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ABSTRACT

Accurately modeling full-wavefield solutions at and near the
seafloor is challenging for conventional single-domain elastic
finite-difference (FD) methods. Because they treat the fluid
layer as a solid with zero shear-wave velocity, the energy par-
titioning for body and surface waves at the seafloor is distorted.
This results in incorrect fluid/solid boundary conditions, which
has significant implications for imaging and inversion applica-
tions that use amplitude information for model building. To
address these issues, here we use mimetic FD (MFD) operators
to develop and test a numerical approach for accurately imple-
menting the boundary conditions at a fluid/solid interface. In-
stead of employing a single “global” model domain, we
partition the full grid into two subdomains that represent
the acoustic and elastic (possibly anisotropic) media. A novel

split-node approach based on one-sided MFD operators is in-
troduced to distribute grid points at the fluid/solid interface and
satisfy the wave equation and the boundary conditions.
Numerical examples demonstrate that such MFD operators
achieve stable implementation of the boundary conditions with
the same (fourth) order of spatial accuracy as that inside the
split-domain interiors. We compare the wavefields produced
by the MFD scheme with those from a more computationally
expensive spectral-element method to validate our algorithm.
The modeling results help analyze the events associated with
the fluid/solid (seafloor) interface and provide valuable in-
sights into the horizontal displacement or velocity components
(e.g., recorded in ocean-bottom-node data sets). The developed
MFD approach can be efficiently used in elastic anisotropic
imaging and inversion applications involving ocean-bottom
seismic data.

INTRODUCTION

Modeling the full wavefield at or near a fluid/solid interface (i.e.,
the seafloor) is of significant interest for numerous marine seismic
imaging and inversion applications. Correctly implementing the
boundary conditions near a fluid/solid interface helps accurately
simulate complex wavefield phenomena including energy partition-
ing of body waves, the generation of Scholte (Stoneley) waves (de
Hoop and Van der Hijden, 1984), and leaky Rayleigh modes (Pa-
dilla et al., 1999). Modeling seafloor scattering (Robertsson and Le-
vander, 1995) makes it possible to conduct a more complete
analysis of four-component (4C) ocean-bottom data (i.e., three-
component sensors recording particle velocity and a hydrophone
recording pressure; Farfour and Yoon, 2016). A further benefit
may be in obtaining more accurate estimates of the shear-wave
velocity and anisotropy parameters in marine sediments (Kugler
et al., 2007; Tomar et al., 2016).

The correct boundary conditions at a fluid/solid interface involve
the continuity of traction (dynamic boundary conditions) and of the
vertical velocity or displacement (kinematic boundary condition)
(Sun et al., 2017). However, the kinematic boundary conditions
are not properly implemented in most conventional finite-difference
(FD) algorithms that use an elastic wave-equation solver throughout a
single “global” modeling domain and set the S-wave velocity to zero
in the fluid (Virieux, 1986; Levander, 1988). This approach assumes
the fluid/solid interface to be “welded,” which incorrectly implies the
continuity of the horizontal displacement or particle velocity at the
fluid/solid interface. Such erroneous boundary conditions cause
wavefield distortions in simulated surface waves, especially in their
horizontal components near the seafloor (De Basabe and Sen, 2014).
The global-domain modeling approach also incurs additional over-

heads of computing and storing multicomponent elastic wavefields in
the acoustic layer. Specifically, the number of the partial wavefield
derivatives per grid point required for computation and associated
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storage when using an elastic FD solver is approximately two (in 2D)
or three (in 3D) times that of an acoustic solver. An alternative strat-
egy is to use a partitioned-grid approach (Komatitsch et al., 2000;
Käser and Dumbser, 2008; Sun et al., 2017) where one solves the
acoustic wave equation in the fluid and the elastic wave equation
in the solid on separate grids. The solutions in these two domains
are coupled at each time step via the explicit boundary conditions.
This approach has been developed for flat and curved fluid/solid in-
terfaces using different numerical methods.
For example, Stephen (1983) uses a conventional FD approach for

a flat seafloor to study different types of surface waves. His algorithm
assumes constant elastic parameters near the interface and introduces
an imaginary elastic boundary in the fluid. Hung and Forsyth (1998)
study wave propagation in inhomogeneous anisotropic media using
high-order Chebyshev and Fourier differential pseudospectral oper-
ators. Komatitsch et al. (2000) develop a spectral-element method
(SEM) that handles flat and curved interfaces and achieves a
high-order [i.e., greater than OðΔx4Þ, where OðΔx4Þ denotes
fourth-order spatial accuracy] accurate solution. However, this
numerical scheme is computationally expensive and the procedure
for creating a satisfactory non-flat 3D mesh conforming to the physi-
cal boundaries is complicated (de la Puente et al., 2014). Other ap-
proaches for incorporating a fluid/solid interface include the
discontinuous Galerkin (Kaser and Dumbser, 2008) and finite-vol-
ume (Voinovich et al., 2003) methods. However, the algorithmic
complexity and computational/memory costs of these techniques pre-
vent their application in industry-scale 3D anisotropic elastic wave-
field modeling, imaging, and inversion.
FD methods are often used for modeling seismic wavefields in

a fluid/solid configuration because of their well-developed and
easy-to-implement numerical schemes, compact FD stencils that
port well to GPU architectures, and a moderate computational cost.
However, FD implementations experience difficulties for curved or
irregular interfaces where a Cartesian model discretization gives rise
to unphysical staircase diffractions (Muir et al., 1992). FD methods
have been applied on curvilinear grids conformal to free-surface
topography, which reduces these numerical errors and streamlines
implementation of the boundary conditions (Zhang et al., 2012;
Shragge, 2014; Petersson and Sjögreen, 2015). For example, Sun
et al. (2017) present a curvilinear-coordinate FD approach to handle
a fluid/solid split-domain configuration using collocated-grid
MacCormack-based FD stencils. Also, they use one-sided FD op-
erators to implement the boundary conditions. However, the spatial
accuracy of this scheme reduces to OðΔx2Þ near the interface, as
opposed to OðΔx4Þ within the domain interior. Hence, it is neces-
sary to apply wavefield smoothing near the interface to mitigate
numerical instability. These issues are indicative of the typical chal-
lenges for FD-based methods in achieving uniform numerical ac-
curacy because such instabilities arise at all domain boundaries
and interfaces with strong contrasts in material properties.
Recently introduced mimetic FD (MFD) operators (Castillo and

