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ABSTRACT

Accurate and efficient modeling of seismic wavefields that
accounts for both attenuation and anisotropy is essential for
further development of processing methods. Here, we present
a 2D time-domain finite-difference algorithm for generating
multicomponent data in viscoelastic transversely isotropic
media with a vertical symmetry axis (VTI). Within the frame-
work of the generalized standard linear solid (GSLS) model,
the relaxation function is expressed through the τ-parameters
(which quantify the difference between the stress and strain
relaxation times) defined for anisotropic media. This ap-
proach produces nearly constant values of all components
of the quality-factor matrix within a specified frequency band.
The developed algorithm is based on a set of anisotropic vis-
coelastic wave equations parameterized by memory variables.
Synthetic examples for TI models with different structural
complexity confirm the accuracy of the proposed scheme and
illustrate the influence of attenuation and attenuation aniso-
tropy on multicomponent wavefields.

INTRODUCTION

Viscoelastic properties of subsurface formations have a profound
influence on wave propagation and seismic processing. The attenu-
ation-induced amplitude loss and velocity dispersion can cause
distortions in amplitude-variation-with-offset (AVO) analysis and
imaging. However, attenuation can also provide valuable informa-
tion about lithology and fluids needed for reservoir characterization.
A prerequisite for accurate attenuation analysis and estimation is

efficient viscoelastic modeling (e.g., Shekar and Tsvankin, 2014).
The main advantage of finite-difference (FD) methods compared
to asymptotic algorithms is their ability to simulate the complete
wavefield without sacrificing accuracy. In frequency-domain mod-

eling, attenuation can be incorporated directly through the imagi-
nary part of the stiffness coefficients. However, implementation
of finite-difference methods in the frequency domain is hampered
by the need to factorize a large sparse linear system of equations
(Operto et al., 2007). As a result, many publications are focused on
simulating wave propagation in attenuative media with finite-differ-
ence time-domain methods (Day and Minster, 1984; Emmerich and
Korn, 1987; Carcione, 1993; Blanch et al., 1995; Bohlen, 2002; Zhu
et al., 2013). A nearly constant quality factor Q over a specified
frequency range can be simulated by mechanical models. Memory
variables, introduced into the corresponding convolutional stress-
strain relationship, facilitate numerical implementation (Robertsson
et al., 1994).
The attenuation coefficient for subsurface formations is often di-

rectionally dependent, and the magnitude of attenuation anisotropy is
typically much higher than that of velocity anisotropy (Hosten et al.,
1987; Zhu and Tsvankin, 2006; Behura and Tsvankin, 2009a). Čer-
vený (2005) and Vavryčuk (2007) present a detailed discussion of
attenuation anisotropy based on ray theory. Behura and Tsvankin
(2009b) show that the attenuation coefficient along seismic rays is
close to the corresponding phase attenuation coefficient (computed
for zero “inhomogeneity angle”) even for strong anisotropy. Shekar
and Tsvankin (2014) develop an efficient Kirchhoff modeling algo-
rithm for attenuative anisotropic media using Gaussian beams.
Although time-domain viscoelastic wave equations for general

anisotropic media have been known for a long time (e.g., Tarantola,
1988; Komatitsch and Tromp, 1999; Charara et al., 2000; Fichtner
and van Driel, 2014), they were considered “too general for seismic
purposes” (Tarantola, 1988) and thus seldom implemented. In one of
the few published attempts to include attenuation anisotropy in time-
domain FD modeling, Mittet and Renlie (1996) simulate acoustic
full-waveform multipole logging. However, they do not give a clear
description of employed attenuation anisotropy.
Here, we develop a 2D time-domain FD algorithm designed to

simulate P- and SV-waves for models with VTI symmetry for both
velocity and attenuation. First, we discuss the rheology of an aniso-
tropic viscoelastic model and a formalism for generating nearly
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constant Qij-values in a specified frequency band. Next, we present
the viscoelastic wave equation for VTI media and describe its im-
plementation in FD modeling. Finally, we demonstrate the accuracy
and efficiency of the developed FD algorithm with numerical ex-
amples.

