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ABSTRACT
Elastic full-waveform inversion can increase the resolution of reservoir characteri-
zation using seismic data. However, full-waveform inversion for realistic anisotropic
media suffers from the trade-offs between the medium parameters and strongly relies
on the accuracy of the initial model. Here, we employ a regularization methodology
that utilizes geologically consistent information to reduce the inversion non-linearity
and crosstalk between the parameters. The geologic constraints are obtained from
well logs and interpolated along major horizons in the migrated image. The algo-
rithm, designed for transversely isotropic media with a tilted symmetry axis, is ap-
plied to ocean-bottom data acquired at Volve field in the North Sea. The facies-based
constraints help build high-resolution velocity fields and accurately image the reser-
voir region. In particular, the developed algorithm increases the resolution of the P-
and S-wave symmetry-direction velocities and other parameters at the reservoir level.
The facies-based inversion also provides robust estimates of density, which is inverted
simultaneously with the velocity fields. Overall, even relatively sparse prior informa-
tion proves to be sufficient for the proposed methodology to achieve a much higher
spatial resolution than the unconstrained full-waveform inversion.

Key words: elastic medium, full-waveform inversion, anisotropy, tilted transverse
isotropy, facies-based constraints.

INTRODUCTION

Full-waveform inversion (FWI) has the potential of deliver-
ing high-resolution velocity models of complex geologic struc-
tures (Tarantola, 1984) and providing accurate estimates of
the reservoir properties. However, implementing FWI for re-
alistic elastic anisotropic reservoir models is a computation-
ally challenging task (e.g. Singh et al., 2020a, 2020b). Fur-
thermore, the crosstalk between the parameters of anisotropic
media and the insufficient quality of the initial model often
hamper the convergence of model updating.

Crosstalk or trade-off occurs when the data residuals
caused by an error in one physical property or parameter are
attributed to another parameter, impeding the updating pro-
cedure and, possibly, leading to geologically inconsistent fea-
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tures in the inverted models. Analysing radiation (scattering)
patterns of the medium parameters can yield valuable insights
into potential trade-offs and the types of input data required
for reliable parameter estimation. Such sensitivity analysis
is especially valuable for anisotropic media (Alkhalifah and
Plessix, 2014; Alkhalifah, 2016; Kamath and Tsvankin, 2016;
Kazei and Alkhalifah, 2019; Singh et al., 2021).

Because FWI is a local optimization algorithm, it is
sensitive to the choice of an initial model, which needs to
be sufficiently close to the actual model. Due to the inherent
non-linearity of FWI, the objective function usually contains
local minima, which can prevent convergence towards the
actual parameters, if the initial model is inaccurate. Inversion
for ultra-low frequencies (0–2 Hz) can yield an adequate
background model, but such frequencies are seldom acquired
in typical seismic surveys.
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Constraining the model-updating procedure by incorpo-
rating prior information about the subsurface (e.g. geologic
facies) has proven promising in mitigating the problems men-
tioned above (Guitton et al., 2012; Asnaashari et al., 2013;
Singh et al., 2018; Zhang et al., 2018; Singh et al., 2020b).
The primary source of this geologic information is available
well logs. However, the sparseness of borehole locations
makes it difficult to account for realistic lateral heterogeneity.
Image-guided interpolation techniques (Zabihi Naeini
and Hale, 2015) or machine-learning networks (Zhang and
Alkhalifah, 2019; Zhang and Alkhalifah, 2020; Li et al., 2021;
Singh et al., 2021) have been proposed to build the spatial dis-
tribution of the constraints for laterally heterogeneous media.

Here, we apply to ocean-bottom data (a two-dimensional
[2D] line from survey ST0202 acquired at Volve field in the
North Sea) a modified version of the FWI algorithm devel-
oped by Singh et al. (2020b) for VTI (transversely isotropic
with a vertical symmetry axis) media. Their FWI methodology
includes facies information as a regularization term in the
objective function and employs the l2-norm for simultaneous
multi-parameter inversion. However, here we use a global-
correlation-based objective function (Choi and Alkhalifah,
2012), which is more suitable for field-data applications. Ob-
jective functions based on cross-correlation are sensitive to the
similarity between the synthetic and recorded data. Because
this objective function mostly matches the phase in seismic
traces, it is less influenced by the amplitude correspondence
required by the l2-norm. The cross-correlation approach,
equivalent to phase inversion in the time domain (Dutta et al.,
2014), is particularly useful for field-data applications, where
amplitude matching is problematic.

Zhang and Alkhalifah (2020) perform FWI for the same
2D line at Volve field, but they employ data from a different
survey (ST10010) and use facies information derived from a
convolutional neural network. Also, they assume the medium
to be VTI (i.e. they do not take the symmetry-axis tilt into ac-
count) and employ a different (hierarchical) parameterization
(Jarillo and Tsvankin, 2017).

