.

General expressions

Following Calvet et al. (2006) and Alkhalifah and Plessix (2014),
we represent the elastic wave equation for a perturbation δcijkl in the
stiffness tensor using the Born approximation:

ρ
∂2ðδuiÞ
∂t2

−
∂
∂xj

�
cijkl

∂ðδukÞ
∂xl

�
¼ ∂

∂xj

�
δcijkl

∂uk
∂xl

�
; (5)

where δu is the corresponding perturbation in the wavefield, and ρ is
the density. The solution of equation 5 can be expressed in terms of
the Green’s functions Gmk and Gni (Appendix B):

δunðxr;ωÞ ¼ −
Z
Vðx 0Þ

fmðxs;ωÞ δcijklðx 0Þ

×
∂Gmkðxs; x 0;ωÞ

∂x 0
l

∂Gniðxr; x 0;ωÞ
∂x 0

j
dVðx 0Þ; (6)

where xs and xr are the locations of the source and receiver, respec-
tively, f is the density of body forces, and Vðx 0Þ is the volume that

includes all scatterers x 0. The Green’s functions are then replaced
by their asymptotic representation (Vavryčuk, 2007). Taking the
spatial derivative of just the exponent of G (i.e., of its rapidly
varying part, according to the WKBJ approximation) yields (equa-
tion B-13):

δunðxr;ωÞ ¼
Z
Vðx 0Þ

fmðxs;ωÞAðωÞps
l p

r
j g

s
k gri δcijkl dVðx 0Þ:

(7)

Here, the superscripts s and r denote the source (incident) and
receiver (scattered) wavefields, respectively, AðωÞ is a function
of frequency and the background velocities for the incident and
scattered wavefields (equation B-14), and p and g are the unit slow-
ness and polarization vectors, respectively. The radiation pattern is
the amplitude of the kernel in equation 7 that varies with the inci-
dence and scattering angles. For a model parameterized in terms of
the stiffnesses, the radiation pattern derived from equation 7 is
(equation B-15):

Ω ¼ ps
l p

r
j g

s
k gri : (8)

Equation 8 is valid for a perturbation δcijkl corresponding to an
elastic, arbitrarily anisotropic scatterer in 3D. In this study, however,
we consider the in-plane polarized waves (P and SV) in a 2D elastic
VTI medium, so the indices i, j, k, and l in equations 6–8 take val-
ues of 1 and 3.

Application to VTI media

In Appendix B, we use equation 8 to obtain explicit expressions
for the radiation patterns in VTI media. The normalized scattering
coefficients for the P- and SV-wavefields for parameterization I are
given by equations B-16–B-19 and B-20–B-23, respectively. In the
case of the transmitted wavefield, the incidence and scattering an-
gles coincide. Substituting equations B-24–B-31 into equations
B-16–B-23, we obtain the following radiation patterns (normalized
by 4ρVP0) for the scattered P-wavefield:

ΩPðVP0Þ ¼ cos2 θ; (9)

ΩPðVS0Þ ¼ 0; (10)

ΩPðVnmoÞ ¼
1

4
sin2 2θ; (11)

ΩPðVhorÞ ¼ sin4 θ; (12)

where θ is the incidence angle. The patterns for the scattered SV-
wavefield (normalized by 2 ρVP0) are:

ΩSðVP0Þ ¼ 0; (13)

ΩSðVS0Þ ¼ −2
VS0

VP0
; (14)

ΩSðVnmoÞ ¼
1

2
sin2 2θ; (15)

Elastic FWI in VTI media C55
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ΩSðVhorÞ ¼
1

2
sin2 2θ. (16)

The absolute values (magnitude) of the radiation patterns in Fig-
ure 1 show how perturbations in the velocities VP0, Vnmo, and Vhor

scatter P-wave energy for different incidence angles. In our approxi-
mation, a perturbation in VS0 does not influence the scattered P-
wavefield. As expected, the intensity of the wavefield scattered
by a perturbation in VP0 reaches its maximum for propagation along
the symmetry axis and goes to zero in the orthogonal (isotropy)
plane (Figure 1a). In contrast, a perturbation in Vhor produces
the largest scattering in the isotropy plane, with a rapid decay to-
ward the symmetry axis (Figure 1c). The maximum energy scat-
tered by a perturbation in Vnmo is four times smaller than that
for VP0 and corresponds to an angle of 45° with the symmetry axis
(Figure 1b).
A perturbation in VS0 scatters the SV-wavefield uniformly for

the entire range of incidence angles (Figure 2a), which is likely
due to the fact that VS0 also represents the horizontal SV-wave
velocity. The radiation patterns of Vnmo and Vhor (Figure 2b and
2c, respectively) for SV-waves are similar to that of Vnmo for the
P-wave (Figure 1b). The SV-wave is primarily influenced by

VS0 and the parameter σ¼ðVP0∕VS0Þ2ðε−δÞ¼ðV2
hor−V2

nmoÞ∕ð2V2
S0Þ

(Tsvankin, 2012). Therefore, for a model described in terms of
VP0, VS0, Vnmo, and Vhor, the SV-wavefield is weakly dependent
on the velocity VP0. This explains why a perturbation in VP0 does
not scatter SV-waves (equation 13).
The P-wave radiation patterns for the velocities VP0, Vnmo, and

Vhor are centered at angles 0°, 45°, and 90°, respectively, which mit-
igates the trade-off in the scattered energy for this parameterization.
These radiation patterns can be used to qualitatively predict those
for other parameterizations. For instance, if the model is described
by the Thomsen parameters VP0, ε, and δ, anomalies in both VP0

and δ should be responsible for the scattered energy near 45° be-
cause Vnmo ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
. Similarly, one would expect anomalies

in both VP0 and ε to contribute to scattering near the isotropy plane,
as Vhor ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
.

