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Nonhyperbolic reflection moveout in
anisotropic media

llya Tsvankin* and Leon Thomsen#

ABSTRACT

The standard hyperbolic approximation for reflec-
tion moveouts in layered media is accurate only for
relatively short spreads, even if the layers are isotro-
pic. Velocity anisotropy may significantly enhance
deviations from hyperbolic moveout. Nonhyperbolic
analysis in anisotropic media is also important because
conventional hyperbolic moveout processing on short
spreads is insufficient to recover the true vertical
velocity (hence the depth).

We present analytic and numerical analysis of the
combined influence of vertical transverse isotropy and
layering on long-spread reflection moveouts. Qualita-
tive description of nonhyperbolic moveout on ‘‘inter-
mediate” spreads (offset-to-depth ratio x/z < 1.7-2)
is given in terms of the exact fourth-order Taylor
series expansion for P, SV, and P-SV traveltime
curves, valid for multilayered transversely isotropic

media with arbitrary strength of anisotropy. We use
this expansion to provide an analytic explanation for
deviations from hyperbolic moveout, such as the
strongly nonhyperbolic § V-moveout observed numer-
ically in the case where & > £. With this expansion,
we also show that the weak anisotropy approximation
becomes inadequate (to describe nonhyperbolic move-
out) for surprisingly small values of the anisotropies &
and e.

However, the fourth-order Taylor series rapidly
loses numerical accuracy with increasing offset. We
suggest a new, more general analytical approximation,
and test it against several transversely isotropic mod-
els. For P-waves, this moveout equation remains
numerically accurate even for substantial anisotropy
and large offsets. This approximation provides a fast
and effective way to estimate the behavior of long-
spread moveouts for layered anisotropic models.

INTRODUCTION

Numerous investigations during the past decade have
proven the presence of seismic anisotropy in different geo-
logical settings and on various scales. While conventional
processing of reflection P-wave data is still based on the
assumption of isotropy, there is a growing understanding
that anisotropy may seriously affect the results of most basic
processing and interpretation steps, such as normal moveout
(NMO) correction, velocity analysis, migration, dip move-
out (DMO) removal, and amplitude-variation with-offset
(AVO) analysis (Banik, 1984; Thomsen, 1986; Winterstein,
1986; Wright, 1987; Gonzalez and Lynn, 1991; Larner, 1993;
Larner and Cohen, 1993). In general, any process that
involves the concept of a scalar velocity field is subject to

error if, in fact, the actual velocity is a vector whose
magnitude depends upon its direction.

The shape of the moveout curves for reflected waves is of
primary importance to most processing and interpretation
algorithms. Reflection moveout curves are conventionally
approximated by the hyperbolic equation:

x2

Pt —, (1
mo

where ¢, is the approximate vertical (zero-offset) arrival
time, x is the source-receiver offset, and V,,, is called the
“moveout velocity.”” To invert reflection data for vertical
velocities, V,, is often identified with the root-mean-square
(rms) velocity V. (Taner and Koehler, 1969). This assump-
tion (justified only for short spreads and isotropic, horizon-
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tally layered models) makes it possible to recover interval
velocities via the Dix (1955) formula. The concept of hyper-
bolic moveout (and departures from it) becomes unneces-
sary if prestack depth migration is used. However, the
present results form a useful guide for understanding results
of anisotropic prestack migration (Gonzalez and Lynn,
1991).

The hyperbolic moveout equation (1) is strictly valid only
for a homogeneous isotropic (or elliptically anisotropic)
plane layer. This paper is concerned with refinements to this
equation caused by multiple layers, or realistic anisotropy,
or both.

The presence of anisotropy causes two principal distor-
tions of reflection moveouts. First, the short-spread move-
out velocity in the presence of anisotropy is not equal to the
rms vertical velocity, even for horizontal layers (Lyakho-
vitsky and Nevsky, 1971; Thomsen, 1986). The difference
between vertical rms and moveout velocities, ignored by
conventional techniques, may lead to unacceptable errors in
interval velocities and in time-to-depth conversion, even for
weak anisotropy (Banik, 1984; Winterstein, 1986). In aniso-
tropic media, it is impossible to obtain the true vertical
velocity from the short-spread moveout velocity alone.
Recovery of the true vertical velocity from surface data
requires, at a minimum, analysis of long-spread (nonhyper-
bolic) moveouts.