METHODOLOGY

Rheology of anisotropic viscoelastic model

The stiffness matrix Cij in viscoelastic media becomes complex,
and attenuation can be described by the quality-factor matrix Qij

(Zhu and Tsvankin, 2006; Carcione, 2007):

Qij ¼
ReðCijÞ
ImðCijÞ

: (1)

Attenuation can be easily incorporated into frequency-domain
modeling through the imaginary parts of the stiffnesses or through
the matrix Qij (Operto et al., 2009; Gosselin-Cliche and Giroux,
2014; Shekar and Tsvankin, 2014). In the time domain, however,
attenuation is typically introduced through the so-called relaxation
function Ψ (Carcione, 2007; Moczo et al., 2007):

ΨijðtÞ ¼ F−1
�
CijðωÞ
iω

�
; (2)

where F−1 denotes the inverse Fourier transform, and both Ψij and
Cij are expressed in the two-index Voigt notation. The generalized
stress-strain relationship in linear viscoelastic media can be written as:

σmn ¼ Ψmnpq � _εpq ¼ _Ψmnpq � εpq; (3)

where σmn and εpq are the stress and strain tensor, respectively, and
the asterisk and dot denote convolution and time derivative, respec-
tively. Equation 3 shows that the stress tensor depends on the entire
history of the strain field, rather than by just its current value (which is
the case for purely elastic media).
The relaxation function, which determines the viscoelastic behav-

ior of the material, can be simulated by the so-called generalized stan-
dard linear solid (GSLS) model. A single standard linear solid (SLS)
consists of two parallel mechanical systems, with one made of a
spring and a dashpot in series and the other containing a single spring
(Blanch et al., 1995). Several SLS’s in parallel constitute the GSLS,
with each individual SLS called a “relaxation mechanism.” Most
existing publications implement a relaxation function for isotropic
media (e.g., Carcione, 1993; Moczo et al., 2007). For general aniso-
tropic media, the function Ψij is given by (Komatitsch and Tromp,
1999; Charara et al., 2000):

ΨijðtÞ ¼ CR
ij

�
1 −

1

L

XL
l¼1

�
1 −

τ εlij
τ σl

�
e−t∕τ

σl

�
HðtÞ; (4)

where CR
ij ¼ Ψijðt → ∞Þ is called the “relaxed modulus” corre-

sponding to the low-frequency limit (ω ¼ 0), τ εlij and τ
σl are the strain

and stress relaxation times (respectively) for the lth mechanism,HðtÞ

is the Heaviside function, and L is the number of mechanisms. The
relaxed modulus CR

ij is related to the real part of the corresponding
complex modulus Cij defined at the reference frequency ωr:

CR
ij ¼ ReðCijÞ

�
1

L

XL
l¼1

1þ ω2
r τ

σ l τ εlij
1þ ðωr τ

σlÞ2
�−1

: (5)

Generally, the more relaxation mechanisms (or SLSs) are included,
the wider is the frequency range in which it is possible to simulate a
nearly constant Qij. For different components of the anisotropic re-
laxation tensor Ψ, the stress relaxation times can be identical, while
τ εlij generally differ (Komatitsch and Tromp, 1999).

The τ-method

Blanch et al. (1995) demonstrate that the magnitude of attenua-
tion in isotropic media is directly determined by the dimensionless
parameter τ:

τ ¼ τ εl

τ σ l
− 1: (6)

For anisotropic media, τ becomes a matrix that we define as:

τij ¼
τ εlij
τ σl

− 1: (7)

The quality-factor elements Qij decrease with increasing τij. In
the elastic case, the stress and strain relaxation times are equal, and
τij vanishes. Since τij should remain constant for all relaxation
mechanisms, the number of independent parameters (τij and τ σl)
for each element of the relaxation function Ψij reduces from 2L
to Lþ 1 (L denotes the number of relaxation mechanisms). For
P- and SV-waves in a 2D viscoelastic VTI model, the total number
of independent parameters is equal to Lþ 4 (L for τ σl and 4 for τij).
The expressions for the relaxation function (equation 4) and τij

(equation 7) allow us to find the complex modulus Cij from equa-
tion 2. Then the inverse of the quality factor is given by

Q−1
ij ðωÞ ¼

ImðCijÞ
ReðCijÞ

¼
τij

P
L
l¼1

ωτσl

1þ ðωτσlÞ2

Lþ τij
P

L
l¼1

ðωτσlÞ2
1þ ðωτσlÞ2

: (8)

By applying least-squares inversion to equation 8, we can obtain
the corresponding parameters τij and τ σl, which produce the desired
nearly constant value of Qij in a specified frequency band (Bohlen,
2002). Figure 1 shows that the simulated Qij-curve using the in-
verted parameters τ σl and τij is close to the desired Qij-value, when
three relaxation mechanisms are used.

