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ABSTRACT

Wavefield tomography can handle complex subsurface
geology better than ray-based techniques and, ultimately,
provide a higher resolution. Here, we implement forward
and adjoint wavefield extrapolation for VTI (transversely
isotropic with a vertical symmetry axis) media using a gen-
eralized pseudospectral operator based on a separable ap-
proximation for the P-wave dispersion relation. This operator
is employed to derive the gradients of the differential sem-
blance optimization (DSO) and modified image-power objec-
tive functions. We also obtain the gradient expressions for a
data-domain objective function that can more easily incorpo-
rate borehole information necessary for stable VTI velocity
analysis. These gradients are similar to the ones obtained with
a space-time finite-difference (FD) scheme for a system of
coupled wave equations but the pseudospectral method is not
hampered by the imprint of the shear-wave artifact. Numerical
examples also show the potential advantages of the modified
image-power objective function in estimating the anellipticity
parameter η.

INTRODUCTION

Wavefield tomography can be implemented in either the data or
image domain depending on the way of formulating the objective
function. Data-domain methods enforce the similarity between the
predicted and observed seismic wavefields. The image-domain ap-
proach requires an additional migration step and relies, in accordance
with the semblance principle, on the consistency of migrated images
for different experiments (Al-Yahya, 1989; Sattlegger, 1975; Perrone
and Sava, 2012). There are various modifications of image-domain
tomography that employ different migration operators, imaging con-

ditions, and types of image gathers (e.g. Sava, 2014). The objective
function in either domain is typically minimized using gradient-based
techniques, with the gradients obtained by the adjoint-state method
(ASM) (Tarantola, 1984; Tromp et al., 2005; Plessix, 2006). Despite
the difference in their objective functions, both data- and image-do-
main methods use the same wave equation and observed wavefields
(Sava, 2014).
In this paper, we focus on wavefield extrapolation and gradient

derivation, which are common key steps for both groups of meth-
ods. Our algorithm is designed for transversely isotropic models
with a vertical symmetry axis (VTI) and can be easily extended to
tilted TI (TTI) media. Both VTI and TTI models are widely used to
improve the results of time and depth imaging and reflection tomog-
raphy. Optimally, anisotropic inversion requires elastic wavefield
extrapolation and benefits from including shear and mode-con-
verted waves. However, incorporating shear-wave information into
wavefield-based inversion remains challenging due to the high cost
and complexity of elastic modeling, imaging, and inversion, as
well as the limited availability of multicomponent data. Therefore,
anisotropic wavefield tomography is typically implemented under
the pseudoacoustic assumption originally proposed by Alkhalifah
(1998, 2000).
P-wave kinematics in VTI media is controlled by the vertical

velocity VP0 and Thomsen parameters ε and δ (Tsvankin and Thom-
sen, 1994; Tsvankin, 2012). Alternative parameter combinations for
acoustic VTI media also involve the P-wave horizontal velocity
Vhor ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
, the anellipticity parameter η¼ðε−δÞ∕ð1þ2δÞ,

and the normal-moveout (NMO) velocity for a horizontal interface
Vnmo ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
. The main challenge in anisotropic wavefield-

based inversion is the trade-off between model parameters, which
strongly depends on the chosen parameterization.
Acoustic modeling in TI media is based either on differential

or intergral wave-equation solutions. The first group of methods
operates with coupled second-order partial differential equations
(Duveneck et al., 2008; Fletcher et al., 2009; Fowler et al., 2010;
Zhang et al., 2011). Because of the coupling of P- and SV- modes,
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the differential methods propagate shear-wave “artifacts” caused
by setting the shear-wave symmetry-direction velocity VS0 to zero
(Alkhalifah, 1998, 2000; Grechka et al., 2004). These artifacts can
contaminate migrated images and hamper the acoustic inversion.
The simplest way to suppress the artifact is to place sources and
receivers in an elliptic (ε ¼ δ, η ¼ 0) or purely isotropic medium
(Alkhalifah, 2000; Duveneck et al., 2008). However, this strategy
can be legitimately applied only in the case of the data-domain
waveform inversion of surface data when the physical sources
and receivers, as well as the adjoint sources, reside in the near-sur-
face layer, which can be made elliptic. More elaborate methods for
suppressing the artifact involve using a finite VS0, wave-mode sep-
aration, or introducing a damping term into the wave equa-
tion (Fletcher et al., 2009; Le and Levin, 2014; Suh, 2014;
Fowler and King, 2011). Another issue with the differential solutions
is their numerical instability for models with η < 0.
Here, we focus on integral-solution methods, which are designed

to propagate only P-waves by producing decoupled modes in the
wavenumber domain (Etgen and Brandsberg-Dahl, 2009; Crawley
et al., 2010; Pestana and Stoffa, 2010; Song and Alkhalifah, 2013;
Fomel et al., 2013b; Sun et al., 2016). A comprehensive review and
classification of these methods can be found in Du et al. (2014).
Separable P-mode dispersion-relation approximations for TI and
orthorhombic media are described in Pestana et al. (2011), Zhan
et al. (2012), Du et al. (2014), and Schleicher and Costa (2015).
Anisotropic waveform inversion has drawn considerable atten-

