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ABSTRACT

Transversely isotropic (TI) media with the frequency-inde-
pendent quality-factor elements (also called “constant-Q”
transverse isotropy) are often used to describe attenuation
anisotropy in sedimentary rocks. The attenuation coefficients
in constant-Q TI models can be conveniently defined in terms
of the Thomsen-type attenuation-anisotropy parameters.
Recent research indicates that not all those parameters for
such constant-Q media are frequency-independent. Here,
we present concise analytic formulas for the Thomsen-type
attenuation parameters for Kjartansson’s constant-Q TI model
and show that one of them (6y) varies with frequency.
The analytic expression for 6, helps evaluate the frequency
dependence of the normalized attenuation coefficients of P-
and SV-waves by introducing the newly defined “dispersion
factors.” These factors are frequency-independent and ex-
pressed in terms of the Thomsen and Thomsen-type param-
eters defined at a specified reference frequency. Viscoacoustic
constant-Q transverse isotropy is also discussed as a special
case, for which the elliptical condition and simplified expres-
sions for the parameters 6 and 6y are derived. Our results
show that, in the presence of significant absorption, the at-
tenuation coefficients of the constant-Q model vary with
frequency for oblique propagation with respect to the sym-
metry axis. This variation needs to be taken into account when
applying the spectral-ratio method and other attenuation-
analysis techniques.

INTRODUCTION

attenuation in rocks and is widely used in seismic attenuation analy-
sis (Barton, 2006). Classic models of this type include the nearly
constant-Q model by Kolsky (1956) and the exactly constant-Q
model by Kjartansson (1979). For isotropic media, the Kjartansson
model produces the constant-Q factor for all frequencies, whereas
the Kolsky model leads to nearly constant Q-values. The complex
moduli for the Kolsky model represent the first-order Maclaurin
series expansion with respect to 1/Q of the corresponding moduli
for the Kjartansson model (Hao and Greenhalgh, 2021).

As an extension of nonattenuative transverse isotropy, the con-
stant-Q transversely isotropic (TI) model can be used to process
seismic attenuation data for most sedimentary rocks, such as shale
formations. The constant-Q assumption facilitates the estimation of
the quality factor (e.g., Zhang and Ulrych, 2002; Li et al., 2020) and
attenuation anisotropy (e.g., Behura and Tsvankin, 2009a; Shekar
and Tsvankin, 2011, 2012; Behura et al., 2012). Ultrasonic mea-
surements for rock samples demonstrate that attenuation anisotropy
generally is stronger than velocity anisotropy (Best et al., 2007; Zhu
et al., 2007; Zhubayev et al., 2016).

Theoretical studies for attenuative anisotropic media include analy-
sis of plane-wave velocities and attenuation (Cerveny and PSencik,
2005a, 2005b; Zhu and Tsvankin, 2006; Behura and Tsvankin,
2009c), reflection/transmission coefficients (Carcione, 1997a, 1997b;
Behura and Tsvankin, 2009b), point-source radiation (Vavrycuk,
2007a; Shekar and Tsvankin, 2014), and ray-theoretical properties
(Vavrycuk, 2007b, 2008; Cerven)’l and PSencik, 2009).

Velocity anisotropy for TI media can be efficiently described by
the Thomsen anisotropy parameters (Thomsen, 1986; Tsvankin,
2001). Likewise, attenuation anisotropy for TI media is convenient
to study using the Thomsen-type notation introduced by Zhu and
Tsvankin (2006). The combination of the velocity- and attenuation-
related Thomsen-type parameters (Zhu and Tsvankin, 2006) com-
pletely define the complex stiffness matrix at a specified frequency

The frequency-independent quality factor (called constant-Q for
brevity) provides a useful phenomenological description of seismic

for a general attenuative TI model with a vertical symmetry axis
(VTI medium). The generic Thomsen velocity parameters depend
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on the real parts of the stiffness coefficients (c;;), whereas the
Thomsen-type attenuation parameters are defined by the real and
imaginary parts of ¢;;. Hao et al. (2022) find that some Thom-
sen-type parameters in constant-Q VTI media are frequency depen-
dent. This phenomenon is not entirely surprising because all
stiffness coefficients of constant-Q TI media, which are involved
in the definition of the Thomsen-type parameters, are functions
of frequency. Investigating the frequency variations of these param-
eters can facilitate the understanding of such key signatures in TI
media as velocities, traveltimes, attenuation coefficients, and polari-
zation vectors. However, to our knowledge, there are no analytic
expressions for the frequency-dependent Thomsen-type attenuation
parameters in constant-Q attenuative VTI media.

