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Bayesian framework for elastic full-waveform inversion 
with facies information

Abstract
Conventional reservoir-characterization techniques utilize 

amplitude-variation-with-offset (AVO) analysis to invert for the 
elastic parameters or directly for the physical properties of reser-
voirs. However, the quality of AVO inversion is degraded by errors 
in the velocity model, inaccurate amplitudes, and structural 
complexity. Whereas full-waveform inversion (FWI) potentially 
represents a much more powerful tool for reservoir characteriza-
tion. FWI strongly relies on the accuracy of the initial model and 
suffers from parameters trade-offs. Here, we use a probabilistic 
Bayesian framework to supplement data fitting with rock-physics 
constraints based on geologic facies obtained from borehole 
information (well logs). The advantages of the facies-based FWI 
are demonstrated on a structurally complex isotropic elastic model 
and on a 3D layered VTI (transversely isotropic with a vertical 
symmetry axis) medium. In particular, the tests show that our 
algorithm can operate without ultra-low-frequency data required 
by conventional FWI and can reduce crosstalk between the 
medium parameters.

Introduction
Amplitude-variation-with-offset (AVO) analysis remains the 

most common tool for estimation of reservoir properties from 
seismic data (Buland and Omre, 2003; Coléou et al., 2005; Saussas 
and Sams, 2012; Grana, 2016; Zabihi Naeini and Exley, 2017). 
Elastic parameters or reservoir properties can be evaluated by 
deterministic or stochastic inversion of the AVO response (e.g., 
Russell, 1988). Conventional algorithms usually generate a res-
ervoir model by iteratively reducing the difference between 
migrated data and synthetic traces generated using petroelastic 
information. Saussus and Sams (2012) employ geologic facies to 
constrain this inversion workflow, which yields a more plausible 
reservoir description. However, as discussed by Zabihi Naeini et 
al. (2016), the AVO-based approach suffers from such inherent 
problems as high sensitivity to velocity errors and distortions due 
to model complexity. Also, AVO analysis operates only with the 
amplitudes of reflected waves.

Full-waveform inversion (FWI) has been successfully used 
for building high-resolution velocity models that improve seismic 
images (Tarantola, 1984; Virieux and Operto, 2009) and could 
be applied to characterization of petroleum reservoirs (Zabihi Naeini 
et al., 2016). However, computational demands for large-scale 
implementation of such a method are yet to be evaluated. Despite 
the potential advantages of FWI over conventional reservoir-
characterization methods, waveform inversion involves a number 
of challenges. In the absence of low frequencies in the recorded 
data, FWI often fails to converge to the global minimum if the 
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initial model is not sufficiently accurate. Parameter trade-offs, 
even in a purely isotropic acoustic medium, can lead to substantial 
parameter distortions (Operto et al., 2013; Alkhalifah and Plessix, 
2014; Oh and Alkhalifah, 2016). One option to reduce such 
trade-offs without relying on ultra-low frequencies is to supplement 
the FWI workflow with prior model constraints based on geologic 
facies (commonly derived from well logs).

To incorporate facies-based rock-physics constraints, one 
has to know the spatial distribution of the facies. Attempts to 
make FWI more robust by including a facies distribution have 
shown some promise (Zhang et al., 2017). In particular, Kamath 
et al. (2017) use a two-stage process to incorporate facies infor-
mation into FWI. The results of the conventional FWI (first 
inversion stage) are employed to build the facies which are 
compared to the prior facies model obtained from a well log. 
Each grid point in the model is assigned to one of the facies 
depending on the match between the synthetic and actual facies 
distribution, thereby yielding constraints for the second inversion 
stage. Zhang et al. (2017) determine the spatial distribution of 
the facies by calculating at each grid point the maximum posterior 
probability of the inverted parameter for all facies in the prior 
model. Both techniques operate with relatively simple layered 
media that have mild lateral heterogeneity. Because Kamath et 
al. (2017) incorporate information from a single borehole, the 
wrong facies can be assigned to certain grid points if the model 
is structurally complicated with pronounced lateral gradients. 
For the same reason, the inversion results of Zhang et al. (2017) 
include artifacts (e.g., edge effects).

To make the facies analysis more robust, Zhang et al. (2018) 
employ P-wave radiation patterns to determine the subsurface 
regions where each parameter is well constrained by the recorded 
data. When calculating the facies map, a more significant weight 
is assigned to the parameter that has a smaller uncertainty, which 
yields a modified map. Although this technique enhances resolu-
tion for structurally complicated media, it relies on the high 
accuracy of the initial model.