The results of reflection tomography for this Volve-field
line (Wang and Tsvankin, 2013) show that taking the tilt of the
symmetry axis into account improves migrated images. There-
fore, here we perform FWI for tilted TI media with the axis
orientation estimated from the structural dips (Audebert et al.
(2006)). Also, we employ a velocity-based parameterization,
shown to be particularly effective in facies-based FWI (Singh
et al., 2018, 2020b).

Each geologic facies considered in the case study occu-
pies a certain horizon identified from a migrated image. The

logs from the available boreholes are assigned to each facies,
and the spatial distribution of the elastic properties is built by
interpolating the borehole information along the major hori-
zons in the image. The image-guided elastic properties are then
calibrated with the facies and borehole data and used as a con-
straint in the inversion workflow.

In most existing FWI algorithms, density is either as-
sumed to be constant or computed from empirical relation-
ships (e.g. Shipp and Singh, 2002; Brossier et al., 2009; Qu
et al., 2017; Zhang and Alkhalifah, 2020). However, density
is a crucial physical parameter in reservoir characterization
and lithologic interpretation. Also, an accurate density model
is beneficial for the velocity inversion (Guitton and Alkhalifah,
2017; Pratt and Smithyman, 2018; Singh et al., 2018, 2020b,
2021). Therefore, here we invert for the 2D density field and
update it independently of the other parameters with the cor-
responding inversion gradient.

We start by discussing the FWIworkflow for elastic trans-
versely isotropic media with a tilted symmetry axis (TTI) and
the main issues that can cause deterioration in the inversion
results. Then we describe the facies-based FWI methodology
where the model constraints are obtained from the available
well logs and migrated image. The algorithm is applied to the
ocean-bottom data from Volve field in the North Sea pro-
vided by Statoil (nowEquinor).The inversion is carried out for
the vertical particle-velocity component with the initial model
based on the results of reflection tomography. Comparison
with the conventional (unconstrained) FWI demonstrates the
ability of the lithologic information to improve the parameter-
estimation results, especially in the reservoir region.

FULL-WAVEFORM INVERSION
METHODOLOGY FOR TILTED
TRANSVERSELY ISOTROPIC MEDIA

Application of full-waveform inversion (FWI) in reservoir
characterization requires taking elasticity and anisotropy into
account. Here, we implement FWI for elastic TTI media often
encountered in the subsurface (Tsvankin and Grechka, 2011;
Tsvankin, 2012). Below we discuss the objective function, in-
version gradients, and facies-based constraints used in our
algorithm.

Objective function

To overcome the difficulties in amplitude matching for field
data, we employ the normalized zero-lag cross-correlation
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objective function (Choi and Alkhalifah, 2012):

Ed(m) = −
ns∑
s=1

∑
r

∫ T
0 dobsdsim(m)dt√∑

r

∫ T
0 (dobs )2dt

√∑
r
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0 (dsim(m))2dt

≡ −
ns∑
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d
obs ∗ d

sim
(m),

(1)

where d
obs = dobs/||dobs|| denotes the normalized observed

data, d
sim = dsim/||dsim|| is the normalized data simulated for

a certain trial model, * is the correlation operator, ns is the
number of sources, r is the trace number and T is total record-
ing time.

The large number of independent parameters makes
anisotropic FWI highly non-linear, and the objective function
often has multiple local minima. For such multi-modal objec-
tive functions, the initial model must lie in the vicinity of the
global minimum (i.e. within the basin of convergence).

We simulate the displacement field u for two-dimensional
(2D) heterogeneous TTI media using the elastic wave equa-
tion:

ρ∂2
t ui = σi j, j + Fi, (2)

where i,j = 1,2, ρ is the density, Fi is the body force per unit
volume and σi j, j are the spatial derivatives of the stress ten-
sor; summation over repeated indices is implied. According to
Hooke’s law, the stress tensor can be written as

σi j = di jkl

[
1
2
(uk,l + ul,k)

]
, (3)

where di jkl is the stiffness tensor.
The tensor di jkl in 2D TTI media has six independent ele-

ments and can be related to the stiffness tensor ci jkl in the cor-
responding VTI medium by the Bond transformation about
the horizontal y-axis in a clockwise direction:

dIJ = Ry(θ )cIJRy(θ )T , (4)

where IJ is the two-index (Voigt) notation, θ is the tilt of the
symmetry axis away from the vertical and R(θ ) is the rota-
tion matrix (e.g., Oh et al., 2020). Explicit expressions for the
nonzero elements of dIJ can be found in Appendix A.