The main goal of this paper is to develop analytic expressions
for the Thomsen-type parameters and the normalized attenuation
coefficients for Kjartansson’s constant-Q VTI model. A set of the
reference Thomsen and Thomsen-type parameters is defined at a
specified frequency and used to obtain those parameters for the
entire frequency range. We also present a formula for the fre-
quency-dependent anellipticity and define the condition for ellipti-
cal anisotropy in constant-Q TI media. The newly proposed
formulas for the Thomsen-type parameters allow us to study the
normalized plane-wave attenuation coefficients in constant-Q me-
dia with weak attenuation anisotropy and define the dispersion fac-
tors for P- and SV-waves. Numerical examples are used to analyze
the accuracy of the obtained expressions for the Thomsen-type
parameters, the validity of the elliptical condition, and the frequency
dependence of the normalized attenuation coefficients.

THOMSEN-TYPE PARAMETERS OF
CONSTANT-Q VTI MEDIA

Constant-Q VTT model

Referring to Zhu and Tsvankin (2006) and Carcione (2014), the
complex stiffness (or modulus) matrix M for viscoelastic VTI
media is given by:

M, M -2M¢ Mjz; 0 0 0
M, -2Mgq M;;, M; 0O 0 0
M My My My O 0 0
0 0 0 Mss 0 0 |
0 0 0 0 Ms O
0 0 0 0 0 Mg

6]

where  M;; = Mf, —isgn(f)M]; denote the complex stiffness
coefficients for the frequency f and the minus sign in front of
isgn(f)M/; follows from the definition of the Fourier transform in
Cerveny and PSencik (2009) and Hao and Greenhalgh (2021). The
real and imaginary parts of M;; generally are frequency dependent.

For the Kjartansson’s model (also called the constant-Q model),
the nonzero independent elements in equation 1 are expressed as
(Kjartansson, 1979)

_ M (L py
Mij_COS(”?’ij) <_IE) ’ @

with

1 1
Yij = ;tan" (Qz]) 3)

where Q;; =M ,’-j- /M! j» o is the reference frequency, and M ﬁv denote
the real parts of M;; at fo: Mf_?/- = Re(M;)|;_y,- The reference fre-
quency is set equal to the predominant frequency of the source
wavelet (Hao and Greenhalgh, 2021), which is consistent with
the choice of f;, in Bai and Tsvankin (2016), who perform con-
stant-Q anisotropic wavefield modeling using the generalized stan-
dard linear solid model. By design, the quality-factor elements Q;;
for the Kjartansson model are independent of frequency. As follows
from equation 2, the complex stiffness coefficients M;; for a given
frequency can be expressed in terms of M,-Rj and Q;;.

Thomsen-type parameterization

Attenuative VTI media can be described by the Thomsen (1986)
velocity parameters and the Thomsen-type attenuation parameters
(Zhu and Tsvankin, 2006; Tsvankin and Grechka, 2011). Note that
this notation remains entirely valid in TI media with a tilted symmetry
axis (TTI). A complete description of TTI models also requires speci-
fying two angles responsible for the symmetry-axis orientation.

The Thomsen (1986) velocity parameters (see Tsvankin, 2001) are
defined in the nonattenuative reference VTI medium. Their defini-
tions in equations 4-8 below follow Tsvankin and Grechka (2011).

The parameter Vp is the vertical velocity of P-waves:

MR
Vpg =/ —2, 4)
\ »

where p denotes density.
The parameter Vg is the vertical velocity of S-waves:

MR
Vo =4 —2. )
P

The parameter € is approximately equal to the fractional differ-
ence between the horizontal and vertical velocities of P-waves:

c= Mllel — M§3 (6)
2ME,

The parameter é determines the second derivative of the P-wave
phase velocity at vertical incidence and is given by:

(MFy + M&)? — (M5, -

Ms5)?
2M§3(M§3_M§5) .

0

)

The parameter y is approximately equal to the fractional differ-
ence between the horizontal and vertical velocities of SH-waves:

Y= Mgﬁ - M§5 (8)
2M§5

The Thomsen-type attenuation parameters (Zhu and Tsvankin,
2006) can be used to define the normalized phase attenuation
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coefficient A = |k;|/|kg| for P-, SV-, and SH-waves, which is
generally supposed to be frequency-independent in constant-Q
models. For brevity, hereafter A is called simply the attenuation
coefficient. For more details about the coefficient .4, see the section
“Plane-wave attenuation in constant-Q VTI media” below.

The definitions of the Thomsen-type attenuation parameters, which
are given by equations 9—13 below, follow Zhu and Tsvankin (2006).

