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ABSTRACT

Tilted orthorhombic (TOR) models are typical for dipping
anisotropic layers, such as fractured shales, and can also be due
to nonhydrostatic stress fields. Velocity analysis for TOR media,
however, is complicated by the large number of independent
parameters. Using multicomponent wide-azimuth reflection data,
we develop stacking-velocity tomography to estimate the interval
parameters of TORmedia composed of homogeneous layers sep-
arated by plane dipping interfaces. The normal-moveout (NMO)
ellipses, zero-offset traveltimes, and reflection time slopes of P-
waves and split S-waves (S1 and S2) are used to invert for the
interval TOR parameters including the orientation of the sym-
metry planes. We show that the inversion can be facilitated by
assuming that the reflector coincides with one of the symmetry
planes, which is a common geologic constraint often employed

for tilted transversely isotropic media. This constraint makes the
inversion for a single TOR layer feasible even when the initial
model is purely isotropic. If the dip plane is also aligned with
one of the symmetry planes, we show that the inverse problem
for P-, S1-, and S2-waves can be solved analytically. When only
P-wave data are available, parameter estimation requires com-
bining NMO ellipses from a horizontal and dipping interface. Be-
cause of the increase in the number of independent measurements
for layered TOR media, constraining the reflector orientation is
required only for the subsurface layer. However, the inversion re-
sults generally deteriorate with depth because of error accumula-
tion. Using tests on synthetic data, we demonstrate that additional
information such as knowledge of the vertical velocities (which
may be available from check shots or well logs) and the constraint
on the reflector orientation can significantly improve the accuracy
and stability of interval parameter estimation.

INTRODUCTION

Orthorhombic models are needed to adequately describe typical
naturally fractured reservoirs and formations under nonhydrostatic
stress, in particular near salt domes (Schoenberg and Helbig, 1997;
Zhu et al., 2007; Tsvankin and Grechka, 2011; Jones and Davison,
2014, 2015). These models are often identified from the azimuthal
variation of reflection moveout or from amplitude variation with
offset and azimuth (Tsvankin and Grechka, 2011; Ravve and Koren,
2016).
Orthorhombic media are characterized by three mutually orthogonal

symmetry planes (Figure 1). Tsvankin (1997) presents an extension of
Thomsen (1986) parameters to orthorhombic symmetry using a lim-
ited equivalence between the symmetry planes of orthorhombic media
and any plane of transversely isotropic (TI) models that contains the
symmetry axis. Tsvankin’s (1997) notation provides a convenient de-
scription of phase velocities and reflection seismic signatures both
within and outside the symmetry planes.

Due to the dip of intrinsically anisotropic layers (e.g., shales) and
properties of the stress field, none of the symmetry planes of ortho-
rhombic models may be horizontal (Figure 2a). Because seismic
data are usually acquired in the horizontal plane, such tilted ortho-
rhombic (TOR) models create complicated seismic signatures that
have to be taken into account in processing and inversion. The sym-
metry-plane orientation can be defined by the three Euler angles or,
alternatively, by quaternions (Danek et al., 2013). Reconstruction
of TOR models from seismic data is challenging because of the
large number of independent parameters (Zhang and Zhang, 2012;
Stovas, 2015; Ivanov and Stovas, 2016).
Normal-moveout (NMO) velocity is responsible for the most sta-

ble, conventional-offset portion of the moveout curve (i.e., for off-
sets limited by reflector depth) and can provide reliable information
about subsurface velocity models (Tsvankin and Thomsen, 1994;
Tsvankin, 2012). The azimuthal variation of NMO velocity of pure
(nonconverted) modes in the acquisition plane is described by a
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quadratic form that typically represents an ellipse. The NMO ellipse
is sensitive to the anisotropy coefficients and can be efficiently used
in anisotropic velocity analysis (Tsvankin and Grechka, 2011).
Stacking-velocity tomography (Grechka et al., 2002a, 2002b) uti-

