
Full-waveform inversion with borehole constraints for elastic VTI media

Sagar Singh1, Ilya Tsvankin1, and Ehsan Zabihi Naeini2

ABSTRACT

The nonlinearity of full-waveform inversion (FWI) and
parameter trade-offs can prevent convergence toward the ac-
tual model, especially for elastic anisotropic media. The
problems with parameter updating become particularly se-
vere if ultra-low-frequency seismic data are unavailable,
and the initial model is not sufficiently accurate. We intro-
duce a robust way to constrain the inversion workflow using
borehole information obtained from well logs. These con-
straints are included in the form of rock-physics relation-
ships for different geologic facies (e.g., shale, sand, salt,
and limestone). We develop a multiscale FWI algorithm
for transversely isotropic media with a vertical symmetry
axis (VTI media) that incorporates facies information
through a regularization term in the objective function. That
term is updated during the inversion by using the models
obtained at the previous inversion stage. To account for lat-
eral heterogeneity between sparse borehole locations, we
use an image-guided smoothing algorithm. Numerical test-
ing for structurally complex anisotropic media demonstrates
that the facies-based constraints may ensure the convergence
of the objective function towards the global minimum in the
absence of ultra-low-frequency data and for simple (even
1D) initial models. We test the algorithm on clean data
and on surface records contaminated by Gaussian noise.
The algorithm also produces a high-resolution facies model,
which should be instrumental in reservoir characterization.

INTRODUCTION

Full-waveform inversion (FWI) has been successfully applied to
isotropic and anisotropic acoustic media (Tarantola, 1984; Virieux
and Operto, 2009; Biondi and Almomin, 2014; Wang and Tsvankin,

2018). However, extension of FWI to more realistic elastic (espe-
cially anisotropic) models without properly constraining the inver-
sion entails serious complications, such as trade-offs between the
model parameters (Plessix and Cao, 2011; Kamath and Tsvankin,
2016; Wu and Alkhalifah, 2016) and significantly increased com-
putational cost. The advent of computational technology makes appli-
cation of FWI to such models feasible (Warner et al., 2013; Kamath
et al., 2017a; Marjanović et al., 2018), but parameter trade-offs and the
resulting loss of spatial resolution impair the inversion results (Kamath
and Tsvankin, 2016; Pan et al., 2020). In addition, ultra-low frequen-
cies required by FWI to avoid cycle skipping and improve conver-
gence can seldom be recorded in surface seismic surveys.
Hence, elastic FWI often fails if the initial model does not lie in

the “basin of convergence” near the global minimum of the objec-
tive function. Multicomponent data generally improve the resolu-
tion of the model parameters, especially for anisotropic media
(Singh et al., 2018, 2019). However, the signal-to-noise ratio
(S/N) on the horizontal displacement components is often too low
for their inclusion in FWI.
Therefore, it is essential to use the optimal model parameterization

for the problem at hand (Kamath et al., 2017a). Parameter trade-offs
can also be reduced by Newton-based optimization methods that use
the inverse Hessian matrix (Operto et al., 2013; Pan et al., 2016).
Such techniques, however, are computationally expensive and could
be ineffective in multiparameter anisotropic FWI, which is typically
characterized by a highly multimodal objective function.
Among common approaches to stabilize parameter updating are

regularization of the inversion procedure and preconditioning of the
inversion gradient (Tikhonov and Arsenin, 1977; Loris et al., 2010;
Guitton, 2011; Alkhalifah et al., 2018). These techniques speed up
the convergence of model updating, but they require an accurate
initial model, and the regularized objective function has to operate
with smoothed input data.
Recently, it has been proposed to use so-called optimal transport

objective functions to mitigate cycle skipping in FWI (Métivier
et al., 2018; Sun and Alkhalifah, 2019). Such methods increase
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the convexity of the objective function even in the presence of sig-
nificant time shifts between the recorded and modeled data. How-
ever, the optimal-transport approach usually relies on a highly
accurate initial model to resolve the deeper part of the section.
In addition, the significant computational cost of this methodology
makes its application problematic for 3D field data sets. Wave-equa-
tion-based migration velocity analysis is another method that could
be effective in improving the accuracy of the velocity model and,
therefore, suppressing cycle skipping in FWI (Sun and Alkhalifah,
2018; Li et al., 2019a, 2019b).
The accuracy and spatial resolution of FWI can be increased by