tion in the literature, but it is usually implemented in the data do-
main (Warner et al., 2013; Gholami et al., 2013; Plessix et al., 2014;
Wang and Sava, 2015; Kamath and Tsvankin, 2016). Compared to
the data-domain inversion, image-domain methods are less sensitive
to the amplitude and shape of reflected arrivals. Whereas data-do-
main FWI is based on the direct trace-by-trace comparison of the
observed and simulated data, image-domain inversion involves such
smoothing operations as wavefield correlations and summation over
the experiments, as well as the summation over image extensions
for the adjoint-source computation. This property of image-domain
methods is highly beneficial for acoustic inversion that cannot pro-
duce accurate reflection amplitudes.
The most common approach to image-domain tomography in-

volves evaluating the energy focusing in the extended images (Rick-
ett and Sava, 2002; Sava and Fomel, 2006; Sava and Vasconcelos,
2011), which can be done with differential semplance optimization
(DSO) (Symes and Carazzone, 1991; Shen and Symes, 2008) or
image-power estimates (Chavent and Jacewitz, 1995; Soubaras and
Gratacos, 2007). The DSO and image-power objective functions can
be combined to use both zero-lag and residual energy, which poses
the challenge of optimal balancing of the corresponding terms.
Determination of optimal weights using such inversion-theory
methods as the L-curve (Nocedal andWright, 2006) is not computa-
tionally affordable, so the balancing is commonly done empirically.
Zhang and Shan (2013) propose a “partial” image-power objective
function that combines the DSO and image-power criteria without a
need to determine the optimal weights. Still, robust parameter es-
timation for complicated anisotropic velocity models may require
using both the partial image-power and DSO operators.
In general, P-wave reflection moveout must be supplemented

with borehole (Wang and Tsvankin, 2013a, 2013b) or other infor-
mation to resolve the VTI parameters. Y. Li et al. (2016a) build an
algorithm for image-domain tomography in acoustic VTI media that

operates with angle-domain common-image gathers (Sava and Fo-
mel, 2003; Biondi, 2007; Sava and Alkhalifah, 2013). They use
prior rock-physics information and structure-guided steering filters
to precondition the gradient of the objective function in order to
mitigate the dominant contribution of the NMO velocity to the gra-
dient. This technique, however, requires an accurate estimate of the
covariance between model parameters at each subsurface location.
A realistic error in the covariance matrix may result in the suppres-
sion of the updates in the anisotropy coefficients. Y. Li et al. (2016b)
test the algorithm on field data using the image-power objective
function, but their approach does not produce sufficient updates
in ε and δ. Weibull and Arntsen (2014) use elastic P-wave extended
images to estimate VP0, ε, and δ. However, their imaging condition
is based on a purely isotropic wave-mode separation technique.
V. Li et al. (2016) analyze the defocusing in the extended domain

caused by errors in the VTI parameters and show that the coefficient
δ could be constrained only if it strongly varies laterally. As is the
case for conventional moveout analysis, the sensitivity to the anel-
lipticity parameter η in the image domain is higher for dipping in-
terfaces than for horizontal reflectors.
In this paper, we derive the gradients of the data- and image-

domain objective functions for acoustic VTI media using a wave-
equation operator based on the separable P-mode approximation.
After reviewing parameterization and wavefield extrapolation for
acoustic VTI models, we discuss the objective functions for wave-
field tomography, with the main focus on the image-domain ap-
proach. For data-domain tomography, the analysis is restricted to
the conventional objective function that represents the l2-norm of
the data-difference. Then we obtain the corresponding gradients
of the objective function in both domains using the adjoint-state
method. Finally, the gradients are computed and analyzed for typ-
ical VTI models.

PARAMETERIZATION FOR ACOUSTIC
VTI MEDIA

In general, VTI acoustic wavefield tomography in either domain
cannot simultaneously constrain all three relevant model parameters
due to the parameter trade-offs in surface P-wave data. For data-do-
main inversion, an optimal parameter choice depends on the direc-
tions in which the source and receiver wavefields interact to produce
a model update. Alkhalifah and Plessix (2014) analyze the radiation
(sensitivity) patterns for horizontal reflectors in acoustic VTI media.
They conclude that if the inversion is driven primarily by waves
traveling in near-horizontal directions (e.g., diving waves recorded
at long offsets), then the optimal parameter set includes Vhor, η, and
ε. For near-vertical propagation, better results can be obtained with
Vnmo, η, and δ.
For image-domain inversion, parameter trade-offs stem from the

properties of P-wave reflection moveout. Alkhalifah and Tsvankin
(1995) demonstrate that P-wave reflection moveout for a laterally
homogeneous VTI medium above the target horizon (which could
be dipping or curved) is controlled by the velocity Vnmo and param-
eter η. For layer-cake VTI media, η contributes only to the nonhy-
perbolic (long-offset) portion of the P-wave moveout. If the
reflector is dipping, η influences the NMO velocity and,
therefore, conventional-spread moveout. P-wave reflection travel-
times are not sensitive to the coefficient δ, unless it varies laterally
above the target reflector (Alkhalifah et al., 2001; Tsvankin and
Grechka, 2011).
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WAVEFIELD EXTRAPOLATION METHODS

Pseudoacoustic modeling operators are widely used in imaging
and tomography because of their simplicity and computational ef-
ficiency. Acoustic algorithms, however, cannot accurately predict
P-wave amplitudes and often have to rely on the phase of recorded
arrivals or use a “dummy”model parameter that absorbs unphysical
model updates (e.g., Alkhalifah and Plessix, 2014). As mentioned
above, image-domain algorithms are less sensitive to the amplitude
and shape of the reflection arrivals and may not require “dummy”
variables.