Considering all facies present in the model should provide 
higher resolution compared to that for a single-facies relationship 
between the elastic parameters for the entire section (Kemper 
and Gunning, 2014; Zabihi Naeini and Exley, 2017). After 
constructing the initial (prior) facies model, we use a probabilistic 
approach based on the Bayesian framework to estimate the 
“confidence model” that contains the spatial distribution of the 
facies. The confidence model is updated at each iteration and 
employed as a constraint in the inversion workflow. The update 
depends on the distribution of the elastic parameters after the 
previous iteration. Implementing this technique for structurally 
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complex models is not straightforward. Building a sufficiently 
accurate a priori parameter distribution requires dense well 
coverage to properly account for lateral heterogeneity. To obtain 
the prior model for strongly heterogeneous media (e.g., for the 
isotropic Marmousi model mentioned later), we use multiple 
well logs, but they are still sparsely distributed in space. Therefore, 
our algorithm employs image-guided interpolation (Hale, 2010) 
to reconstruct the model parameters between the available 
boreholes. Because the 3D elastic VTI medium used in another 
example later has a simpler structure, the prior model for it is 
built by a technique similar to that of Kamath et al. (2017).

After describing the method, we apply it to the isotropic 
and VTI models mentioned earlier. The tests show that facies-
based constraints can help recover a high-resolution model in 
the absence of ultra-low frequencies in the seismic data. 
Additionally, the initial model can significantly differ from the 
actual parameter distribution.

Theory
FWI is an iterative data-fitting technique that typically 

requires constraints to resolve the model parameters. Our objective 
function E(m) is based on the approach described by Zabihi Naeini 
et al. (2016), who discuss application of FWI as a reservoir-
characterization tool (Figure 1):

E(m) = Ed(m) + βEprior(m),                        (1)

where

Ed(m) = ||Wd(dsim – dobs)||,
Eprior(m) = ||Wm(minv – mc)||.

The term Ed(m) represents the standard data-misfit l 2-norm, 
where dobs is the recorded seismic data, and dsim is the synthetic 
(simulated) data. The scaling matrices Wd and Wm are designed 
to make the data-fitting and prior-model terms dimensionless. 
The term βEprior(m) incorporates a priori rock-physics constraints 
based on the geologic facies; the vector mc represents the confidence 
model updated at each iteration, minv is the inverted model, and 
β is a scaling factor.

Probabilistic approach based on the Bayesian framework is 
used to estimate the a priori spatial distribution of the facies. We 
compute the posterior probability of the facies as follows:

P f m( ) = P f( ) ⋅P m f( )
∫ P f( )P m f( ) ,                          (2)

where f is the a priori facies vector, P(m|f) is the likelihood 
function, and m represents the model obtained by the conventional 
FWI. A Gaussian distribution is used to describe the uncertainty 
in the model space (Tarantola, 1984):

P(m|f) = exp[–γ (m – f) · (m – f)],                   (3)

where γ is the resolution parameter of the confidence model. The 
posterior probability is computed for each facies at all grid points 

of the model. The facies with the maximum posterior probability 
at a certain grid point determines the corresponding value in the 
confidence model.

The gradient of the data misfit with respect to the model 
parameters is obtained from the adjoint-state method (Plessix, 
2006; Kamath and Tsvankin, 2016). For the isotropic Marmousi 
model below, iterative parameter updating is carried out with a 
multiscale approach using the bounded, low-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm of Byrd et al. (1995). For 
the 3D VTI example, the model is updated with the nonlinear 
conjugate-gradient algorithm (Hager and Zhang, 2006).

Accounting for lateral heterogeneity becomes highly chal-
lenging for complicated models such as Marmousi. Therefore, as 
mentioned earlier, in the elastic isotropic example we use multiple 
wells and build the prior model with image-guided interpolation 
based on the conventional reverse time migration (RTM) image, 
which is updated for each frequency band.

Numerical examples
Isotropic Marmousi model. The algorithm is first tested on 

the elastic isotropic Marmousi model (Martin et al., 2006), 
which is 10 km wide and 3.48 km thick (Figures 2a, 2c, and 
2e). The modeling operator uses an 8th-order finite-difference 
scheme with PML boundary conditions to solve the elastic wave 
equation. The data are generated by 100 shots and recorded by 
400 receivers, which are evenly distributed along the line and 
placed 40 and 80 m, respectively, beneath the surface. The input 
data are the vertical and horizontal particle velocities. The 
medium is parameterized by the P-wave (VP) and S-wave (VS) 
velocities and density (ρ). The algorithm is designed to invert 
for all three parameters using the inversion gradients presented 
by Köhn et al. (2012).