lizes the NMO ellipses, zero-offset traveltimes, and reflection time
slopes of pure modes (P; S1; S2) to perform parameter estimation in
VTI (transversely isotropic with a vertical symmetry axis) and azi-
muthally anisotropic media. This inversion algorithm has been ap-
plied to layered models composed of tilted TI layers (Grechka et al.,
2002a, 2002b; Wang and Tsvankin, 2010) and orthorhombic layers
with a horizontal symmetry plane (Grechka et al., 2005). In particu-
lar, Grechka et al. (2005) demonstrate that the algorithm can
successfully resolve the parameters of a dipping homogeneous
orthorhombic layer with a horizontal symmetry plane when the
reflector has a dip of at least 15°–20° and the dip plane deviates
by more than 10° from the nearest symmetry plane. Constraints
(e.g., those on the vertical velocities of P-, S1-, and S2-waves) are
needed for stable inversion in layered orthorhombic media. The
model obtained by stacking-velocity tomography can be refined us-
ing migration velocity analysis (e.g., Wang and Tsvankin, 2013).
However, the properties of NMO ellipses in tilted orthorhombic
media are more complicated (Ivanov and Stovas, 2016, 2017b),
which hampers their application in velocity analysis.

Here, we extend anisotropic stacking-velocity tomography to lay-
ered TORmodels and discuss the feasibility of parameter estimation
performed under different constraints. After describing the method-
ology, we analyze the inversion for a homogeneous TOR medium
above a dipping interface and show that aligning the reflector with a
symmetry plane makes the inverse problem unique. When only P-
wave data are available, a subset of medium parameters can be es-
timated by adding reflections from a horizontal interface. Next, we
demonstrate that the constraints on the reflector orientation become
generally unnecessary for layered TOR models but help improve
the inversion acuracy. Finally, numerical results illustrate the per-
formance of the algorithm for noise-contaminated data from a stack
of TOR layers separated by dipping interfaces.

THEORY

Parameterization

Here, we briefly review the parameterization and relevant proper-
ties of orthorhombic models. In the reference frame associated with
the symmetry planes, orthorhombic media are defined by nine inde-
pendent stiffness coefficients. Seismic signatures of orthorhombic
models can be more conveniently described by the nine Tsvankin’s

(1997, 2012) parameters: the velocities VP0 and
VS0 and anisotropy coefficients ϵð1Þ; δð1Þ; γð1Þ;
ϵð2Þ; δð2Þ; γð2Þ, and δð3Þ. Assuming that the sym-
metry planes are aligned with the Cartesian coor-
dinate planes, VP0 andVS0 denote the velocities in
the x3-direction of the P-wave and of the split S-
wave polarized in the x1-direction. The super-
scripts denote the axis orthogonal to the plane
in which each anisotropy coefficient is defined.
For instance, the parameters ϵð1Þ; δð1Þ, and γð1Þ are
defined in the [x2; x3]-symmetry plane by analogy
with Thomsen’s VTI parameters.
The velocities and plane-wave polarizations in

all symmetry planes can be obtained from the cor-
responding equations for TI media. For TOR
models, the orientation of the symmetry planes
can be specified by the Euler angles β1; β2, and
β3 (Figure 2b). The so-called singularity direc-
tions in which the phase velocities of the fast
(S1) and slow (S2) shear waves coincide are not
discussed here. (We assume that singularities
are far enough from the zero-offset rays so that
the fast and slow shear waves can be reliably sep-
arated for the range of source-receiver offsets suf-
ficient to estimate NMO velocities. The shear
wavefronts near point singularities are multival-
ued, have complicated shapes and cannot be ac-
curately described by ray theory [Tsvankin and
Grechka, 2011; Ivanov and Stovas, 2017a]).
We consider a stack of TOR layers separated

by plane dipping interfaces (Figure 3) described
by the distance D between the CMP location and
the zero-offset reflection point, the azimuth of
the dip plane (ψ), and the dip (ϕ). Hence, the
model vectorm for a dipping TOR layer includes
15 parameters:

Figure 2. (a) Tilted orthorhombic model with the symmetry-plane orientation defined by
the angles shown on plot (b). The angle β1 is the azimuth of the x1-axis of the orthorhom-
bic model with respect to the global X-axis and β2 and β3 are the azimuth and the tilt of the
x3-axis of the orthorhombic model with respect to the global X- and Z-axes, respectively.