Notation and inversion gradient

The two-dimensional (2D) elastic TTI model is parameter-
ized here by the P- and S-wave velocities in the symmetry-axis
direction (VP0 and VS0), the P-wave velocity in the isotropy
planeVhor,P = VP0

√
1 + 2ε (which becomes the horizontal ve-

locity if the symmetry axis is vertical) and the velocityVnmo,P =
VP0

√
1 + 2δ (ε and δ are the Thomsen parameters for the cor-

responding VTI model).Note that for a vertical symmetry axis
Vnmo,P becomes the P-wave normal-moveout velocity from a
horizontal reflector. These four parameters, the tilt of the sym-
metry axis and density control the signatures of the P- and
SV-waves in the vertical plane that contains the symmetry axis
(Tsvankin, 2012).

Note that density, which plays an essential role in reser-
voir characterization, is estimated along with the velocities by
our FWI algorithm (Singh et al., 2020b). The symmetry axis
is assumed to be orthogonal to the interfaces and is computed
from the structural dips in the migrated image (Audebert et al.,
2006; Wang and Tsvankin, 2013). The relationships between
the velocities defined above and the stiffness coefficients di jkl
are listed in Appendix A. The advantages of the velocity-based
parameterization for FWI applications are discussed in Ka-
math and Tsvankin (2016), Singh et al. (2020b), and Singh
et al. (2021).

The gradient of the objective function with respect to the
model parameters is computed using the adjoint-state method
(e.g. Kamath and Tsvankin, 2016):

∂Ed(m)
∂m

= −
[

∂dsim(m)
∂m

∗q
]
, (5)

where q = (1/||dobs||)[dobs
(d

obs · dsim
(m)) − d

sim
(m)] is the

residual wavefield.
The exact expressions for the FWI gradient can be found

in Appendix B.We carry out iterative parameter updating with
the non-linear conjugate-gradient algorithm (e.g. Hager and
Zhang, 2006).

The wave equation (2) is solved using a forth-order (in
space) and second-order (in time) finite-difference algorithm.
Because free-surface reflections are removed from the data,we
apply the convolutional perfectly matched layers absorbing
boundary conditions on all sides of the model (including the
top). The direct waves are also absent in the provided field
data, so we do not include them in the simulated data set. The
wavefield is excited by a point explosive source. The source
signal is a bandlimited spike wavelet (to avoid grid dispersion)
with a central frequency of 9 Hz. As in Singh et al. (2020b),
we apply the domain-decomposition method (Bohlen, 2002)
to reduce computational cost.

Facies-based constraints for FWI

Following Singh et al. (2018, 2020b), Zhang et al. (2018), and
Zhang and Alkhalifah (2020), the facies-based constraints are
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Figure 1 3D tomography model for VP0 provided by Equinor. The cross-sections display the parameters in the coordinate planes at the centre
of the model. The area between the vertical white lines is used for 2D FWI. The horizontal magenta line on top of the [x, z]-section marks the
source locations.

included in the inversion workflow by adding the correspond-
ing term [Ef (m)] to the objective function E(m):

E(m) = Ed (m) + βEf (m), (6)

where

Ef (m) = ||Wm(minv − mf )||2. (7)

Here, the vector m f represents the facies-based elastic
constraints to be obtained from borehole information, minv

is the inverted model, β is a scaling factor, which determines
the relative contribution of prior information, and Wm is a
model-weighting diagonal matrix designed to make the facies-
based term dimensionless and to assign larger weights to data
around borehole locations (Asnaashari et al., 2013). For field
data, the scaling factor (β) should be adjusted depending on
the accuracy of the prior model and noise level (e.g. we may
assign larger values of β for noisy data and smaller values for
clean data).

The first term [Ed(m)] in equation (6) represents the data
misfit computed from the zero-lag cross-correlation norm
(equation 1), whereas the second one [Ef (m)] is the model
misfit, which includes prior facies information. By referring
to the output of the unconstrained FWI below, we mean the
result of minimizing only the data misfit Ed(m) (i.e. β = 0).

The gradient of the objective function in equation (6) can
be found as follows:

∂E(m)
∂m

= −
[

∂dsim

∂m

]
q + βWT

mWm(minv − m f ). (8)

APPLICATION TO VOLVE DATA SET

Volve field is a Middle Jurassic oil reservoir located offshore
Norway in the southern part of the Viking Graben in the
gas/condensate-rich Sleipner area. It is a small dome-shaped
structure formed by the collapse of adjacent salt ridges. The
system is bounded from the south, east and north by faults
mainly produced by salt tectonics.