Viscoelastic VTI wave equation and FD implementation

Using equations 3, 4, and 7, the viscoelastic constitutive relation
for 2D VTI media can be obtained as (Appendix A; Tromp et al.,
2005; Fichtner and van Driel, 2014):
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_σmn ¼
1

2
CU
mnpqðvp;q þ vq;pÞ þ

XL
l¼1

rlmn; (9)

and

_rlmn¼−
1

τ σl

�
1

2L
ðCU

mnpq−CR
mnpqÞðvp;qþvq;pÞþrlmn

�
; (10)

where vp;q is the derivative of the pth component of the particle
velocity with respect to xq, CR

mnpq are the relaxed moduli, CU
mnpq

are the unrelaxed moduli defined as CU
mnpq ¼ CR

mnpqð1þ τmnpqÞ,
and rlmn are the memory variables for the lth mechanism. The Ein-
stein summation convention over p and q (p ¼ 1;3; q ¼ 1;3) is as-
sumed, and mn ¼ 11, 13, 33; CU

mnpq and CR
mnpq can be expressed in

the two-index notation using Voigt convention.
Equations 9 and 10 plus the momentum conservation law con-

stitute the viscoelastic VTI wave equation, which allows us to carry
out time-domain FD modeling for media with VTI symmetry for
both velocity and attenuation. The stress-velocity formulation is
adopted here because of its natural connection to staggered grids
(Moczo et al., 2007), which generally provide high numerical ac-
curacy. Our algorithm is based on a rotated staggered grid (RSG)
(Saenger et al., 2000; Saenger and Bohlen, 2004, see Figure 2),
which is preferable to the standard staggered grid (SSG) in aniso-
tropic media. The particle velocity and density are defined at the
center of each cell (staggered grid point), while other parameters
including stress, memory variables, stress relaxation time, and τij
are assigned to regular grid points. The two sets of parameters
are related through FD operators in the auxiliary directions ~x
and ~z, as discussed by Saenger et al. (2000).
The time and spatial derivatives are approximated by the second-

order and 12th-order centered differences, respectively, with the
time derivative calculated using the leap-frog scheme (Kristek and
Moczo, 2003). A sponge-layer absorbing boundary condition is ap-
plied to eliminate reflections from the model boundaries. To min-
imize numerical artifacts and avoid instabilities, we apply spatial
and temporal sampling criteria modified after Bohlen (2002):

dh ≤
λmin

n
¼ VS;min

n fmax

(11)

and

dt ≤
dhffiffiffi

2
p

mVP;max

; (12)

where λmin denotes the minimum wavelength, VS;min and VP;max are
the smallest S-wave velocity and largest P-wave velocity (taking into
account anisotropy and dispersion), fmax is the maximum frequency
in the source spectrum, and n and m are empirical parameters deter-
mined by the type and order of the FD scheme. In particular,m can be
approximated by the sum of the absolute values of the FD coeffi-
cients. For our algorithm, these parameters are set as n ¼ 3 and
m ¼ 1.37.

Velocity dispersion

Physical dispersion refers to the velocity variation with frequency,
which should be distinguished from numerical dispersion caused by
discretization in FD computations. Attenuative media have to be dis-
persive to ensure causality (Futterman, 1962; Jacobson, 1987; Sun
et al., 2009). In the GSLS model, the frequency-dependent P-wave
vertical velocity for VTI media takes the form:

VP0ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðC33ðωÞÞ

ρ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CR
33

ρ

�
1þ τ33

L

XL
l¼1

ðω τσlÞ2
1þ ðω τσlÞ2

�vuut ; (13)

where C33ðωÞ is the complex modulus and CR
33 is the relaxed modu-

lus defined in equation 5.
Figure 3 displays the dispersion curves of the GSLS model

with three relaxation mechanisms and of the constant-Q model of
Kjartansson (1979; see Carcione, 2007). The velocity in viscoelastic
media is higher than the reference value for frequencies exceeding
ωr; for lower frequencies, the opposite is true.

