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ABSTRACT

Processing algorithms for transversely isotropic (TI) media
are widely used in depth imaging and typically bring substantial
improvements in reflector focusing and positioning. Here, we
develop acoustic image-domain tomography (IDT) for recon-
structing VTI (TI with a vertical symmetry axis) models from
P-wave reflection data. The modeling operator yields an integral
wave-equation solution, which is based on a separable dispersion
relation and contains only P-waves. The zero-dip NMO velocity
(Vnmo) and anellipticity parameter η are updated by focusing
energy in space-lag images obtained by least-squares reverse-
time migration (LSRTM). Application of LSRTM helps mitigate
aperture- and illumination-induced artifacts in space-lag gathers
and improve the robustness of η-estimation. The impact of the

trade-off between Vnmo and η is reduced by a three-stage inver-
sion algorithm that gradually relaxes the constraints on the spatial
variation of η. Assuming that the depth profile of the Thomsen
parameter δ is known at two or more borehole locations, we
employ image-guided interpolation to constrain the depth scale
of the parameter fields and of the migrated image. Image-guided
smoothing is also applied to the IDT gradients to facilitate con-
vergence towards geologically plausible models. The algorithm is
tested on synthetic reflection and borehole data from the struc-
turally complicated elastic VTI Marmousi-II model. Although
the initial velocity field is purely isotropic and substantially dis-
torted, all three relevant parameters (Vnmo, η, and δ) are estimated
with sufficient accuracy. The algorithm is also applied to a line
from a 3D ocean-bottom-node data set acquired in the Gulf of
Mexico.

INTRODUCTION

Reflection tomography, routinely used in prestack depth imag-
ing, reconstructs the background velocity model by iteratively im-
proving the consistency of migrated images. Whereas tomography
conventionally operates with ray-based imaging algorithms (e.g.,
Kirchhoff migration), reverse time migration (RTM) is better suited
for complex geologic models. Wavefield-based methods often em-
ploy an extended imaging condition to evaluate angle-dependent
illumination (Rickett and Sava, 2002; Sava and Fomel, 2003).
Estimation of residual energy at nonzero lags helps update the
velocity model, which is commonly done using differential sem-
blance optimization (DSO) or image-power operators (Symes and
Carazzone, 1991; Zhang and Shan, 2013).
However, application of image-domain tomography (IDT) remains

limited, primarily because extended images contain residual energy
induced by not only velocity errors but also uneven illumination and

insufficient acquisition aperture (Mulder, 2014; Dafni and Symes,
2016). As a result, velocity updates generated by the DSO operator
are susceptible to illumination-related contamination. This issue is
particularly relevant for η-estimation because energy focusing in the
extended domain is less sensitive to this parameter compared to the
zero-dip normal-moveout velocity Vnmo (Sava and Alkhalifah, 2012;
Li et al., 2016a). Thus, robust η-inversion with IDT requires sup-
pressing illumination and aperture-truncation artifacts in extended
images (Li et al., 2017).
IDTalgorithms can be improved by using a better designed penalty

operator (Yang and Sava, 2015) or a more robust imaging condition
(Lameloise et al., 2015; Chauris and Cocher, 2017; Hou and Symes,
2017). Illumination issues can also be mitigated with least-squares
RTM (LSRTM), as done in migration-based traveltime tomography
(MBTT) (Clément et al., 2001) and reflection waveform inversion
(RWI; Hicks and Pratt, 2001; Pattnaik et al., 2016). In this paper,
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we employ LSRTM supplemented by nonstationary matching filters
for gradient preconditioning (Guitton, 2017).
P-wave kinematics in VTI (TI with a vertical symmetry axis) me-

dia is governed by the Thomsen parameters VP0 (vertical velocity),
ϵ, and δ or by Vnmo, η, and δ (Tsvankin, 2012). Because δ is poorly
constrained by P-wave reflection moveout, robust VTI IDT algo-
rithms require additional information typically provided by bore-
hole data, such as check shots (Wang and Tsvankin, 2013a,
2013b). Li et al. (2016b) augment the DSO and image-power terms
in the objective function with petrophysical constraints. Knowledge
of the covariance between the model parameters mitigates param-
eter trade-offs but the results indicate that realistic errors in the
covariance matrix may lead to insufficient model updates.
As demonstrated by Wang and Tsvankin (2013b), trade-offs be-