First, we conduct this test using a relatively accurate initial 
model obtained by smoothing the actual parameter distributions 
with a Gaussian function (Figures 2b, 2d, and 2f). The smoothing 
is designed to preserve the long-wavelength components of the 
actual model. Still, conventional (unconstrained) FWI requires 
low frequencies (down to 2 Hz) to reconstruct the medium 
parameters. We apply conventional FWI assuming that frequen-
cies below 4 Hz are unavailable, which is usually the case in 

Figure 1. Flowchart for reservoir-oriented FWI with facies-based constraints 
(adapted from Zabihi Naeini et al., 2016).
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practice; the inversion operates with four frequency bands 
(4–6, 4–10, 4–14, and 4–20 Hz). We follow the gradient pre-
conditioning scheme described by Plessix and Mulder (2004) 
which compensates for amplitude decay due to geometric spread-
ing. That allows us to define Wd in equation 1 as an identity 
matrix. The final inverted models (Figures 3a, 3c, and 3e) and 
parameter profiles (Figure 4) reveal the problems caused by the 
absence of low frequencies. The velocities VP and VS are distorted 
in the deeper part of the section, and errors in VS are visible even 
up shallow. The estimated density also significantly deviates 
from the actual model.

To find out whether information about facies can compensate 
for the lack of low frequencies, we apply our facies-constrained 
algorithm for the same frequency range starting at 4 Hz. Rock-
physics constraints are incorporated into the inversion workflow 
using the vertical parameter profiles (“well logs”) at several loca-
tions along the line (Figure 5). The facies information for the well 
logs is obtained from Martin et al. (2006). Because the model is 
strongly heterogeneous, multiple well logs are required to produce 
a sufficiently detailed confidence model, which is created by 
image-guided interpolation. The high accuracy of the image 
obtained by conventional RTM makes it possible to define Wm 
in equation 1 as an identity matrix. (As mentioned earlier, Wd is 
an identity matrix as well.) In our implementation, the prior-model 
term in equation 1 is scaled by the factor β. For each inversion 
stage, β is gradually reduced with iterations, which improves 
convergence toward the actual model. Values of β for field-data 
applications should depend on the accuracy of the prior model 
and data quality.

The confidence models for all parameters are computed from 
the facies data using the Bayesian framework discussed earlier. 
The facies-based algorithm increases the spatial resolution 
(Figures 3b, 3d, and 3f) and estimates the model parameters with 
much higher accuracy than conventional FWI (Figure 4).

Next, we create initial parameter distributions which deviate 
further from the actual model compared with the previous test. 
The initial 1D model is generated from well-log data at location 
x = 0.8 km with mild smoothing in the vertical direction 
(Figures 6a–6c). This time, we assume that the lowest available 
frequency is 2 Hz rather than 4 Hz. Using the same frequency 
range as in the previous test (starting at 4 Hz) does not produce 
satisfactory results even with the facies-based constraints because 
the initial model is strongly distorted.

The conventional FWI is applied with a multiscale approach 
for the following frequency bands: 2–5, 2–8, 2–13, and 2–20 Hz. 
The final inversion results for the new initial model and set of fre-
quency bands are shown in Figures 7a, 7c, and 7e and the vertical 
parameter profiles in Figure 8. Similar to the previous example, 
conventional FWI produces large errors in all three parameters, 
especially at depth. Supplementing the inversion workflow with 
facies-based constraints substantially improves the results 
(Figures 7b, 7d, and 7f). The superior performance of the facies-based 
FWI is particularly visible in the parameter profiles (Figure 8).

VTI model. The proposed technique was extended to VTI 
media parameterized by the P-wave and S-wave vertical velocities 
(VP0 and VS0), the P-wave normal-moveout and horizontal veloci-
ties (Vnmo,P and Vhor,P), and the SH-wave horizontal velocity 
(Vhor,SH) (Kamath and Tsvankin, 2016). Here, we present the 

Figure 2. Parameters of the Marmousi model: (a) P-wave velocity (VP), (c) S-wave velocity (VS), and (e) density (ρ). Initial models of (b) VP, (d) VS, and (f) ρ.
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Figure 3. Results of the conventional FWI: (a) VP, (c) VS, and (e) ρ. The results of the facies-based FWI: (b) VP, (d) VS, and (f) ρ. The frequency range for the inversion is 
4–20 Hz.