incorporating prior information about the subsurface as a constraint
in model updating (Guitton et al., 2012; Asnaashari et al., 2013).
Whereas such prior information can be obtained from well logs,
the sparseness of borehole locations makes it difficult to account
for realistic lateral heterogeneity. Kemper and Gunning (2014)
and Zabihi Naeini and Exley (2017) propose a framework for am-
plitude-variation-with-offset (AVO) analysis which uses rock-phys-
ics relationships for each facies to increase the accuracy of
parameter estimation. A similar methodology for FWI, presented
by Kamath et al. (2017b) and Zhang et al. (2018), has produced
promising results (Zhang et al., 2017; Singh et al., 2018). However,
because Kamath et al. (2017b) incorporate information from a sin-
gle borehole, an incorrect facies can be assigned to certain grid
points for structurally complicated models with pronounced lateral
gradients. The same issue leads to artifacts (e.g., edge distortions) in
the inversion results of Zhang et al. (2017, 2018).
Singh et al. (2018) propose an image-guided interpolation tech-

nique to build a prior confidence model that accounts for lateral
heterogeneity. A Bayesian framework is then used to update that con-
fidence model at each iteration. The results of Singh et al. (2018)
show that facies-based constraints can guide FWI towards the global
minimum, even if the initial model is substantially distorted.
Further improvement in the resolution of elastic FWI can be

achieved by incorporating constraints that include all available fa-
cies. These facies (e.g., shale, sand, limestone, salt, etc.) can be
identified at borehole locations from rock-physics relationships
for the elastic parameters. The spatial distribution of these con-
straints can be built by image-guided interpolation that accounts
for lateral heterogeneity (Zabihi Naeini and Hale, 2015). Although
facies-based constraints are obtained from prior facies information,
they can be updated using the inverted model parameters.
Here, we develop a multiscale FWI algorithm for VTI media that

includes facies information as a regularization term in the objective
function. That term is updated during the inversion by evaluating
the models obtained at the previous inversion stage. The estimates
of the spatial facies distribution typically improve as the inversion
progresses, which results in more accurate model constraints.
We start by discussing the conventional FWI workflow for elastic

VTI media and the main issues that can cause deterioration of the
inversion results. Then we outline an efficient approach to construct-
ing facies-based model constraints from available rock-physics rela-
tionships. The algorithm is applied to the 2D VTI Marmousi model
with two different initial parameter fields that provide a good approxi-
mation for the reflection traveltimes. We carry out the inversion using
geophone (multicomponent) data as well as hydrophone (pressure)
recordings. Comparison with conventional (unconstrained) FWI
demonstrates the benefits of facies-based constraints in suppressing
the inversion nonlinearity and increasing parameter resolution.

WAVEFORM INVERSION FOR VTI MEDIA

Conventional FWI algorithms use the least-squares objective
function EdðmÞ to minimize the misfit between the simulated
and observed seismic data:

EdðmÞ ¼ jjWdðdsim − dobsÞjj2; (1)

where dobs denotes the recorded data, dsim is the data simulated for a
certain trial model, andWd is a data-weighting operator designed to
make the objective function dimensionless.
Multiparameter models generally make the inverse problem more

nonlinear and may increase the number of local minima of the ob-
jective function. In that case, the initial model has to lie in the im-
mediate vicinity (basin of convergence) of the global minimum.
Then the inversion can be implemented via an efficient local gra-
dient-based approach:

miþ1 ¼ mi þ αiPi; (2)

wheremi is the model-parameter vector at the ith iteration, αi is the
step length, and Pi is the direction of the model updating. Below we
supplement the conventional objective function in equation 1 with
facies-based constraints.
To model seismic data for VTI media, we use the elastic wave

equation:

ρ
∂2ui
∂t2

¼ ∂
∂xj

h
cijkl

∂uk
∂xl

i
þ Fi; (3)

where u is the displacement field, ρ is the density, F is the body
force per unit volume, and cijklði; j; k; l ¼ 1; 2; 3Þ are the stiffness
coefficients; summation over repeated indices is implied. The pres-
sure data can be simulated by summation of the diagonal compo-
nents of the stress tensor. The gradient of the objective function with
respect to the model parameters is computed from the adjoint-state
method (Kamath and Tsvankin, 2016):

∂EdðmÞ
∂m

¼ −
h∂dsim
∂m

i
WT

dWdðdobs − dsimÞ; (4)

where the subscript “T” denotes the transpose.
The relationships between the stiffness coefficients and VTI

parameters, as well as the exact expressions for the FWI gradient
can be found in Appendix A. For the numerical examples below,
iterative parameter updating is carried out with a multiscale ap-
proach using the nonlinear conjugate-gradient algorithm (Hager
and Zhang, 2006).