The parameter Ap, is the vertical attenuation coefficient of
P-waves:

1 1
= l+——1| ~r—.
Apy = 033 + o 20m 9

The parameter Ag, is the vertical attenuation coefficient of S-
waves:

1

Ago =0 l+—-1| ~ .
S0 55 0L 2055

(10)

The parameter ¢ is close to the fractional difference between the
horizontal and vertical attenuation coefficients of P-waves:

cg=—2 = 1)

The parameter 6, controls the second derivative of the P-wave
attenuation coefficient at the vertical incidence and is expressed as:

033—0ss 1R (MF+ME) 033013 1yR (1R R
0 M55 Mll3 M?S + 255, BEMYG (MY + M55)

M35 (M35 = M55)

5QE

12)

The parameter y, is close to the fractional difference between
the normalized horizontal and vertical attenuation coefficients of
SH-waves:

Oss — Oss
=== 13
Te Os6 (13)

ANALYTIC DESCRIPTION OF THOMSEN-TYPE
PARAMETERS

In this section, we represent the Thomsen velocity parameters
and Thomsen-type attenuation parameters in terms of their refer-

Veol—r,» Vo = Vsoly—r,»
Apy = APO‘_f:foa Aso = ASO|f:f0’

€ = € r—f,» and SQ =y #=f,- These parameters are used to
find the real parts of the reference stiffness coefficients (A;If;),
the quality-factor elements Q;; (see Appendix A), and the fre-
quency-dependent stiffness matrix M.

According to equations 4—7 and 12, the Thomsen-type parame-
ters involve the coefficients Mfel, where ij = 11, 13, 33, 55, and 66.
Using equations 2 and 3, M are approximately expressed as:

ence values defined at f = f: ‘71)0 =

€=elpy, =0,

f
14
£

where we use the approximation tan~'(Qp')~ Q;' because
typically Q;; > 1.

Substitution of equation 14 into equations 4—7 and 12 allows us
to derive approximate expressions for the frequency-dependent
Thomsen and Thomsen-type parameters, which are discussed in
the following two subsections.

- 2
R ~ R —21n2
M,.jNM,-j(lJr;Q,. ’f' 2Q In

Velocity parameters

The second-order approximations for the Thomsen velocity
parameters with respect to In |f/f,| are given by

~ 1
o = Vo105 v | g0t ). a9
~ 1 1
Vso = Vso(1 +;Q5_51 ln’%. “‘ﬁQs_sz In? %D (16)
.1 - - f
=é+—(1+26)03 1—’
€=¢€ 7[( €)03; €9 nfo
1 ~
+;(1 +26) Q33 €5 In? Ak 17)
1 ,
5:5+—Q3_316Q1nf‘ FoRcm| L ay)
™ fo
.1 . N
V:}"f‘;(l"‘z?’)Qs_slVanfio’
1
+;(1 +27) Q53 75 In? -~ (19)

where the P- and S-wave inverse vertical quality factors Q33 and
Qss (respectively) are:

2A
o= 2P0 20
03l =1 (20)
_ 2Aso
— 2780 21
0% =15 1)

The coefficient {, in equation 18 is defined as:

Lo =do(1=go)*+di(1 —gQ)5Q+d252Qs (22)
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with
033
== 23
27 0ss @)
_ 2 Y S N 2
gy =909+ (1 +20) = (1420)9+(14+0)g7] 5,

(1-9°(x—9)x* ’

29[l 426+ — (2464 2)9+ &
g, =2 x(){ _(g)){2 N9+T1 o5

dy, = , (26)

Vio
Vs e
J Vo
7 =1/(l-g1+25-). 28)

In equations 15-19, the first-order terms with respect to In |f/ f|
are scaled by Q3] or Qsd, whereas the second-order terms are
scaled by Q37 or Q32 Because Q33 and Qss typically are much
greater than unity, the frequency dependence of the velocity param-
eters is mostly determined by the first-order terms. Equations 15-19
indicate that (1) Vp, and Vg, always monotonically increase with
frequency and (2) €, 8, and y also monotonically increase with f, if
€g >0, SQ > 0, and 7y, > 0, respectively. Overall, the frequency
dependence of Vpy, Vg, €, 8, and y for realistic values of Q33

150t

100t

QSS

50t

Figure 1. Vertical quality factors Q33 and Qss in attenuative VTI
rocks. The black dots are the data from Table 3 of Best et al. (2007);
go = 033/ 0ss.

and QOss (Q33 > 1 and Qs5 > 1) remains weak, as illustrated by
the numerical examples below.

Note that phase and group velocities in strongly attenuative TI
media are influenced by attenuation and do not represent the same
functions of the Thomsen parameters as in purely elastic models
(Tsvankin, 2001; Zhu and Tsvankin, 2006). For sedimentary forma-
tions, g and g vary within a limited range. In particular, according
to Best et al. (2007), for relatively shallow sedimentary rocks,
0.5 <gp <3 (Figure 1).