Figure 1. (a) Orthorhombic model caused by parallel vertical fractures embedded in a
finely layered medium (Tsvankin, 1997). (b) Sketch of the phase-velocity surfaces and pa-
rameterization for orthorhombic media (Grechka et al., 1999). The anisotropy coefficients
ϵðiÞ; δðiÞ, and γðiÞ are defined in the corresponding symmetry planes (Tsvankin, 1997).
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m ¼ fVP0; VS0; ϵð1Þ; δð1Þ; γð1Þ; ϵð2Þ; δð2Þ; γð2Þ;

δð3Þ; β1; β2; β3; D;ψ ;ϕg: (1)

NMO ellipse in anisotropic media

As demonstrated by Grechka and Tsvankin (1998), the NMO
velocity of any pure mode in arbitrarily anisotropic, heterogeneous
media can be represented as the following function of azimuth α:

V−2
nmoðαÞ¼W11 cos

2αþ2W12 sinαcosαþW22 sin
2α; (2)

where W is a 2 × 2 symmetric matrix controlled by the slowness
surface near the slowness direction of the zero-offset ray.
Typically, the matrix W has positive eigenvalues and VnmoðαÞ is

described by an ellipse. There are exceptions (not addressed here) for
uncommon geologic structures in which the CMP traveltime either
does not increase with offset or cannot be described by a hyperbolic
equation even for small offset-to-depth ratios (Tsvankin, 2012).
For a single homogeneous layer, the matrix W can be found as

(Grechka et al., 1999):

W ¼ fðp1; p2; qÞ ¼
p1q;1 þ p2q;2 − q
q;11q;22 − q2;12

�
q;22 −q;12
−q;12 q:11

�
;

(3)

where ðp1; p2; q ¼ p3Þ are the components of the slowness vector p
of the zero-offset ray, q;i ≡ ∂q∕∂pi, and q;ij ≡ ∂2q∕ð∂pi∂pjÞ; q;i
and q;ij are defined for the slowness direciton of the zero-offset
ray. The slowness components satisfy the Christoffel equation
Γðp1; p2; qÞ ¼ 0, where Γ is a six-order polynomial in q. The deriv-
atives q;i and q;ij can be obtained using implicit differentiation as
(Grechka et al., 1999):

q;i ¼ −
Γpi

Γq
(4)

and

q;ij ¼ −
Γpipj

þ Γpiqq;j þ Γpjqq;i þ Γqqq;iq;j
Γq

; (5)

where Γpi
≡ ∂Γ∕∂pi, Γq ≡ ∂Γ∕∂q, Γpipj

≡ ∂2Γ∕ð∂pi∂pjÞ,
Γpiq ≡ ∂2Γ∕ð∂pi∂qÞ, and Γqq ≡ ∂2Γ∕∂q2.
The effective matrix W for layered models can be computed by

applying Dix-type averaging of the intervalW-matrices, as discussed
by Grechka and Tsvankin (2002a) and Tsvankin and Grechka (2011).
It is possible to compute the NMO ellipse of any reflection event by
tracing just the zero-offset ray and calculating the corresponding
slowness vector along with the derivatives of the vertical slowness
with respect to the horizontal slowness components.

Stacking-velocity tomography

Stacking-velocity tomography is a two-stage iterative inversion
scheme for estimating the interval medium parameters and recon-
structing the model interfaces (reflectors). Introduced for anisotropic
media by Grechka et al. (2002a, 2002b), it operates with normal-
moveout velocity (which is usually close to the stacking velocity)

estimated on conventional CMP spreads. This algorithm can be ap-
plied to multicomponent wide-azimuth reflection data to obtain a
more complete set of medium parameters compared to P-wave inver-
sion (Grechka et al., 2002b, 2005; Tsvankin and Grechka, 2011).
The input data for 3D stacking-velocity tomography include the

one-way zero-offset reflection traveltimes τ0, the horizontal slow-
nesses p1 and p2 which can be estimated from reflection time slopes
(Grechka et al., 2002a, 2002b; Tsvankin and Grechka, 2011), and the
effective NMO ellipses. Thus, each mode (P; S1, S2) contributes six
measurements to the data vector which includes 18 elements per layer:

dðQ;YÞ ¼ fτ0ðYÞ; p1;QðYÞ; p2;QðYÞ;W11;QðYÞ;
W12;QðYÞ;W22;QðYÞg; (6)

whereQ denotes the mode, andY is the CMP location. In practice, the
traveltimes τ0 and NMO ellipses (matrices W) are usually obtained
from 3D semblance analysis, while the horizontal slownesses p1 and
p2 are found from reflection slopes on the zero-offset (or stacked)
time section (Grechka et al., 2002a, 2002b).
Although the input data are supposed to include all three pure-

mode reflections (P; S1; S2), it may not be necessary to generate
shear waves. Grechka and Tsvankin (2002b) show that the traveltime
of any primary SS (S1S1 or S2S2) reflection from a certain interface
can be obtained using the traveltimes of the corresponding PP and PS
reflections (the so-called PPþ PS ¼ SSmethod). Grechka and Dew-
angan (2003) further demonstrate that the kinematically accurate SS
primary reflections can be generated by using a specific convolution

Figure 3. Multiazimuth CMP gather and zero-offset rays propagat-
ing in a stack of TOR layers separated by plane dipping interfaces
(after Grechka et al., 2002a).
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of the windowed PP and PS seismograms. The PPþ PS ¼ SS

method does not require precise velocity information and can be
applied before anisotropic velocity model-building.
Stacking-velocity tomography includes the following steps:

1) Estimate the data vector d (equation 6) for available reflection
events.