Because the scattered SV-wavefield is not sensitive to VP0, the
SV-wave radiation patterns for ε and δ have the same shape as those
for Vhor and Vnmo, respectively. By making similar arguments, it is
possible to deduce the general behavior of the radiation patterns for
other parameterizations, such as the ones discussed in Gholami et al.
(2013) and Alkhalifah and Plessix (2014). Note that the radiation
patterns of VP0, Vnmo, and Vhor for the transmitted P-wavefield in
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Figure 1. Radiation patterns of the velocities (a) VP0, (b) Vnmo, and (c) Vhor computed from equations 9, 11, and 12 (respectively) for the
P-wavefield. The VTI perturbations are inserted into a homogeneous isotropic background.
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Figure 2. Radiation patterns of the velocities (a) VS0, (b) Vnmo, and (c) Vhor computed from equations 14, 15, and 16 (respectively) for the
S-wavefield. The VTI perturbations are inserted into a homogeneous isotropic background; the ratio VS0∕VP0 ¼ 0.5.
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elastic media are identical to those obtained for acoustic media.
Elastic FWI, however, also includes SV-waves, which help estimate
the velocity VS0 and better constrain the other parameters.
The P-wave radiation patterns (normalized by ρV2

P0) for param-
eterization II, obtained analogously to those for parameterization I,
are:

ΩPðlnð1∕V2
P0ÞÞ ¼ −1; (17)

ΩPðlnð1∕V2
S0ÞÞ ¼ 0; (18)

ΩPð1þ 2εÞ ¼ sin4 θ; (19)

ΩPð1þ 2δÞ ¼ 1

4
sin2 2θ: (20)

For the scattered S-wavefield (normalized by ρV2
P0∕4), we find:

ΩSðlnð1∕V2
P0Þ ¼ 0; (21)

ΩSðlnð1∕V2
S0Þ ¼ −4

V2
S0

V2
P0

; (22)

ΩSð1þ 2εÞ ¼ sin2 2θ; (23)

ΩSð1þ 2δÞ ¼ −sin2 2θ: (24)

Here, the velocities are normalized by 1 km∕s. The P- and S-wave
radiation patterns for parameterization II, computed from equa-
tions 17–24, are plotted in Figures 3 and 4. These patterns generally
confirm the above arguments regarding the sensitivity analysis in
terms of Thomsen parameters. For example, the radiation patterns
of the parameters 1þ 2ε and 1þ 2δ for both P- and SV-waves have
the same shape as those for Vhor and Vnmo obtained for parameter-
ization I.
The radiation patterns do not change if the velocities (or their

squares) are used instead of the logarithm of the squared slow-
nesses. However, we prefer to employ the logarithm for two rea-
sons: (a) to make the parameters dimensionless, with the same
order of magnitude as that of the anisotropy coefficients (because
we do not have an inverse Hessian scaling the gradient), and
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Figure 3. Radiation patterns of the parameters (a) lnð1∕V2
P0Þ, (b) 1þ 2ε, and (c) 1þ 2δ computed from equations 17, 19, and 20 (respectively)

for the P-wavefield.
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Figure 4. Radiation patterns of the parameters (a) lnð1∕V2
S0Þ, (b) 1þ 2ε, and (c) 1þ 2δ computed from equations 22, 23, and 24 (respectively)

for the S-wavefield. The ratio VS0∕VP0 ¼ 0.5.
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(b) Shen (2012) showed that the logarithm-based parameterization
may lead to faster convergence. Note that an anomaly in lnð1∕V2

P0Þ
scatters P-wave energy uniformly in all directions (Figure 3a),
which means that updates in VP0 are independent of the source-
receiver configuration.
Parameterization I yields radiation patterns that are more “orthogo-

nal” (have less overlap), but this also restricts the range of wave-
numbers that can be recovered by FWI (e.g., one can obtain only
low-wavenumber updates for Vhor). The second parameterization
has a velocity (VP0) which has a more “isotropic” radiation pattern.
This helps retrieve a wider range of wavenumbers forVP0, but creates
trade-offs between VP0 and the anisotropy coefficients.

ANALYSIS OF FWI OF TRANSMISSION DATA

Next, we perform tests for simple synthetic models to verify the
accuracy of the gradient computation and of the inversion algorithm
as a whole. In addition, we employ the analytic expressions for ra-
diation patterns obtained above to explain the inversion results. Be-
cause the initial stage of FWI typically involves diving waves, the

Figure 5. VTI model with a Gaussian anomaly (standard deviation
σ ¼ 300 m) in the anisotropy parameter ε. The background and
maximum values of ε are 0.1 and 0.142, respectively. The other
Thomsen parameters are spatially invariant: VP0 ¼ 3000 m∕s,
VS0 ¼ 1500 m∕s, and δ ¼ −0.05. The dots on the left mark the
source locations and the vertical line on the right represents an array
of receivers placed at each grid point (6.6 m apart). The wavefields
are generated by horizontal displacement sources.

Figure 6. (a) Vertical and (b) horizontal displacements for the model in Figure 5 generated by a shot at z ¼ 1.5 km.