Miranda, 2013) preserve the underlying physics of the employed
partial differential equations (PDEs) in the discretization process.
De la Puente et al. (2014) present an MFD approach for solving
the elastic wave equation for models with topography using a
fully-staggered-grid (FSG) scheme (Lebedev, 1964; Lisitsa and
Vishnevskiy, 2010). Shragge and Tapley (2017) and Shragge
(2017) use a tensorial formulation of the acoustic and elastic wave
equations discretized with MFD operators to model wavefields on

deformed grids and implement flux-preserving boundary condi-
tions. Qu et al. (2020) present an MFD approach for acoustic/elastic
coupling at the seafloor based on a curvilinear coordinate mesh.
Konuk and Shragge (2020) directly incorporate a time-varying
sea surface into the space-time geometry of the acoustic wave equa-
tion and solve that equation using an MFD/FSG approach.
Here, we develop and test a novel partitioned-grid approach to ex-

tend the MFD solutions to models with a fluid/solid interface. Our
algorithm generates stable wavefield solutions that honor the correct
fluid/solid boundary conditions and have the same order of numerical
accuracy in the acoustic and elastic domains. First, we briefly discuss
the relevant elements of wave-propagation theory in acoustic and
elastic media and describe the boundary conditions for a fluid/solid
interface. Then, we introduce the MFD method and its implementa-
tion for a fluid/solid boundary using a split-node approach. Numeri-
cal examples for 2D models with fluid/fluid and fluid/solid interfaces
illustrate the accuracy of the developed solution. In particular, the
method is shown to be applicable to seafloor models that include
underwater transversely isotropic layers with a vertical symmetry
axis (VTI). Finally, we discuss the advantages and limitations of
the proposed MFD algorithm.

THEORY

The 3D elastic wave equation in a heterogeneous anisotropic
medium can be written as

ρs _vsi ¼ ∂j σij þ bi; (1)

where ρs is the density, vsi is the ith component of the particle veloc-
ity, the dot marks the temporal derivative, σij is the stress tensor, ∂j
denotes differentiation with respect to the spatial coordinates, bi is
the body force per unit volume, and the superscript s indicates a
material property or wavefield variable defined in the solid domain.
We also use the following linear constitutive relationship (general-
ized Hooke’s law) to link the temporal derivatives of the stress (σij)
and strain (ϵkl) tensors,

_σij ¼ Cijkl _ϵkl; (2)

where Cijkl is the stiffness tensor, and

_ϵkl ¼
1

2

�
∂lυsk þ ∂kυsl

�
. (3)

In fluid regions, the wavefield is described by coupled PDEs that
represent the conservation of linear momentum,

ρf _vfi þ ∂ip ¼ bi; (4)

and the conservation of mass,

_pþ ρfðcfÞ2∂ivfi ¼ 0; (5)

where ρf is the fluid density, p is the pressure, vfi is the particle veloc-
ity, and cf is the velocity of acoustic waves; the superscript “f” in-
dicates a material property or wavefield variable defined in the fluid.

Fluid/solid boundary conditions

The boundary conditions coupling the elastic (possibly anisotropic)
and acoustic layers are the continuity of traction and of the normal
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component of the particle velocity. The normal (n̂) to a flat interface
located at z ¼ z0 is oriented vertically (n̂ ¼ ẑ), so the continuity of
traction (i.e., the “dynamic” boundary condition) is given by

ðσzz þ pÞjz¼z0 ¼ 0; (6)

whereas

σzxjz¼z0 ¼ 0; (7)

because an inviscid fluid does not support shear stress. The continuity
of the normal (vertical) component of the particle velocity (i.e., the
kinematic boundary condition) is expressed as

ðvfz − vszÞjz¼z0 ¼ 0: (8)

Figure 1 illustrates the fluid and solid regions coupled at a horizontal
interface z ¼ z0. To satisfy the boundary conditions in equations 6–8,
it is convenient to define the acoustic and elastic material properties on
the same nodes at the interface. This allows for physical collocation of
the interface nodes with the fluid/solid interface, which facilitates

higher-order implementations of the boundary conditions, as dis-
cussed below.