Differential solution of the pseudoacoustic wave
equation

Here, we use the formulation proposed by Fletcher et al. (2009)
and Fowler et al. (2010). The 2D version of their equations for VTI
media can be written as:

∂2up

∂t2
¼ V2

horðx; zÞ
∂2up

∂x2
þ V2

P0ðx; zÞ
∂2uq

∂z2
þ fp;

∂2uq

∂t2
¼ V2

nmoðx; zÞ
∂2up

∂x2
þ V2

P0ðx; zÞ
∂2uq

∂z2
þ fq; (1)

where upðx; tÞ and uqðx; tÞ are the solutions of the fourth-order
acoustic VTI equation (Alkhalifah, 2000), and fp and fq are the
source functions. Thus, this wave-equation operator propagates the
two-component vector wavefield u. In the matrix-vector notation
equation 1 can be expressed as:

LFD

�
up

uq

�
þ
�
fp

fq

�
¼ 0; (2)

where LFD is the following operator:

LFD ¼
�
V2
hor ∂xx − ∂tt V2

P0 ∂zz
V2
nmo ∂xx V2

P0 ∂zz − ∂tt

�
: (3)

For gradient computation, we use the system of equations adjoint
to equation 1 (Wang and Sava, 2015).

Integral solution of the pseudoacoustic wave equation

The integral solutions use the P-wave dispersion relation to ob-
tain the phase shift for extrapolating (time-stepping) the wavefield
(Du et al., 2014). The general integral wave-equation solutions can
be written as follows:

Uðx; t� ΔtÞ ¼
Z bUðk; tÞe�iϕðx;k;ΔtÞdk;

bUðk; tÞ ¼
�

1

2π

�
n
Z

Uðx; tÞe−ikxdx; (4)

where Δt is the time step, bUðk; tÞ is the spatial Fourier transform
of the wavefield Uðx; tÞ, k is the wave vector, n is the dimension of
the Fourier transform, and the phase function ϕ ¼ Δt

ffiffiffiffi
A

p
, where A

is the right-hand side of a dispersion relation (e.g., see equation 5
below).

Application of this approach to anisotropic wave equations may
involve the generalized pseudospectral methods (Du et al., 2014),
which require approximate dispersion relations with separable
wavenumber and model-parameter terms. In other words, the contri-
bution of the spatial wavefield variation should be decoupled from
the spatial variation of medium parameters (Du et al., 2014). In the
pseudoacoustic approximation, the 2D P-wave dispersion relation for
VTI media can be written as (Alkhalifah, 1998):

ω2 ¼ 1

2
½ð1þ 2εÞV2

P0 k
2
x þ V2

P0 k
2
z �

×
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8ðε − δÞk2x k2z
½ð1þ 2εÞk2x þ k2z �2

s �
; (5)

where kx and kz are the horizontal and vertical wavenumbers. How-
ever, equation 5 is not suitable for pseudospectral methods because it
contains the radical term. Assuming that the term containing ε − δ
under the radical is small, a Taylor series expansion in that term
yields:

ω2¼ð1þ2εÞV2
P0k

2
xþV2

P0k
2
z−2ðε−δÞVP0

k2xk2z
k2zþFk2x

; (6)

where F ¼ 1þ 2ε. Pestana et al. (2011) set F to a constant to obtain
separable formulas suitable for pseudospectral methods. Physically,
the Taylor series expansion produces a weak-anellipticity approxima-
tion for the dispersion relation (the medium is elliptic if ε ¼ δ).
A more accurate dispersion relation can be obtained from Padé’s

expansion in the same term that contains ε − δ in equation 5. With
the first-order Padé expansion, the separable dispersion relation
takes the form (Schleicher and Costa, 2015):

ω2 ¼ ð1þ 2εÞV2
P0 k

2
x þ V2

P0 k
2
z − 2ðε − δÞV2

P0
k2x k2z

k2x þ k2z

×
�
1 − 2ε

k2x
k2x þ k2z

þ 2ðε − δÞ k2x k2z
ðk2x þ k2zÞ2

�
: (7)

Here, the Padé coefficients α and β in equation 17 of Schleicher and
Costa (2015) are set to 1∕2 and 1∕4 respectively, and their coeffi-
cient f is set to unity according to the acoustic assumption. Equa-
tion 7 can be referred to as the “separable strong-anellipticity
approximation,” which is suitable for implementation with pseudo-
spectral methods. Therefore, the integral wave-equation operator
can be written as:

LINT ¼−
∂2

∂t2
− ð1þ2εÞV2

P0 k
2
x−V2

P0 k
2
z þ2ðε−δÞV2

P0
k2x k2z
k2xþk2z

×
�
1−2ε

k2x
k2xþk2z

þ2ðε−δÞ k2x k2z
ðk2xþk2zÞ2

�
: (8)

At each time step all terms containing the wavenumbers are com-
puted separately as follows:

1. Compute the spatial Fourier transform bUðk; tÞ.
2. Multiply bUðk; tÞ by the corresponding wavenumbers (e.g., k2x).

Gradients for VTI media WA57
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3. Compute the inverse Fourier transform of that product [e.g.,
k2x bUðk; tÞ].