Figure 7. Change in the normalized objective function with itera-
tions for the model from Figure 5.

a) b)

c) d)

Figure 8. Fractional difference between the estimated and initial
(background) parameters (a) VP0 and (b) VS0 for the model from
Figure 5. The difference between the estimated and initial param-
eters (c) ε and (d) δ for the same model.
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data are generated for transmission experiments. The model in-
cludes Gaussian anomalies in the Thomsen parameters VP0, VS0,
and ε inserted into a homogeneous VTI background between line
arrays of sources and receivers.
The set of tests in Figures 5–18 is performed for parameterization

I (VP0, VS0, Vhor, and Vnmo). In the first test, the model includes an
anomaly in ε, while the other parameters are spatially invariant (Fig-
ure 5). The wavefield is generated by a point displacement source
polarized in the horizontal direction with a peak frequency of 10 Hz.
The vertical and horizontal displacements (“recorded data”) from a
shot in the center of the array are shown in Figure 6. The “modeled”
data are then generated in the background medium without the
anomaly, and the adjoint source is obtained as the difference be-
tween the two wavefields.
Starting from the homogeneous background model, we perform

the inversion using the steepest-descent method. We run up to 50
iterations and terminate the inversion if the objective function flat-

tens out earlier (Figure 7). The inverted and initial values of VP0 and
δ are close, which confirms that FWI converges toward the actual
model. The updates in Vhor, combined with negligible changes in
VP0, ensure the reconstruction of the anomaly in ε (Figure 8).
These results are well explained by the radiation patterns in Fig-

ure 1. For this source-receiver geometry, the aperture is about 41° on
both sides of the isotropy (horizontal) plane. The amplitude of the
energy scattered by Vhor reduces by 50% at an angle of about �33°

from the horizontal (Figure 1c), so the radiation pattern of Vhor is
largely decoupled from those of VP0, VS0, andVnmo. Therefore, FWI
updates only the horizontal velocity, which results in an appropriate
change in the coefficient ε and an accurate inverted model.
Even though the objective function decreases to just 0.04% of the

initial value, there is a small error in ε: the maximum estimated ε is
about 0.12, whereas the actual value is 0.14. The shape of the
anomaly is somewhat distorted (i.e., it is stretched along the hori-
zontal axis) because of the source-receiver configuration. For this
acquisition geometry, spatial resolution should indeed be higher in
the vertical direction than horizontally, as discussed byWu and Tok-
söz (1987). When the aperture is increased to about 51° on both
sides of the isotropy plane (Figure 9), the shape of the anomaly
is better resolved (Figure 10). In addition, because the inverted
velocities are closer to the actual values, the estimated ε (maximum
value of 0.13) is slightly more accurate than in the previous exam-
ple. This configuration, which yields better inversion results, is used
in all subsequent tests.
Next, we introduce an anomaly in the P-wave vertical velocity

VP0, with the sources still polarized horizontally (Figure 11). The
anomaly in VP0 also causes perturbations in the NMO and hori-
zontal velocities. The largest update (about 74% of the actual
anomaly) for the given configuration is the one for the velocity
Vhor, whereas the updates for VP0 (45%) and Vnmo (44%) are much
smaller. A comparison of the observed displacement and that com-
puted for the inverted model indicates that the data misfit is rel-
atively small. Most likely, the search is trapped in a local minimum
because of the complexity of the multicomponent wavefield. In a
later test we show that it is possible to obtain much better results
for the same configuration when the wavefield includes only P-
waves. Not only is the inversion unable to recover the true
anomaly in VP0 (Figure 12a), an update in Vhor without the cor-

Figure 9. VTI model with the same parameters as in Figure 5, but
the source and receiver arrays are extended vertically by 0.6 km and
the distance between them is reduced from 3.4 to 1.92 km. The
wavefields are generated by horizontal displacement sources.

a) b) c) d)

Figure 10. Fractional difference between the estimated and initial parameters (a) VP0 and (b) VS0 for the model from Figure 9. The difference
between the estimated and initial parameters (c) ε and (d) δ for the same model.
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responding change in VP0 results in an undesired update in ε (Fig-
ure 12c). Because the parameter δ depends on the velocity ratio
Vnmo∕VP0, and the inversion updates both the velocities propor-
tionately, there is no significant change in δ (Figure 12d).
When the source and receiver arrays for the same model are ro-

tated by 90° (Figure 13), the inversion algorithm predominantly up-
dates VP0 (Figure 14a). Because the receivers do not record most of
the energy scattered by the anomalies in Vnmo and Vhor (Figure 1),
the algorithm does not update these parameters. Hence, although the
anomaly in VP0 is recovered, the parameters ε and δ, which
depend on Vhor and Vnmo, are distorted (Figure 14c and 14d,
respectively).
Another test is performed for a Gaussian anomaly in VS0 em-

bedded between vertical source and receiver arrays (Figure 15).
The maximum perturbation in VS0 with respect to the background
is the same as that for VP0 in a previous test (Figure 11), but the
percentage perturbation in VS0 is two times higher. Hence, to avoid
the problem of cycle-skipping, the peak frequency of the source is
reduced to 5 Hz. The inversion results, obtained using both P-
and S-waves, include an update only in VS0 (Figure 16), which in-
dicates no apparent trade-off between the model parameters. As was
the case in the inversion for ε, despite the significant decrease in the

Figure 11. VTI model with a Gaussian anomaly in VP0. The back-
ground and maximum values of VP0 are 3000 m∕s and 3283 m∕s,
respectively. The other Thomsen parameters are spatially invariant:
VS0 ¼ 1500 m∕s, δ ¼ −0.05, and ε ¼ 0.1. The wavefields are gen-
erated by horizontal displacement sources.

a) b) c) d)

Figure 12. Fractional difference between the estimated and initial parameters (a) VP0 and (b) VS0 for the model from Figure 11. The difference
between the estimated and initial parameters (c) ε and (d) δ for the same model.