0 20 40 60 80 100 120 140 160 180 200
25

30

35

40

45

50

55

Frequency (Hz)

Q

Figure 1. Curve of Qij (dashed line) simulated with three relaxa-
tion mechanisms in the frequency range from 2 to 200 Hz. The
desired value of Qij is 30 (solid line). The inverted parameters are:
τij ¼ 0.2124, τ σ1 ¼ 22.7 ms, τ σ2 ¼ 1.3 ms, and τ σ3 ¼ 2 × 10−3 ms. Figure 2. Scheme of a rotated staggered grid (RSG).
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SYNTHETIC EXAMPLES

Validation test

To check the accuracy of the developed FD algorithm, we apply it
to generate the wavefield in a two-layer viscoelastic VTI medium
and then estimate the P-wave attenuation coefficient with the spec-
tral-ratio method.
Using the vertical component of the reflection data generated for

the model in Figure 4 and Table 1, we pick the PP events at different
receiver locations and then obtain the frequency spectrum Uð1ÞðωÞ
of these arrivals. Similarly, we estimate the corresponding spectrum
Uð0ÞðωÞ for the reference elastic medium. Then, according to the
spectral-ratio method (Zhu et al., 2007; Behura and Tsvankin,
2009a), the logarithm of the frequency-domain amplitude ratio
can be expressed as

ln

				Uð1ÞðωÞ
Uð0ÞðωÞ

				 ¼ G − 2π AP ft; (14)

where G, which is assumed to be frequency-independent, accounts
for the source radiation pattern, geometric spreading, and reflection/
transmission coefficients, t is the traveltime, and AP is the P-wave

group attenuation coefficient. As shown by Behura and Tsvankin
(2009b), the coefficient AP is equal to the phase attenuation coeffi-
cient [which can be represented as 1∕ð2QPÞ] computed for zero in-
homogeneity angle (the angle between the real and imaginary parts of
the wave vector).
Hence, the slope of the logarithmic spectral ratio yields the prod-

uct 2π AP t. Figure 5 shows that the slope remains almost constant
in a wide frequency range, as expected for a frequency-independent
Q model. Some deviations from a straight line at high frequencies
can be explained by the fact that we simulated a nearly constant-Qij

in the frequency band from 2 to 200 Hz. After applying the spectral-
ratio method at different offsets, we invert for the attenuation param-
eters AP0, εQ, and δQ using the following linearized expression for
the coefficient AP (Zhu and Tsvankin, 2006):

APðθÞ ¼ AP0ð1þ δQ sin2 θ cos2 θ þ εQ sin4 θÞ; (15)

where θ is the phase angle with the symmetry axis, AP0 is the
P-wave vertical phase attenuation coefficient [close to 1∕ð2QP0Þ for
weak attenuation], εQ is the anisotropy parameter that quantifies the
fractional difference between the horizontal and vertical attenuation
coefficients, and δQ controls the curvature of APðθÞ in the vertical
direction. The attenuation-anisotropy parameters are defined as
(Zhu and Tsvankin, 2006):

εQ ¼ Q33 −Q11

Q11

; (16)

δQ ¼ 1

2AP0

d 2AP

dθ2

				
θ¼0°

: (17)

Table 1. Actual and estimated attenuation parameters for the
two-layer model from Figure 4. The quality factor QS0 was
not estimated in this test because it requires special
processing of mode-converted data (see Shekar and
Tsvankin, 2011).

QP0 QS0 εQ δQ

Actual 30 30 0.4 1.2

Estimated 32.4 — 0.3 1.1

Figure 4. Two-layer VTI model used for attenuation estimation. The
model size is 900 m × 300 m, with grid spacingΔx ¼ Δz ¼ 3 m. A
horizontal reflector is located at a depth of 150 m. In the first layer,
VP0 ¼ 3.0 km∕s, VS0 ¼ 1.5 km∕s, ρ ¼ 2.0 g∕m3, ε ¼ 0.2, and
δ ¼ 0.1; in the second layer, VP0 ¼ 2.0 km∕s, VS0 ¼ 1.0 km∕s,
ρ ¼ 2.0 g∕m3, ε ¼ 0.15, and δ ¼ 0.05. The attenuation parameters
are the same for both layers and are listed in the first row of Table 1.
An explosive source that excites a Ricker wavelet with a central fre-
quency of 100 Hz is placed at the origin (white dot). The green line
marks the receiver locations at the surface.