tween the parameters of tilted TI media in ray-based reflection tomog-
raphy can be reduced by using a multistage inversion scheme that
gradually relaxes spatial constraints on the anisotropy coefficients.
Pattnaik et al. (2016) employ a similar approach in RWI to resolve
the parameters Vnmo and η. Velocity model-building can also benefit
from image-guided constraints (Hale, 2009a; Guitton et al., 2012; Ma
et al., 2012). In particular, image-guided smoothing of the anisotropy
coefficients (Wang and Tsvankin, 2013b; Li et al., 2016b) helps steer
the inversion for TI media toward geologically plausible solutions.
In summary, existing anisotropic wave-equation-based image-

domain tomographic algorithms do not properly account for illumi-
nation and aperture-truncation artifacts in extended images. Also,
some of them employ tight constraints on the medium parameters
obtained from a priori information. Here, we propose a nested
LSRTM-based optimization algorithm for VTI media that addresses
these issues. As mentioned above, application of LSRTM substan-
tially reduces the magnitude of artifacts in the extended domain.
Also, updates in the parameters Vnmo and η are driven by IDT
(Li et al., 2017), whereas the δ-field is obtained from image-guided
interpolation between boreholes. Similarly to Wang and Tsvankin
(2013b), we gradually relax the image-guided smoothing con-
straints applied to the η-gradient.
We start by reviewing the wavefield-extrapolation algorithm and

application of nonstationary matching filters to LSRTM in TI me-
dia. Then we discuss the IDT objective functions and describe a
three-stage inversion algorithm designed to stabilize η-estimation.
Next, matching filters are applied to extended RTM gathers for a
simple layered VTI model. The results demostrate that these filters
efficiently mitigate illumination-induced artifacts in the extended
domain. Although the developed algorithm is acoustic, we test it
on reflection and borehole data generated for the elastic VTI
Marmousi-II model. Finally, processing of a line from the 3D
ocean-bottom-node (OBN) data set acquired in the Gulf of Mexico
demonstrates the feasibility of updating the η-field using the pre-
sented methodology.

METHODOLOGY

P-wave extrapolation operator in VTI media

Anisotropic wavefield extrapolation often employs the pseudoa-
coustic approximation (Alkhalifah, 1998, 2000), which can include
different three-parameter sets (e.g., VP0, ϵ, and δ or Vnmo, η, and δ).
Integral wave-equation solutions compute the phase shift for pure
P-mode extrapolation (time-stepping) using the dispersion relation
(Fomel et al., 2013b; Du et al., 2014). Following Li et al. (2017), we

use the separable dispersion relation described in Schleicher and
Costa (2016):

ω2 ¼ ð1þ 2ϵÞV2
P0 k

2
x þ V2

P0 k
2
z − 2ðϵ − δÞV2

P0
k2x k2z

k2x þ k2z

×
�
1 − 2ϵ

k2x
k2x þ k2z

þ 2ðϵ − δÞ k2x k2z
ðk2x þ k2zÞ2

�
; (1)

where kx and kz are the horizontal and vertical wavenumbers. Equa-
tion 1 is obtained from the 2D pseudoacoustic version (i.e., the
version in which the S-wave velocity along the symmetry axis is
set to zero) of equation 65 from Schleicher and Costa (2016). The
Padé coefficients q1 and q2 in that equation are set to their theoreti-
cal values (1/2 and 1/4, respectively). The modeling operator for
gradient computation is given in the weak-anellipticity (small η)
approximation by

LINT ¼−
∂2

∂t2
−V2

nmo k2x−
V2
nmo

1þ2δ
k2z −2ηV2

nmo

k4x
k2xþk2z

: (2)

The corresponding adjoint operator has the form (Li et al., 2017)

L†

INT ¼ −
∂2

∂t2
− k2x V2

nmo − k2z
V2
nmo

1þ 2δ
−

2k4x
k2x þ k2z

ηV2
nmo: (3)

A more detailed discussion of this propagator can be found in Li
et al. (2017).