2) Build (at the first iteration) or update the trial model m.
3) Compute zero-offset rays for all available events and reconstruct

reflectors for the trial model.
4) Compute the effective NMO ellipses (matrices W).
5) Evaluate the objective function (see below).
6) Obtain the inversion gradients and update the model (back to

the second step).

The inversion starts by defining a trial set of the interval param-
eters and computing the vertical slowness of the zero-offset ray in
the subsurface layer for each pure mode using the horizontal slow-
nesses obtained from the reflection time slopes. The full slowness
vector and zero-offset traveltime are used to trace each downgoing
zero-offset ray, find the zero-offset reflection point and the corre-
sponding reflector normal, and reconstruct the reflecting interface
(Figure 3). Once a complete trial model has been built, one can
compute the NMO ellipses for all available events and update
the parameters by minimizing the difference between the computed
and observed NMO ellipses (Grechka et al., 2002a). It should be
emphasized that the effective matrix W can be obtained by tracing
a single (zero-offset) ray, which makes this scheme computationally
efficient. The objective function for multicomponent tomography
also includes the differences between the reflector depths obtained
from different modes:

F ðmÞ ¼
X

i;j¼1;2

����1 −Wcal
ij ðmÞ
Wobs

ij

����þ α

����1 − zQðmÞ
zQ 0 ðmÞ

����; (7)

where WcalðmÞ describes the NMO ellipses of the pure modes (P,
S1, S2) calculated for the trial model m, Wobs corresponds to the
NMO ellipses estimated from the reflection data, and zQðmÞ and
zQ 0 ðmÞ are the reflector depths at the CMP location computed
for modes Q and Q 0 [the ratios zQ∕zQ 0 are computed for each pair
of the modes - ðP; S1Þ, ðP; S2Þ, and ðS1; S2Þ].
Numerical tests show that values of the weighting factor α be-

tween 0.5 and 1.0 generally yield satifactory results for TOR media;
α is set to 0.5 in all examples below. We use the Gauss-Newton
method to solve this nonlinear inverse problem, with the model
parameters updated by iterative minimization of the objective func-
tion (equation 7). Although our methodology can account for reflec-
tor curvature in the computation of effective NMO ellipses (see
Blias, 2009; Tsvankin and Grechka, 2011), the scope of this paper
is limited to layered TOR models with planar interfaces.

PARAMETER ESTIMATION FOR A SINGLE TOR
LAYER

We begin with the model of a single homogeneous TOR layer
above a dipping reflector. As shown below, not all elements of
the data vector for this model are independent, but the inversion
becomes feasible using certain constraints on the orientation of
the symmetry planes. Analytic results are confirmed by numerical
tests for noise-contaminated data.

As mentioned above, the model vectorm for a dipping TOR layer
includes 15 parameters (equation 1). If all components of d were
independent, the inversion for the TOR parameters and interfaces
would be overdetermined. However, as discussed below, the num-
ber of independent components of the data vector depends on the
specific type of TOR media.
According to Snell’s law, the slowness vector of the zero-offset ray

of any pure mode should be perpendicular to the reflector. Therefore,
although each mode Q may have a different group-velocity direction,
the slowness (or phase-velocity) vectors fp1;Q; p2;Q; q1;Qg of the
zero-offset rays in a single layer are parallel to each other. As a result,
the ratio p1∕p2 is the same for all three modes and determines the
azimuth (ψ) of the dip plane of the reflector (i.e., the vertical plane
that contains the reflector normal). This means there are only four
independent elements in the six-dimensional (p1;Q; p2;Q) vector of
the horizontal slownesses for the P-, S1-, and S2-waves. For instance,
given the ratio r ¼ p2;P∕p1;P for the P-wave and the component p1;S1
for the S1-wave, the component p2;S1 can be found as p1;S1r.
Also, the zero-offset traveltimes of the three modes (τ0;Q) con-

strain only one combination of the model parameters. Grechka et al.
(2005) show that for a planar reflector with the normal n defined in
the Cartesian coordinate system by n · x ¼ D, the ratio τ0;Q∕p1;Q is
equal to D∕ sinϕ for all modes. Therefore, the zero-offset times of
the three modes provide only one independent measurement. As a
result, the data vector for a single TOR layer contains 14 indepen-
dent elements:

d¼fτ0;P;p1;P;p1;S1 ;p1;S2 ;p2;P;W11;Q;W12;Q;W22;Qg: (8)

Because the number of medium parameters exceeds the number
of measurements, it is necessary to impose constraints to overcome
the ambiguity of the inverse problem.