Second, anisotropy leads to nonhyperbolic moveout, even
in a homogeneous layer. If not properly corrected for,
nonhyperbolic moveout causes distortions in velocity esti-
mation and deteriorates the quality of stacked sections. To
determine whether stacking velocities really represent short-
spread moveout velocities (which are useful in analysis), it is
necessary to understand the character of deviations from
hyperbolic moveout in layered anisotropic media.

Most existing work on P-wave reflection moveout in
anisotropic media has been done for transversely isotropic
media, usually with a vertical symmetry axis. This is the
simplest common type of anisotropy, and has been fre-
quently observed in both land and marine environments
(White et al., 1983; Helbig, 1984; Berge et al., 1991). Among
the causes of vertical transverse isotropy are the interleaving
of thin horizontal layers, intrinsic anisotropy of preferen-
tially aligned rock-forming minerals, and certain populations
of cracks. All formulations in this paper assume transverse
anisotropy with a vertical symmetry axis, but are indepen-
dent of the physical reasons for the anisotropy. For brevity,
we will omit the qualifiers in ‘‘quasi-P-wave’’ and ‘‘quasi-
SV-wave.”

Different aspects of the influence of transverse isotropy on
short-spread moveout velocities were studied analytically
and numerically by Krey and Helbig (1956), Lyakhovitsky
and Nevsky (1971), Levin (1978, 1979, 1989), Thomsen
(1986), Seriff and Sriram (1991), among others. Considerably
less attention has been devoted to nonhyperbolic (long-
spread) moveout for anisotropic models. Radovich and
Levin (1982) pointed out that transverse isotropy leads to
spread-length-dependent moveout velocity, and introduced
the concept of ‘‘instantaneous’” moveout velocity at differ-
ent incidence angles. Hake et al. (1984) suggested an ap-
proach based on the three-term (quartic) Taylor series ex-
pansion of t2 — x? curves. Berge (1991) attempted to tie the

degree of nonhyperbolic moveout for the SV-wave to the
curvature of the wavefront near the vertical. Byun et al.
(1989) and Byun and Corrigan (1990) suggested a ‘‘skewed”’
hyperbolic formula for long-spread P-wave moveout in
weakly anisotropic media.

Here we elucidate the dependence of long-spread moveout
on the parameters of transversely isotropic media. General-
izing the results by Hake et al. (1984), we first derive the
exact quartic Taylor series coefficient for P-SV moveout and
find the quartic coefficients for the P and SV reflections as
special cases. Comparison with formulas obtained in the
limit of small anisotropy reveals severe limitations of the
weak anisotropy approximation in the description of nonhy-
perbolic moveout.

The exact Taylor series coefficients are used to give a
qualitative description of nonhyperbolic moveout for P- and
SV-waves, and to build a more general analytic approxima-
tion for long-spread reflection moveouts, which is numeri-
cally accurate even for substantial anisotropy. Although the
current treatment is restricted to transversely isotropic me-
dia with a vertical symmetry axis, generalization for sym-
metry planes in azimuthally anisotropic media is straightfor-
ward. Implications of these results for the inversion of
reflection traveltimes are discussed in a sequel paper
(Tsvankin and Thomsen, Inversion of reflection traveltimes
for transverse isotropy: submitted to Geophysics).

SHORT-SPREAD REFLECTION MOVEOUT

In this section, we review the behavior of short-spread
moveout and the relation between moveout velocities and
parameters of anisotropy. A receiver spread is considered to
be short if it does not exceed the reflector depth. To analyze
the influence of anisotropy alone on moveout, we consider in
detail the case of a single, horizontal, transversely isotropic
layer, and generalize later to multiple layers. The model is
characterized by the P- and S-wave vertical velocities (V
and Vo) and three dimensionless parameters (e, d, and «)
introduced by Thomsen (1986).

The most conventional measure of anisotropy (e) ex-
presses the fractional difference between vertical [V ,(0)]
and horizontal [V ,(90)] P-wave velocities. It is defined
through elastic moduli C,g, or equivalently through the
velocities, as

Cii—Cy VEH90) = V2(0) 2
€= - .
2Cy 2v2(0)

The equivalent measure for the SH-wave is

Ces — Cas VEu(90) — Vi(0)
‘Y = = .
2C4 2V24(0)

(3)

The so-called ‘‘strange’’ anisotropy coefficient 3 is defined as

_(Ci3 + Caa)? = (Ca3 — Cyq)?
2C43(C33 — Cyqs)

4)

The parameter 3 influences velocities of P- and §V-waves,
especially the P-wave velocity at near-vertical incidence. All
three coefficients reduce to zero in the absence of anisot-
ropy. P-SV propagation is described by four coefficients:
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Vo0, Vs, €, and 8, while the S H-wave velocity depends on
V.o and vy. Although the parameters ¢, 8, and y were
originally introduced to simplify velocity equations for
weakly anisotropic media, we will show that they also
facilitate moveout analysis for transversely isotropic models
with arbitrary strength of anisotropy.