Extended least-squares RTM with matching filters

Information about angle-dependent subsurface illumination con-
tained in extended images can be used for velocity model-building.
The general imaging condition is formulated as (Sava and Vascon-
celos, 2009):

Iðx; λ; τÞ ¼ P
e;t
Wsðx − λ; t − τÞWrðxþ λ; tþ τÞ; (4)

where Iðx; λ; τÞ is the extended image,Ws andWr denote the source
and receiver wavefields, respectively, λ is the space lag, τ is the time
lag, and e indicates summation over experiments (i.e., sources). As-
suming perfect illumination and infinite bandwidth, imaging with
the correct velocity model focuses events at zero lag. Therefore,
energy defocusing in extended gathers provides information for
velocity analysis.
However, algorithms designed to minimize residual energy in the

extended domain must account for additional defocusing caused by
uneven illumination and aperture truncation (Yang and Sava, 2015).
Errors in the anisotropy coefficients often cause weaker defocusing
compared to that due to velocity errors (Li et al., 2016a). Thus, it is
critically important for anisotropic IDT to mitigate illumination-re-
lated artifacts before back-projecting image residuals, which can be
achieved with nonstationary convolution filters. As shown by Guit-
ton (2017), these filters provide a low-rank approximation to the
true inverse Hessian and can be computed as:

C120 Li et al.
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m0 ¼ RTðdr; dsÞ; (5)

m1 ¼ RT Rm0; (6)

km0 − Bm1k2 ≈ 0; (7)

where m0 is the RTM image, RT represents the sequence of wave-
field-extrapolation and extended-imaging operators, dr contains the
recorded data, ds is the source wavelet, m1 is the image obtained
after demigration and migration (i.e., after the RTR sequence), and
B is the estimated nonstationary filter. Application of nonstationary
matching filters involves the following steps:

• compute the “blurred” image by demigrating and migrating the
RTM gathers (equation 6).

• estimate the “bank” of matching filters by solving equation 7
with the conjugate-gradient method.

• apply the filters B to the RTM image m0 to obtain the “pseu-
doinverse” image.

The matching filters computed with this approach substantially
improve RTM extended gathers. Parameter estimation in structur-
ally complex media can also benefit from applying this scheme to
preconditioning of the LSRTM gradient (Guitton, 2017).

Objective function

Image-domain tomography is often based on residual-energy
minimization with the DSO operator (Symes and Carazzone, 1991;
Shen and Symes, 2008). An alternative approach is to maximize
the zero-lag energy using the image-power (IP) criterion (Chavent
and Jacewitz, 1995; Soubaras and Gratacos, 2007; Zhang and Shan,
2013). Robust VTI parameter estimation, however,
is not feasiblewithout additional constraints. Inver-
sion driven by the DSO operator can produce sig-
nificantly overestimated η-values, which “honor”
the DSO criterion of small residuals. Whereas
IP can update high model-wavenumber compo-
nents, the corresponding objective function often
has multiple local minima because the spatial
positioning of such updates is controlled by the
background velocity. The objective function can
combine the DSO and IP criteria to increase the
robustness of parameter estimation (Shan and
Wang, 2013; Shan et al., 2014; Weibull and Arnt-
sen, 2014; Li et al., 2016b):

J ¼ J DSO þ αJ IP; (8)

where α is a model-dependent weighting factor.
The adjoint-state gradients of the terms J DSO and
J IP for the wave-equation operator in equation 2
are derived in Li et al. (2017).

Multistage inversion algorithm

The complete workflow of the developped
IDT algorithm is shown in Figure 1. An impor-
tant part of the workflow is a three-stage model-

updating algorithm designed to address the following issues that
hamper VTI velocity analysis:

• simultaneous estimation of the parameters Vnmo and η is fea-
sible only if the initial field of Vnmo (or VP0) is sufficiently
accurate.

• estimation of the parameter δ requires additional (e.g., bore-
hole) information.