Figure 13. VTI model with a Gaussian anomaly in VP0. The source
and receiver arrays are horizontal. The wavefields are generated by
vertical displacement sources.

a) b)

c) d)

Figure 14. Fractional difference between the estimated and initial
parameters (a) VP0 and (b) VS0 for the model from Figure 13. The
difference between the estimated and initial parameters (c) ε and
(d) δ for the same model.
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objective function (to 0.03% of the initial value), the estimated VS0 is
off by about 3%. Interestingly, the inversion for VS0 yields similar
results when the source and receiver arrays are horizontal and wave
propagation is predominantly vertical, likely because the VS0

anomaly scatters the SV-waves equally in all directions (Figure 2a).
It is important to test the inversion algorithm on data consisting

only of either P- or SV-waves. After generating the complete wave-
field for the model from Figure 11, we mask the S-wave arrivals.
The shear data are also removed from the wavefield modeled at each
iteration during the inversion, so the objective function contains the
difference of the P-waveforms only. Note that although the adjoint
sources include only the P-wave residuals, the adjoint wavefield
contains both the P- and S-wavefields. Still, because the modeled
and observed data are missing S-waves, the gradients are dominated
by the P-wave events. As a result, the objective function becomes
less complex and the inversion converges more rapidly (Figure 17).

Furthermore, removing S-waves increases the accuracy of the inver-
sion for the anomaly in VP0 (compare Figures 18 and 12). Kamath
and Tsvankin (2013) made a similar observation: operating with
just PP data generally improved the convergence of FWI and the
objective function seemingly became more quadratic. Note, how-
ever, that P-wave transmission data alone cannot constrain the
velocity VS0. Also, for more complex models, SV-waves should
help better constrain the parameters VP0, Vnmo, and Vhor.
Next, we mask the P-wave arrivals in both the observed and mod-

eled data to determine the contribution of the shear wavefield to the
inversion for an anomaly in ε (Figure 9). Although the adjoint wave-
field contains both the P- and S-wavefields, in this case, the gra-
dients (and, therefore, the inversion) are dominated by the SV-
wave energy. FWI of SV-waves increases ε by only 25% of the de-
sired update (plots for this test are not shown), whereas the joint
inversion of P- and SV-waves produced a much more accurate result
(Figure 10). In addition, there is a decrease in the value of δ, which
clearly indicates the trade-off between the two parameters. There-
fore, estimation of ε is primarily based on the information provided
by P-waves.
Finally, we use parameterization II to recover the anomalies in ε,

VP0, and VS0 (Figures 9, 11, and 15, respectively). For the anomaly
in ε (Figure 9), the results are close to those for parameterization I:
the ε-field is well recovered, but the trade-off between VP0 and ε
causes a small erroneous update in VP0. The second parameteriza-
tion, however, provides an improvement in the inversion results
(Figure 19) for the anomaly in VP0 (Figure 11). Because the radi-
ation pattern of lnð1∕V2

P0Þ is uniform (Figure 3a), a larger fraction
of energy scattered by that parameter is recorded by the receivers.
Hence, the update in VP0 is close to the desired value (9%),
although the trade-off between VP0 and ε results in a slight distor-
tion in the latter parameter (Figure 19c). The nonlinearity of the
inversion (likely at least partially caused by the presence of
shear-wave data) manifests itself in the oscillations in the objective
function (Figure 20).
The radiation patterns of lnð1∕V2

S0Þ (parameterization II) and VS0

(parameterization I) are identical, so the shear-wave vertical veloc-
ity (e.g., for the model in Figure 15) is resolved equally well with
both parameterizations.

a) b) c) d)

Figure 16. Fractional difference between the estimated and initial parameters (a) VP0 and (b) VS0 for the model from Figure 15. The difference
between the estimated and initial parameters (c) ε and (d) δ for the same model.

(km/s)

Figure 15. VTI model with a Gaussian anomaly in VS0. The back-
ground and maximum values of VS0 are 1500 m∕s and 1783 m∕s,
respectively. The other Thomsen parameters are spatially invariant:
VP0 ¼ 3000 m∕s, δ ¼ −0.05, and ε ¼ 0.1. The wavefields are gen-
erated by vertical displacement sources.
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a) b) c) d)

Figure 19. Inversion results obtained with parameterization II. Fractional difference between the estimated and initial parameters (a) VP0 and
(b) VS0 for the model from Figure 11. The difference between the estimated and initial parameters (c) ε and (d) δ for the same model.

a) b)

Figure 17. Change in the normalized objective function with iterations for the model from Figure 11 when the data (a) consist of both the P-
and S-wave arrivals and (b) contain only the P-waves.

a) b) c) d)

Figure 18. Fractional difference between the estimated and initial parameters (a) VP0 and (b) VS0 for the model from Figure 11 when the
objective function is calculated using only the P-wave data. The difference between the estimated and initial parameters (c) ε and (d) δ for the
same model.
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CONCLUSIONS

We presented a framework for time-domain full-waveform inver-
sion of multicomponent data from elastic VTI media and
discussed sensitivity analysis for different model parameterizations.
The method of Lagrange multipliers was employed to compute the
gradient of the objective function with respect to the stiffness co-
efficients for an arbitrarily anisotropic heterogeneous medium. The
gradient expressions were adapted for 2D VTI models, in which the
in-plane polarized waves (P and SV) are controlled by combinations
of four stiffness coefficients: C11, C13, C33, and C55.
To obtain radiation patterns for different model parameteriza-

tions, a point diffractor corresponding to a perturbation in the stiff-
ness coefficients was inserted into a homogeneous isotropic
background medium. By employing the Born and WKBJ approx-
imations along with an asymptotic representation of the Green’s
functions, we derived a general expression for the Fréchet kernel
of FWI. This result can be used to evaluate the sensitivity of the
elastic FWI to parameters of arbitrarily anisotropic media.
The FWI algorithm and sensitivity analysis were implemented for

two VTI model parameterizations. The first includes the P-wave ver-
tical (VP0), NMO (Vnmo), and horizontal (Vhor) velocities and the S-
wave vertical velocity (VS0). Parameterization II operates with the fol-
lowing parameter combinations: lnð1∕V2