FACIES-BASED CONSTRAINTS AS A
REGULARIZATION TERM

We supplement the conventional data-fitting objective function
EdðmÞ in equation 1 with facies-based constraints as follows:

EðmÞ ¼ EdðmÞ þ βEfðmÞ; (5)

EfðmÞ ¼ jjWmðminv −mfÞjj2: (6)

R554 Singh et al.
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Here, the vector mf represents the facies-based constraints, minv

is the inverted model, β is a scaling factor, and Wm is a diagonal
scaling matrix designed to make the facies-based term dimension-
less and to assign larger weights to data around borehole locations,
where accurate lithologic information is available. The gradient of
the objective function in equation 5 can be found as follows:

∂EðmÞ
∂m

¼−
�
∂dsim

∂m

�
WT

dWd ðdobs−dsimÞþβWT
mWmðminv−mfÞ;

(7)

where the second term on the right-hand side of equation 7 corre-
sponds to the derivative of equation 6 with respect to the model vector.
The prior rock-physics constraints in the term EfðmÞ are sup-

posed to be based on the identified geologic facies, which are typ-
ically determined by an interpreter using indirect measurements
(e.g., well logs). The facies-based term is similar to that in Singh
et al. (2018), where the initial constraints are obtained from image-
guided interpolation (Zabihi Naeini and Hale, 2015). After identi-
fying facies at the available borehole locations, the borehole data are
used to determine the elastic properties for each facies (herein re-
ferred to as “depth trends”).
Interpolation or extrapolation of sparse well-log data may not

properly account for substantial lateral heterogeneity. The realiza-
tions (frealize) of different lithologic facies (such as shale, sand, and
lime) are obtained by using the facies relationships (p) combined
with the model (m) computed by image-guided interpolation:

fxrealize ¼ FðmÞjpx
; (8)

where x is the facies number, which ranges from one to N (N cor-
responds to the total number of identified facies), and F is a func-
tion that generates the elastic model by applying the identified
facies relationships p.
The facies classification is based on the realization that provides

the best match with the grid-point (i; j) value in the interpolated
model:

faciesði; jÞ :¼ min
x¼1;2 : : : N

ffxrealizeði; jÞ −mði; jÞg: (9)

Equation 9 produces an integer between 1 and N that identifies
the facies present at a certain grid point. Then, the best-matched
elastic property (mf) is assigned using the depth trends (DT ) for
that facies:

mfði; jÞ :¼ min
n¼1 : : : k

fminvði; jÞ −DTðnÞjfaciesði;jÞg; (10)

where k is total number of the parameter values in DT that corre-
sponds to a certain facies.
Because the constraints depend on the parameters estimated at

each inversion stage along with the facies identified in the well logs,
the facies-based updates are influenced by the inversion results.
Therefore, we refer to these constraints as “facies-based models.”
Hence, the FWI workflow is constrained by the rock-physics rela-
tionships for each individual facies. In addition to the estimated
parameters (minv), the algorithm produces the final facies-based
models (mf ), which could be efficiently used in reservoir charac-
terization.

SYNTHETIC TEST ON VTI MARMOUSI MODEL

We test the proposed methodology on the modified 2D elastic
VTI Marmousi model (Martin et al., 2006). The elastic wave equa-
tion 3 is solved using a fourth-order finite-difference algorithm on a
staggered grid with convolutional perfectly matched layers (CPML)
boundary conditions on the sides of the model and a free surface on
top. The medium is parameterized by the P- and S-wave vertical
velocities (VP0 and VS0) and the P-wave horizontal and normal-
moveout (NMO) velocities (Vhor;P and Vnmo;P). These four param-
eters control the signatures of the in-plane polarized P- and SV-
waves in VTI media.
The advantages of this parameterization in mitigating the param-

eter trade-offs are discussed by Kamath et al. (2017a). In addition,
all parameters have the same units and, typically, a similar spatial
structure. Therefore, a single migrated section can be used for im-
age-guided interpolation. In addition, the inversion gradients for all
parameters are expected to have comparable magnitudes. The hori-
zontal and NMO velocities can be expressed through the Thomsen
parameters ϵ and δ as (Tsvankin, 2012):

Vhor;P ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

p
;

Vnmo;P ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
: (11)