4. Multiply the result by the corresponding medium parameters
[e.g., ð1þ 2εÞV2

P0].

An extension to TTI media can be obtained by locally applying
the appropriate rotation matrix to the wavenumbers because equa-
tion 7 remains valid for bkx and bkz in the rotated coordinates. How-
ever, the rotation matrix makes the equations more complex, and the
resulting wavefield simulation involves additional Fourier trans-
forms (Zhan et al., 2012).

OBJECTIVE FUNCTIONS FOR WAVEFIELD
TOMOGRAPHY

Data domain

Data-domain methods enforce the similarity between the ob-
served and modeled data. The objective function is typically defined
as the l2-norm data difference:

J ¼ 1

2
kKðrÞu − d obsk22; (9)

where the action of the operator KðrÞ on the modeled wavefield u
produces the predicted data, and d obs is the observed data for fixed
receiver coordinates and time. However, because acoustic wavefield
extrapolation cannot adequately predict P-wave amplitudes, appli-
cation of equation 7 to field data might be problematic. Acoustic
data-domain tomography is often implemented with the objective
functions that rely mostly on phase information and, therefore, are
less prone to get trapped in local minima (Luo and Schuster, 1991;
Alkhalifah, 2015; Choi and Alkhalifah, 2015; Díaz and Sava,
2015). Alternatively, one could use a “dummy” model parameter to
absorb the model updates caused by unphysical amplitudes pro-
duced by acoustic equations.

Image domain

Image-domain tomography uses migrated reflection data as the
input for the inversion with the goal of updating the background
velocity model (note that parameter updates are smeared along the
reflection wavepaths). Our treatment is restricted to the residual en-
ergy minimization in the so-called extended domain. Extended im-
ages are produced by retaining correlation lags between the source
and receiver wavefields in the output of wave-equation migration.
The general imaging condition can be formulated as follows (Sava
and Vasconcelos, 2011):

Iðx; λ; τÞ ¼ P
e;t
Wsðx − λ; t − τÞWrðxþ λ; tþ τÞ; (10)

where Iðx; λ; τÞ is the extended image,Ws andWr denote the source
and receiver wavefields, respectively, λ is the space lag, τ is the time
lag, and e indicates summation over experiments. To reduce com-
putational cost, one can compute only extended common-image-
gathers (CIG), which are space-lag or time-lag extensions at fixed
horizontal coordinates (Rickett and Sava, 2002; Sava and Fomel,
2006), or common-image-point (CIP) gathers, which represent
multiple extensions computed at sparse points in the image space
(Sava and Vasconcelos, 2009). Residual energy at nonzero lags can

be used to update the migration velocity model and is most com-
monly measured with differential semblance optimization (DSO)
(Symes and Carazzone, 1991; Shen and Symes, 2008). The DSO
objective function for a horizontal space-lag extended image I has
the form:

JDSO ¼ 1

2
kλx Iðx; z; λxÞk22; (11)

where the horizontal lag λx plays the role of the penalty operator.
Another commonly used (image- or stack-power) objective function
measures zero-lag energy:

JST ¼ −
1

2
kIðx; z; λx ¼ 0Þk2l2 : (12)

Zhang and Shan (2013) propose a “partial” image-power objec-
tive function that combines the criteria in equations 11 and 12:

JPST ¼ −
1

2
kHðλxÞ Iðx; z; λxÞk2l2 ; (13)

where H is a Gaussian operator centered at zero lag.

GRADIENT COMPUTATION USING THE
ADJOINT-STATE METHOD

The adjoint-state method (Tarantola, 1984; Tromp et al., 2005;
Plessix, 2006) is designed to efficiently evaluate the gradient of the
objective function with respect to the model parameters. For seismic
wavefield tomography, general gradient expressions for acoustic
wavefields written in matrix-vector notation can be found in Sava
(2014). In addition to the objective function, application of the ad-
joint-state method involves state and adjoint equations. Minimiza-
tion of the objective function J is subject to the constraints F s and
F r: �

F s

F r

�
¼

�
L 0
0 L†

��
us
ur

�
−
�
ds
dr

�
¼ 0; (14)

where L and L† are the forward and adjoint wave-equation oper-
ators, respectively, ds is the source function, dr is the observed data,
and us and ur are the source and receiver wavefields, respectively.
The zero matrix 0 has the same dimensions as the wave-equation
matrix (operator) L. These constraints indicate that the wavefields
us and ur used in the minimization problem should be solutions of
the wave equation:�

L 0
0 L†

��
us
ur

�
¼

�
ds
dr

�
: (15)

The method of Lagrange multipliers can be used to formulate the
minimization as an unconstrained problem:

H ¼ J −
�
FT

s FT
s

��
as
ar

�
; (16)