The most straightforward approximation for reflection
moveouts is the Taylor series expansion of the t2(x?2) curve
near x> = 0 (Taner and Koehler, 1969):

th=Ag + A x? + At .., %)

, dt? 1 d [di?
S ) I W v |
x=0 x=0

where 7, is the true zero-offset arrival time, generally
different from the vertical time ¢, of the best-fit hyperbola
(1). The short-spread moveout velocity is expressed through
Ayas 'V, = 1/\/;1_2. In conventional processing, expansion
(5) is truncated after the second term, and it is assumed that
the effective stacking (moveout) velocity V,,, [equation (1)]
is equal to its short-spread limit V. The values of V, for the
P-, §V-, and SH-waves reflected from the bottom of a
horizontal transversely isotropic layer are (Thomsen, 1986;
see also Appendix B):

V3(P) = V3ol +28), (6)
Vi(SV) = V(1 + 20), 7)
VI(SH) = V(1 + 2v), (8)
where
¢ = (M) 2(8 —-3) 9)
Vso

is a useful notation that frequently eliminates the need for
the (more intuitive) quantity €. The anisotrophic parameter ¢
equals zero for elliptical anisotropy (¢ = 8), and in this sense
is similar to such parameters, introduced earlier, as EZ
(Hake et al., 1984) and ¢, (Carrion et al., 1992). It is also the
most influential parameter in the S V-wave velocity [equation
(A-10)] and moveout equations. Note that equations (6-8)
are valid for transverse isotopy with arbitrary degree of
anisotropy.

Further discussion will be focused mostly on P and SV
moveouts. The §SH-wave, governed by the anisotropic pa-
rameter v, is completely decoupled from the P- and SV-
waves, whose velocity variations are governed by the pa-
rameters d and o (or 3 and €), and the ratio V,o/Vy. Ina
homogeneous transversely isotropic layer, the wavefront of
the SH-wave is always elliptical, and the SH-moveout is
purely hyperbolic, with V,,, equal to the short-spread value
V, [equation (8)] which, in turn, is equal to the horizontal
velocity (Hake et al., 1984). Reflection moveout for the
S H-wave becomes nonhyperbolic only in stratified media.

For all three waves, the short-spread moveout velocity
given by equations (6)—(8) is generally different from the true
vertical velocity. Winterstein (1986) assumed that for the
P-wave, V, is typically close to the vertical velocity (e.g.,
that d is very small) to estimate y. However, Banik (1984)
found significant differences between the P-wave vertical

rms and moveout velocities in North Sea shales (effectively
estimating 5 of 10 percent or more). If transverse isotropy is
aresult of periodic interleaving of isotropic layers, which are
thin compared to the predominant wavelength,  is null only
if the velocity ratio V,/V is constant across all layers.
There is no doubt that, in many contexts, 8 cannot be
ignored.

The SV-wave short-spread moveout velocity is deter-
mined by the parameter o [equations (7) and (9)], which may
be much bigger than the anisotropies ¢, 8, or y because of the
presence of the squared velocity ratio. Consequently, the
short-spread moveout velocity for the SV-wave may be
more significantly distorted by anisotropy than that for the
P-wave. Even if ¢ — 8 is small (say, of the order of 0.1), o
may be of the order of 0.4, implying a difference between V;
(SV) and V, of 30-40 percent. In terms of phase velocities,
this means that the SV-wave velocity variations near the
vertical [determined by o; see equation (A-10)] usually are
more pronounced than are those for the P-wave.

The P and SV horizontal velocities are:

Vi(P) = Vo V1 + 26, (10)

Vi(SV) = V. a1

Comparing equations (6) and (7) with (10) and (11), it is clear
that the only transversely isotropic model for which the
moveout velocity is equal to the horizontal velocity is
elliptical anisotropy (¢ = d). In this special case, the wave-
front is spherical for the SV-wave, elliptical for the P-wave,
and all moveouts are strictly hyperbolic (Levin, 1978).
Although the elliptical approximation leads to significant
simplifications in all equations of wave propagation, it is
hardly more than a mathematical abstraction. According to
existing data on crustal rocks (Thomsen, 1986), ¢ and &
almost always differ, with ¢ > 8 in most cases, implying that
g >0.