For our version of the Marmousi model, we define the anisotropy
coefficients through the density as follows: ϵ ¼ 0.25ρ − 0.3 and
δ ¼ 0.125ρ − 0.1 (Duan and Sava, 2016). (Note that in general,
the density and anisotropy coefficients may not be related. The
anisotropy parameters can potentially serve as additional facies
indicators for fine tuning the facies classification and rock-physics
relationships.) The section is overlaid by a 460 m thick water layer
(Figure 1a, 1d, 1g, 1j, and 1m). To illustrate the strength of
anisotropy for this model, Figure 2 shows Thomsen’s anisotropy
coefficients ϵ and δ.
We generate both pressure data that simulate hydrophone record-

ings and multicomponent data that could be acquired on the sea-
floor. The wavefield is excited by 116 shots and recorded by
400 receivers evenly distributed along the line and placed 40
and 460 m, respectively, beneath the surface. The receiver locations
are the same for both hydrophone and geophone data. The source
represents a point explosion; the source signal is a Ricker wavelet
with a central frequency of 10 Hz.
The source wavelet and recorded data are filtered (using the se-

lected frequency range, see below) prior to the inversion. To im-
prove the convergence of the optimization method and avoid
local minima of the objective function, the amplitude decay with
depth due to geometric spreading and multiple reflections in the
overburden needs to be compensated for. We precondition the gra-
dients using the inverse Hessian matrix, which is obtained by the
zero-lag correlation of the magnitude of the forward wavefield with
an approximate receiver Green’s function (Plessix and Mulder,
2004). This procedure eliminates the need for additional data
weighting, so each element ofWd in equation 1 is set to unity (note
that the units of Wd are 1/dim(d)). The algorithm is designed to
estimate all five pertinent medium parameters (VP0, VS0, Vhor;P,
Vnmo;P, and ρ) simultaneously using the inversion gradients listed
in Appendix A. The low frequencies in the 0–2 Hz range, which
can seldom be acquired in the field, are filtered out from the
observed data.

Elastic FWI for VTI media R555
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Inversion with 1D initial model

First, we use a 1D initial model (Figure 1b, 1e, 1h, 1k, and 1n)
obtained at one of the borehole locations (x = 1.2 km). Figure 3
displays vertical profiles that illustrate the deviations of the initial
parameters from the actual values and the inversion results obtained
by conventional FWI and our algorithm.
The output of FWI without facies-based constraints is shown in

Figure 4a, 4d, 4g, 4j, and 4m; the inversion was performed for pres-
sure (hydrophone) data from all shots in four frequency bands (2–3,
2–5, 2–10, and 2–20 Hz). Whereas the estimates of the vertical
velocities (VP0 and VS0) and the P-wave horizontal velocity
(Vhor;P) are sufficiently accurate at least in the upper part of the sec-
tion (z < 1.5 km), the P-wave NMO velocity and density are
strongly distorted even up shallow. The errors in the model param-
eters increase with depth due to the absence of low frequencies,
inaccurate initial model, and parameter trade-offs (Figure 3). For
example, on the left side (x < 3 km) of the section, the reflector
positions are inaccurate, and the shape of the salt intrusion is dis-
torted (2.8 < z < 3.2 km).
To determine whether the addition of facies information can over-

come these problems, we apply our FWI algorithm using the multi-
scale approach with the same frequency bands. The rock-physics
constraints for the inversion workflow are computed from borehole
data at two locations (Figure 5). Here, we assume that the borehole
information is available only down to a certain depth. To obtain the
facies distribution, we use the rock-physics relationships between
VP0 and VS0 and also between VP0 and ρ for the original isotropic
Marmousi model (Table 1). The crossplot of these relationships
(Figure 6) confirms that the correlation between VP0 and ρ for this
model is more reliable because different facies can be easily picked
and then used for constraining the inversion.
After extracting the part of the well-log data corresponding to a

particular facies (Figure 7), we compute the distribution of that fa-
cies between the boreholes. Although the accuracy of facies deter-
mination would increase if more well logs were available, even
sparse prior information improves the convergence of FWI. The

Figure 2. Thomsen’s anisotropy coefficients of the Marmousi
model: (a) ϵ and (b) δ.

Figure 3. Vertical profiles of the VTI parameters at x ¼ 6 km. The
actual parameters are marked by the blue lines, and the correspond-
ing initial parameters (the initial model is 1D) used for FWI are in
black. The red and yellow lines mark the inversion results for the
pressure data obtained by the unconstrained and facies-based FWI,
respectively.