1. Reflector co-oriented with a symmetry plane

In many cases of practical importance, one of the symmetry planes
of TOR media is co-oriented with the reflector beneath it. This con-
straint is often used for dipping shale layers described by a tilted TI
medium with the symmetry axis orthogonal to the reflector (Charles
et al., 2008; Wang and Tsvankin, 2013). If the shale contains parallel
fractures orthogonal to the layer boundaries, such model becomes
titled orthorhombic with a symmetry plane that coincides with the
reflector.
For this model, the local axis x3 of the TOR medium is orthogonal

to the reflector, which means that β2 ¼ ψ and β3 ¼ ϕ. Our numerical
testing also shows that in this case the parameter δð3Þ has no influence
on the NMO ellipses and, therefore, is not relevant in NMO-velocity
inversion. In principle, it may be possible to estimate δð3Þ from the
P-wave nonhyperbolic moveout (Tsvankin and Grechka, 2011). Then
the model vector contains just 12 independent elements:

m ¼ ðVP0; VS0; ϵð1Þ; δð1Þ; γð1Þ; ϵð2Þ; δð2Þ; γð2Þ; D; β1;ψ ;ϕÞ:
(9)

Next, we discuss two cases corresponding to different mutual ori-
entations of the dip plane of the reflector and the symmetry planes
of the medium.
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1.1 Dip plane co-oriented with a
symmetry plane

If one of the symmetry planes of the TOR
medium coincides with the dip plane of the re-
flector beneath it, the dip plane becomes a plane
of symmetry for the entire model and the NMO
ellipses of all three modes have the same orien-
tation (Figure 4a). This orientation (azimuth ψ)
can be found using the horizontal slownesses p1

and p2 of any mode (tanψ ¼ p2∕p1). If the co-
ordinate axes are aligned with the dip and strike
directions, the matrix element W12 ¼ 0. The el-
ementsW11 andW22 can be obtained by analogy
with TI media because the reflections recorded
on the dip and strike lines propagate in the
[x1, x3] and [x2, x3] symmetry planes.
For the strike-line reflection, the model is

equivalent to a VTI medium above a horizontal
reflector (Grechka and Tsvankin, 1998). Assum-
ing that the fast S-wave propagating in the x3-di-
rection of the orthorhombic model is polarized
along the x2-axis (which implies that γð1Þ > γð2Þ),
the velocities of the fast (VS1) and slow (VS2)
shear waves in the x3-direction can be written as:

VS1 ¼VS0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2γð1Þ

1þ2γð2Þ

s
; VS2 ¼VS0: (10)

Then the NMO velocities are given by:

Vð1Þ
nmo;P ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δð1Þ

p
; (11)

Vð1Þ
nmo;S1 ¼ VS1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2σð1Þ

p
; (12)

Vð1Þ
nmo;S2 ¼ VS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γð1Þ

q
¼ VS1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γð2Þ

q
; (13)

where

σð1Þ ≡ ðVP0∕VS1Þ2 ðϵð1Þ − δð1ÞÞ: (14)

For the reflection on the dip line, the model is equivalent to a TI
medium with the symmetry axis parallel to the reflector normal
(Tsvankin, 2012). Then, the dip-line NMO velocities take the form:

Vð2Þ
nmo;P ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δð2Þ

p
∕ cos ϕ; (15)

Vð2Þ
nmo;S1 ¼ VS1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γð2Þ

q
∕ cosϕ ¼ Vð1Þ

nmo;S2∕ cos ϕ; (16)

Vð2Þ
nmo;S2 ¼ VS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2σð2Þ

p
∕ cos ϕ; (17)

Figure 6. Zero-offset rays in a model composed of three TOR layers
separated by plane dipping interfaces. Each reflector coincides with a
symmetry plane of the medium above it. Therefore, the zero-offset
rays for all modes in the layer above the reflector are parallel to the
reflector normal. As a result, the zero-offset rays of the P-, S1- and
S2-waves reflected from the bottom of the near-surface layer are par-
allel to one another. Due to the transmission through the intermediate
interfaces, the zero-offset rays of different modes from the two deeper
reflectors deviate from one another at the surface.