Acquisition design

The three-dimensional (3D) ocean bottom survey (OBS) (orig-
inally conducted in 2002 and reprocessed in 2008) was ac-
quired using inline shooting geometry over a 12.3 × 6.8 km
area of the field (Fig. 1). The sail line is 12 km long with a
shot interval of 25 m (50 m between the flips). The data are
recorded using a cable (at a depth of about 92 m) containing
240 receivers separated by 25 m.

Equinor (then Statoil) pre-processed the vertical and
horizontal particle-velocity components by applying noise
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suppression,multiple attenuation and other standard steps de-
scribed in Szydlik et al. (2007). Only the shots with (absolute)
offsets less than 5000 m were kept for further processing. A
3D VTI velocity model was built by Equinor using a layer-
stripping approach, with each interval updated using a com-
bination of layer-based tomography and migration scanning.
The parameter-estimation procedure was constrained by well
data, such as compressional and shear sonic logs and check
shots. The P- and S-wave vertical velocities VP0 and VS0 and
the anisotropy parameters ε and δ in each layer were updated
by flattening common-image gathers, minimizing the misties
between seismic and well data, co-depthing the key horizons
on PP and PS migrated sections, and incorporating compres-
sional sonic logs (Szydlik et al., 2007).

Wang and Tsvankin (2013) apply reflection tomogra-
phy to the vertical particle-velocity component from the two-
dimensional line (inline 5089 from the survey) recorded along
y= 2.8 km (white vertical lines in Fig. 1). Two adjacent source
lines (y = 2.8 ± 0.025 km) provided 481 shots with a shot in-
terval of 25m.Wang and Tsvankin (2013) carry out parameter
estimation considering a TTI medium and show their images
to be superior to those obtained by Equinor with a VTI model.
Here, we apply full-waveform inversion (FWI) to the vertical-
component data from the same line and also take the tilt of
the symmetry axis into account. The inversion is performed
for records from 118 shots placed along the magenta line in
Figure 1.

FWI is constrained using borehole data from two devi-
ated wells located near the chosen line (Fig. 2). In addition to
sonic (P- and S-waves) and density logs, the provided data also
include the well markers (i.e. the depth measurements in the
well) for several key horizons (e.g. the top and base of Utsira
formation, top of Shetland Group and bottom of Cretaceous
layer).

Parameterization and initial model

As discussed above, the medium is parameterized by the P-
and S-wave symmetry-direction velocities (VP0 andVS0), the P-
wave velocity in the isotropy plane (Vhor,P), the NMO velocity
(Vnmo,P; it becomes the P-wave normal-moveout velocity for
a vertical symmetry axis), and density (ρ). The velocity-based
parameterization is convenient for full-waveform inversion
(FWI) because all parameters have the same units and similar
magnitudes (this is also the case for the inversion gradients).
Additionally, the spatial distribution of the velocities is often
similar, so a single migrated section can be used to implement
image-guided interpolation (Singh et al., 2020b, also see
below).

Figure 2 (a) Trajectories of two deviated wells near the line
(y = 2.8 km, dashed) used in FWI. (b) The well projections onto the
horizontal surface. The maximum deviations of the wells from the ver-
tical plane at y = 2.8 km are 477 m and 603 m, respectively (adapted
from Wang and Tsvankin, 2013).

FollowingWang and Tsvankin (2013), the symmetry-axis
tilt is estimated by computing the structural dips in the mi-
grated image and setting the symmetry axis orthogonal to the
interfaces. Because the tilt on this line is mild (up to ±20o), we
recompute it only after every five inversion iterations.

The source wavelet and recorded data are filtered (2–
15Hz) before the inversion.To improve the convergence of the
optimization method, we compensate for the amplitude decay
with depth due to geometric spreading andmultiple reflections
in the overburden. This is achieved by pre-conditioning the
FWI gradients using the inverse Hessian matrix obtained by
the zero-lag correlation of the magnitude of the forward wave-
field with an approximate receiver Green’s function (Plessix
and Mulder, 2004).

Because the horizontal particle-velocity component is
severely contaminated with noise, only the vertical compo-
nent is included in the inversion. The algorithm is designed
to estimate the five pertinent medium parameters (VP0, VS0,
Vhor,P,Vnmo,P and ρ) simultaneously using the inversion gradi-
ents listed in Appendix B.

The results of three-dimensional tomography and the ini-
tial velocity models employed in FWI are shown in Figure 3.
The initial models represent one-dimensional smoothed
versions of the sections obtained by Equinor. The tomography
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Figure 3 TI parameters along the line extracted from the 3D tomography models provided by Equinor: (a) P-wave vertical velocity VP0,
(b) S-wave vertical velocity VS0, (c) P-wave horizontal velocity Vhor,P, and (d) P-wave NMO velocity Vnmo,P. The initial parameters for FWI:
(e) VP0, (f) VS0, (g) Vhor,P, and (h) Vnmo,P.