Mimetic finite differences and fully staggered grids

Generating high-order [i.e., OðΔx4Þ or greater] accurate imple-
mentations of the fluid/solid boundary conditions specified in
equations 6–8 remains a challenge for standard FDmethods. As men-
tioned above, existing FD solutions that simultaneously satisfy the
acoustic and elastic (anisotropic) wave equations and the boundary
conditions have numerical accuracy of OðΔx2Þ or lower and tend to
become unstable. In addition, many FD boundary-condition imple-
mentations introduce unphysical ghost points to ensure the continuity
of the wavefield derivatives obtained with two-sided FD operators
(Sun et al., 2017). Also, the wave-equation discretization using stan-
dard Taylor-series-based FD operators does not honor such underly-
ing physical concepts as the flux conservation laws and tensorial
calculus properties that are naturally satisfied by their continuum
counterparts (Castillo and Grone, 2003). These shortcomings lead
to numerical instability and errors in the simulated wavefields.
We address these issues by using MFD operators (Castillo and

Grone, 2003; Rojas, 2007; Corbino and Castillo, 2017). The mimetic
divergence and gradient FD operators (D and G) honor global con-
servation laws (Castillo and Grone, 2003) and can be constructed
with high-order accuracy [i.e., OðΔx4Þ or greater] throughout the
whole computational domain including the boundaries and parti-
tioned interfaces (Castillo and Miranda, 2013; Corbino and Castillo,
2017). These properties make one-sided MFD operators suitable for
implementing the boundary conditions with higher-order accuracy.
To illustrate the difference between 1D MFD operators and their

standard 1D FD counterparts, Figure 2a–2c displays the operators
D, G, and the standard Taylor-series-based FD operators, respec-
tively, which have the same ½OðΔx4Þ� order of accuracy for an
N ¼ 8 point domain. Appendix A presents the FD coefficients
(marked by different colors in Figure 2), as well as the dimensions
of D, G, and the standard Taylor-based operators. Note that the
interior rows of the three operators are the same in all three panels;
therefore, the MFD operators converge toward their Taylor-based
FD counterparts within the domain interior. The only differences

Figure 1. 2D nodal distribution near a fluid/solid interface. Blue
and black colors mark the fluid and solid regions, respectively.
Open circles in the fluid and solid correspond to vfi and vsi , respec-
tively, and red points in the fluid and solid correspond to p and σij,
respectively. All variables are defined at the interface located at
z ¼ z0.

Figure 2. 1D mimetic and Taylor-series-based FD operators that have the OðΔx4Þ accuracy for N ¼ 8. (a) The mimetic gradient G ∈ Rð9;10Þ,
(b) the mimetic divergence D ∈ Rð10;9Þ, and (c) the Taylor-series-based FD derivative operator.

Coupled acoustic-elastic MFD solver T47
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are near the boundary where the MFD operators include additional
terms to ensure flux conservation (Castillo and Miranda, 2013; Cor-
bino and Castillo, 2017).
We use a FSG approach to implement the MFD scheme because

such grid layout increases the numerical stability of the computed
wavefields by making all wavefield partial derivatives available at all
grid points (de la Puente et al., 2014; Shragge and Tapley, 2017). In
contrast to standard staggered grids (SSGs), no costly high-order
interpolation of the partial derivatives is required (Lisitsa and Vishnev-
skiy, 2010; de la Puente et al., 2014). Using an FSG system is particu-
larly beneficial for lower-symmetry anisotropic models including the
most general, triclinic symmetry (Lisitsa and Vishnevskiy, 2010).
For simplicity we first discuss the 1DMFD FSG implementation.

Then the solutions are extended to 2D models that include the free
surface and a fluid/solid interface. To distinguish the variables rep-
resenting continuous wavefield and material properties in equa-
tions 1–8 from their discrete counterparts, we use bold symbols
to denote discrete gradient and divergence operators and bars for
discrete wavefield and material property variables.

1D MFD FSG implementation

An FSG system consists of multiple intertwined grids like those
in an SSG; however, their implementation depends on the dimen-
sionality of the grids. A 1D FSG system is equivalent to the system
used in a 1D SSG approach. We use two staggered field grids,
f ∈ RNþ2 and v ∈ RNþ1, where f is defined at the cell centers and
v at the grid nodes (i.e., cell boundaries). Figure 3a shows an ex-
ample of 1D MFD FSG for an N ¼ 8 point model domain. In the
fluid domain, f and v represent the pressure p̄ and particle velocity
v̄fi , respectively, whereas in the solid domain, f and v represent the
stress σ̄ij and particle velocity v̄si , respectively.
Because an MFD solution requires all variables to be also defined

at the domain boundaries (i.e., interfaces), the corresponding var-
iables represented by f and v grids share the same spatial locations.
In Figure 3a these extra locations are referred to as mimetic points,
which are required for higher-order implementation of the deriva-
tive operators near the boundaries. The mimetic gradient matrix op-
erator G acts on the field variables defined on the f-grid at the cell
centers and maps them to form the vector defined on the v-grid at
the cell boundaries. Similarly, the mimetic divergence matrix oper-
ator D acts on the field variables defined on the v-grid at the cell
boundaries and maps them to cell centers to form the vector defined

on the f-grid. For the 1D elastic wave equations 1–3 we update the
_̄vsz-field in the solid region on the v-grid according to

_̄vsz ¼ ðρ̄sÞ−1G σ̄zz þ b̄z; (9)

and the field _̄σzz on the f-grid using

_̄σzz ¼ C̄D v̄sz; (10)

where C̄ is an arbitrarily anisotropic stiffness matrix. Similarly, for
the acoustic wave equation we update fluid particle velocity _̄vfz on
the v-grid via

_̄vfz ¼ −ðρ̄fÞ−1Gp̄; (11)

and the pressure field _̄p defined on f through

˙p̄ ¼ −ρ̄fðc̄Þ2D v̄fz : (12)

It is important to note that the MFD operators applied to the boun-
dary region include the contribution of the extra fM mimetic points.
For example, the gradient can be expressed numerically at the left
boundary zM1

¼ −4Δz where M1 ¼ −4 in Figure 3a as

∂f
∂z

����
z¼−4Δz

≍Gð0;0Þ fM1
þ
XPG

l¼1

Gð0;lÞ flþM1−1∕2: (13)