• high model-wavenumber components can be resolved only for
accurate background velocity.

After obtaining LSRTM gathers, we construct the objective
function using both the DSO and image-power terms (equation 8).
It is convenient to invert for the dimensionless parameters
ðVnmo∕V init

nmoÞ2 (V init
nmo is the initial NMO velocity), 1þ 2δ, and

1þ 2η, which are equal to unity for the initial isotropic model.
Whereas updates in Vnmo and η are driven by energy focusing in

extended LSRTM gathers, the parameter δ is updated by image-
guided interpolation between two (or more) boreholes, where the
vertical δ-profile is assumed to be known. The interpolation is per-
formed with the LSRTM image generated at the current iteration.
Similarly to Wang and Tsvankin (2013b), we design a three-stage

inversion algorithm that gradually relaxes the constraints on the spa-
tial variation of η. Because of the dominant influence of Vnmo on
reflection moveout, errors in this parameter can bias η-estimation.
Therefore, we update Vnmo and η sequentially, as proposed by Patt-
naik et al. (2016) for purposes of reflection waveform inversion.
The first inversion stage is designed to update only Vnmo, whereas
the second stage (when the Vnmo-field is more accurate) is limited to
updating η. Finally, at the third stage Vnmo and η are updated simul-
taneously. The weighting factor α in equation 8 is fixed for each
stage and increases during the optimization process to assign a
larger weight to the IP term as the model becomes more accurate.

Figure 1 Workflow of the VTI image-domain tomographic algorithm. The inner loop
performs least-squares reverse time migration (LSRTM) preconditioned with nonstation-
ary matching filters. The extended LSRTM image is used to update the parameters Vnmo
and η. A multistage inversion scheme is employed to reduce the trade-off between these
parameters. The δ-field is obtained from image-guided interpolation between boreholes.

VTI wavefield tomography C121
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To steer the algorithm towards geologically plausible solutions,
image-guided smoothing (Hale, 2009b) is applied to the Vnmo- and
η-gradients (Guitton et al., 2012; Wang and Tsvankin, 2013b; Li
et al., 2016b). Model updating is carried out by incorporating
the gradients in the L-BFGS inversion algorithm (Nocedal and
Wright, 2006).
It is relatively straightforward to extend the proposed VTI IDT al-

gorithm to 3D. The separable dispersion relation (equation 1) remains

valid in 3D if the wavenumber kx is replaced with kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
(Schleicher and Costa, 2016). 3D tomography requires generating

additional image extensions (Sava and Vasconcelos, 2011), which
is computationally expensive. The efficiency of the algorithm, how-
ever, can be increased by operating with common-image-point (CIP)
gathers computed at sparse spatial locations (Yang and Sava, 2015).

HORIZONTALLY LAYERED MODEL

First, we demonstrate on a simple model that nonstationary
matching filters are capable of mitigating illumination-related arti-
facts in extended images. The model includes three horizontal in-
terfaces (formed by perturbations in Vnmo), which are embedded in
a homogeneous VTI background (Figure 2). The wavefield is ex-
cited by 21 sources evenly spaced at the surface. Figure 3 shows
space-lag CIGs computed for a distorted model, in which η is set
to zero (actual η ¼ 0.15) and Vnmo is reduced by 10%. The CIGs
contain three types of residual energy:

• the main energy-focusing point is shifted away from zero lag
because of the error in Vnmo (see the yellow circles in
Figure 3a).

• there is a “linear” energy defocusing caused by the distortion in
η (Li et al., 2016a; Sava and Alkhalifah, 2012) (marked by the
magenta ellipses in Figure 3b).

• there are aperture-truncation artifacts which are most pronounced
near the surface (marked by the dashed lines in Figure 3c).

Defocusing due to aperture truncation is particularly visible in
the “blurred” gathers obtained after applying the demigration

Figure 2. Constant-background VTI model with three horizontal
perturbations in Vnmo at depths of 1, 1.5, and 2 km; η ¼ 0.15,
δ ¼ 0.1. The wavefield is generated by 21 sources evenly spaced
between 0 and 4 km; the maximum offset is 2 km.