Figure 4. Models with the reflector that coincides with the ½x1; x2� symmetry plane
of the orthorhombic medium above it. (a) The dip plane coincides with the ½x1; x3�
symmetry plane (b). The dip plane has arbitrary orientation.

Figure 5. Inversion of noise-contaminated data for a single TOR layer. The reflector
coincides with the [x1; x2] symmetry plane of the medium. The inversion is repeated
100 times with different realizations of noise (see the main text). The error bars here
(and in Figures 7–10) mark the standard deviations of the inverted parameters.
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where

σð2Þ ≡ ðVP0∕VS2Þ2 ðϵð2Þ − δð2ÞÞ: (18)

Because of the symmetry of this model, the zero-offset rays and
the corresponding phase and group velocities are parallel to the x3-
direction of the TOR medium. Hence, the horizontal slowness
phor;Q (horizontal projection of the slowness vector) of each mode
can be expressed as:

phor;Q ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1;Q þ p2

2;Q

q
¼ sin ϕ

VQ0

; (19)

where VQ0 represents the phase and group velocity in the
x3-direction of the corresponding mode (VQ0 ¼ VP0; VS1; VS2).
According to equation 16, the combination of the NMO velocities

Vð2Þ
nmo;S1 and Vð1Þ

nmo;S2 yields the reflector dip ϕ. Next, the x3-direction
velocities VP0, VS1, and VS2 can be calculated from the estimated dip
and the corresponding horizontal slownesses (equation 19). Finally,
the anisotropy coefficients δð1Þ, γð1Þ, ϵð1Þ, δð2Þ, γð2Þ, and ϵð2Þ are

obtained from equations 10–18.
In addition, because VQ0 represents the group

velocity of the zero-offset ray, the distance D be-
tween the CMP and the zero-offset reflection point
can be found using the one-way zero-offset time
τ0;Q as:

D ¼ VQ0 τ0;Q ðQ ¼ P; S1; S2Þ: (20)

Therefore, equations 10–20 make it possible
to obtain all layer parameters analytically, mak-
ing numerical inversion unnecessary.
If only P-wave data are available, equations 10,

15, and 19 are insufficient for resolving the
parameters VP0; δð1Þ; δð2Þ, and ϕ. However, the in-
version becomes possible by combining the NMO
ellipses from a horizontal and dipping reflector. In
particular, the combination of fault-plane reflec-
tions and subhorizontal events is often used in
anisotropic velocity analysis (Alkhalifah and
Tsvankin, 1995; Stunff et al., 2001; Tsvankin and
Grechka, 2011). Also, reflections from two differ-
ent dips can be generated by bending shale layers,
which are common in fold-and-thrust belts (Tsvan-
kin and Grechka, 2011). Wide-azimuth P-wave
reflections from a horizontal interface beneath
an orthorhombic medium provide the zero-dip
NMO velocities Vð1Þ

nmo;P and Vð2Þ
nmo;P. Then, the re-

flector dip can be estimated from the dip-line NMO
velocity of the dipping event (equation 15), which
makes it possible to find VP0 from equation 19.
Finally, the coefficients δð1Þ and δð2Þ are obtained
from the velocities Vð1Þ

nmo;P and Vð2Þ
nmo;P.

1.2 Arbitrary dip-plane orientation

If the dip plane of the reflector does not
coincide with any of the symmetry planes (Fig-
ure 4b), the NMO ellipses of different modes
do not have the same orientation. Also, none of
the ellipses is generally co-oriented with the dip
plane, so the matrix elements Wij for each mode
are independent and, in general, do not vanish
(equations 8 and 9). Then, the number of indepen-
dent measurements (14) exceeds the number of
model parameters (12), making the inversion po-
tentially possible.
Still, the feasibility of this nonlinear multipara-