Figure 1. Parameters of the VTI Marmousi
model: (a) the P-wave vertical velocity (VP0),
(d) the S-wave vertical velocity (VS0), (g) the P-
wave horizontal velocity (Vhor;P), (j) the P-wave
normal-moveout velocity (Vnmo;P), and (m) the
density (ρ). The corresponding 1D initial models
of (b) VP0, (e) VS0, (h) Vhor;P, (k) Vnmo;P, and (n) ρ
and 2D smoothed initial models of (c) VP0, (f) VS0,
(i) Vhor;P, (l) Vnmo;P, and (o) ρ.
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initial facies-based constraints are computed by interpolating the
values obtained at the borehole locations along a migrated image
of the inversion gradient (Figure 8a). Our facies-based FWI algo-
rithm is implemented as follows:

1) Compute the elastic properties at the bore-
hole locations for each facies based on
the available rock-physics relationships
(Table 1).

2) Interpolate the obtained borehole data using
a migrated image.

3) Use the [VP0, ρ] crossplot to generate differ-
ent realizations of the density ρ from the
velocity VP0 for such facies as shale, sand,
and lime. The facies relationships in the
[VP0,VS0] domain exhibit more overlap
which makes the classification more difficult.
In practice, one can use a combination of dif-
ferent elastic parameters depending on the
available borehole data.

4) Classify facies for the entire section by find-
ing the best-matched realization at each grid
point of the current model. This classification
is based on the minimum distance between a
value of the inverted parameter (or the
parameter determined from image-guided in-
terpolation for the first inversion stage) at
each grid point and the corresponding reali-
zation value.

5) After the facies region has been classified, go
back to step 1 to assign the best-matching
elastic property at each grid point for the
modeled facies.

6) Repeat the entire process for the next inver-
sion stage.

In the current implementation of the algorithm, we do not apply
facies-based constraints until reaching “intermediate” frequencies
(approximately 10 Hz). Numerical testing shows that the interpo-
lated models generated at step 2 are sufficient to constrain the in-
version for lower frequencies.
As mentioned above, the matrix Wm is designed to assign larger

weights to the data at the borehole locations (equation 6). To be
consistent with the gradient preconditioning applied to the data-fit-
ting term (Ed), we apply a correction for geometric spreading to the

function Ef (Figure 9). This approach is similar to that in Asnaashari
et al. (2013), where the operator WT

mWm is scaled by 1∕z2, where z
is the depth (note that the amplitude decay due to geometric spread-
ing approximately is inversely proportional to z). The data at depths

Figure 5. Interpolated density model obtained using borehole data
at the two locations marked by the vertical lines (x = 1.2 km and
8.4 km).

Table 1. Isotropic rock-physics relationships for each facies in the Marmousi model (adapted from Martin et al., 2006).

Facies relationships

Facies (f) VP (m/s) VS (m/s) ρ (g∕cm3)

Water 1500 0 1.01

Sand VP VS ¼ 0.804VP − 856 ρ ¼ 0.2736V0.261
P

Shale VP VS ¼ 0.770VP − 867 ρ ¼ 0.2806V0.265
P

Marl VP VS ¼ 1.017 � 10−3VP − 0.055 � 10−6V2
P − 1.03 ρ ¼ 0.3170V0.225

P

Salt 4500 2600 2.14

Note: The spatially varying P-wave velocity is denoted by VP (same as VP0 in Figure 1a).

Figure 4. Results of the conventional FWI of the pressure data using the 1D initial
model in Figures 1 and 2: (a) VP0, (d) VS0, (g) Vhor;P, (j) Vnmo;P, and (m) ρ. The cor-
responding results of the facies-based FWI: (b) VP0, (e) VS0, (h) Vhor;P, (k) Vnmo;P, and
(n) ρ. The results of the facies-based FWI using the multicomponent data: (c) VP0,
(f) VS0, (i) Vhor;P, (l) Vnmo;P, and (o) ρ. The frequency range for the inversion is
2–20 Hz. Areas of major improvements achieved by the facies-based FWI are marked
by ellipses.
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for which there is no borehole information are assigned lower
weights.
The facies-based term in equation 3 is scaled by the factor β. At

each iteration, β can be adjusted to improve the convergence toward
the actual model. Such adjustment for field-data applications should
depend on the accuracy of the prior model and data quality.
The facies-based method reconstructs the model parameters with

a higher accuracy (Figure 4b, 4e, 4h, 4k, and 4n) than the conven-
tional FWI (also see Figure 3). We observe further improvement in
the inversion results if multicomponent data (rather than pressure)
are used (Figure 4c, 4f, 4i, 4l, and 4o). In particular, note the in-
creased spatial resolution of the gradient image (Figure 8b).
The density, which is often poorly constrained by surface seismic

data, is accurately estimated only down to 2.4 km. The quality of

density reconstruction decreases between 2.4 and 3.0 km; however,
the inverted density becomes more accurate below 3 km (Figure 3).
The final facies-based constraints (Figure 10) closely match the
actual models, which means that the inversion was properly con-
strained. It is clear that the employed lithologic constraints effi-
ciently guide the inversion toward the global minimum of the
objective function (Figure 11).