H is the Lagrangian and T denotes a transpose. The Lagrange multi-
pliers as and ar are referred to as the “adjoint-state variables,”which
are found from the following adjoint equations that involve the
source terms gs and gr:
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�
L 0
0 L

��
as
ar

�
¼

�
gs
gr

�
. (17)

The magnitude and spatial distribution of gs and gr are obtained
from the derivatives of the objective function:

�
gs
gr

�
¼

26664
∂J
∂us
∂J
∂ur

37775: (18)

Finally, the gradient of the augmented functionH with respect to
the vector m of the model parameters is found as

∂H
∂m

¼ ∂J
∂m

þ
X
e

��
∂F s

∂m

�
T
�
∂F r

∂m

�
T
��

as
ar

�
. (19)

Additionally, the summation on the right-hand side is performed
not just over experiments, but also over time, which is equivalent to
the zero time-lag correlation (Sava, 2014):

∂H
∂m

¼ ∂J
∂m

þ
X
e;τ

δðτÞ
�
∂F s

∂m
⋆ as þ

∂F r

∂m
⋆ ar

�
; (20)

where τ is the correlation lag, δðτÞ is the Dirac delta function, and
“⋆”denotes cross-correlation. Overall, application of the adjoint-
state method involves computing the following quantities:

1. The state variables us and ur by solving the state equations 15.
2. The adjoint sources gs and gr that depend on the chosen objec-

tive function in equation 18.
3. The adjoint-state variables as and ar by solving the adjoint equa-

tions 17.
4. The gradient of the objective function, which depends on the

wave-equation operator and chosen parameterization.

Here, we apply the adjoint-state method to the pseudoacoustic
operators LFD and LINT discussed above and obtain gradient expres-
sions for the objective functions in equations 9, 11, and 13.

Differential-solution operator

For VTI media, the forward (state) wave-equation operator L is
defined as (equation 3):

L¼
�
L11 L12

L21 L22

�
¼
"
V2
hor ∂xx−∂tt V2

P0 ∂zz
V2
nmo ∂xx V2

P0 ∂zz−∂tt

#
: (21)

As shown by Wang and Sava (2015), the corresponding adjoint
operator LT is:

LT ¼
�
LT
11 LT

21

LT
12 LT

22

�
¼
�∂xxV2

hor − ∂tt ∂xxV2
nmo

∂zzV2
P0 ∂zzV2

P0 − ∂tt

�
: (22)

Data domain

For the data-domain objective function (equation 9), the gradients
can be found in Wang and Sava (2015). For 2D models, they define

the data residual as Krðup þ uqÞ − dobs, the model parameters as
m ¼ fV2

P0; V
2
nmo; V2

horg, and obtain the following expressions:

∂J
∂m

¼

26666666664

∂J
∂V2

P0

∂J
∂V2

nmo

∂J
∂V2

hor

37777777775
X
e;τ

δðτÞ

264
b1

b2

b3

375;

b1 ¼ ∂zzuq⋆ðap þ aqÞ;
b2 ¼ ∂xxup⋆aq;

b3 ¼ ∂xxup⋆ap: (23)

where ap and aq are the components of the adjoint wavefield. Ap-
plication of the chain rule yields the gradient expressions for the
vector bm ¼ fVhor; η; εg:

∂J
∂bm¼

2666666664

∂J
∂ε
∂J
∂η

∂J
∂Vhor

3777777775
¼
X
e;τ

δðτÞ

266666664

−2V2
hor

ð1þ2εÞ2 0 0

0
−2V2

hor

ð1þ2ηÞ2 0

0 0 2Vhor

377777775
264
f1

f2

f3

375;

f1¼∂zzuq⋆ðapþaqÞ;
f2¼∂xxup⋆aq;

f3¼∂xxup⋆apþ
∂xxup

1þ2η
⋆aqþ ∂zzuq

1þ2ε
⋆ðapþaqÞ: (24)

Image domain

We define the space-lag common-image gather through the sum
of the p and q components of the source and receiver wavefields:

Iðx; λÞ ¼ P
e;t
Wsðe; x − λ; tÞWrðe; xþ λ; tÞ; (25)

where

Wiðe; x; tÞ ¼ upi ðe; x; tÞ þ uqi ðe; x; tÞ; i ¼ s; r: (26)

As a result, for the objective function in equation 11, equations 18
for the adjoint sources take the following form:�

gps

gqs

�
¼

X
λx

λ2x

�
Iðxþ λx; λxÞWrðxþ 2λx; tÞ
Iðxþ λx; λxÞWrðxþ 2λx; tÞ

�
;

�
gpr

gqr

�
¼

X
λx

λ2x

�
Iðx − λx; λxÞWsðx − 2λx; tÞ
Iðx − λx; λxÞWsðx − 2λx; tÞ

�
: (27)

After the adjoint wavefields are computed, the source- and
receiver-side gradients with respect to the vector m ¼ fVnmo; η; δg
are found as:
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�
∂J
∂m

�
i
¼

2666666664

∂J
∂δ
∂J

∂Vnmo

∂J
∂η

3777777775
i

¼
X
e;τ

δðτÞ

26664
−2V2

nmo

ð1þ2δÞ2 0 0

0 2Vnmo 0

0 0 2V2
nmo

37775
264f1f2
f3

375;

f1¼∂zzu
q
i⋆ðapi þaqi Þ;

f2¼ð1þ2ηÞ∂xxupi ⋆api þ∂xxu
p
i ⋆a

q
i þ

∂zzu
q
i

1þ2δ
⋆ðapi þaqi Þ;

f3¼∂xxu
p
i ⋆a

p
i ; i¼s;r; (28)

where i denotes either the source or receiver side.