0 50 100 150 200 250
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

f(Hz)

S
pe

ct
ra

l r
at

io

Figure 5. Logarithm of the amplitude ratio versus frequency for the
PP reflection at an offset of 210 m (phase angle is about 28°) in the
model from Figure 4.
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4.1
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Kjartansson

GSLS

Figure 3. Dispersion curves of the GSLS model with three relax-
ation mechanisms and of Kjartansson’s constant-Q model, with
Q ¼ 30 in both cases. The reference velocity is 4 km/s at a fre-
quency of 100 Hz.
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We process reflections in the offset range from 30 m to 840 m
with an increment of 90 m and estimate the corresponding phase
angles from the group angles using a linearized relationship (Tsvan-
kin, 2012).
The inverted parameters, listed in the second row of Table 1, accu-

rately reproduce the angle-dependent P-wave attenuation coefficient
(Figure 6). The small discrepancies between the actual and inverted
parameters in Table 1 are likely caused by the linearized approxi-
mations for the phase angle and the attenuation coefficient (equa-
tion 15), as well as by the deviations of the simulated Qij from the
desired constant value. The inversion results can be further im-
proved by using the exact attenuation coefficients obtained from
the Christoffel equation (Zhu and Tsvankin, 2006; Carcione, 2007).

Examples for attenuative VTI models

Here, we present three modeling experiments to illustrate the per-
formance of the algorithm and the influence of attenuation aniso-
tropy. The snapshots of the amplitude of the particle velocity for
a homogeneous VTI model are shown in Figure 7a–7d. Compared
to the wavefield for a nonattenuative medium in Figure 7a, the P- and
SV-arrivals in Figure 7b–7d exhibit clearly visible amplitude decay
due to attenuation and attenuation anisotropy. The contribution of the
coefficient εQ in equation 15, in accordance with its definition, in-
creases toward the isotropy (horizontal) plane (Figure 7d and 7f).
The parameter δQ controls the angular variation of the P-wave attenu-
ation coefficient near the vertical direction (Zhu and Tsvankin, 2006),
so its influence is visible mostly at intermediate propagation angles
(Figure 7c and 7e). Note that the SV-wave attenuation anisotropy
is largely controlled by the parameter σQ (which is a function of
εQ − δQ, see the expression in Zhu and Tsvankin, 2006), which is

negative in Figure 7c and positive in Figure 7d. When σQ is negative,
the SV-wave attenuation coefficient decreases in the range of phase
angles from 0° to 45° and then increases from 45° to 90° (Figure 7c
and 7e); for positive σQ, the opposite is true (Figure 7d and 7f).
Next, the three-layer model from Table 2 is used to simulate

reflection data in the presence of attenuation anisotropy. We com-

a) b)

c) d)

e) f)

Figure 7. Snapshots of wavefields at 147 ms in a homogeneous
medium. (a) Elastic VTI medium; (b) VTI medium with isotropic
attenuation QP0 ¼ QS0 ¼ 30; (c) attenuative VTI medium with
QP0 ¼ QS0 ¼ 30, εQ ¼ 0, δQ ¼ 1.5; (d) attenuative VTI medium
with QP0 ¼ QS0 ¼ 30, εQ ¼ 0.6, δQ ¼ 0. (e) The difference be-
tween plots (b) and (c); and (f) the difference between plots
(b) and (d). The model size is 1500 m × 1500 m, with grid spacing
Δx ¼ Δz ¼ 6 m. Other parameters are: VP0 ¼ 4000 m∕s, VS0 ¼
2000 m∕s, ε ¼ 0.3, δ ¼ 0.2, and ρ ¼ 2.0 g∕m3. The phase veloc-
ities are defined at a reference frequency of 100 Hz. An explosive
source that excites a Ricker wavelet with a central frequency of
100 Hz is placed at the center of the model.

0 10 20 30 40 50 60
22

24

26

28

30

32

34

Phase angle (deg)

Q
P

 

 

 Measured

 Best−fit

Figure 6. P-wave quality factors obtained from the spectral-ratio
method (stars) and the best-fit linearized approximation (equation 15,
solid line).