Using equations 17 and 18 for € and 4, the anellipticity parameter
n (Alkhalifah and Tsvankin, 1995) can be approximately obtained
as:

€—0 1 1 f 1 _ f
=——= — In|——| 4+ — 2In?| ~—
T=112s ’70+H’7]Q33 ! f0‘+ﬂ2’72Q33 Ak
(29)
where Q33 is given by equation 20, and
-6
=, 30
T 2% G0
1+2¢ P ~
=———=(14+20)ep — 0|, 31
m (1+25)2[( )éo — o] (€20
1+2¢ r| ry
= ~|ro+ =+ = | (32)
s T 28 (128
with
r():é:QQ’ (33)
ry = _{Q_2€Q5Q’ (34)
ry = 2585. (35)

The parameter 5 controls (along with the zero-dip normal-moveout
velocity) all P-wave time-domain signatures for laterally homo-
geneous VTI media above a horizontal or dipping target reflector
(Alkhalifah and Tsvankin, 1995; Tsvankin, 2001).

Attenuation parameters

The following Thomsen-type attenuation parameters are expressed
directly through the elements Q;; and, therefore, are frequency-inde-
pendent in constant-Q VTI media:

Apy = Apo, (36)

Ago = Asgo, (37)
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Yo =7o- (39)

The attenuation parameter &y, however, also depends on the
coefficients Mg- (equation 12), which vary with frequency. The
second-order approximation for §, with respect to In |f/f| is:

2 f
- S

~ 2
5Q:5Q+;Q3—31§Q In| - + = 0370 In? Ak (40)
0

f‘
fo
where { is defined in equation 22 and

fQ = So(l - gQ)3 + Sl(l - gQ)ZSQ + 32(1 - gQ)ng + S353Q'
4D

The explicit expressions for the coefficients s; are given in
Appendix B.

Because for Q33 > 1 the influence of the second-order term in
equation 40 is insignificant, the dependence of 6, on frequency is
largely controlled by the coefficient {,. For {, > 0, 6, monoton-
ically increases with frequency. As follows from equations 22 and
24-28, { is a function of g (equation 27), go (equation 23), 5,
and Jy.

Numerical analysis

Here, we analyze the above expressions for the Thomsen-
type parameters numerically. The reference frequency is set as
fo = 40 Hz and the frequency range as [1,200] Hz for all examples
below.

First, we test the accuracy of equations 15 and 16 for the vertical
velocities and their first-order versions (i.e., those without the
second-order term with respect to In |f/fo|). As demonstrated in
Figure 2, the first-order approximations for Vp, and Vg, are suffi-
ciently accurate even for strong attenuation in a wide frequency
range. Overall, the frequency dependence of the vertical velocities
is almost negligible, except for very low frequencies.

Figures 3, 4, and 5 show that the first-order versions of equa-
tions 17-19 can accurately describe the variations of the anisotropy
parameters €, 6, and y, respectively, with frequency. Figures 3-5
also confirm that the reference parameters €, SQ, and 7, govern
the frequency dependence of €, 8, and y, respectively. For example,
if €9 > 0, € increases with frequency. As is the case for Vp, and
Vso, the anisotropy coefficients vary with frequency primarily in
the low-frequency range.

Next, we investigate the only frequency-dependent attenuation-
anisotropy parameter 6, by comparing the exact equation for
6 with its first- and second-order approximations. The first-order

equation accurately models d, in a wide frequency range, whereas
the contribution of the second-order term is practically negligible
(Figure 6).

As mentioned above, the coefficient { in equation 40 is largely
responsible for the frequency variation of 6, for a specified value of
Q33. Equation 22 shows that {, is a function of the parameters
9= "V3/Vh 99 = 051/031, 6, and &,. Using the results from
Figure 1, we restrict gy to the range 0.5 < g, < 3. Figures 7
and 8 show that the smallest absolute value of {, corresponds to
9o = 1, and |{p| increases with the deviation of g, from unity.
As a result, the parameter 5, is almost independent of frequency
for go = 1 (Figure 9). Overall, the frequency dependence of J,
becomes noticeable for large |g, — 1| (e.g., go = 3; Figure 9),

a)soat — b)isap i
3.02 _— 1.52 _—

@ 3.00 e @ 1.50 e

Eo0s} / E 448t /

2296}/ Exact \é 1.46 / Exact

S v, 1st X [ e 1st
2.94 Ef g 1.44 ;‘] o
2.92 ff 1.42

0 50 100 150 200 0 50 100 150 200
f (Hz) f(Hz)

Figure 2. Frequency-dependent vertical velocities (a) Vpy and
(b) V. “Exact” in the legend refers to the exact values, whereas
“Ist” and “2nd” denote the first- and second-order approximations

with respect to In |f/f,|, respectively. On plot (a), Vpy = 3.0 km/s
and Q33 =40 (Jip() = 0.0125); on plot (b), VSO =1.5 km/s and
Q55 = 20 (Agy = 0.025).

a)o.315y, b -
) | et doat)
o3tof, o _—
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o 0305 \ w020 / _
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S~ 028/ -
0.295 — |
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0 50 100 150 200 0 50 100 150 200
f(H) f (Hz)

Figure 3. Variation of the Thomsen parameter ¢ with frequency for
(a) model 1 and (b) model 2 from Table 1. The legend is the same as
in Figure 2.

a) b)
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Figure 4. Same as Figure 3 but for the parameter 6.