Figure 4 Thomsen parameters from the 3D tomography models:
(a) ε and (b) δ.

models provided by Equinor in terms of the Thomsen param-
eters ε and δ (Fig. 4) were converted into the velocities Vhor,P

and Vnmo,P. Applying the same smoothing to the parameter
fields obtained by Wang and Tsvankin (2013) produces sim-

Figure 5 Initial density model for FWI generated using equation (9).

ilar results. The initial distribution of density (Fig. 5) is com-
puted from the initial velocityVP0 using Gardner’s relationship
for shale formations (Martin et al., 2006):

ρ = 0.2806V0.265
P0 , (9)

where the inputVP0 is in m/s. The density in the water is set to
1 g/cm3. Note that equation (9) is used only to compute the
initial density model, which is updated independently during
FWI using the corresponding inversion gradient.

© 2021 European Association of Geoscientists & Engineers,Geophysical Prospecting, 69, 1650–1663
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Figure 6 Results of the unconstrained FWI: (a)VP0, (b)VS0, (c)Vhor,P, and (d)Vnmo,P. Results of the facies-based FWI: (e)VP0, (f)VS0, (g)Vhor,P,
and (h) Vnmo,P. The arrows point to the areas of improvement achieved by the facies-based algorithm.

Unconstrained FWI

The output of full-waveform inversion (FWI) without facies-
based constraints is shown in Figure 6(a)–(d). The inversion
was performed for all shots in one frequency band (2–15 Hz).
The inverted models contain more information about the
subsurface velocity fields than the initial parameter
distributions. In particular, there is a low-velocity (VP0)
layer at a depth of 3.1 km that likely represents the reservoir
(Szydlik et al., 2007).

The radiation-pattern analysis for the velocity-based pa-
rameterization demonstrates that the vertical displacement
componentmay not be sufficiently sensitive to some TI param-
eters (in particular, to Vhor,P and VS0; see Singh et al., 2021).
Therefore, it is not surprising that the resolution of the ve-
locity Vhor,P is lower than that of VP0. Furthermore, the seal
layer that corresponds to the high-velocity zone above the
reservoir is not visible in the VS0-field. Also, there are notice-
able high-velocity artefacts around z = 2.5 km and x > 6 km
(marked by arrows), possibly due to the trade-offs between
VS0,Vhor,P andVnmo,P (Kamath and Tsvankin, 2016).Note that

these artefacts are not present in the tomography (initial FWI)
models.

The inversion also produces a reduction in the density
values around z= 3.1 km, the region that likely corresponds to
the reservoir (Fig. 7a). However, we observe a similar decrease
in density around z = 2.35 km that does not correlate with
the inverted velocities. Hence, we assume the latter anomaly
to be an artefact caused by the parameter trade-offs in the
unconstrained FWI. Overall, the misfit (estimated as the least-
squares error for the normalized amplitudes) is reduced by
about 60% after 24 inversion iterations.

Even though the unconstrained FWI helps delineate the
reservoir region (including the seal), the results suffer from the
parameter crosstalk, which needs to be mitigated to improve
the model reconstruction.

Facies-based FWI

To determine the impact of facies information on the quality of
the inversion results, we apply the facies-based full-waveform
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Figure 7 Density inverted using (a) the unconstrained FWI, and (b)
the facies-based FWI. The arrows point to the areas of improvement
achieved by the facies-based algorithm.

Figure 8 Upscaled sonic logs of the velocity VP0 for (a) well 1
(x = 4.5 km), and (b) well 2 (x = 8.2 km).

inversion (FWI) algorithm in the same frequency band. The
rock-physics constraints for the inversion are computed from
the well logs at two boreholes that provide measurements
of VP0, VS0 and ρ (Fig. 8). The logs are upscaled using a
moving-average technique (Lindsay and Koughnet, 2001)
prior to FWI to make them suitable for seismic inversion. As
shown in Figure 2, the well logs cover a depth interval that

Figure 9 (a) Depth-migrated image obtained using the initial 1Dmod-
els from Figures 3 and 4. (b) The facies model overlaying plot (a).

includes the reservoir. To incorporate the well logs, they are
projected onto the vertical acquisition plane at spatial loca-
tions of x = 4.2 km and x = 8.2 km. Because the borehole
data are provided as functions of the distance along the well,
they are first calibrated to the actual depth before the projec-
tion. Although the boreholes deviate from the vertical plane
that includes the acquisition line, the background symmetry-
axis tilt and anisotropy coefficients in the surrounding region
are relatively small. Therefore, it was not necessary to correct
the well logs for the borehole deviations. Also, the medium
around the boreholes is mildly heterogeneous, so we expect
the projection errors to be insignificant.