FWI with 2D initial model

The 1D initial model used above does not include the high-wave-
number components of the actual model. Although the facies-based
constraints increase the resolution of the medium parameters, an
additional improvement can be achieved with a more accurate initial

model. Next, we obtain the initial model (Fig-
ure 1c, 1f, 1i, 1l, and 1o) by applying Gaus-
sian-based smoothing (with the standard
deviation of the Gaussian kernel set to 20) to
the actual parameter distributions. Presumably,
a similar 2D initial model can be obtained by re-
flection tomography (Xu et al., 2012; Wang and
Tsvankin, 2013) or other postmigration velocity-
analysis methods.
As before, FWI is first carried out for the pres-

sure data from all shots in the same four fre-
quency bands without facies-based constraints.
The higher accuracy of the initial model im-
proves the results of the conventional FWI (Fig-
ure 12a, 12d, 12g, 12i, and 12m). Nonetheless,
most reflectors are still mispositioned, and the
spatial resolution in the deeper part of the section
is low. In particular, the NMO velocity is the least
resolved parameter in the inversion that suffers

the most from the parameter trade-offs. Furthermore, the S-wave
vertical velocity VS0 is not well recovered from the pressure data,
especially inside the salt intrusion. Similar problems can be seen in
the VS0-field obtained using the 1D initial model (Figure 4d).

Figure 6. Facies relationships at the borehole locations. The crossplots of (a) [VP0, VS0]
and (b) [VP0, ρ]. The [VP0, ρ] crossplot is used to assign the facies at each grid point
because the curves for different facies on plot (b) dot not overlap.

Figure 7. Depth trends at x = 1.2 km. The facies relationships are
used to separate the density curve into the depth intervals of differ-
ent facies.

Figure 8. Inversion gradient for the velocity VP0 obtained for the
final model using (a) the conventional FWI and (b) the facies-based
FWI. The improvements achieved by the facies-based FWI are
marked by the ellipses.
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Next, we regularize FWI with the facies-based constraints de-
scribed in the previous section. Our method succeeded in resolving
the model parameters with a much higher accuracy (Figure 12b,
12e, 12h, 12k, and 12n) than the unconstrained FWI. Note that
the inverted velocity VS0 accurately delineates the salt intrusion.
The constraints help reconstruct the P-wave NMO velocity with
a similar resolution and accuracy as the other parameters, even
in the deeper part of the section. The density, poorly estimated
by the unconstrained FWI, is better resolved due to the impact
of the facies-based constraints and higher accuracy of the initial
density model (Figure 13). Including the multicomponent data in
the facies-based FWI (Figure 12c, 12f, 12i, 12l, and 12o) helps con-
strain the medium parameters at intermediate and large depths. Be-
cause of the higher sensitivity of the multicomponent data to S-
waves, the spatial resolution of VS0 is noticeably increased. Most
structural features, especially the salt intrusion, become recogniz-
able in the VS0-field.
Although the inclusion of the multicomponent data increases the

parameter resolution, the facies-based FWI of the pressure data
adequately reconstructs most parameter fields, especially the veloc-
ities Vnmo;P, and Vhor;P and density (but not the salt intrusion in the
VS0 field; Figure 12). Figure 14 confirms that the prior facies in-
formation helps guide the updating algorithm towards the global
minimum of the objective function.

FWI of noisy data

To test the robustness of the algorithm, we contaminate the input
pressure data with noise using a pseudorandom Gaussian function.
The S/N ratio is set to 15, which corresponds to the typical noise
level in marine seismic data (Figure 15).