meter inverse problem needs to be examined on

Figure 7. Inversion of noise-contaminated data for a three-layer TOR model. All inter-
faces coincide with the [x1; x2] symmetry plane of the medium above it. Input data are
contaminated with Gaussian noise that has a standard deviation of 1% for the zero-offset
traveltimes and horizontal slownesses and 2% for the matrix elements Wij responsible
for the NMO ellipses.
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noise-contaminated data. We contaminate input data with Gaussian
noise that has a standard deviation of 1% for the zero-offset trav-
eltimes and horizontal slownesses and 2% for the matrix elements
Wij responsible for the NMO ellipses. The inversion is repeated 100
times for different realizations of the noise. The inversion results
(Figure 5) show that the algorithm converges towards the true model
and remains stable even when the initial model is isotropic with the
P- and S-wave velocities that deviate by about 20% from the actual
values. The standard deviations of the inverted parameters are listed
below (Table 1). The algorithm accurately esti-
mates the velocities VP0, VS0, and orientation an-
gles, and provides reasonably tight constraints on
the relevant anisotropy coefficients.
When the dip plane of the reflector deviates

from the symmetry planes of the TOR medium,
the P-wave NMO ellipse is influenced by two
additional anisotropy parameters, ϵð1Þ and ϵð2Þ, and
the symmetry-plane azimuth β1 (Figure 2b).
Therefore, the combination of P-wave reflections
from a horizontal and dipping interface is no
longer sufficient for parameter estimation without
additional constraints.

2. Arbitrary reflector orientation

If neither the reflector itself nor its dip plane
coincide with a symmetry plane of the layer, the
modelvector consistsof15parameters (equation1).
Because the data in this model provide only 14

independent measurements (equation 8), the in-
verse problem is underdetermined and does not
have a unique solution.

PARAMETER ESTIMATION FOR
LAYERED MEDIA

The above analysis for a homogeneous TOR
medium provides important insights into the
potential for reconstructing layered orthorhombic
models from reflection data. Here, stacking-veloc-
ity tomography is tested on a three-layer TOR
medium in Figure 6.
It is important to note that the relationships be-

tween the data-vector elements described above
for a single layer hold only for the subsurface
layer. The slowness directions of different modes
are governed by the interval parameters and
Snell’s law at the medium interfaces. Hence,
the slowness vectors of the zero-offset rays of
the P-, S1-, and S2-waves reflected from the sec-
ond and third interfaces (Figure 6) are no longer

parallel at the observation surface, so the ratios p1∕p2 are different.
Likewise, the zero-offset times of the deeper events (P; S1; S2) pro-
vide independent information for the inversion. This means that the
data vector for the reflections from the second or deeper interfaces
includes 18 independent measurements (equation 6).

1. Reflector co-oriented with a symmetry plane

First, we assume that each reflector coincides with a symmetry
plane of the medium above it. The tomographic algorithm performs

Figure 8. Inversion of noise-contaminated data with vertical-velocity constraints (equa-
tion 21). All interfaces coincide with the [x1; x2] symmetry plane of the medium above
it. Input data are contaminated with Gaussian noise that has a standard deviation of 1%
for the zero-offset traveltimes and horizontal slownesses and 2% for the elements Wij.

Table 1. Standard deviations of the inverted parameters for the model in Figure 5.

Parameter VP0 (km∕s) VS0 (km∕s) β3ðψÞ β2ðϕÞ β1 ϵð2Þ δð2Þ γð2Þ ϵð1Þ δð1Þ γð1Þ

Actual value 1.00 0.50 20° 30° 10° 0.15 0.05 −0.25 0.22 0.15 −0.10
Standard deviation 0.03 0.02 0.83° 2.19° 1.85° 0.04 0.03 0.01 0.04 0.03 0.02
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the inversion in a layer-stripping fashion followed by “global” op-
timization that involves the entire set of interval parameters. During
layer stripping, the parameters of the shallowest layer are estimated
first and used to invert for the parameters of the second layer, and
the procedure continues downward. Then the results are refined by
simultaneously inverting for all interval TOR parameters.
Our numerical results show that if the input data are noise-free,

stacking-velocity tomography can accurately recover all interval
medium parameters (except for δð3Þ) and reconstruct the interfaces.
However, the results are hampered by error accumulation with
depth. Relatively small errors in the shallow layers may get signifi-
cantly amplified in the deeper part of the model (Figure 7). To make
the inversion more stable, we impose constraints on the interval

vertical velocities in each layer by adding another term to the ob-
jective function:

F 0ðmÞ ¼ F ðmÞ þ α 0
����1 − Vcal

Q;vertðmÞ
Vobs
Q;vert

����; (21)

where F ðmÞ is from equation 7, Vcal
Q;vertðmÞ are the vertical group

velocities for the trial model m, and Vobs
Q;vert are the actual velocities

(Q corresponds to waves P, S1, and S2). It should be mentioned that
the vertical group velocities differ from VP0, VS0, and VS1 when the
orthorhombic model does not have a horizontal symmetry plane.
The velocities Vcal