Likewise, for the right boundary point at zM2
¼ 4ΔzwhereM2 ¼ 4,

∂f
∂z

����
z¼4Δz

¼GðNþ1;Nþ2ÞfM2
þ

XN
l¼N−PG

GðNþ1;lÞfl−M2−1∕2; (14)

where PG is the bandwidth (i.e., the number of nonzero coefficients)
of the mimetic gradient operator, N is the domain size, fM1

and fM2

are the mimetic points on the left and right boundary at locations
zðM1¼−4Þ and zðM2¼4Þ, respectively, and Gð0;lÞ and GðNþ1;lÞ are the
first and last rows of the gradient operator, respectively. The deriv-
atives in equations 13 and 14 contribute to just one row of the matrix
operator vectors G σ̄zz and Gp̄ in equations 9 and 11.

2D MFD FSG implementation

In the 2D MFD implementation, an FSG is equivalent to two
complementary coupled grid systems (i.e., two SSGs) that are stag-

gered in the horizontal and vertical directions by
Δx∕2 and Δz∕2. Figure 4a shows a system of
two coupled SSGs where we use the grids ½f; f� ∈
RðNþ2Þ×ðNþ2Þ and ½v; v� ∈ RðNþ1Þ×ðNþ1Þ to re-
present p̄ and σ̄ij for the acoustic and elastic me-
dia, respectively. Similarly, Figure 4b shows the
complementary system of two coupled SSGs
where the grids ½f; v� ∈ RðNþ2Þ×ðNþ1Þ and ½v; f� ∈
RðNþ1Þ×ðNþ2Þ represent v̄fi and v̄

s
i for the acoustic

and elastic media, respectively. Note that the
wavefields are explicitly defined in this manner
because other definitions lead to spurious wave-
field solutions (Lisitsa and Vishnevskiy, 2010),
especially for TTI (transversely isotropic with
a tilted symmetry axis) media. The extension

Figure 3. (a) Example of a 1D MFD FSG for N ¼ 8. (b) Example of a 1D MFD-FSG
with split nodes for N ¼ 8 with an interface at z ¼ z0. Red points denote f ∈ {p̄; σ̄ii},
open circles denote v ∈ {v̄fi ; v̄

s
i} and fM (in blue) denotes mimetic points.
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to 3D models is straightforward, but involves intertwining four
SSGs to form a single FSG cell.
Figure 5 shows a single-cell FSG nodal distribution near a do-

main boundary denoted by z ¼ z−M, where all field variables
(i.e., v̄si or σ̄

s
ij) share a common location. In a single cell comprising

the FSG, the four corner points of the ½v; v�-grid (hollow circles at
the corners of the FSG cell in Figure 4a) and one corner of the com-
plementary ½f; f�-grid (hollow circle at the center of the cell in Fig-
ure 4a) contribute to updating the variables p̄ and σ̄ij. Likewise, the
top left and right corners of the ½v; f�-grid (left and right edge centers
in the FSG cell in Figure 4b) and top and bottom left corners of the
complementary ½f; v�-grid (top and bottom edge centers in the FSG
cell in Figure 4b) contribute to updating the variables v̄si and v̄fi .
The mimetic gradient and divergence operators in 2D MFD FSG

act in the z- and x-directions (e.g., Gz and Gx, Dz and Dx) in the
same cyclic fashion as in 1D implementations (Shragge and Tapley,
2017). The only difference is in the computation of the partial deriv-
atives near the domain boundaries where there are two types of
boundary nodes,N1 andN2, which differ in terms of the extra mim-
etic points. An N2-type node includes extra pressure (p̄M) and
stress (σ̄ijM ) mimetic points defined on the ½f; f�-grids in the acoustic
and elastic regions, respectively. An N1-type node includes the
extra velocity (v̄fM and v̄sM) mimetic points defined on the ½f; v�-
and ½v; f�-grids in the same regions. For the nodes along the f-
and v-grids one needs to use the following FD stencils to compute
the derivatives:

∂f
∂z

����
k1

Gðk1;0Þ fM þ
XPG

l¼1

Gðk1;lÞ flþ1∕2; (15)

and

∂v
∂z

����
k1þ1∕2

≈
XPD

l¼0

Dðk1;lÞvl; (16)

where k1 is the depth location on the grid, f and v represent p̄ and
σ̄ij for N1-type nodes and v̄fi and v̄

s
i for N2-type nodes, and PG and

PD represent the bandwidth of the mimetic gradient and mimetic
divergence operators, respectively.

Implementation for 1D fluid/solid interface

We implement the algorithm for a fluid/solid boundary using the
MFD operators and the split-node approach described above (Rojas
et al., 2008), where the full domain is partitioned by the interface
into two computational subdomains. Figure 3b displays a 1D MFD
FSG split-node grid again for N ¼ 8 points. The node z0 is parti-
tioned at the interface into the nodes z−0 and zþ0 that are physically
collocated but defined in the different subdomains.
We represent the discrete v- and f-grid components in terms of

the values of v at the cell nodes and f at the cell centers using the
split-node approach:

v ¼
�
v−

vþ

�
and f ¼

�
f−

fþ

�
; (17)

where for N ¼ 8 points,

v− ¼ ½vðz−4Þ; vðz−3Þ; vðz−2Þ; vðz−1Þ; vðz0−Þ�; (18)

vþ ¼ ½vðz0þÞ; vðz1Þ; vðz2Þ; vðz3Þ; vðz4Þ�; (19)

and

f− ¼ ½fðz−4Þ; fðz−7
2
Þ; fðz−5

2
Þ; fðz−3

2
Þ; fðz−1

2
Þ; vðz0−Þ�; (20)

fþ ¼ ½fðz0þÞ; fðz1
2
Þ; fðz3

2
Þ; fðz5

2
Þ; fðz7

2
Þ; fðz4Þ�: (21)