Table 2. Parameters of a three-layer VTI model. The corresponding Re�Cij� (related to the velocity parameters VP0, VS0, ε, and
δ) are defined at a reference frequency of 100 Hz.

Layer
Thickness

(km)
VP0

(km∕s)
VS0

(km∕s) ε δ ρðg∕m3Þ QP0 QS0 εQ δQ

1 0.2 2.0 1.0 0.15 0.1 2.0 30 30 −0.4 −1.2
2 0.2 3.0 1.5 0.2 0.15 2.2 30 30 −0.4 −1.2
3 0.2 4.0 2.0 0.3 0.2 2.5 30 30 −0.4 −1.2
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pare the modeled traces with ones from the reference medium with
isotropic attenuation (Figure 8). As expected, the difference be-
comes more pronounced with larger offset. More interestingly, be-
cause of negative parameters εQ and δQ, the energy is less
attenuated at larger offsets despite a longer propagation path.
This example illustrates the importance of taking attenuation
anisotropy into account in AVO analysis (e.g., Samec and Blangy,
1992).
Finally, the anisotropic viscoelastic FD method is applied to a

more complicated model with a salt body (Figure 9). This section
is taken from the left part of the 2007 BP TTI model and is re-
sampled with a coarser grid. We remove the tilt of the symmetry
axis (i.e., turn the model into VTI) and make the section attenuative
(Figure 10). The reflection energy is significantly damped due to
attenuation (compare Figure 11b and 11c with Figure 11a). At large
offsets (6–12 km), the diffraction from the left edge of the salt body
(Figure 9a and 9b) interferes with reflections from the thin layers in
the overburden (Figure 9c and 9d). This long-offset interference

arrival is significantly influenced by attenuation anisotropy in the
shallow (0–3 km) layers (Figure 11d). Although attenuation
anisotropy is also pronounced at depth, the difference between
the amplitudes of the deeper events for the isotropic and VTI mod-
els is much smaller because of a more limited range of propagation
angles. The spectra of windowed traces (Figure 12) exhibit the am-
plitude decay and reduction in the dominant frequency caused by
attenuation anisotropy.

a) b)

c) d)

Figure 9. Velocity parameters of the salt section of the BP TI
model: (a) VP0, (b) VS0 (both velocities are in km∕s), (c) ε, and
(d) δ. The modified model size is 11268 m × 13125 m, with grid
spacing Δx ¼ Δz ¼ 18.75 m. An explosive source that excites a
Ricker wavelet with a central frequency of 10 Hz is placed at
the origin.

a) b)

c) d)

Figure 10. Attenuation parameters for the model from Figure 9:
(a) QP0, (b) QS0, (c) εQ, and (d) δQ.

a)

b)

c)

Figure 8. Traces of the vertical component of the reflection data
(red solid lines) for the three-layer VTI model from Table 2.
(a) The near-offset trace at x ¼ 0 km; (b) the intermediate-offset
trace at x ¼ 0.2 km; (c) the far-offset trace at x ¼ 0.4 km. The
black dashed lines are modeling results for the same VTI medium
but with isotropic attenuation (i.e., εQ ¼ δQ ¼ 0). The model size is
400 m × 600 m, with grid spacing Δx ¼ Δz ¼ 1 m.
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CONCLUSIONS

We conducted time-domain FD modeling for 2D VTI attenuative
media using the model of generalized standard linear solid (GSLS).
The modified τ-method was employed to obtain the stress relaxation
times and τij-parameters and simulate nearly-constant Qij-behavior
in a specified frequency range. The velocity dispersion produced by
the GSLS model is close to that for Kjartansson’s constant-Q model.
Efficient numerical implementation is based on rotated staggered
grids (RSG) and introduction of memory variables.
To validate the algorithm, we reconstructed the attenuation param-

eters of a VTI layer by applying the spectral-ratio method to the
simulated reflection data. The method was also tested on a more
structurally complex attenuative TI model that contains a salt body.
The presented algorithm can serve as the forward-modeling tool for
anisotropic attenuation tomography.
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APPENDIX A