Table 1. Medium parameters for two constant-Q VTI models at the reference frequency f, = 40 Hz.

Model ‘7P0 ‘750 € 5 Y «aPO(QSS) ASO(QSS) 5Q 09 }7Q
3.0 1.5 0.3 —0.1 0.1 0.0125 (40) 0.0167 (30) -0.3 -1.91 0.5
2 3.0 1.5 0.3 -0.1 0.2 0.0250 (20) 0.0333 (15) 0.3 0.98 -0.2
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but it is also influenced by the parameters 5 and 5Q. For the most
common values of g, considered here, and relatively strong attenu-
ation, the parameter 6, significantly varies with f, especially for low
frequencies.

VISCOACOUSTIC CONSTANT-Q
TRANSVERSE ISOTROPY

Simplified parameter expressions

Next, we consider the so-called “viscoacoustic” constant-Q
media described by the Thomsen-type notation. The acoustic
approximation is implemented by setting Vg, = Agy = 0 in equa-
tions 18, 29, and 40 (Hao and Alkhalifah, 2017, 2019). The param-
eters 6, 17, and 6 then reduce to:

: b) 220

: 0.215

‘ 0.210

0.090 > 0205

oosst) e st 0.200

0.080 we 2nd 0.195

0.075 0.190

50 100 150 200 0 50 100 150 200
f (Hz) f (Hz)
Figure 5. Same as Figure 3 but for the parameter y.
a)-16
1.7
-1.8
o-19
<20
-2.1
22
-23
0 50 100 150 200 0 50 100 150 200
f (Hz) f (Hz)

Figure 6. Frequency-dependent Thomsen-type attenuation param-
eter 6 for (a) model 1 and (b) model 2 from Table 1. The legend is
the same as in Figure 2.
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Figure 7. Contour plots of the coefficient {,, as a function of 5
and 6y. The parameter g= V2/V3 =0.3. The parameter

= Q55 /Q33 is set as (a) gop =3, (b) gp =2, (¢) go = 1, and
(d) go =0.5.
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s Lo | f 5 | f
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Setting 7 (equation 43) to zero, which requires 7y =7, = 0 (see
equations 30 and 31), we obtain the elliptical conditions:

a) b) s
15 6
10 4
5 2
o o
N oo
-5 -2
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Figure 8. Variation of the coefficient {, with g, for different values

ofg (a) 5=-02 and 5Q=—

0.6, (b) 6=—-0.2 and 6Q—O

©) 5=0.2 and 5Q = —0.4, and (d) 5=0.2 and 5Q = 0.98.
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Figure 9. Variation of the attenuation parameter 6, with frequency
for different gy and g = 0.3. The parameters é and J,, are the same
as in Figure 8.
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E=9. (45)
i 5o
ép= . 46
T 1125 (46)

Equations 45 and 46 make the parameters of viscoacoustic constant-
0O media satisfy the same conditions at all frequencies:

€=35. (47)
5
0
0T T2 “43)

which follows from equations 17, 31, 42, and 44. Equation 47 im-
plies that the elliptical conditions at the reference frequency ensure
that 7 = 0 at all frequencies.

For viscoelastic constant-Q media discussed earlier, equation 47
remains approximately valid (i.e., the model is elliptical at
all frequencies), if equations 45 and 46 are satisfied (see equa-
tions 29-31).

Numerical validation

Here, we verify the elliptical conditions (equations 45 and 46) by
computing the anellipticity parameter 1. The exact # is calculated
using equations 6, 7, 11, and 12 along with equations 2 and 3 under
the acoustic approximation (Vo = 0 and Qgsl = 0). The first-order
approximation for # is given by equation 43 without the second-or-
der term with respect to In [f/fy].

Figure 10 shows that for models that satisfy equations 45 and 46
the exact anellipticity parameter is negligibly small for all frequen-
cies (on the order of 1077 for both models), which confirms that the
elliptical conditions at the reference frequency lead to equation 47.
In addition, our testing shows that the difference between the left
and right sides of equation 48 is negligible, if equations 45 and 46
are satisfied.

PLANE-WAVE ATTENUATION IN CONSTANT-Q
VTI MEDIA

In this section, we apply the obtained expressions for the Thom-
sen-type parameters to study the normalized plane-wave attenuation
coefficients in constant-Q VTI media. The normalized phase attenu-
ation coefficient is defined as A= |k;|/|kg|, where k; and k;
denote the real and imaginary parts of the complex wave vector
(Zhu and Tsvankin, 2006). The words “phase” and “normalized”
are omitted below for brevity. The angle between ky and k; is called
the “inhomogeneity” angle, which is not defined in plane-wave
propagation (i.e., it is a free parameter that can vary within certain
bounds). The coefficient 4 corresponding to kg||k; is approxi-
mately equal to the group attenuation coefficient, which can be es-
timated from seismic data, for a wide range of inhomogeneity
angles (Behura and Tsvankin, 2009c; Tsvankin and Grechka,
2011).