Despite using the 2D initial model, the unconstrained FWI fails to
adequately recover the model parameters (Figure 16a, 16c, 16e,
16g, and 16i). Whereas the inversion results for noise-free data
are much better (Figure 13), many features of the inverted models
obtained from the clean and noisy data are similar. For example, in
both cases, the P-wave NMO velocity is the least resolved param-
eter, and the S-wave velocity VS0 is not recovered around the salt
intrusion. Figure 17 shows that the influence of noise makes the
pressure data less sensitive to the P-wave horizontal velocity. It
should be noted that the noise causes deterioration of the inversion
results even in the shallow layers.
By adding prior information about the facies, our algorithm mit-

igates the influence of noise and clearly outperforms the conven-
tional FWI (Figure 16b, 16d, 16f, 16h, and 16j). Still, the deeper
part of the section is not as well resolved as for the noise-free data
(Figure 17). Indeed, reflections from the deeper interfaces have
lower amplitudes and are more strongly distorted by noise. In that
case, applying pseudoHessian preconditioning only leads to ampli-
fying the noise.

Figure 11. Normalized objective function for different frequency
bands. The curve starts with the 20th iteration, which makes the
variations for subsequent iterations more visible.

Figure 9. Diagonal elements of the model-weighting matrix Wm
used for the inversion. (a) The Gaussian function that varies only
in the x-direction between two boreholes with the maximum value
assigned near the borehole locations; (b) the function that compen-
sates for amplitude decay due to geometric spreading, and (c) the
weighting parameter obtained by multiplying the function from plot
(a) with the inverse of the function from plot (b).

Figure 10. (a) Final facies model produced by the facies-based FWI
(water, shale, sand, lime, and salt) and (b) the P-wave vertical veloc-
ity VP0 obtained by assigning the best-matched elastic property for
each facies.
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DISCUSSION

Acquisition of marine seismic data is typically performed with hy-
drophones that record the pressure field. Pressure data, however, are
not sufficiently sensitive to some elastic parameters, such as the S-
wave vertical velocity VS0. Multicomponent data acquired at the sea

floor generally improve the resolution of elastic FWI for anisotropic
media and can make it possible to constrain the velocity VS0. How-
ever, they also generally make the objective function more multimo-
dal, which hinders the convergence toward the global minimum.
The proposed approach that incorporates prior facies information

significantly improves the inversion results even for input hydro-

Figure 14. Normalized objective function for different frequency
bands.

Figure 15. Pressure recording for shot #58 at x = 5 km. The panel to
left of the dashed line contains clean data and to the right are noise-
contaminated data with the signal-to-noise ratio equal to 15.

Figure 12. Results of the conventional FWI of the
pressure data for the 2D initial model in Figure 1:
(a) VP0, (d) VS0, (g) Vhor;P, (j) Vnmo;P, and (m) ρ.
The corresponding results of the facies-based
FWI: (b) VP0, (e) VS0, (h) Vhor;P, (k) Vnmo;P,
and (n) ρ. The results of the facies-based FWI
using multicomponent data: (c) VP0, (f) VS0,
(i) Vhor;P, (l) Vnmo;P, and (o) ρ. The frequency
range for the inversion is 2–20 Hz.

Figure 13. Vertical profiles of the VTI parameters
at x ¼ 6 km. The actual parameters are marked by
the blue lines, and the corresponding initial param-
eters (the initial model is 2D) used for FWI are in
black. The inversion results for the pressure data
are marked by the red and yellow lines for the un-
constrained and facies-based FWI, respectively.
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phone records. Despite often being collected far from the target re-
gion, properly weighted borehole data can be included in the inver-
sion algorithm using image-guided interpolation. Borehole data
(usually well logs) serve as the primary source of geologic infor-
mation about the subsurface.
However, the limited number of available boreholes could be prob-

lematic for the facies-based FWI and lead to distortions away from the
borehole locations. Furthermore, it is difficult to map all subsurface
facies just from sparse well-log measurements. Therefore, the accu-
racy of the facies model tends to decrease away from the boreholes.
Data contamination with noise poses a major challenge to FWI

including our algorithm. Despite the satisfactory results obtained
for a realistic level of noise (S/N = 15), the inversion may become
unreliable, if the S/N decreases to approximately 10. For noisy data,
the scaling factor (β) should be adjusted depending on the accuracy
of the prior model and noise level.