We construct augmented mimetic divergence and gradient matrix
operators,DA

z andGA
z , which are applied separately on both sides of

the interface:

DA
z ¼

�
Dð4Þ

z− 0

0 Dð4Þ
zþ

�
; (22)

and

GA
z ¼

�
Gð4Þ

z− 0

0 Gð4Þ
zþ

�
; (23)

where Dð4Þ
z− ¼ Dð4Þ

zþ ¼ Dð4Þ
z (i.e., the standard 1D mimetic diver-

gence operator) and Gð4Þ
z− ¼ Gð4Þ

zþ ¼ Gð4Þ
z (i.e., the standard 1D mim-

Figure 4. Coupled system of SSGs inside a 2D MFD FSG. (a) The
½f; f�- and ½v; v�-grids in magenta and green colors, respectively. The
four red points (either p̄ or σ̄ij) form the corners of both grids.
(b) The ½f; v�- and ½v; f�-grids in blue and black color, respectively.
The four hollow circles (either v̄si or v̄

f
i ) form the corners of both

grids.
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etic gradient operator). The submatrix Dð4Þ
z− acts on v− at the cell

nodes to map the v− values to f− (excluding z−4 and z0− ) at the
cell centers, whereas Dð4Þ

zþ acts on vþ at the cell nodes and maps
them to fþ (excluding z4 and z0þ ). Similarly, the submatrix Gð4Þ

z−

acts on f− at the cell centers to map them to v− at the cell nodes,
whereas Gð4Þ

zþ acts on fþ at the cell centers to map them to vþ at the
cell nodes.
Figure 6 illustrates the augmented OðΔx4Þ mimetic gradient op-

erator for Nþ ¼ N− ¼ 10, where Nþ and N− are the domain sizes
on both sides of the interface. The interface node is located at the
intersection of the vertical and horizontal lines. It is important to
note that the interior coefficients of mimetic operators again are
exactly the same as those of Taylor-series-based FD operators.
However, the coefficients near the interfaces are different as a result
of satisfying the flux conservation laws and higher-order spatial
accuracy requirements in MFD implementations.
The boundary conditions for the field variables defined on the

v-grids are implemented using an averaging scheme. In the 1D
acoustic/elastic case, the v-grid corresponds to v̄sz and v̄fz , so both
quantities are replaced by ðv̄sz þ v̄fz Þ∕2 at the interface. For the var-
iables defined on the f-grids, we use the continuity of the normal-
velocity component to update the mimetic pressure and stress.
Equation 8 implies that

_̄vfz jz¼z−
0
¼ _̄vszjz¼zþ

0
: (24)

Using equations 9, 11, and 13 (assuming f̄z ¼ 0), we obtain the
following boundary condition:

ρ̄−1f ðGzðMþ1;Mþ2Þp̄M þ
XM

l¼M−PG

GzðMþ1;lÞp̄lþ1∕2Þ

¼ −ρ̄−1s ðGzð0;0Þσ̄M þ
XPG

l¼1

Gzð0;lÞσ̄
lþ1∕2
zz Þ: (25)

Because σ̄M ¼ −p̄M at the interface (equation 6), we may rewrite
equation 25 as

σ̄M¼−ρ̄s
P

M
l¼M−PG

GzðMþ1;lÞp̄lþ1∕2−ρf
PPG

l¼1Gzð0;lÞσ̄
lþ1∕2
zz

GzðMþ1;Mþ2Þ ρ̄s−Gzð0;0Þ ρ̄f
;

(26)

where p̄lþ1∕2 and σ̄lþ1∕2
zz are defined at the cell centers, p̄M is the

mimetic pressure at the interface node z−0 , and σ̄M is the mimetic
stress at the interface node zþ0 .

Coupling 2D FSGs at fluid/solid interface

For 2D models, there are two complementary coupled grid sys-
tems comprised of four total grids (see Figure 4a and 4b). Similar to
the 1D case, we apply an averaging scheme to the ½v; v�- and ½v; f�-
grids to implement the boundary conditions. We replace v̄sz and v̄fz
defined on the ½v; v�-grids by ðv̄sz þ v̄fz Þ∕2, and substitute σ̄zz and p̄
defined on the ½v; f�-grids with ðσ̄zz − p̄Þ∕2 and ð−σ̄zz þ p̄Þ∕2, re-
spectively.
Figure 7 illustrates the nodal distribution for the 2D MFD FSG

near the boundary by showing the two node types (N1 and N2) that
contribute to the wavefield derivatives at the interface. The mimetic
points can be updated in a fashion similar to that in 1D applications.
Using the temporal derivatives of the boundary conditions (equa-
tions 6 and 8) and the discrete form of the wave equation makes
it possible to solve for the mimetic points corresponding to σ̄zz,
p̄, v̄x, and v̄z following the approach presented in equations 24–26.