Figure 3. Extended images for the model in Figure 2 with η ¼ 0 and Vnmo reduced by 10%. Each column corresponds to a different horizontal
coordinate: (a,d,g) 1 km, (b,e,h) 2 km, and (c,f,i) 3 km. Plots (a-c) show the cross-correlation RTM gathers, (d-f) are the gathers after demi-
gration and migration, and (g-i) are the gathers after applying the matching filters. The influence of Vnmo- and η-errors is indicated by the
yellow circles and magenta ellipses, respectively. The green dashed lines mark the aperture-truncation artifacts.

C122 Li et al.
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and migration operators (Figure 3d–3f). The matching filters sub-
stantially mitigate the aperture-truncation artifacts without dis-
torting the “useful” residuals caused by the errors in Vnmo and η
(Figure 3g–3i).

MARMOUSI MODEL

Next, we test the algorithm on the VTI Marmousi-II model
shown in Figure 4 (Guitton and Alkhalifah, 2016). The data consist
of 100 shot gathers produced with an elastic finite-difference oper-
ator. We use the “streamer” acquisition geometry with the maxi-
mum offset equal to 6 km. To constrain the depth scale of the
model, the parameter δ is assumed to be known at two “borehole”
locations (Figure 4a).
The initial model is isotropic and weakly laterally heterogeneous;

it is obtained by applying strong smoothing to the actual Vnmo-field

(Figure 5). The extended RTM image computed with the initial
model is significantly defocused due to velocity errors, as well
as uneven illumination and aperture truncation (Figure 6). Two iter-
ations of extended LSRTM substantially improve the image (Fig-
ure 7), which is then used in guided interpolation between the
boreholes to obtain the initial δ-field. Imaging with the interpolated
δ-field helps improve the spatial positioning of the migrated reflec-
tors. Then the sequence of LSRTM and guided interpolation is
applied for a second time to refine the spatial distribution of δ (Fig-
ure 8). The parameter δ is used primarily to ensure an accurate depth
scale of migrated images, which could be accomplished with an
interpolated δ-field that has a lower resolution than that in Figure 8.
Estimation of the parameters Vnmo and η is carried out using the

three-stage IDT algorithm described above. The inner loop of the
algorithm includes two iterations of the preconditioned extended
LSRTM. Whereas the parameters Vnmo and η are computed by
back-projecting the image residuals, the δ-field is obtained from im-
age-guided interpolation and kept fixed at each inversion stage.
Because the initial model is highly inaccurate, it is not feasible

to estimate Vnmo and η simultaneously without improving the
Vnmo-field (Wang and Tsvankin, 2013b). In the shallow region, the
overestimated Vnmo produces negative updates in η, thus moving
the parameter search in the wrong direction. Therefore, at the first
inversion stage, we update only Vnmo and set the factor α in the
objective function (equation 8) to 0.5, which assigns a larger weight
to the DSO term. After two model updates, the Vnmo-field is suffi-
ciently improved (Figure 9) to focus energy in the extended gathers
closer to zero lag (Figure 10) and make η-estimation possible.
The second inversion stage is designed to update only η using the

elliptic (η ¼ 0) velocity model obtained after stage 1. The factor α in
equation 8 is set to unity to assign equal weights to both objective-
function terms, which helps stabilize the η-updates. To increase the
robustness of the η-estimation, strong image-guided smoothing is
applied to the η-gradient.
After two iterations, the algorithm does not refine η anymore.

The higher accuracy of the updated η-field (Figure 11) improves
event focusing in the extended gathers (Figure 12). Image-guided

Figure 4. Parameters of the elastic VTI Marmousi-II model:
(a) Vnmo, (b) η, and (c) δ. The vertical black lines on plot (a) mark
the “borehole” locations where δ-profiles are available. 100 sources
(one of them is marked by a red dot) are evenly spaced at the surface
between 0 and 12 km. For each source location, the data are re-
corded by a “streamer” array (one of them is marked by the yellow
line) with a maximum offset of 6 km.

Figure 5. Initial isotropic velocity model obtained by smoothing
the actual Vnmo-field.