Using this borehole information, we build the so-called
‘depth trend’ by assigning sonic and density log values to
each facies and horizon to extract the part of the well-log
data corresponding to a particular facies. To obtain the fa-
cies distribution, we first migrate the data using the imaging
condition based on energy norm (Rocha et al., 2017). The
migrated image in Figure 9(a) is obtained by employing the
one-dimensional initial TI model; the facies information pro-
vided by Equinor is overlaid on that image (Fig. 9b). The fa-
cies distribution is generally determined from cross-plots be-
tween different elastic and petrophysical properties. Several
machine-learning algorithms have been proposed to generate
facies distributions from seismic images in the absence of prior
information (Liu et al., 2020; Napoli et al., 2020).

© 2021 European Association of Geoscientists & Engineers,Geophysical Prospecting, 69, 1650–1663
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In our case study, we pick a total of eight facies, which
align with the major horizons identified in the image. It may
be possible to use more advanced classifications of facies and
include such important physical parameters as porosity and
fluid identifiers.

The next step is to employ image-guided interpolation
to compute the spatial distribution of the elastic properties
(Zabihi Naeini and Hale, 2015). Because there is no borehole
information about the Thomsen coefficients ε and δ, these pa-
rameters are picked from the tomography models at the bore-
hole locations and combined with the VP0-functions from the
well logs to determine Vhor,P and Vnmo,P. The interval veloci-
ties Vhor,P and Vnmo,P near the boreholes can also be obtained
from non-hyperbolic moveout inversion of reflection P-wave
data (Tsvankin, 2012; Wang and Tsvankin, 2013).

The interpolated models (minterp) and the borehole infor-
mation are used to assign the best-matched elastic property
(mf) for each facies (Singh et al., 2020b, 2021):

m f (i, j) := min
n=1...k

{minterp(i, j) − DT (n)|facies(i, j)}, (10)

where k is the total number of the parameter values in DT

(‘depth trends’) that corresponds to a particular facies (see
the spatial map in Fig. 10), and (i, j) indicate the spatial lo-
cation in the staggered grid. The term ‘facies(i, j)’ produces
an integer between 1 and N (N is the total number of fa-
cies), which identifies the facies present at the corresponding
grid point. Although the accuracy of this procedure would
increase if more well logs were available, even sparse prior
information improves the convergence of FWI. Because well
logs typically cover a limited depth range, it is beneficial to
apply facies constraints in the part of the section where bore-
hole data are available. Therefore, we use a rectangular mask
(marked in Fig. 10) that covers the area where we preserve
facies-based information. This mask acts as the weighting
factor Wm for the model-misfit term in equation (7). This fac-
tor is equal to unity inside the rectangle in Fig. 10 and de-
creases exponentially with distance away from that region.

The facies-based FWI reconstructs the model parameters
with higher resolution (Fig. 6e–h) than the unconstrained al-
gorithm (Fig. 6a–d). In particular, the issue with the insuffi-
cient sensitivity of the vertical-component data to Vhor,P and
VS0 is substantially mitigated. For example, the seal layer (the
high-velocity horizon above the reservoir) is properly recon-
structed in the VS0-field (Fig. 11). Also, the high-velocity arte-
facts around z = 2.5 km and x > 6 km are largely suppressed.

It should be emphasized that density, which is chal-
lenging to constrain from surface seismic data, is estimated

Figure 10 Image-guided interpolated models for (a) VP0, (b) VS0, and
(c) ρ obtained using borehole data at the two locations marked by the
vertical lines on plot (a). The rectangular mask on plot (a) marks the
area where we employ facies-based information.

with higher resolution compared to the unconstrained FWI
(Fig. 7b). For example, the horizon with a lower density at the
top of the plausible reservoir around z = 3.1 km is better fo-
cused, and the likely artefact around z = 2.35 km is almost
eliminated (Fig. 11).

The facies-based FWI reduces the objective function by
approximately 65%, which indicates a better data fit than
that achieved by the unconstrained FWI. Figure 12 compares
field seismograms with those computed for the models esti-
mated by the unconstrained and facies-based inversion. The
improvements achieved by the facies-based FWI in ampli-
tude matching are marked in red and those in phase match-
ing are marked in yellow. Evidently, in addition to increasing
parameter resolution, including the facies information reduces
the misfit between the observed and simulated data. From
Figures 6, 7, 11, and 12, it is clear that the employed litho-
logic constraints improve the quality of the inverted velocity
and density fields.
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Figure 11 Vertical profiles of VP0,VS0 and ρ at x = 8.2 km. The parameters obtained from the well logs are marked by the blue lines and the
initial models by the red lines. The inversion results are marked by the yellow lines (unconstrained FWI) and violet lines (facies-based FWI).