Source injection and wavefield
extraction

The coupling of multiple grids in FSG requires
distributed source injection and wavefield extrac-
tion. For central cell injection and extraction
(Figure 4a), the σ̄sij and p̄ wavefields defined
on the ½f; f�- and ½v; v�-grids contribute five
points in an FSG cell. For source injection, the
source at any ½f; f�-grid point is injected with
the weight equal to unity and four ½v; v� grid
points are injected with a weight of 1/2. How-
ever, for wavefield extraction the weights are
1/2 for the ½f; f�-grid point and 1/4 for four
½v; v�-grid points (Lisitsa and Vishnevskiy,
2010). The wavefields v̄si and v̄fi defined on
the ½f; v�- and ½v; f�-grids contribute four points
in the same FSG cell (Figure 4b). For source in-

Figure 5. 2D MFD FSG nodal distribution in a single cell near a
boundary at z ¼ z−M . Red points denote the stress σ̄sij (solid) and
pressure p̄f (fluid). Hollow circles denote v̄si (solid) and v̄fi (fluid).
Blue and green points mark the additional mimetic points at the
domain boundary.

Figure 6. Augmented (a) gradient GA
z and (b) divergence DA

z MFD operators that have
the OðΔx4Þ order of accuracy for M þ N ¼ 20.
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jection we use a weight of 1/2 for the ½f; v�- and ½v; f�-grid points,
whereas for wavefield extraction the weight is 1/4 for the ½f; v�- and
½v; f�-grid points.

Free-surface implementation

The mimetic nodes at the free surface can be updated in a fashion
similar to the fluid/solid interface implementation described above.
Because in the fluid/solid scenario the model always has an acoustic
free surface, the equation for updating mimetic points follows from
the zero-pressure condition at that surface. The velocities at the free-
surface mimetic points can be updated as

v̄Mz ¼ 1

Gzð0;0Þ
�
−
XNG

j¼0

Gxði;jÞ v̄lþ1∕2
x −

XNG

j¼1

Gzð0;jÞ v̄lþ1∕2
z

�
;

(27)

and

v̄Mx ¼ 1

Gzð0;0Þ
�
−
XNG

j¼0

Gxði;jÞ v̄lþ1∕2
z −

XNG

j¼1

Gzð0;jÞ v̄lþ1∕2
z

�
:

(28)

NUMERICAL EXAMPLES

We test the MFD-FSG split-domain modeling algorithm for fluid/
fluid and fluid/solid interfaces using the OðΔx4Þ mimetic gradient
and divergence operators. The results are compared with the solu-
tions obtained from the spectral-element method
(SEM; Komatitsch et al., 2000). We also com-
pute single-domain (i.e., “welded”) solutions to
demonstrate the errors caused by incorrect boun-
dary conditions at the fluid/solid interface.

2D fluid/fluid interface

Here, we consider a 2D fluid/fluid model with
the same material properties (velocity and den-
sity) on both sides of the interface. In this case
all energy is supposed to be transmitted across
the boundary and the model should behave as
a homogeneous fluid medium. The boundary
conditions for the fluid/fluid interface at z ¼ z0
are the continuity of pressure,

ðp̄− − p̄þÞjz¼z0 ¼ 0; (29)

and of the particle-velocity component normal to
the interface (i.e., n̂ ¼ ẑ),

ðv̄−z − v̄þz Þjz¼z0 ¼ 0: (30)

The model is represented by a 400 × 400 do-
main with a grid spacing of Δx ¼ Δz ¼ 4 m. We
inject a Ricker-wavelet source with the 30-Hz
peak frequency at [x,z] = [800,200] m. The inter-
face is located at z0 ¼ 800 m and the receiver
line is 4 m below the fluid/fluid interface. We

implement a convolutional perfectly matched layer (C-PML)
(Komatitsch and Martin, 2007) boundary condition on the three
sides of the model and, therefore, expect to record only the direct
P-wave and the free-surface reflection.
Figure 8 shows snapshots of the pressure wavefield p̄ obtained

using the wavefield extraction procedure discussed above. As de-
sired, more than 99.9% of the energy is transmitted across the inter-
face. For a more quantitative comparison, we compare the v̄z- and
v̄x-components recorded at three receiver locations with those from
the single-domain (i.e., welded) solution. Because an inviscid fluid
cannot support shear stress, our coupled and welded solutions
should exactly match. Figure 9 shows the v̄z- and v̄x-components

Figure 7. Illustration of a 2D MFD FSG nodal distribution at the
interface marked by the dotted line at z ¼ z0. Red points denote p̄
and σ̄ij, hollow circles denote v̄si and v̄

f
i , blue circles on the N1-type

nodes denote p̄M and σ̄M , and green circles on the N2-type nodes
denote v̄fM and v̄sM for the fluid (f) and solid (s) media, respectively.

Figure 8. Pressure snapshots at times (a) 0.15 s, (b) 0.30 s, (c) 0.45 s, and (d) 0.57 s. The
fluid has velocity cf ¼ 2500 m∕s and density ρf ¼ 1000 kg∕m3. The red line marks the
domain boundary at z ¼ 400 m. Black dots mark the source locations.
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computed from the coupled-domain (cyan), single-domain (yel-
low), and SEM (magenta) solutions. The good match between
all three waveforms confirms the accuracy of our approach and
validates our implementation of the boundary
conditions.

2D fluid/solid interface

In the next test, the fluid overlays an isotropic
solid medium. The model size is 600 × 220 with
a uniform grid spacing of 4 m; the interface is
located at z0 ¼ 80 m. We inject a Ricker-wavelet
source with the 10 Hz peak frequency at
[x,z] = [1200,64] m. The receiver line is located
in the solid medium 4 m below the interface
(z ¼ 84 m). In this experiment we do not expect
the coupled-domain and SEM solutions to match
the welded one because the latter implements in-
correct boundary conditions.
The shot gathers for the coupled-domain v̄z-

and v̄x-components are clearly different from
those computed by the welded approach (Fig-
ure 10). To compare the wavefields produced
by the three methods, we analyze both velocity
components at the locations marked by the
vertical lines at x = 608, 1250, and 1688 m
(z ¼ 104 m) in Figure 10. Our coupled-domain
result (cyan) closely matches the SEM solution
(magenta), whereas the welded approach (yel-
low) produces apparent distortions in the event
phases and amplitudes on the v̄z- and v̄x-compo-
nents (Figure 11).