Attenuation coefficients

The approximate attenuation coefficients of plane waves in vis-
coelastic constant-Q VTI media are given by (Zhu and Tsvankin,
2006; Tsvankin and Grechka, 2011):

Ap = Apg(1 + 8¢ sin” § cos” 0 + g sin* 6), (49)

Agy = Ago(1 + o sin? @ cos? 0), (50)

ASH :ASO(] +}’Q sin26), (51)

where the subscripts P, SV, and SH denote the wave types and € is
the phase angle measured from the vertical. The quantity o, in
equation 50 is defined as (Zhu and Tsvankin, 2006):

Vi, (0 V.0
c _2ﬂ<£—1> €—8) + 203 (e, —5,). (52
¢ V3, \ Q33 ( ) V§0Q33(Q o) (52

Equations 49-51 are derived under the assumption of weak attenu-
ation and weak anisotropy (in both velocity and attenuation). Note that
the effective quality factor, assumed to be frequency-independent in
constant-Q TI media, is proportional to the inverse of the attenuation
coefficient (Zhu and Tsvankin, 2006).

Substitution of the Thomsen parameters from equations 15-19 and
3640 into equations 49-52 allows us to separate the frequency-de-
pendent parts of the attenuation coefficients. The approximate P-
wave attenuation coefficient then becomes (only the linear term in
In|f/fo| is retained):

Ap = ./le0<1 +5Qsin26’00320+€Q sin* @ + Rp In ]{ )

fo
(53)

where Rp controls the derivative of Ap with respect to In |f/fl,
1~ . 5
Rp = —.Apo {Q N (29), (54)
/4
and { is defined in equation 22.
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Figure 10. Variation of the anellipticity parameter n with frequency
under the elliptical conditions (equations 45 and 46). The P-wave
quality factor and reference vertical velocity at f, = 40 Hz are Q33 =
40 and Vpy = 3 km/s. The parameters é and é,, are (a) € = 0.3 and
€p = —0.33 and (b) ¢ = 0.2 and €, = 0.4. The legend is the same as
in Figure 2.



Downloaded 08/04/23 to 73.95.145.194. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms
DOI:10.1190/ge02022-0575.1

C130 Hao and Tsvankin

For SV-waves,

Agy = ,Zts()(l + 6¢ sin® @ cos? 6 + Rgy In %D (55)
0
with
2/1 -1 .
6o=="(—=1)(=6)+—(Ex—5y). (56)
¢ g(gQ )( ) ggQ(Q 2
1~ I winl
RSV :_ASO O'Q s (29), (57)
T
a) o b) s
5 4 e
@4 g3 722‘
< 3 <
<, & 2
1 1
0 0

c) 6 d) s
— go=3
5 4 — go=2
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Figure 11. Variation of the P-wave dispersion factor Rp (equation 54)
with the phase angle for different g,,. The reference parameters defined

at fo = 40 Hz are Vpy = 3.0 km/s, g = 0.3, = 0.2, .leo =0.0125
(corresponding to Q33 = 40), and €y = —0.1: (a) 5=0.1 and
6p=-02, () 6=0.1 and 5, =02, (c) 6=-0.1 and
69 =—0.2, and (d) 6 = —0.1 and 6, = 0.2.
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Figure 12. Variation of the SV-wave dispersion factor Rgy (equa-
tion 57) with the phase angle for different g,. The reference param-
eters defined at f, = 40 Hz are Vpy = 3.0 km/s, g = 0.3, € = 0.2,
Asp = 0.0125 (corresponding to Qss = 40), €y = —0.1. The
parameters 5 and 5Q are the same as in Figure 11.

2(1 — - -
o =2 gngg) (= 00)(E— )~ b
(14 8dy) - 22, (58)
990

where g and g, are given by equations 27 and 23, respectively. The
factor Rgy controls the derivative of Agy with respect to In |f/fo|.

The terms Apy Rp and Agy Rgy define the rate of the P- and
SV-wave attenuation-coefficient change (increase or decrease) with
respect to In |f/fo|. The larger Rp and Rgy are, the stronger is the
dispersion (frequency dependence) of Ap and Agy. Therefore, Rp
and Rgy can be called the P- and SV-wave “dispersion factors,” re-
spectively.