Figure 6. RTM output for the model from Figure 4 computed with
the initial isotropic velocity field. (a) The conventional image and
(b-d) the space-lag gathers at (b) 3 km, (c) 5 km, and (d) 9 km.

VTI wavefield tomography C123
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smoothing is instrumental in resolving the strongly anisotropic
layer to the left of the faulted area at a depth of 2 km. However,
η remains largely unconstrained below 3 km, which is due to rel-
atively small offset-to-depth ratios and increasing errors in the
NMO velocity with depth.

With the more accurate Vnmo- and η-fields, at the third inversion
stage we update the two parameters simultaneously and also invert
for higher model-wavenumber components. The factor α is set to
two to emphasize the IP term in the objective function. We also

Figure 7. LSRTM output for the model from Figure 4 computed
with the initial isotropic velocity field. (a) The conventional image
and (b-d) the space-lag gathers at (b) 3 km, (c) 5 km, and (d) 9 km.

Figure 8. Initial δ-fields obtained by guided interpolation between
the boreholes in Figure 4a using (a) the “purely isotropic” LSRTM
image and (b) the refined image.

Figure 9. NMO velocity after stage 1 of the inversion.

Figure 10. LSRTM output for the model from Figure 4 computed
with the updated elliptic (η ¼ 0) model. (a) The conventional image
and (b-d) the space-lag gathers at (b) 3 km, (c) 5 km, and (d) 9 km.

Figure 11. Parameter η after stage 2 of the inversion.

Figure 12. LSRTM output for the model from Figure 4 after
stage 2. (a) The conventional image and (b-d) the space-lag gathers
at (b) 3 km, (c) 5 km, and (d) 9 km.

C124 Li et al.
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relax the smoothing constraints but still apply stronger image-
guided smoothing to the η-gradient compared to that for Vnmo. This
is justified by the fact that reflection data help reconstruct Vnmo with
a higher spatial resolution than η. Two more model updates add
higher-contrast features to the Vnmo-field and slightly increase the
resolution of η (Figure 13). These updates, however, provide only a
marginal improvement in the focusing of the migrated events
(Figure 14).

GULF OF MEXICO DATA SET

Here, we present inversion results for a line from a 3D ocean-
bottom-node (OBN) data set acquired in the Gulf of Mexico (cour-
tesy of Shell). Preprocessing includes data projection onto the line,
debubbling, P-Z summation, and normalization with a smooth data
envelope that increases the amplitudes of the deeper events. The
initial model provided by Shell is elliptic (η ¼ 0) and features a salt
dome embedded in subhorizontal sediment layers (Figure 15). We
smooth the edges of the salt body to increase the robustness of im-
aging and suppress diffractions. To compensate for the relative
sparseness of the OBN data, the mirror imaging technique (Fig-
ure 15a) is employed to increase the illumination.
The matching filters discussed above (Guitton, 2017) are used

to precondition the first two LSRTM iterations. Application of
LSRTM mitigates low-frequency artifacts caused by back-scatter-
ing from the ocean bottom and salt body and increases the ampli-
tudes of the deeper reflections (Figure 16–16d).
The first inversion stage is designed to update the NMO velocity

while keeping η fixed. However, updating Vnmo in this case study
proved to be difficult due to the acquisition geometry of the OBN
data. The sensitivity kernels of Vnmo are strongly influenced by the
vertical wavenumbers, and, therefore, summation of the individual
Vnmo-gradients over shots was hampered by the sparseness of the
OBNs (exacerbated by the 2D limitation of our algorithm). Also,
relatively weak defocusing in extended gathers (Figure 16b–16d)
computed with the initial model indicate that the provided
Vnmo-field may be sufficiently accurate.
In contrast, the sensitivity kernels of η mainly involve horizontal

wavenumbers, so the quality of summation of the η-gradients over
shots is less degraded because of the sparseness of the acquisition
geometry. Hence, we start the inversion with stage 2 designed to
update only η; the weighting factor α in equation 8 is set to unity.

Figure 13. Final inverted parameters for the model from Figure 4:
(a) Vnmo, (b) η, and (c) δ.