For further analysis of the wavefield, we applied the coupled-
domain solver to the same model with the C-PML conditions
on all four sides including the top. Most of the energy on the

Figure 9. Normalized waveforms for a 2D fluid/fluid model. The cyan, magenta, and yellow lines indicate coupled-domain MFD (CPLD),
SEM (SPECFEM2D), and single-domain (WELDED) solutions, respectively: wavefield components (a) v̄z at x = 128 m, (b) v̄x at x = 128 m,
(c) v̄z at x = 928 m, (d) v̄x at x = 928 m, (e) v̄z at x = 1328 m, and (f) v̄x at x = 1328 m. The depth z ¼ 804 m is the same for all traces.

Figure 10. Shot gathers for a 2D fluid/solid model. The solid is isotropic with P-wave
velocity VP¼2500m∕s, S-wave velocity VS¼1600m∕s, and density ρs¼2000kg∕m3;
the fluid has velocity cf ¼ 1500 m∕s and density ρf ¼ 1000 kg∕m3. The coupled-domain
solutions for the (a) v̄z- and (b) v̄x-components. The welded-domain solutions for the
(c) v̄z- and (d) v̄x-components.
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v̄z- and v̄x-components is dominated by the surface wave (Fig-
ure 12), which is further confirmed by Figure 13. Hence, the late
arrival in our previous experiment (Figure 11) was formed by the
surface wave which was strongly distorted in the welded solution.

2D fluid/solid VTI interface

Next, we make the solid transversely isotropic with a vertical sym-
metry axis (VTI). The dimensions and other modeling parameters are
kept the same. The anisotropy in the solid influences the amplitudes and
phases of the solutions obtained by the coupled-domain and welded
methods (Figure 14). For a quantitative comparison, we again analyze
traces at three locations marked by the red lines at x = 680, 1400, and
1800m (at z ¼ 84 m). As before, the coupled-domain (cyan) and SEM
(magenta) solutions are close to one another (Figure 15).
As previously, we apply absorbing boundary conditions on all

four sides of the model and observe two interference arrivals

(PP and PS) and the surface Stoneley (Scholte) wave (Figure 16).
The dominant event on the v̄z- and v̄x-components (Figure 17) is
again the late-arriving surface wave. Likewise, the slowest event in
our previous test (Figure 15) was formed by the surface wave that
interfered with the free-surface arrivals. The PP and PS modes,
clearly visible in Figure 17, also interfered with free-surface reflec-
tions in our previous experiment (Figure 15). The welded solution
distorts the amplitudes and phases of all arrivals because of the in-
correct boundary conditions at the fluid/solid interface. Note that
the relative amplitude of the surface wave, as expected, increases
with offset (Figure 15b and 15f).
Finally, the algorithm is tested on a strongly heterogeneous

VTI Marmousi model (Bourgeois et al., 1991) with the Thomsen
parameters (see Tsvankin, 2012) shown in Figure 18. We inject
a Ricker-wavelet source with the 25 Hz peak frequency at
[x,z] = [2405,560] m. Figure 19 displays wavefield snapshots for
the coupled-domain and welded solutions. There are slight phase

Figure 11. Normalized waveforms for the model from Figure 10. The cyan, magenta and yellow lines mark the coupled-domain MFD
(CPLD), SEM (SPECFEM2D), and single-domain (WELDED) solutions, respectively. The components (a) v̄z at x = 608 m, (b) v̄x at
x = 608 m, (c) v̄z at x = 1250 m, (d) v̄x at x = 1250 m, (e) v̄z at x = 1688 m, and (f) v̄x at x = 1688 m.

Figure 12. Shot gathers of the (a) v̄z- and
(b) v̄x-components computed by the coupled-
domain method for the model from Figure 10 with
CPML boundary conditions applied on all four
sides. The solid is isotropic with P-wave velocity
VP ¼ 2500 m∕s, S-wave velocity VS ¼ 1600 m∕s,
and density ρs ¼ 2000 kg∕m3. The fluid has veloc-
ity cf ¼ 1500 m∕s and density ρf ¼ 1000 kg∕m3.
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and amplitude differences in the areas above and below the interface
and some differences in amplitudes throughout the model. In addi-
tion to the shot gathers computedwith the coupled-domain (Figure 20a
and 20b) and welded (Figure 20c and 20d) techniques, we extract
traces for the receivers located at x = 1500, 2500, and x = 3500 m
(z ¼ 610 m). There are significant differences between the traces
for the v̄z- and v̄x-components generated by the two techniques
(Figure 21). The combination of the incorrect boundary conditions
with the heterogeneity and anisotropy in the solid leads to complicated
distortions in the results of the welded wavefield modeling. Clearly, it
is extremely important to incorporate the correct boundary conditions
for models involving a fluid/solid interface.