Figure 4. Vertical parameter profiles at x = 6 km: the actual (blue line), initial (black), and inverted (orange) parameters. The inversion is carried out by (a) conventional 
FWI and (b) facies-based FWI.

Figure 5. Locations of the well logs (red triangles) used for image-guided interpolation.
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results of an initial test for a relatively simple 3D elastic VTI 
medium composed of coarse horizontal layers (Figure 9a). To 
simulate the wavefield, we extend to TI media a time-domain 
3D elastic isotropic finite-difference modeling code, SOFI3D 
(Bohlen, 2002). Synthetic data are generated for a total of 100 
sources and 2916 receivers, which are evenly distributed over 
the surface at a depth of 10 and 20 m, respectively. The density 
is kept constant throughout the model and is assumed known. 
The initial models represent smoothed versions of the actual 
parameter distributions that preserve the long-wavelength model 
components (Figure 9b).

We adapt and generalize for 3D the 2D time-domain inversion 
gradients for the parameterization from Kamath and Tsvankin 
(2016) that was mentioned earlier. To optimize memory usage, 
the gradients are computed from the frequency-domain forward 
and adjoint wavefield for several discrete frequencies. The discrete 
Fourier transform is applied to obtain the monochromatic wave-
fields for both forward and adjoint propagation. These wavefields 
are then cross-correlated and summed over all available discrete 
frequencies. Therefore, no storage of the time-domain wavefields 
at different time steps is required.

The conventional (unconstrained) inversion is applied with a 
multiscale approach using eight frequency bands in the range 
4–20 Hz (the frequency increment is 0.3 Hz). Despite the simplic-
ity of the structural model, the conventional method fails to 
produce a noticeable improvement in the resolution of the inverted 
parameters (Figures 9c and 10). In contrast, the facies-based 

Figure 6. Initial parameters for the model in Figures 2a, 2b, and 2c: (a) VP, (b) VS, 
and (c) ρ.

Figure 7. Inversion results for the initial model in Figure 6. Conventional FWI: (a) VP, (c) VS, and (e) ρ. Facies-based FWI: (b) VP, (d) VS, and (f) ρ. The frequency range is 
2–20 Hz.
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constraints result in proper parameter updates and help guide the 
algorithm toward the actual model (Figures 9d and 10).

Conclusions
We presented an efficient methodology for incorporating 

rock-physics constraints into the FWI workflow. A confidence 
model with the facies information, computed using the Bayesian 
framework, helps resolve the medium parameters with high 
spatial resolution. Synthetic tests on elastic isotropic and aniso-
tropic models demonstrate the advantages of the facies-based 
FWI over the conventional algorithm and its potential as a 
reservoir-characterization tool. For the isotropic Marmousi 

Figure 9. Actual (a) and initial (b) P-wave vertical velocity (VP0) of a 3D elastic VTI model. The inverted VP0 obtained by (c) conventional FWI and (d) facies-based FWI.

Figure 8. Vertical profiles at x = 6 km: the actual (blue line), initial (black), and inverted (orange) parameters. The inversion is carried out by (a) conventional FWI and 
(b) facies-based FWI with the initial model from Figure 6. The frequency range is 2–20 Hz.

model, the facies information was obtained from multiple well 
logs sparsely located in space. This information was employed 
in combination with image-guided interpolation to create the 
prior parameter distributions. The generated confidence model 
is updated at each iteration and used as a constraint in the FWI 
workflow. The algorithm was tested with two different frequency 
bands. For relatively accurate initial parameter distributions, 
the lowest frequency was set to 4 Hz, whereas for a more distorted 
initial model the lower bound of the frequency range was reduced 
to 2 Hz. The methodology was also extended to transversely 
isotropic media and applied to a 3D elastic VTI model param-
eterized by five velocities and density. In both tests, the 
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Figure 10. Vertical profiles at location x = y = 1 km: the actual (blue line), initial (black), and inverted (orange) parameters. The inversion is carried out by  
(a) conventional FWI and (b) facies-based FWI. The frequency range is 4–20 Hz.
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facies-based FWI was able to mitigate parameter trade-offs that 
hamper conventional inversion and produce a high-resolution 
model without ultra-low frequencies in the data. 
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