Integral-solution operator

For most TI models (with the exception of uncommonly strong
anisotropy), sufficient accuracy can be provided by the linearized
version of equation 7 (where we eliminate terms quadratic in ε and
δ), which simplifies the gradient expressions. However, we approxi-
mate equation 7 only for deriving the gradient expressions but not
for wavefield extrapolation. For VTI media, the forward (state)
wave-equation operator L can be defined as

LINT¼−
∂2

∂t2
−V2

hork
2
x−

V2
hor

1þ2ε
k2zþ2η

V2
hor

1þ2η

k2xk2z
k2xþk2z

; (29)

or, equivalently,

LINT¼−
∂2

∂t2
−V2

nmok2x−
V2
nmo

1þ2δ
k2z−2ηV2

nmo

k4x
k2xþk2z

: (30)

The corresponding adjoint operator L† is:

L†
INT ¼ −

∂2

∂t2
− k2x V2

hor − k2z
V2
hor

1þ 2ε
þ 2k2x k2z

k2x þ k2z
η

V2
hor

1þ 2η
;

(31)
or

L†

INT¼−
∂2

∂t2
− k2x V2

nmo− k2z
V2
nmo

1þ2δ
−

2k4x
k2xþk2z

ηV2
nmo: (32)

Data domain

Below, we obtain the gradient expressions for the data-domain
objective function in equation 9. The data residual is defined as
Kru − d obs. Therefore, equation 18 for the adjoint sources gs
and gr becomes:�

gs
gr

�
¼

�
KT

r ðKr u − d obsÞ
−KT

r ðKr u − d obsÞ

�
: (33)

For data-domain methods, only the adjoint source wavefield a is
relevant (Sava, 2014), and the gradient with respect to the model
parameter bm ¼ fVhor; η; εg is given by the following expression:

∂J
∂bm¼

2666666664

∂J
∂ϵ
∂J
∂η

∂J
∂Vhor

3777777775
¼−

X
e;τ

δðτÞ

266666664

−2V2
hor

ð1þ2εÞ2 0 0

0
−2V2

hor

ð1þ2ηÞ2 0

0 0 2Vhor

377777775

26664
f1

f2

f3

37775;

f1¼k2z u⋆a;

f2¼
k2xk2z
k2xþk2z

u⋆a;

f3¼k2xu⋆aþ
k2zu
1þ2ε

⋆a−
2η

1þ2η

k2x k2z
k2xþk2z

u⋆a: (34)

Image domain

The image residual can be defined as:

λ Iðx; λÞ ¼ λ

�P
e;t

usðe; x − λ; tÞ urðe; xþ λ; tÞ
�
: (35)

Hence, for the objective function in equation 11, equation 18 for
the adjoint sources becomes:�

gs
gr

�
¼

X
λx

λ2x

�
Iðxþ λx; λxÞ urðxþ 2λx; tÞ
Iðx − λx; λxÞ usðx − 2λx; tÞ

�
: (36)

Similarly, for the partial image-power objective function in equa-
tion 13, equation 18 for the adjoint sources becomes:�

gs
gr

�
¼ −

X
λx

HðλxÞ2
�
Iðxþ λx; λxÞ urðxþ 2λx; tÞ
Iðx − λx; λxÞ usðx − 2λx; tÞ

�
: (37)

Then the source- and receiver-side gradients with respect to the
model vector m ¼ fVnmo; η; δg are given by:

�
∂J
∂m

�
i
¼

2666666664

∂J
∂δ
∂J

∂Vnmo

∂J
∂η

3777777775
i

¼−
X
e;τ

δðτÞ

2666664
−2V2

nmo

ð1þ2δÞ2 0 0

0 2Vnmo 0

0 0 2V2
nmo

3777775
2664
f1

f2

f3

3775;

f1¼k2zui⋆ai;

f2¼k2xui⋆aiþ
k2z

1þ2δ
ui⋆aiþ2η

k4x
k2xþk2z

ui⋆ai;

f3¼
k4x

k2xþk2z
ui⋆ai; i¼s; r: (38)

SYNTHETIC EXAMPLES

Below, we test the gradient expressions derived above on several
VTI models. The medium parameters are specified on a rectangular
grid, and the density is assumed to be constant. For forward and
adjoint wavefield extrapolation, we use both the differential (oper-
ators LFD and L†

FD) and integral methods (operators LINT and L†
INT)
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described above. The gradients obtained with the integral operator
are compared with the ones for the differential operator (equa-
tions 21 and 22).