P0Þ, lnð1∕V2
S0Þ, ð1þ2εÞ, and

ð1þ 2δÞ. In both cases, the model parameters have the same order of
magnitude, which makes it possible to update all of them using the
same step-length in a given iteration. To gain insight into the potential
of each parameterization, we obtained simple explicit expressions for
the corresponding radiation patterns of P- and SV-waves.
For parameterization I, the scattered P-wavefield is insensitive to

the S-wave velocity VS0, whereas the radiation patterns of VP0 and
Vhor are decoupled. An anomaly in VP0 scatters most of the P-wave
energy in the vicinity of the symmetry axis, so stable estimation of
VP0 requires good wavefield sampling in that range of angles. In
contrast, a perturbation in Vhor produces the largest P-wave scatter-
ing near the isotropy (horizontal) plane, which helps estimate Vhor

(and, therefore, ε) in crosshole geometry.
The SV-wavefield is not scattered by the velocity VP0, so trans-

mitted SV-waves cannot be used to invert for the P-wave sym-
metry-direction velocity. A perturbation in the shear-wave velocity
VS0 scatters the SV-wave energy uniformly in all directions, thus
allowing elastic FWI to recover VS0 for any aperture of the experi-
ment. An anomaly in the velocity Vnmo predominantly scatters both
the P- and SV-wavefields near an angle of 45°, and the scattering

amplitude is smaller than that of the other parameters. Hence, trans-
mitted P- and SV-waves do not provide tight constraints on the NMO
velocity Vnmo, which could be estimated from reflected waves.
For parameterization II, an anomaly in VP0 scatters P-wave en-

ergy uniformly, whereas the radiation pattern of 1þ 2ε has the same
shape as that for Vhor in parameterization I. Hence, this parameter-
ization makes it possible to recover anomalies not just in ε, but also
in VP0 for crosshole data. As is the case for parameterization I, VS0

is well constrained irrespective of the acquisition geometry.
Our results indicate that if the background model is known and

the receivers record P- and SV-wave energy in the vicinity of the
symmetry axis, FWI of transmission data using parameterization I
should resolve the velocities VP0 and VS0. In the case of crosshole
geometry, multicomponent transmission data inverted with param-
eterization I constrain ε and VS0. The main advantage of parameter-
ization II is a uniform radiation pattern of the velocity VP0, which
helps estimate that parameter from crosshole data.
In the employed approximation, the radiation patterns of trans-

mitted P-waves for elastic VTI media coincide with those for acous-
tic models. It is impossible, however, to estimate the velocity VS0

without including SV-waves. Also, when FWI is applied to more
complex models and includes reflection data, the shear wavefield
ought to provide tighter constraints on the velocities VP0, Vnmo,
and Vhor. If the wavefield is separated into P- and S-waves, it
may be possible to apply a filter based on scattering angles to update
a certain parameter (e.g., VS0 from shear data) or perform wave-
number filtering, as has been done for acoustic models.
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APPENDIX A

GRADIENT COMPUTATION FOR VTI MEDIA
USING THE ADJOINT-STATE METHOD

As discussed in Plessix (2006) and Liu and Tromp (2006), the
objective function in equation 1 should be minimized under the con-
straint that the modeled displacement uðxr; tÞ satisfies the wave
equation. Here, we use the elastic wave equation for heterogeneous,
arbitrarily anisotropic media:

ρ
∂2ui
∂t2

−
∂
∂xj

�
cijkl

∂uk
∂xl

�
¼ fi; (A-1)

where ρ is the density, cijkl are the components of the stiffness ten-
sor, and f is the body force per unit volume. All indices range from 1
to 3 and summation over repeated indices is implied. The displace-
ment wavefield is subject to the initial conditions,

Figure 20. Change in the normalized objective function with iter-
ations for the model from Figure 11. The function is computed us-
ing parameterization II.
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uðx; 0Þ ¼ 0;
∂ uðx; 0Þ

∂t
¼ 0; (A-2)

and the radiation boundary condition,

uðx; tÞjx→∞ → 0: (A-3)

The method of Lagrange multipliers (Strang, 1991) is used to define
the Lagrangian Λ:

Λ ¼ 1

2

X
r

kuðxr; tÞ − dðxr; tÞk2

−
ZT
0

Z
Ω

λi

�
ρ
∂2ui
∂t2

−
∂
∂xj

�
cijkl

∂uk
∂xl

�
− fi

�
dVdt; (A-4)

where r ¼ 1; 2 : : : N denotes the receivers, Ω is the integration do-
main (which includes the entire 3D space), ∂Ω is the surface of Ω,
and λðx; tÞ is the vector Lagrange multiplier that needs to be deter-
mined. The objective is to find the stationary points of the Lagran-
gian, which is done by calculating the variation in Λ when u, λ, and
cijkl are perturbed. After integration by parts and application of the
Gauss divergence theorem, we obtain the change in the Lagrangian,

δλ ¼
Zt
0

Z
ω

Xn
r¼1

½uiðx; tÞ − diðx; tÞ�δðx − xrÞδui dvdt

−
Zt
0

Z
ω

δcijkl
∂uk
∂xl

∂λi
∂xj

dvdt

−
Zt
0

Z
ω

�
ρ
∂2λi
∂t2

−
∂
∂xj

�
cijkl

∂λk
∂xl

��
δui dvdt

−
Zt
0

Z
ω

�
ρ
∂2λi
∂t2

−
∂
∂xj

�
cijkl

∂λk
∂xl

�
− fi

�
δλi dvdt

−
Z
ω

�
ρλi

∂ðδuiÞ
∂t

− ρ ðδuiÞ
∂λi
∂t

�����t
0

dv

þ
Zt
0

Z
∂ω

λi

�
δcijkl

∂uk
∂xl

þ cijkl
∂ðδukÞ
∂xl

�
nj ds dt

−
Zt
0

Z
∂ω

δui cijkl
∂λk
∂xl

nj ds dt;