The SH-wave attenuation coefficient (equation 51) is indepen-
dent of frequency, with y, = yy:

Agy = Ago(1 474 sin? 6). (59)

Numerical dispersion analysis

Here, we evaluate the frequency dependence of the attenuation
coefficients of P- and SV-waves, starting with the dispersion factors
Rp and Rgy (equations 54 and 57). As before, we restrict g, to the
realistic range 0.5 < gp < 3 (Figure 1). Figures 11 and 12 show that
go = 1 yields the smallest values of Rp and Rgy; the dispersion
factors and the magnitude of their variation with angle increase with
the deviation of g, from unity.

Next, we use the medium parameters from Figures 11d and 12d
to calculate the exact attenuation coefficients for P- and SV-waves
(respectively) at three frequencies. For the reference frequency
fo =40 Hz, the term In|f/f,| in equations 54 and 57 is close
to—latf=15Hzand 1 at f = 109 Hz. In agreement with equa-
tions 53 and 55, the variation of Ap with In |f/f,| between 15 and
40 Hz (and 40 and 109 Hz) is approximately proportional to Rp, and
the corresponding variation of Agy is approximately proportional
to Rgy.

Figures 13 and 14 show that the frequency dependence of the P-
and SV-wave attenuation coefficients Ap and Agy is generally mild.

a) 0.0135 s b) 0.0130
X 13 — f=40 Hz
0.0130 =109 Hz 0.0125
< 0.0125} <
.0121
0.0120 0.0120
0.0115 0.0115

0 20 40 60 80

) d)
0.0130
— f=15Hz 00130 — f=15Hz
— f=40 Hz — =40 Hz
0.0125 {— 109 12 0.0125 [— 1109 Hz
o N
< 0.0120 < 0.0120
0.0115 0.0115
0 20 40 60 80 0 20 40 60 80
0(°) 0(°)

Figure 13. Variation of the P-wave attenuation coefficient with the
phase angle at different frequencies. The medium parameters are the
same as in Figure 11d: (a) go =3, (b) gp =2, (¢) gp = 1, and
(d) go =0.5.
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However, it may become noticeable for propagation angles close to
45°, as illustrated in Figures 15 and 16. Here, Ap and Agy exhibit a
more significant variation with frequency for strongly attenuative
media (Q33 = Oss =20) when g, >2 (for P-waves) and
go < 0.5 (for SV-waves).

DISCUSSION

Our analytic approximations for the Thomsen-type parameters of
constant-Q TI media provide an explicit relationship between these
parameters and frequency. As a consequence, the frequency
dependence of the attenuation coefficients can be conveniently stud-

a) b)o.mzs ~ P
o.012 0.0120f
0.0115
& oon 30.0110
0.010 — s X 0.0105 sk
' — 1=40 Hz 0.0100  raone
0.009 =109 Hz 0.0095 1109 Hz
0 20 40 60 80 0 20 40 60 80
0(°) 0()
) ootes-. _d
0.0130
0.0120
0.0125
oo % 0.0120
< 0.0110 <O e
0.0105 0.0115 — raohz
0.0110 =109 Hz
0.0100
0 20 40 60 80

Figure 14. Variation of the SV-wave attenuation coefficient with
the phase angle at different frequencies. The medium parameters
are the same as in Figure 12d: (a) gop =3, (b) gp =2,
(©) go = 1, and (d) go = 0.5.
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Figure 15. Variation of the P-wave attenuation coefficient with fre-
quency at 6 = 45° for different g,. Except for Apj, the medium
parameters are the same as in Figures 11d and 13. On plot (a),

Apy = 0.0125  (corresponding to Q33 =40); on plot (b),
Apy = 0.025 (corresponding to Q33 = 20).

a) b)
0.014 gos — got 0.024 g — gt
0.013 — 02 — geel 0.022 — 92— gyl
70012 z
< 0.011 ] ——
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Figure 16. Variation of the SV-wave attenuation coefficient with
frequency at 6 = 45° for different g,. Except for Ag, the medium
parameters are the same as in Figures 12d and 14. On plot (a),
jlso =0.0125 (corresponding to Qss =40); on plot (b),
-’Z‘so = 0.025 (corresponding to Qss = 20).

ied for the entire range of propagation angles. Our analysis shows
that the P- and SV-wave attenuation coefficients and quality factors
for constant-Q media do depend on frequency, although that
dependence may not be significant for weak attenuation (see equa-
tions 53 and 55). Note that the proposed formulas for the attenuation
coefficients remain entirely valid for TTI media, if the phase angle &
is defined with respect to the symmetry axis.

In addition, the obtained approximate Thomsen-type parameters
could be used to derive other useful formulas for constant-Q TI me-
dia. For example, the substitution of these approximations into the
linearized reflection coefficients for general attenuative TI media
(Behura and Tsvankin, 2009b) should yield the corresponding ex-
pressions for constant-Q TI models.

Because our parameter approximations are derived using a series
expansion with respect to In |w/wg| (or In|f/fol), their accuracy
decreases as w deviates from the reference angular frequency @,
which has to be taken into account for strongly attenuative media.