VISCOELASTIC WAVE EQUATION FOR
2D VTI MEDIA

Here, we adopt the particle velocity-stress scheme to derive the
viscoelastic wave equation for P- and SV-waves in 2D VTI media.
A similar formalism is presented by Tromp et al. (2005) who em-
ploy the displacement-stress scheme and Fichtner and van Driel
(2014) who choose a different definition of the memory variables.
Using the definition of τij (equation 7), the relaxation function

(equation 4) can be rewritten in the four-index notation as

ΨmnpqðtÞ ¼ CR
mnpq

�
1þ τmnpq

L

XL
l¼1

e−t∕τ
σ l

�
HðtÞ; (A-1)

where there is no summation over the indices m, n, p and q.
Substituting equation A-1 into the generalized stress-strain rela-

tionship (equation 3) and then taking the time derivative on both
sides yields:

_σmn¼ _ΨmnpqðtÞ�_εpq

¼CU
mnpq _εpq−

1

L
ðCU

mnpq−CR
mnpqÞ

�XL
l¼1

e−t∕τ
σl

τ σl

�
HðtÞ�_εpq;

(A-2)

here CU
mnpq is the unrelaxed modulus defined as

CU
mnpq ¼ CR

mnpqð1 þ τmnpqÞ.
Replacing the convolution terms with the memory variables r lmn,

we transform equation A-2 into:

_σmn ¼
1

2
CU
mnpqðvp;q þ vq;pÞ þ

XL
l¼1

rlmn; (A-3)

where

rlmn ¼ −
1

L τ σl
ðCU

mnpq − CR
mnpqÞe−t∕τ σlHðtÞ � _εpq: (A-4)

Differentiating equation A-4 with respect to time, we find:

_rlmn ¼ −
1

τ σl

�
−

1

L τ σl
ðCU

mnpq − CR
mnpqÞe−t∕τ σl

HðtÞ � _εpq

�

−
1

L τ σl
ðCU

mnpq − CR
mnpqÞe−t∕τ σlδðtÞ � _εpq; (A-5)

where δðtÞ is the 1D δ-function.

Figure 12. Spectra of windowed traces (from 6.3 s to 8.1 s) at an
offset of 10.1 km for the model from Figures 9 and 10. The pink and
blue curves correspond to the traces from Figure 11b and 11c, re-
spectively.

a) b)

c) d)

Figure 11. Vertical component of the reflection data for the model
from Figures 9 and 10. The result of (a) elastic VTI modeling;
(b) viscoelastic modeling with εQ ¼ δQ ¼ 0; and (c) viscoelastic
VTI modeling. (d) The difference between plots (b) and (c).
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Combining equations A-4 and A-5 yields the following differen-
tial equations:

_rlmn ¼−
1

τ σl

�
1

L
ðCU

mnpq−CR
mnpqÞ _εpqþ rlmn

�

¼−
1

τ σl

�
1

2L
ðCU

mnpq−CR
mnpqÞðvp;qþvq;pÞþ rlmn

�
; (A-6)

where vp;q is the derivative of the pth component of the particle
velocity with respect to xq; the Einstein summation convention over
p and q and Voigt convention are assumed.
Equations A-3 and A-6 describe viscoelastic wave propagation in

VTI media. The relevant stress elements for P- and SV-waves in 2D
VTI media are (the relaxed and unrelaxed moduli are expressed in
the two-index Voigt notation):

_σ11 ¼ CU
11v1;1 þ CU

13v3;3 þ
XL
l¼1

r11;l; (A-7)

_σ33 ¼ CU
13v1;1 þ CU

33v3;3 þ
XL
l¼1

r33;l; (A-8)

_σ13 ¼ CU
55ðv1;3 þ v3;1Þ þ

XL
l¼1

r13;l; (A-9)

with

_rl11 ¼−
1

τ σl

�
1

L
ðCU

11−CR
11Þv1;1þ

1

L
ðCU

13−CR
13Þv3;3þ rl11

�
;

(A-10)

_rl33 ¼−
1

τ σl

�
1

L
ðCU

33−CR
33Þv3;3þ

1

L
ðCU

13−CR
13Þv1;1þ rl33

�
;

(A-11)

_rl13 ¼ −
1

τ σl

�
1

L
ðCU

55 − CR
55Þðv3;1 þ v1;3Þ þ rl13

�
: (A-12)
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