Q;vert are calculated for the trial model, whereas
Vobs
Q;vert are assumed to be available from borehole

data (Wang and Tsvankin, 2013). The weighting
factor α 0 is set to 0.5 for all numerical
tests below.
Parameter estimation is performed 100 times

with different realizations of the noise. The initial
models for all three TOR layers are purely iso-
tropic. We put constraints on the interval vertical
group velocities (VP;vert; VS1;vert, and VS2;vert) in
all layers according to equation 21. The observed
velocities are computed as random values that
deviate by less than 1% from the actual veloc-
ities. Although the inversion errors slightly in-
crease with depth, the algorithm remains stable
and gives sufficiently accurate estimates of the
interval parameters (Figure 8).
In the next test, we increase the magnitude of

the noise, which now has a standard deviation of
2% for the zero-offset traveltimes and horizontal
slownesses and 5% for the matrix elements Wij

(Figure 9). Despite the larger uncertainty in the
input data, the inverted velocities and orientation
angles are estimated with sufficient accuracy, while
the errors in the anisotropy coefficients somewhat
increase. Still, the inversion provides useful infor-
mation about the interval parameters of the layered
TOR medium.

2. Arbitrary reflector orientation

If the reflector is not co-oriented with any of
the symmetry planes of the TOR medium above
it, the vector of the interval parameters includes
15 elements (equation 21). As discussed earlier,
the data vector provides 18 independent mea-
surements for the second or deeper layers, mak-
ing the inversion for TOR models with arbitrarily
oriented reflectors potentially feasible.
However, error accumulation with depth and

the trade-offs among parameters may cause sub-
stantial distortions in the inversion results. There-
fore, a priori constraints are essential in making
the inversion sufficiently stable. In particular, our
numerical testing shows that the vertical-velocity
constraints introduced above (equation 21) help
resolve the interval parameters (Figure 10). The
results, however, are less accurate compared to

Figure 9. Same as Figure 8 but the input data are contaminated with Gaussian noise that
has a standard deviation of 2% for the zero-offset traveltimes and horizontal slownesses
and 5% for the elements Wij.
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those for models in which each reflector is aligned with a symmetry
plane of the medium above it. This is likely due to the additional
ambiguity caused by the need to estimate the two extra angles that
define the reflector normal.

CONCLUSIONS

Parameter estimation for tilted orthorhombic (TOR) media may
play an important role in characterizing naturally fractured reservoirs
and building accurate velocity models for subsalt exploration. We
demonstrate that parameters of layered TOR media can be recon-
structed from 3D wide-azimuth conventional-spread reflection data
under certain constraints. The normal-moveout (NMO) ellipses, zero-
offset traveltimes, and reflection time slopes of P-waves and split
S-waves (S1 and S2) are used to invert for the interval TOR param-
eters along with the layer boundaries. Because the NMO ellipses can

be obtained by tracing only zero-offset rays, this
scheme is computationally efficient. Although the
algorithm operates with pure-mode reflections,
the input S-wave data can be generated by the
PPþ PS ¼ SS method that does not require
shear-wave excitation.
To make the inversion for a single TOR layer

feasible, it is necessary to assume that the reflector
coincides with a symmetry plane of the medium.
If the dip plane of the reflector is aligned with
another symmetry plane and all three modes
(P; S1; S2) are available, the problem can be
solved analytically (the only unconstrained
parameter in this case is δð3Þ, the Thomsen-style
δ-coefficient defined in the reflector plane). When
only P-wave data are recorded, the pertinent
medium parameters and reflector dip ϕ can be
found by combining reflections from a horizontal
and dipping interface. For reflectors with arbitrary
dip-plane orientation, we perform numerical tests
on noise-contaminated P-, S1-, and S2-data. The
results show that the inversion remains stable even
if the initial model is isotropic with significantly
distorted velocities.
For layered TOR media, it may not be neces-

sary to impose constraints on the reflector orien-
tation in the second or deeper layers. However,
our numerical analysis shows that to mitigate er-
ror accumulation with depth, it is highly benefi-
cial to constrain the vertical velocities using well
logs or VSP (vertical seismic profiling) data. On
the whole, the developed inversion scheme can
be efficiently used to build initial TOR models
for anisotropic reflection tomography or full-
waveform inversion.
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