Figure 12 Quality of data matching for shot 58 at x ≈ 5 km (ver-
tical component). The recorded traces are interleaved between the
traces simulated using the results of the (a) unconstrained FWI, and
(b) facies-based FWI.

DISCUSS ION

Three-dimensional ocean-bottom surveys often provide su-
perior quality of velocity models and seismic images. Full-
waveform inversion (FWI) can be efficiently applied to OBS
records because it can operate with multi-component data and

properly handle reflection amplitudes. However, the signal-to-
noise ratio on the horizontal components is often too low for
their inclusion in FWI.

Here we inverted only the vertical component, which is
not sufficiently sensitive to some of the elastic parameters,
such as the shear-wave symmetry-direction velocity VS0 and
P-wave velocity Vhor,P for typical acquisition geometries. As a
result, the unconstrained FWI is unable to adequately recon-
struct VS0 and Vhor,P, which is also confirmed by the synthetic
tests performed by Singh et al. (2020b). It should be men-
tioned, however, that simultaneous inversion of the vertical
and horizontal components tends to make the objective func-
tion more multi-modal, which hinders the model-updating
procedure (Kamath and Tsvankin, 2016).

The proposed approach that incorporates prior facies in-
formation improves the inversion results and increases the
parameter resolution in the reservoir region. Borehole data
(usually well logs) serve as the primary source of geologic
information about the subsurface. The sparseness of the
borehole measurements and insufficient information about
the reservoir formation in this case study necessitates ap-
plication of image-guided interpolation with proper spatial
weighting.

The facies distribution is generally determined from the
correlations between different elastic and petrophysical prop-
erties at the borehole locations. In our study, we pick a total
of eight facies based on the major horizons in the migrated
image and on the available well tops. A more advanced facies
classification could include such properties as porosity, shale
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volume, and saturation. Although several machine-learning
models have been proposed to generate the facies distribution
from seismic images (Liu et al., 2020), a model trained on a
certain seismic section often becomes inadequate for different
geologic settings.

Previous studies that employ reflection tomography show
that a tilted TI model provides high-quality images at Volve
field (Wang and Tsvankin, 2013). Therefore, we honour the
symmetry-axis tilt in the modelling algorithm and continu-
ously update it during the inversion using the imaged struc-
tural dips. (Although the orientation of the symmetry axis is
not estimated by FWI, it should be beneficial for resolving the
other medium parameters to take the symmetry-axis tilt into
account.) In this case study, however, the tilt is relatively mild,
and its influence on the FWI results is modest.

Zhang and Alkhalifah (2020) show that their facies-
based FWI algorithm applied to the same line from a different
survey produces the VTI parameters in the reservoir region
with higher resolution compared to the unconstrained inver-
sion. Our facies-based FWI methodology for TTI media fur-
ther increases the resolution for all parameter fields both in-
side and outside the reservoir. Finally, our algorithm estimates
density, which is highly beneficial for both velocity inversion
and reservoir characterization.

CONCLUSIONS

We applied a modified version of a previously developed
facies-based full-waveform inversion (FWI) algorithm for
anisotropic media to ocean-bottom data from the North Sea.
The facies-based constraints obtained from two boreholes
mitigate the parameter trade-offs and increase the resolution
of the inverted parameters of tilted transversely isotropic
media, especially in the reservoir region. The spatial distri-
bution of the facies is built by image-guided interpolation
along the major horizons in the depth-migrated image. Then
the constraints are imposed at each grid point to find the
best-matched elastic properties for a given facies. Whereas
the facies-based FWI provides better estimates of all medium
parameters compared to the unconstrained inversion, the
increase in resolution is especially significant for the P-
wave velocity in the isotropy plane (Vhor,P) and the S-wave
symmetry-direction velocity (VS0). These improvements are
achieved without low-frequency data (0–2 Hz), which are
seldom available in field surveys.Our algorithm also produces
a well-resolved density model, which is a challenging task for
FWI of surface reflection data. This case study demonstrates

the effectiveness of properly employed geologic constraints in
elastic FWI for anisotropic media.
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APPENDIX A: STIFFNESS COEFF IC IENTS
FOR 2D TTI MEDIA

We consider wave propagation in the vertical symmetry plane
of a TTI (transversely isotropic with a tilted symmetry axis)
medium that contains the symmetry axis. The signatures of
P- and SV-waves in that plane are controlled by the P- and
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S-wave symmetry-direction velocities (VP0 and VS0), the P-
wave velocity in the isotropy plane (Vhor,P = VP0