CONCLUSIONS

We have obtained concise analytic expressions for the Thomsen-
type parameters of constant-Q TI media. All Thomsen velocity
parameters (Vpy, Vg, €, 6, and y) are frequency dependent, with
the reference attenuation parameters Ap, (proportional to 1/Qs3)
and Ag, (proportional to 1/Qss) controlling the dispersion (fre-
quency variation) of the vertical velocities Vp, and Vg, respec-
tively. The reference attenuation parameters €Q, SQ, and 7,
govern the variation of the anisotropy parameters ¢, J, and y with
frequency. However, the frequency dependence of all Thomsen
velocity parameters is weak in a wide frequency range, even for
strong attenuation. In viscoacoustic constant-Q TI media, the ellip-
tical conditions at the reference frequency ensure that the anellip-
ticity parameter ; vanishes for all frequencies.

Despite the fact that all Q;; elements in constant-Q TI media are
frequency independent, one of the Thomsen-type attenuation
parameters (5) does vary with frequency. The frequency depend-
ence of §, is controlled by the newly defined coefficient {, and can
be substantial when {, has a large magnitude. As a result, the fre-
quency variation of the P- and SV-wave attenuation coefficients
may be nonnegligible at oblique propagation angles with the sym-
metry axis. That variation is strongly dependent on the ratio of the
vertical quality factors go = Q33/Qss. Both attenuation coefficients
are insensitive to frequency for g, = 1, whereas their frequency
dependence is most substantial for g, >3 (for P-waves) and
go < 0.5 (for SV-waves). In contrast, the SH-wave attenuation co-
efficient in constant-Q TI media is frequency-independent.

The constant-Q assumption is often made in attenuation analysis
because the effective attenuation coefficients estimated from seis-
mic data (e.g., using the spectral-ratio method) become linear func-
tions of frequency. However, our results show that this linear
dependence may not hold for constant-Q TI models, which can
cause errors in the inversion for the attenuation parameters.
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APPENDIX A

COMPLEX STIFFNESS COEFFICIENTS EX-
PRESSED IN TERMS OF THE THOMSEN-TYPE
PARAMETERS

The stiffness coefficients for the constant-Q attenuative VTI
model (equations 1-3) can be found at the reference frequency
as Mijlp_s, = ME(1—i/Q; i) RUsing the parameter definitions in
equations 4-12, we express M;; and Q;; in terms of the reference
Thomsen-type parameters as follows (Tsvankin, 1997; Zhu and

Tsvankin, 2006; Tsvankin and Grechka, 2011):

M§3 ZPV%’O» (A-1)
MSs = pV3, (A-2)
MFy = pVio(1 +26), (A-3)
Mgs = pVio(1 +27), (A-4)

W% = =V + py (Vo = Vig)[(1 +28) Vg — Vi),

(A-5)
24
—1 PO
1= (A-6)
33 1—./4%0
24
—1 SO
= o (A-7)
R
01l = 05 (1 +¢ép), (A-8)
O = 055 (1 +70), (A-9)

Hao and Tsvankin

01 = 033 (1 +bof1 + f2) — Q52 fo. (A-10)
with
0t s o
U= R (R, Ry 41D
13(Mi3 + Mss)
VIR (IR, & NR)2
£ s5(M13 + M33) (A-12)

B 21‘;11163(]‘;111?3 + M?s)(Mgs - M§5) .

APPENDIX B
EXPLICIT EXPRESSIONS FOR Sy

Here, we provide explicit expressions for the coefficients s, in
equation 41.
The coefficient s, is given by:

g(1=g+x)*(ho+hig+ hog® + hyg® + hyg* + hsg)

S0 = ,
‘ (1-97(g-x)

(B-1)

where
hy = —(1+26)%, (B-2)
hy = (1+28)(5+ 105 + 2y), (B-3)
hy = (14 26)[2(6 = 3)y — 136 — 14], (B-4)
hy = 5(75 4 9y + 30) + Ty + 15, (B-5)
hy=—-8"—-2(6+ 1)y —115 -8, (B-6)
hs =2(1 +6) (B-7)

For the coefficient s;, we have:

39(g—x — 1) (ko + k1g + kog* + ksg® + kag?)
2(1 =9’ (g—x)*

S = ,
(B-8)
where

ko = —2(1 +26)2, (B-9)
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ki =2[1 4y +45(5+y+1)], (B-10)
ky =2(y +1) = 6(y +3). (B-11)
ky = —(6+ 2y +4), (B-12)

ky = 2. (B-13)

Finally, the coefficient s, has the form:

 3g[3465+2¢—39(36+2¢+3)+36*(5+x+3) -3¢’
203 (g—x)?

§) =

)

(B-14)

—q)? -
s3:(1 9)"(4x = 39) (B-15)

43 (g—x)*

The quantities g and y are defined in equations 27 and 28, respec-
tively.
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