CONCLUSIONS

We proposed a regularization framework designed to incorporate
prior information about the geologic facies into the FWI workflow.
The rock-physics descriptions of different facies are supposed to be
obtained from the available well logs. Because borehole locations
are generally sparse, the spatial distribution of the facies-based con-
straints at each inversion stage is created by finding the best-
matched facies realization for each grid point of the inverted model.
Application to the elastic VTI Marmousi model shows that even if
the initial model is inaccurate (e.g., 1D) and ultra-low-frequency
data are unavailable, these constraints substantially reduce the
nonlinearity of FWI and guide the inversion toward the global mini-
mum of the objective function. Although including multicomponent
data improves the spatial resolution of the inverted parameters, the
facies-based FWI of pressure recordings yields an adequate
reconstruction of most parameter fields.
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APPENDIX A

INVERSION GRADIENTS FOR FULL-WAVEFORM
INVERSION IN VTI MEDIA

Our algorithm operates with the P- and S-wave vertical velocities
(VP0 and VS0), P-wave normal-moveout and horizontal velocities
(Vnmo;P and Vhor;P), and density (ρ). These parameters control P-
and SV-wave propagation in VTI media. The pertinent stiffness co-
efficients are related to these velocities as follows:

C11 ¼ ρV2
hor;P; (A-1)

C13¼ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

P0−V2
S0ÞðV2

NMO;P−V2
S0Þ

q
−V2

S0

�
;

(A-2)

C33 ¼ ρV2
P0; (A-3)

C55 ¼ ρV2
S0: (A-4)

The gradient of the FWI data-difference objec-
tive function (equation 1) for elastic VTI media is
obtained by Kamath and Tsvankin (2016) as

Figure 16. Results of the conventional FWI of the noisy pressure
data (see Figure 15) for the 2D initial model in Figure 1: (a) VP0,
(d) VS0, (g) Vhor;P, (j) Vnmo;P, and (m) ρ. The corresponding results
of the facies-based FWI: (b) VP0, (e) VS0, (h) Vhor;P, (k) Vnmo;P, and
(n) ρ. The frequency range for the inversion is 2–20 Hz.

Figure 17. Vertical profiles of the VTI parameters at x ¼ 6 km. The actual parameters
are marked by the blue lines. The inversion results for the noisy pressure data are marked
by the red and yellow lines for the unconstrained and facies-based FWI, respectively.
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∂Ed

∂mn
¼ −

X
ijkl

∂cijkl
∂mn

�Z
T

0

∂ui
∂xj

∂ψk

∂xl

�
; (A-5)

where T is the total time of wave propagation, u and ψ are the for-
ward- and back-propagated displacement fields, respectively, and
the vector m includes the model parameters (m1 ¼ VP0,
m2 ¼ VS0, m3 ¼ Vnmo;P, m4 ¼ Vhor;P, and m6 ¼ ρ); in
2D, i; j; k; l ¼ 1; 2.
The derivatives of the objective function with respect to velocity

parameters are (Kamath and Tsvankin, 2016)

∂Ed

∂VP0

¼ −2ρVP0

Z
T

0

�
∂ψ z

∂z
∂uz
∂z

þ q
2

�
∂ψx

∂x
∂uz
∂z

þ ∂ψ z

∂z
∂ux
∂x

þ ∂ψy

∂y
∂uz
∂z

��
dt; (A-6)

∂Ed

∂VS0

¼ 2ρVS0

Z
T

0

��
1þ q

2
þ 1

2q

��
∂ψx

∂x
∂uz
∂z

þ ∂ψ z

∂z
∂ux
∂x

�

−
�
∂ψx

∂z
þ ∂ψ z

∂x

��
∂ux
∂z

þ ∂uz
∂x

��
dt; (A-7)

∂Ed

∂Vnmo;P
¼ −ρVNMO;P

q

Z
T

0

�
∂ψx

∂x
∂uz
∂z

þ ∂ψ z

∂z
∂ux
∂x

�
dt; (A-8)

∂Ed

∂Vhor;P
¼ −2ρVhor;P

Z
T

0

�
∂ψx

∂x
∂ux
∂x

�
dt: (A-9)

The gradient for density can be obtained by applying the chain
rule to equation A-5:

∂Ed

∂ρ
¼−

Z
T

0

�
V2
P0

�
∂uz
∂z

∂ψ z

∂z

�
þV2

hor;P

�
∂ux
∂x

∂ψx

∂x

�

þV2
S0

��
∂ψx

∂z
þ ∂ψ z

∂x

��
∂ux
∂z

þ ∂uz
∂x

��

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðV2
NMO;P−V2

S0ÞðV2
P0−V2

S0Þ
q

−V2
S0

�
�
∂ux
∂x

∂ψ z

∂z
þ ∂uz

∂z
∂ψx

∂x

�
þvxψxþvyψyþvzψz

�
dt; (A-10)

where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
nmo;P − V2

S0

V2
P0 − V2

S0

s
: (A-11)

Here, v and Ψ are the forward- and back-propagated velocity fields,
respectively.
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