(A-5)

where n is the vector normal to the surface ∂Ω. Perturbing uðx; tÞ in
equations A-2 and A-3 yields the initial and boundary conditions for
δuðx; tÞ:

δuðx; 0Þ ¼ 0;
∂½δuðx; tÞ�

∂t
¼ 0; δuðx; tÞjx→∞ → 0:

(A-6)

The Lagrange multiplier λ is constrained by the “final” conditions
(i.e., those at time T),

λðx; TÞ ¼ 0;
∂λðx; TÞ

∂t
¼ 0; (A-7)

and the boundary condition,

λðx; tÞjx→∞ → 0: (A-8)

Equation A-5 then reduces to

δλ ¼
Zt
0

Z
ω

�Xn
r¼1

ðuiðx; tÞ − diðx; tÞÞδðx − xrÞ

−
�
ρ
∂2λi
∂t2

−
∂
∂xj

�
cijkl

∂λk
∂xl

��	
δui dv dt

−
Zt
0

Z
ω

∂uk
∂xl

∂λi
∂xj

δ cijkl dv dt

−
Zt
0

Z
ω

�
ρ
∂2λi
∂t2

−
∂
∂xj

�
cijkl

∂λk
∂xl

�
− fi

�
δλi dv dt: (A-9)

The Lagrangian is stationary with respect to the variables u, λ, and
cijkl when the coefficients of δui, δλi, and δcijkl in the integrands of
equation A-9 go to zero. For a given model (i.e., fixed cijkl), setting
the coefficient of δλi to zero gives the state equation, which coin-
cides with the elastic wave equation A-1. Setting the coefficient of
δui to zero yields the adjoint-state equation:

ρ
∂2λi
∂t2

−
∂
∂xj

�
cijkl

∂λk
∂xl

�
¼

XN
r¼1

�
uiðxr; tÞ − diðxr; tÞ

�
;

(A-10)

subject to the conditions at time T (equation A-7) and boundary
conditions (equation A-8). Equations A-1 and then A-10 are solved
to obtain the wavefields u and λ respectively.
Substituting u and λ into the coefficient of the term containing

δcijkl in equation A-9 gives the variation in the Lagrangian with the
stiffnesses. Since Λ ¼ F when u satisfies the wave equation (from
equation A-4), the change in the objective function δF caused by
perturbations of the stiffness coefficients is given by:

δF ¼ −
ZT
0

Z
Ω

∂ui
∂xj

∂λk
∂xl

δcijkl dVdt: (A-11)

This is a general result for an anisotropic medium described by the
complete stiffness tensor cijkl. Expressions for models with specific
symmetries can be derived from equation A-11 by substituting the
appropriate stiffness tensors or matrices.
Note that the boundary conditions for uðx; tÞ and λðx; tÞ can be

modified to include a free surface where the tractions due to u and λ
go to zero. However, the addition of the free surface causes
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complications in finite-difference modeling and produces surface
multiples. Instead, we impose the radiation condition to create ab-
sorbing boundaries on all sides of the model.
To simulate the Lagrange-multiplier wavefield, it is convenient to

define an “adjoint wavefield” ψ (Liu and Tromp, 2006):

ψðx; tÞ ≡ λðx; T − tÞ: (A-12)

The wavefield ψ satisfies the wave equation A-10 but with the
source function reversed in time:

ρ
∂2ψ i

∂t2
−

∂
∂xj

�
cijkl

∂ψk

∂xl

�
¼
XN
r¼1

½uiðxr;T− tÞ−diðxr;T− tÞ�:

(A-13)

The initial conditions for ψ (using equations A-7 and A-12) are as
follows:

ψðx; 0Þ ¼ 0;
∂ψðx; 0Þ

∂t
¼ 0: (A-14)

The wavefield ψ also satisfies the radiation boundary condition:

ψðx; tÞjx→∞ → 0: (A-15)

From equations A-11 and A-12, we can find the gradient of the
objective function with respect to the stiffness coefficients:

∂F
∂cijkl

¼ −
ZT
0

∂ui
∂xj

∂ψk

∂xl
dt: (A-16)

If, instead of cijkl, the model is described by parameters mn, the
gradient of F can be found from the chain rule:

∂F
∂mn

¼
X
ijkl

∂F
∂cijkl

∂cijkl
∂mn

: (A-17)

Here, we implement FWI for two sets of parameters. First, the
model is parameterized in terms of the velocities VP0, VS0,
Vnmo, and Vhor. The stiffness coefficients (written in the two-index
notation) represent the following functions of the velocities (Tsvan-
kin, 2012):

C11 ¼ ρV2
hor; (A-18)

C33 ¼ ρV2
P0; (A-19)

C13 ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

P0 − V2
S0ÞðV2

nmo − V2
S0Þ

q
− ρV2

S0; (A-20)

C55 ¼ ρV2
S0: (A-21)

Using equations A-16, A-17, and A-18–A-21, we obtain the
derivatives of the objective function with respect to the velocities:

∂F
∂VP0

¼−2ρVP0

ZT
0

�
∂ψ3

∂x3
∂u3
∂x3

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
nmo −V2

S0

V2
P0 −V2

S0

s �
∂ψ1

∂x1
∂u3
∂x3

þ ∂ψ3

∂x3
∂u1
∂x1

��
dt;

(A-22)

∂F
∂VS0

¼−2ρVS0

ZT
0

��
2V2

S0−V2
P0−V2

nmo

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

nmo−V2
S0ÞðV2

P0−V2
S0Þ

p −1
�

�
∂ψ1

∂x1
∂u3
∂x3

þ∂ψ3

∂x3
∂u1
∂x1

�
þ
�
∂ψ1

∂x3
þ∂ψ3

∂x1

��
∂u1
∂x3

þ∂u3
∂x1

�	
dt;

(A-23)