Model 1

First, we compute the gradients in the data domain for a model that
includes a constant Vhor-field and Gaussian anomalies in the param-
eters η (reaching 0.2 at the center; the background η ¼ 0.05) and ε
(reaching 0.15; the background ε ¼ 0) (Figure 1). Only transmitted
waves are employed to generate parameter updates. The source func-
tion is a Ricker wavelet with a central frequency of 2 Hz. Using the
actual η-field, we compute the gradients for understated and over-
stated peak values of the ε-anomaly (ε ¼ 0 and 0.3; the background
ε ¼ 0 is correct). Note that for the peak frequency of the source signal
(2 Hz) and the model size, the time shifts caused by errors in ε do not
exceed half a cycle.
For the chosen parameterization (Vhor, η, ε), the coefficient ε

should be constrained for near-vertical propagation, if Vhor has
been estimated from long-offset data (Alkhalifah and Plessix,
2014). We compute the gradients using the vertical (“borehole”)
receiver array shown in Figure 1d. In general, P-wave reflection
moveout must be supplemented with borehole (Wang and Tsvankin,
2013a) or other information to resolve the VTI parameters. The gra-
dients generated by both operators are similar and, as expected,
change sign depending on the sign of the ε-error (Figure 2). Because
the background η-field is positive, the differential extrapolator
produces a pronounced shear-wave artifact. In the data domain,
the gradient for the actual ε-field goes to zero. However, the data-
difference estimate may be questionable for field-data applications
because the acoustic approximation does not accurately model re-
flection amplitudes.

Model 2

Next, we compute the η-gradient in the image domain using
reflection data. The model includes a horizontal interface 8 km long
beneath a homogeneous VTI layer with Vnmo ¼ 2 km∕s, η ¼
δ ¼ 0.15, and a thickness of 2 km. The near-surface layer, which
is 0.2 km thick, is assumed to be elliptic (ε ¼ δ) to suppress the
shear-wave artifact produced by the differential extrapolator. We gen-
erate horizontal-space-lag extended images (Figure 3) and obtain the
η-gradients for understated and overstated values of η. The η-errors
induce residual energy in extended images (Figure 3) that has a linear
(“V”-like) shape, which is typical for near-horizontal interfaces (Sava
and Alkhalifah, 2012; V. Li et al., 2016). For both extrapolators, the
extended images computed with the understated and even actual η-
fields also contain considerable residual energy that spreads from the
image point up to the surface. These kinematic artifacts, caused by
the aperture truncation, may introduce bias in the image-domain ob-
jective function and lead to false model updates.
The DSO gradients computed using surface acquisition geometry

and the entire extended image are shown in Figure 4. With either
extrapolation operator, the gradient of the DSO objective function
(equation 11) for the understated η-field is strongly influenced by
the kinematic artifacts in the extended image. The contribution of
the artifact is even larger than that of the residual induced by the η-
error because the artifact is located closer to the physical sources
and receivers. For this model, the partial image-power objective
function (equation 13) significantly reduces the artifact (Figure 5).

Nevertheless, robust anisotropic inversion may require additional
suppression of kinematic artifacts by proper accounting for illumi-
nation in the imaging or DSO operators (Lameloise et al., 2015;
Hou and Symes, 2015; Yang and Sava, 2015).

a)

b) d)

c)

Figure 1. VTI model with Gaussian anomalies in the parameters η
and ε: (a) Vhor, (b) η, and (c) ε (model 1). (d) Source (red dot)-
receiver (green dots) geometry.

a)

b)

c)

c)

Figure 2. Gradients for model 1 computed using the (a, b) integral
and (c, d) differential extrapolators with different peak values of
ε: (a, c) ε ¼ 0 and (b, d) ε ¼ 0.3 (the actual peak ε ¼ 0.15). The
differential operator produces a strong artifact at x ¼ 2 km.
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Model 3

In this test, we compare the sensitivity of the
DSO and partial image-power estimates to errors
in the background Vnmo-field. The actual Vnmo

field consists of the constant background equal
to 2 km∕s and perturbations located at 1, 2, and
3 km depth (Figure 6). The anisotropy coeffi-
cients η and δ are taken constant (equal to
0.15 and 0.1, respectively) throughout the model.
We compute the DSO and partial image-power
objective functions for models with different
background Vnmo-values ranging from 1.8 to
2.2 km∕s. Figure 7 shows the space-lag CIGs
for the understated, actual, and overstated back-
ground Vnmo-values. Similarly to model 2, the
gathers include defocused energy due to both
velocity errors and the aperture-truncation effect.
Figures 8 and 9 show the same gathers after

applying the DSO and partial image-power oper-
ators. The DSO operator (Figure 8) is biased
towards understated background models,
whereas the partial image-power focuses most
energy for the actual background model. Fig-
ure 10 shows the difference in the behavior of
the DSO and partial image-power objective func-
tions. The DSO objective function amplifies the
aperture-truncation artifacts and is not sensitive
to the negative velocity errors for this model.
In contrast, the partial image-power objective
function is symmetric with the minimum at the
actual background Vnmo-value. However, the dif-
ference between the DSO and partial image-power
objective functions needs to be studied further for
more complicated models. The relative perfor-
mance of these two functions is likely to depend
on such factors as the accuracy of the initial model
and the type of input data.