√
1 + 2ε), the

velocity Vnmo,P = VP0
√
1 + 2δ, the tilt θ of the symmetry axis

with respect to the vertical, and the density (ρ).
The stiffness coefficients in the coordinate system for

which the symmetry axis points in the z-direction (i.e. VTI)
can be expressed through the velocities and density as follows:

c11 = ρV2
hor,P, (A1)

c13 = ρ

{√[
V2
P0 −V2

S0

][
V2

nmo −V2
S0

]−V2
S0

}
, (A2)

c33 = ρV2
P0, (A3)

c44 = ρV2
S0. (A4)

The two-dimensional equation of motion for P- and SV-
waves (equation 2) can be written in the vertical symmetry
plane of TTI media as:

ρ
∂vx

∂t
= ∂σxx

∂x
+ ∂σxz

∂z
+ fx,

ρ
∂vz

∂t
= ∂σzz

∂z
+ ∂σxz

∂x
+ fz,

∂σxx

∂t
= d11

∂vx

∂x
+ d13

∂vz

∂z
+ d15

(
∂vx

∂z
+ ∂vz

∂x

)
,

∂σzz

∂t
= d13

∂vx

∂x
+ d33

∂vz

∂z
+ d35

(
∂vx

∂z
+ ∂vz

∂x

)
,

∂σxz

∂t
= d15

∂vx

∂x
+ d35

∂vz

∂z
+ d55

(
∂vx

∂z
+ ∂vz

∂x

)
, (A5)

where v is the particle velocity and di jkl is the stiffness ten-
sor. To express the stiffnesses di jkl through those for the corre-
sponding VTImedium, the axis z has to be rotated by the angle
θ . In the two-index (Voigt) notation, the pertinent stiffnesses
dIJ are (e.g. Behera, 2017):

d11 = (c11 cos2 θ + c13 sin
2
θ ) cos2 θ + (c13 cos2 θ

+ c33 sin
2
θ ) sin2

θ + 4c44 cos2 θ sin2
θ, (A6)

d13 = c11 cos2 θ sin2
θ + c13(sin

4
θ + cos4 θ )

+ c33 cos2 θ sin2
θ − 4c44 cos2 θ sin2

θ, (A7)

d15 = (c13 − c11) cos3 θ sin θ + (c33 − c13) cos θ sin3
θ

+ 2c44 cos θ sin θ (cos2 θ − sin2
θ ), (A8)

d33 = (c11 sin
2
θ + c13 cos2 θ ) sin2

θ

+ (c33 cos2 θ + c13 sin
2
θ ) cos2 θ

+ 4c44 cos2 θ sin2
θ, (A9)

d35 = (c13 − c11) cos θ sin3
θ + (c33 − c13) cos3 θ sin θ

− 2c44 cos θ sin θ (cos2 θ − sin2
θ ), (A10)

d55 = c44(1 − 2 sin2
θ )2 + (c33 − c13) sin

2
θ cos2 θ

− (c13 − c11) sin
2
θ cos2 θ. (A11)

APPENDIX B: FWI GRADIENTS FOR 2D TTI
MEDIA

The gradient of the objective function (equation 1) for arbi-
trarily anisotropic media is given by (e.g. Li et al., 2017):

∂Ed

∂mn
= −

∑
i jkl

∂di jkl
∂mn

(∫ T

0

∂ui
∂xj

∂qk
∂xl

)
, (B1)

where in two-dimensional (2D) the indices i, j, k, l = 1, 2, T
is the total time of wave propagation, u and qqq are the forward-
and back-propagated displacement fields, respectively, and
the vector m includes the model parameters (in our case,
m1 = VP0,m2 = VS0,m3 = Vhor,P,m4 = Vnmo,P and m5 = ρ).

Kamath and Tsvankin (2016) derive essentially the same
expression (equation B1) for VTI media using the l2-norm
objective function. The only difference is that here the back-
propagated wavefield q is derived using equation (1); also, we
employ the stiffness tensor di jkl for TTI media.

The derivatives of the objective function (equation B1)
with respect to the TTI parameters are:
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The gradient for density can be obtained by applying the
chain rule to equation (B1):
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Here v and q are the forward- and back-propagated
particle-velocity fields, respectively. In equations (B2–B6),
di jkl,m is the derivative of di jkl (equations A6–A11) with re-
spect to the model parameter m. For example, d11,VP0 is given
by

d11,VP0 = ∂d11
∂VP0

= ρVP0{2 sin2
θ (q cos2 θ + 2 sin2

θ )}, (B7)

where

q =
√
V2

nmo,P −V2
S0

V2
P0 −V2
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. (B8)
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