∂F
∂Vnmo

¼−ρVnmo

ZT
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
P0−V2

S0

V2
nmo−V2

S0

s �
∂ψ1

∂x1
∂u3
∂x3

þ ∂ψ3

∂x3
∂u1
∂x1

�
dt;

(A-24)

∂F
∂Vhor

¼ −2ρVhor

ZT
0

∂ψ1

∂x1
∂u1
∂x1

dt: (A-25)

The second parameterization includes the following parameters
(after Shen, 2012):

m1 ¼ ln

�
1

V2
P0

�
; (A-26)

m2 ¼ ln

�
1

V2
S0

�
; (A-27)

m3 ¼ 1þ 2ε; (A-28)

m4 ¼ 1þ 2δ: (A-29)

After the stiffness coefficients are expressed in terms of m1, m2,
m3, and m4, equations A-16 and A-17 yield:

∂F
∂m1

¼ ρV2
P0

ZT
0

�
ð1þ 2εÞ ∂ψ1

∂x1
∂u1
∂x1

þ ∂ψ3

∂x3
∂u3
∂x3

þ
�
f
2
ð1þ 2δÞ þ 1

2f

��
∂ψ3

∂x3
∂u1
∂x1

þ ∂ψ1

∂x1
∂u3
∂x3

�	
dt;

(A-30)

∂F
∂m2

¼ρV2
S0

ZT
0

��
∂ψ1

∂x3
þ∂ψ3

∂x1

��
∂u1
∂x3

þ∂u3
∂x1

�

−
�
f
2
þ 1

2f
þ1

��
∂ψ3

∂x3
∂u1
∂x1

þ∂ψ1

∂x1
∂u3
∂x3

��
dt; (A-31)
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∂F
∂m3

¼ −ρV2
P0

ZT
0

∂ψ1

∂x1
∂u1
∂x1

dt; (A-32)

∂F
∂m4

¼ −ρV2
P0

f
2

ZT
0

�
∂ψ3

∂x3
∂u1
∂x1

þ ∂ψ1

∂x1
∂u3
∂x3

�
dt; (A-33)

where

f ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
P0 − V2

S0

ð1þ 2δÞV2
P0 − V2

S0

s
: (A-34)

APPENDIX B

SENSITIVITY PATTERNS FOR ELASTIC FWI IN
VTI MEDIA

The radiation pattern is obtained by expressing the scattered
wavefield in the Born approximation using the asymptotic Green’s
function.
Suppose the wavefield produced by a source at location xs is scat-

tered at x 0 and recorded by a receiver at xr. A perturbation δcijkl in
the stiffness coefficient cijkl at the scatterer x 0 (Figure B-1) results in
a perturbation δui in the wavefield. We replace the wavefield ui in
equation A-1 by ui ¼ ubi þ δui and the stiffnesses cijkl by
cijkl ¼ cbijkl þ δcijkl, where the superscript b refers to the back-
ground medium. Retaining only the terms linear in the perturbations
in equation A-1 leads to the Born approximation:

ρ
∂2ðδuiÞ
∂t2

−
∂
∂xj

�
cbijkl

∂ðδukÞ
∂xl

�
¼ ∂

∂xj

�
δcijkl

∂ubk
∂xl

�
: (B-1)

The wave equation A-1 can be solved in the frequency domain in
terms of the Green’s function using the representation theorem:

unðxr;ωÞ ¼
Z
Vðx 0Þ

hiðx 0;ωÞ Gniðxr; x 0;ωÞdVðx 0Þ; (B-2)

where hiðx 0;ωÞ is the force density at x 0, Gniðxr; x 0;ωÞ is the
Green’s function for the source at x 0 and receiver at xr, and
Vðx 0Þ represents the volume that includes all sources. To solve
equation B-1 for the scattered field, we replace hiðx 0;ωÞ in equa-
tion B-2 by the right-hand side (source term) of equation B-1:

δunðxr;ωÞ¼
Z
Vðx0Þ

∂
∂x0j

�
δcijkl

∂ubk
∂x0l

�
Gni dVðx0Þ

¼
Z
Vðx0Þ

�
∂
∂x0j

ðδcijkl
∂ubk
∂x0l

GniÞ−δcijkl
∂ubk
∂x0l

∂Gni

∂x0j

�
dVðx0Þ:

(B-3)

Applying the divergence theorem to the first term in the integrand of
equation B-3 yields:

δunðxr;ωÞ ¼
Z
Sðx 0Þ

δcijkl
∂ubk
∂x 0

l
Gni νj dSðx 0Þ

−
Z
Vðx 0Þ

δcijkl
∂ubk
∂x 0

l

∂Gni

∂x 0
j
dVðx 0Þ; (B-4)

where Sðx 0Þ is the surface of the volume Vðx 0Þ, and ν is the normal
to Sðx 0Þ pointing outward. Expanding the volume Vðx 0Þ to infinity
and using the radiation boundary condition (equation A-3) reduces
equation B-4 to

δunðxr;ωÞ¼−
Z
Vðx0Þ

δcijklðx0Þ
∂ubkðx0;ωÞ

∂x0l

∂Gniðxr;x0;ωÞ
∂x0j

dVðx0Þ:

(B-5)

Here, the wavefield ub is computed in the background medium and is
generated by the force at the source location xs. Hence, ub can be
expressed in terms of the force applied at xs and the Green’s function:

ubkðx 0;ωÞ ¼ fmðxs;ωÞ Gkmðx 0; xs;ωÞ: (B-6)

Substituting equation B-6 into equation B-4 and using reciprocity,

Gkmðx 0; xs;ωÞ ¼ Gmkðxs; x 0;ωÞ; (B-7)

we find:

δunðxr;ωÞ ¼−
Z
Vðx 0Þ

fmðxs;ωÞδcijklðx 0Þ

×
∂Gmkðxs;x 0;ωÞ

∂x 0
l

∂Gniðxr;x 0;ωÞ
∂x 0

j
dVðx 0Þ. (B-8)

Next, we assume the background medium to be homogeneous (it can
still be arbitrarily anisotropic). The Green’s functions in equation B-8
can be replaced by their asymptotic (high-frequency) representation
(Vavryčuk, 2007),

Gmk ¼ gsm gsk Ḡs; (B-9)

Gni ¼ grn gri Ḡ
r; (B-10)

Figure B-1. Geometry of the scattering experiment. The source is
located at xs, the scatterer at x 0, and the receiver at xr.
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where the superscripts s and r denote the source and receiver wave-
fields, respectively, g is the unit polarization vector, and

Ḡs ¼ 1

4πρVs
gr Rs

ffiffiffiffiffiffiffijKjp exp

�
i
π

2
σ0 þ iω

ps

vs
· ðxs − x 0Þ

�
;

(B-11)

Ḡr ¼ 1

4πρVr
gr Rr

ffiffiffiffiffiffiffijKjp exp

�
i
π

2
σ0 þ iω

pr

vr
· ðxr − x 0Þ

�
:

(B-12)

Here, Vgr andR are the group velocity and distance along the ray (the
rays connect the scatterer with the source and receiver), K is the
Gaussian curvature of the slowness surface, σ0 is a function of K
(Vavryčuk, 2007), p is the unit slowness vector, and v is the phase
velocity.
In the WKBJ approximation (e.g., Aki and Richards, 2002), the

spatial derivatives are evaluated only for the rapidly varying terms
of the Greens’s function (i.e., the exponents in equations B-11 and
B-12). Substituting equations B-9–B-12 into equation B-8 yields
the following expression for the perturbed wavefield:

δunðxr;ωÞ ¼
Z
Vðx 0Þ

fmðxs;ωÞ AðωÞ ps
l p

r
j g

s
k g

r
i δ

cijkl dV ðx 0Þ; (B-13)

where

AðωÞ ¼ gsm grn ḠsḠr ω2

vsvr
: (B-14)

The “radiation pattern” Ω for a model parameterized in terms of the
stiffnesses is obtained as the amplitude of the kernel (Alkhalifah and
Plessix, 2014) in equation B-13 (i.e., the coefficient multiplied with
δcijkl):

Ω ¼ ps
l p

r
j g

s
k g

r
i : (B-15)

This is a general expression for an arbitrarily anisotropic scatterer
embedded in a homogeneous anisotropic background.
Next, we assume the background to be isotropic, and the scatterer

to be defined by the stiffness coefficients corresponding to the P-
and SV-waves in VTI media (i.e., C11, C13, C33, and C55). Equa-
tions A-18–A-21 allow us to calculate the total differential for each
stiffness element Cij with respect to the independent variables (VP0,
VS0, Vnmo, and Vhor) and substitute them into equation B-13. We
can thus obtain the perturbation for each velocity (VP0, VS0,
Vnmo, and Vhor). Since the background medium is isotropic, the
background velocities Vnmo, Vhor, and VP0 are equal, and the unit
polarization vectors are parallel (P-waves) or perpendicular (SV-
waves) to the corresponding group-velocity vector. For the P-wave-
field, the 2D radiation patterns (for parameterization I) in the ver-
tical plane take the form:

ΩPðVP0Þ ¼ 2 ρVP0½2ðps
3Þ2 ðpr

3Þ2 þ ðps
3Þ2 ðpr

1Þ2
þ ðps

1Þ2 ðpr
3Þ2�; (B-16)

ΩPðVS0Þ ¼ 8ρVS0½2ps
1 p

s
3 p

r
1 p

r
3

− ðps
3Þ2 ðpr

1Þ2 − ðps
1Þ2 ðpr

3Þ2�; (B-17)

ΩPðVnmoÞ¼2ρVP0½ðps
3Þ2 ðpr

1Þ2þðps
1Þ2 ðpr

3Þ2�; (B-18)

ΩPðVhorÞ ¼ 4ρVP0ðps
1Þ2 ðpr

1Þ2: (B-19)

The patterns for the S-wavefield are:

ΩSðVP0Þ ¼ 0; (B-20)

ΩSðVS0Þ ¼ 4 ρVS0½ðps
1p

r
1 þ ps

3p
r
3Þ2 − ðps

1p
r
3 − ps

3p
r
1Þ2�;
(B-21)

ΩSðVnmoÞ ¼ −4 ρVP0 ps
1 p

s
3 p

r
1 p

r
3; (B-22)

ΩSðVhorÞ ¼ 4 ρVP0 ps
1 p

s
3 p

r
1 p

r
3: (B-23)

For transmitted waves, the incident and scattering angles are the
same, and the components of the unit slowness and polarization
vectors for P-waves become:

p1
s ¼ g1s ¼ − sin θ; (B-24)

p3
s ¼ g 3

s ¼ cos θ; (B-25)

p1
r ¼ g1r ¼ sin θ; (B-26)

p3
r ¼ g 3

r ¼ − cos θ; (B-27)

where θ is the phase angle with the (vertical) symmetry axis. For
SV-waves, the corresponding expressions are:

p1
s ¼ −g 3

s ¼ − sin θ; (B-28)

p3
s ¼ g1s ¼ cos θ; (B-29)

p1
r ¼ g 3

r ¼ sin θ; (B-30)

p3
r ¼ −g1r ¼ − cos θ: (B-31)

The final expressions for the P- and S-wave radiation patterns are
given in the main text. The radiation patterns for parameterization II
[lnð1∕V2

P0Þ, lnð 1∕V2
S0Þ, 1þ 2ε, and 1þ 2δ] are obtained in a sim-

ilar manner.
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