Image-domain tomography

In the last test, we apply the partial image-
power gradients discussed above to perform im-
age-domain tomography for model 3. The data
are generated by 41 evenly distributed shots with
the spacing equal to 0.2 km. The initial model is
elliptic (η ¼ 0) with the NMO velocity equal to
1.8 km∕s (10% lower than the actual value). We
assume that the parameter δ is known because it
does not vary laterally, and, therefore, cannot be
constrained by P-wave reflection data (V. Li et al.,
2016). The model update is computed with the
following equation:

mkþ1 ¼ mk þ αk ∇Jk; (39)

where αk is the steplength and ∇Jk is the gradient
of the partial image-power objective function.
Given the simplicity of the model, we use the
steepest-descent method (Nocedal and Wright,

a) b) c)

Figure 3. Space-lag CIGs for a horizontal VTI layer (model 2) computed in the middle
of the section (x ¼ 4 km) using the integral extrapolator with (a) η ¼ 0, (b) η ¼ 0.15
(actual value), and (c) η ¼ 0.3.

a) c)

b) d)

Figure 4. Gradients of the DSO objective function (equation 11) for model 2 computed
using the (a, b) integral and (c, d) differential extrapolators for (a, c) η ¼ 0 and (b, d)
η ¼ 0.3.

a) c)

b) d)

Figure 5. Gradients of the partial image-power function (equation 13) for model 2
computed using the (a, b) integral and (c, d) differential extrapolators for (a, c)
η ¼ 0 and (b, d) η ¼ 0.3.
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a) b) c)

Figure 7. Space-lag CIGs for model 3 at x ¼ 4 km computed using
the integral extrapolator with (a) Vnmo ¼ 1.8, (b) Vnmo ¼ 2.0 (actual
value), and (c) Vnmo ¼ 2.2 km∕s.

a) b) c)

Figure 8. Space-lag CIGs for model 3 after applying the DSO op-
erator. The gathers computed with the actual (plot b) and under-
stated (plot a) value of Vnmo contain comparable residual energy.

a) b) c)

Figure 9. Space-lag CIGs for model 3 after applying the partial im-
age-power operator. The gather computed with the actual model
(plot b) features strong energy focusing at zero lag.

a) b)

Figure 10. Dependence of the objective functions on the back-
ground Vnmo-field: (a) DSO and (b) partial image-power. The actual
background Vnmo ¼ 2.0 km∕s.

a)

b)

Figure 6. (a) VTI model with perturbations in the Vnmo-field (in
km∕s; model 3); the anisotropy coefficients η and δ are constant
throughout the model. (b) Shot gather for the source located in
the middle of the model.

a) b)

Figure 12. Estimated parameters (a) Vnmo (in km∕s) and (b) η for
model 3 after three iterations of image-domain tomography with
the partial image-power objective function.

a)

b) d)

c)

Figure 11. Gradients of the partial image-power objective function
for model 3 (Figure 6): (a, c) Vnmo and (b, d) η. The gradients are
computed (a, b) before and (c, d) after smoothing for the initial el-
liptic model (ε ¼ δ).
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2006), which relies only on the inversion gradient at the current iter-
ation k.
Extended images and the inversion gradients are tapered in the

top part of the section to reduce the influence of the aperture-trun-
cation artifacts. Figure 11a, b displays the gradients for the param-
eters Vnmo and η computed for the initial model. We also apply
Gaussian smoothing to the gradients, as shown in Figure 11c, d.
After three iterations, the updated parameters Vnmo ≈ 2.05 km∕s
and η ≈ 0.17 (Figure 12) are close to the actual values (2 km∕s
and 0.15, respectively).

CONCLUSIONS

Wavefield extrapolation and gradient computation are key steps
of wave-equation-based inversion algorithms. We implemented for-
ward and adjoint integral extrapolation operators for acoustic VTI
media based on a separable dispersion-relation approximation
and derived the corresponding gradient expressions. This work is
mostly focused on image-domain wavefield tomography, which
is less susceptible to amplitude distortions produced by acoustic al-
gorithms. However, because estimation of all three relevant VTI
parameters (e.g., VP0, ε, and δ) is seldom feasible using only P-
wave reflection moveout, we also derived data-domain gradients,
which are more suitable for incorporating borehole information.
The gradients of the image- and data-domain objective functions

were computed for several VTI models and different acquisition
geometries. The similarity between the gradients obtained with
the integral and differential operators validates our analytic results.
However, the gradients computed with these two operators do not
exhibit the same spatial distribution, which can be explained by the
difference in amplitude variation along the simulated wavefronts.
This difference becomes larger with an increase in the parameter
η. For a model where the sources and receivers were placed in a
layer with η > 0, the gradients computed with the pseudospectral
algorithm do not contain the imprint of the shear-wave artifact that
contaminates the FD results.
The space-lag common-image gathers (CIGs) reveal illumination-

related issues with the DSO objective function applied to cross-cor-
relation extended images. Kinematic artifacts caused by insufficient
illumination substantially distort the gradients and should be sup-
pressed prior to updating the model. The partial image-power objec-
tive function may help reduce the false updates caused by these
artifacts. However, the DSO and partial image-power objective func-
tions need to be compared for more realistic, structurally complex
models. Ongoing work involves implementing the imaging and in-
version steps of anisotropic image-domain tomography and an exten-
sion of the algorithm to tilted TI media.
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