DISCUSSION

Our MFD methodology uses an FSG approach which is more
computationally expensive than the conventional staggered grids.
The memory requirements and computational cost for our algorithm
are approximately two times for 2D and four times for 3D those of
SSGs. But our technique yields better grid-dispersion properties be-
cause the solution of the same order can be obtained by using fewer
points per wavelength compared with SSG.
An important advantage of the developed MFD methodology

for handling fluid/solid interfaces is the reduction in memory
requirements and computational cost for large-scale modeling,

Figure 14. Shot gathers for a 2D model that
includes a fluid overlaying a VTI solid. The
Thomsen (1986; see also Tsvankin, 2012) param-
eters for the solid are the P-wave vertical velocity
VP0 ¼ 2500 m∕s, the S-wave vertical velocity
VS0 ¼ 1600 m∕s, ϵ ¼ 0.2, δ ¼ 0.1, and
ρs ¼ 2000 kg∕m3. The fluid has the velocity
cf ¼ 1500 m∕s and density ρf ¼ 1000 kg∕m3.
The coupled-domain solutions for the (a) v̄z-
and (b) v̄x-components. The welded-domain solu-
tions for the (c) v̄z- and (d) v̄x-components.

Figure 13. Normalized waveforms computed by
the coupled-domain method for the 2D fluid/solid
model from Figure 10. The vertical red line marks
the surface-wave arrival: the components (a) v̄z at
x = 608 m, (b) v̄x at x = 608 m, (c) v̄z at
x = 1688 m, and (d) v̄x at x = 1688 m.
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Figure 15. Normalized traces for the model from Figure 14. Cyan, magenta, and yellow lines mark the coupled-domain MFD (CPLD), SEM
(SPECFEM2D), and single-domain (WELDED) solutions, respectively. The components (a) v̄z at x = 680 m, (b) v̄x at x = 680 m, (c) v̄z at
x = 1400 m, (d) v̄x at x = 1400 m, (e) v̄z at x = 1800 m, and (f) v̄x at x = 1800 m.

Figure 17. Normalized traces for the wavefield
from Figure 16. The vertical red line marks the sur-
face-wave arrival. The arrows mark the PP (formed
by the head and transmitted PP-waves) and PS
(formed by the head and transmitted PS-waves)
interference arrivals. The components (a) v̄z at
x = 680 m, (b) v̄x at x = 680 m, (c) v̄z at
x = 1800 m, and (d) v̄x at x = 1800 m.

Figure 16. Shot gathers of the (a) v̄z- and (b) v̄x-
components computed by the coupled-domain
method for the model from Figure 14.
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imaging, and inversion applications. Generally, the cost of solving
the 3D elastic anisotropic wave equation (in terms of the memory
and computational time) is roughly eight times that for the acous-
tic wave equation. In marine seismic applications, if 25% of the
model consists of a water layer, using a 3D acoustic wave propa-
gator instead of its elastic anisotropic counterpart would save
roughly 28% (25% in 2D) in memory storage and computational
cost.

The approach presented in this paper can be extended to irregular
sea-bottom bathymetry using vertically deformed meshes (Shragge,
2017). FSGs make it possible to handle models with complex bathym-
etry and realistic anisotropic symmetry (e.g., tilted transversely isotropic
or tilted orthorhombic media). With such more advanced modeling al-
gorithms, one can potentially extract additional information frommulti-
component data recorded in ocean-bottom surveys, which should be
highly beneficial for elastic anisotropic imaging and inversion.

Figure 19. Representative wavefield snapshots for the CPLD (top row) and welded (middle row) solutions and the differences between them
(bottom row). The components (a) v̄z and (b) v̄x generated by CPLD. The components (c) v̄z and (d) v̄x generated by the welded solution. The
differences between (e) v̄z and (f) v̄x from the two methods.

Figure 18. VTI Marmousi model with a 600-m
thick water layer on top. The parameters
(a) VP0, (b) VS0, (c) δ, and (d) ε.
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CONCLUSIONS

We presented an efficient MFD methodology implemented on
FSGs for solving the coupled fluid/solid modeling problem where
the solid medium can be generally anisotropic. The developed uni-
form wavefield solution is spatially accurate to the fourth order both
at the interface and in the model interior. The interface is handled
using a split-node technique, and the boundary conditions are sat-

isfied by using averaging for one set of the grids. The mimetic

points on the other set of the grids are updated using the continuity

of the spatial wavefield derivatives obtained from the acoustic and

elastic wave equations.
Our proposed MFD methodology is validated by comparing the

results with those obtained by the spectral-element method. Com-

parison with so-called “welded” solutions, which treat the fluid

Figure 21. Normalized traces for the VTI Marmousi model (Figure 18). The cyan and yellow lines mark the coupled-domain MFD (CPLD)
and single-domain (WELDED) solutions, respectively. The components (a) v̄z at x = 1500 m, (b) v̄x at x = 1500 m, (c) v̄z at x = 2500 m, (d) v̄x at
x = 2500 m, (e) v̄z at x = 3500 m, and (f) v̄x at x = 3500 m.

Figure 20. Shot gathers for the VTI Marmousi
model (Figure 18). The coupled-domain solutions
for the (a) v̄z- and (b) v̄x-components. The welded-
domain solutions for the (c) v̄z- and (d) v̄x-com-
ponents.
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medium as a solid, demonstrates that the amplitude and phase of the
surface waves modeled with such welded solvers are substantially
distorted. Therefore, it is essential to implement the correct boun-
dary conditions at the fluid/solid interface in FD algorithms. Our
modeling approach should have a substantial impact on the accu-
racy of elastic imaging and inversion.
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APPENDIX A

MFD OPERATORS

The 1D mimetic divergence operator D ∈ RðNþ2;Nþ1Þ (Corbino
and Castillo, 2017) operating on the N-point grid is given by

Di ¼
1
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(A-1)

where the dots indicate the repetition of the stencil coefficients in
the corresponding direction, and h is the spatial discretization along
the ith direction. The 1D mimetic gradient operatorG ∈ RðNþ1;Nþ2Þ

(Corbino and Castillo, 2017) for the N-point grid can be written as

Gi ¼
1
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