Figure 14. Final LSRTM output for the model from Figure 4.
(a) The conventional image and (b-d) the space-lag gathers at
(b) 3 km, (c) 5 km, and (d) 9 km.

Figure 15. Initial elliptic (η ¼ 0) model for the line from the Gulf of
Mexico: (a) VP0 (with mirror geometry used for imaging and
tomography) and (b) δ ¼ ϵ. The yellow line marks the water surface
and the magenta dots represent ocean-bottom nodes mirrored with
respect to the water bottom (black line).
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As discussed above, if the vertical profiles of the parameter δ are
available at borehole locations, the δ-field can be built through im-
age-guided interpolation. Likewise, in this case study image-guided
interpolation using updated migrated sections potentially could help
refine the provided δ-model. However, because most interfaces are

subhorizontal, changes in the parameter η during the inversion
hardly influence the positioning of migrated reflectors. Hence, im-
age-guided interpolation could not be used to update the δ-field, and
we kept this parameter fixed.
Preconditioning of the initial inversion gradient for η (Figure 17a)

includes image-guided smoothing and smooth-envelope normaliza-
tion with the goal of suppressing undesired high model-wavenum-
ber components and enhancing the updates in the deeper part of the
model (Figure 17b). We also set η to zero in the water and salt body.
In addition, the η-gradient is scaled by the δ-field (normalized by the
maximum value of δ) to enforce the similarity between the updated
parameters η and δ. This procedure is justified by the fact that η and
δ are often correlated (Wang, 2002).
The first iteration of IDT produces positive η-updates (the initial

η ¼ 0) reaching the maximum values close to 0.06 at a depth of 4 km
(Figure 18). The inverted η-field provides some image improvements
(compare Figure 16a with Figure 19a) and a 15% reduction in the

Figure 16. LSRTM output for the Gulf of Mexico data using the
initial model from Figure 15. (a) The conventional image and (b-d)
the space-lag gathers at the locations marked by the vertical blue lines
after 16 iterations of LSRTM.

Figure 17. IDT gradient for η (a) before and (b) after precondition-
ing.

Figure 18. Updated η-field after stage 2 of the inversion.

Figure 19. LSRTM output for the Gulf of Mexico data using the
updated η-field. (a) The conventional image and (b-d) the space-
lag gathers at the locations marked by the vertical blue lines after
16 iterations of LSRTM.
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IDT objective function. It is possible that the initial Vnmo-field is
slightly overestimated, which reduces the magnitude of η-updates.
Further improvement in the η-field could be obtained by inverting
for Vnmo and η simultaneously (third stage of IDT), which was
not feasible in this case study because of the sparseness of the ac-
quisition geometry (see above).

CONCLUSIONS

We presented an acoustic image-domain tomographic algorithm
designed to reconstruct P-wave VTI velocity models using wave-
equation imaging. Least-squares reverse time migration (LSRTM)
plays a crucial role in mitigating aperture- and illumination-induced
artifacts in the extended domain. Application of nonstationary
matching filters facilitates the convergence of LSRTM and signifi-
cantly improves the efficiency of the entire IDT algorithm. The
three-stage inversion strategy mitigates the trade-off between the
normal-moveout velocity Vnmo and anellipticity parameter η, and
image-guided smoothing steers the algorithm towards geologically
plausible solutions. The Thomsen parameter δ is reconstructed from
image-guided interpolation between available boreholes. The high
computational cost of the inner-loop LSRTM is partly compensated
by a small number of outer-loop iterations.
The algorithm was applied to the elastic VTI Marmousi-II model

starting from a purely isotropic, substantially distorted velocity
field. The updates in Vnmo, η, and δ obtained after six iterations of
IDT significantly improved the LSRTM image. The inversion re-
sults for a line from the Gulf of Mexico suggest that the initial el-
liptic (η ¼ 0) model can be improved with positive η-updates. The
robustness of field-data applications can be increased by extending
the algorithm to 3D which, however, remains prohibitively expen-
sive. Ongoing work includes a generalization of the method for
tilted TI media.
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