Most reflection surveys do not contain offsets long enough
to adequately determine the horizontal velocity V, (reliable
estimation of V), requires incidence angles well beyond
45 degrees). Hence, where P-wave time-depth mis-ties are
interpreted (Banik, 1984) in terms of horizontal velocities of
elliptic media (i.e., in terms of €), a more conservative
interpretation would be to relax the elliptical assumption and
conclude that the data determine 3, not ¢.

In the absence of anisotropy, reflection moveout for a
horizontal homogeneous layer would be hyperbolic, with V,
coinciding with the true velocity in the layer. Although P-
and SV-wave moveout in a transversely isotropic layer is
generally nonhyperbolic, it usually remains close to hyper-
bolic for short spreads (limited by the depth of the boundary,
Xmax!z = 1). The behavior of P- and SV-wave moveout is
illustrated in Figure 1 for the model of Taylor (no relation to
the mathematician) sandstone (Figure 2), taken from Thomsen
(1986). The residual moveout in Figure 1 is calculated as the
difference between the exact traveltime curve and the best-
fit hyperbola (1), found by the least-squares method.

For this model, the residuals on short spreads are small
(<2 ms), for both the P- and SV-wave. Even so, the effective
velocity V,,, for the best-fit hyperbolas (1) in Figure 11is not
the same as the short-spread velocity V,. This difference is
a consequence of nonhyperbolic moveout caused by aniso-
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tropy: the effective velocity, obtained by fitting nonhyper-
bolic data to a hyperbolic function, depends on spread-
length x,,.. For the model of Taylor sandstone, the value
of the P-wave V,,, for the best-fit hyperbola on the spread
Xmax = 2 18 2.6 percent larger than V,. For several other
models from Thomsen’s (1986) table, this difference for
Xmax = 2 is generally limited by 2-3 percent. Therefore, the
spread length should be less than the depth of the boundary
for reflection moveout to be well-described by the hyper-
bolic equation (1) with V,,, close to the short-spread veloc-
ity (6)~(8). Typical acquisition design violates this criterion
everywhere above the target horizon. We return to this
point, in the discussion of longer spread lengths (Figure 4,
below).

Note also, in Figure 1, that the vertical (zero-offset) arrival
time of the best-fit hyperbola [¢,,, equation (1)] is different

v
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Fig. 1. The difference between the exact traveltimes and
best-fit hyperbola ¢ (residual moveout) for P- and SV-
reflections in a layer of Taylor sandstone (Figure 2). The
spreadliength is equal to the depth of the reflector, x,,,, =
z = 3 km.
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FiG. 2. Phase velocities of P- and SV-waves for Taylor
sandstone, and for Dog Creek shale (from Thomsen, 1986).

from the true vertical time 7. This implies that the apparent
arrival time on a typical stacked seismic section differs from
the true vertical time.

For a medium with N homogeneous, coarse, constant-
velocity layers, the short-spread moveout velocity is given
by (Hake et al., 1984; see also Appendix B):

¢ 1~
Vi=lim —5=— 3 V3Ar,. (12)
x—0 dt to i=1

Or, using equations (6)—(8)
vi=v2, (1+20), (13)

where

1 N
(=—— 2 Vilide,
me.vto i=1 l

with {; standing for 3;, o;, or v; (for the P-, SV-, or
SH-wave, respectively) in each layer i, and At; is the
corresponding two-way vertical traveltime. The difference
between V, and V,,. is determined by (, the weighted
average value of the anisotropies ;. If we try to recover
interval velocities from equations (12} and (13) by identifying
V, with V. and applying the Dix (1955) formula, we get the
apparent interval velocities Vy; = V'V 1 + 2(;, distorted by
anisotropy (Appendix C). This happens even though, with the
assumed short spread, all rays are close to the vertical.
Ignoring this distortion in conventional processing leads to
errors in converting reflection time to reflector depth.

The resulting mis-ties can be especially troublesome when
drilling a deviated well, so that the drillers are aiming at the
wrong target. If the mis-ties vary along a line, they can cause
error in the area or degree of trap closure, turning a play into
anonplay, or vice-versa. And, if the erroneous velocities are
used for lithology identification, or for pressure prediction,
obvious problems arise.

INTERMEDIATE-SPREAD REFLECTION MOVEOUT

We will generally be interested in spread-lengths z <
Xmax < 2z, which are feasible for reflection surveys at the
target horizon (although a new approximation, developed in
the next section, is applicable to much larger offset-depth
ratios). Most examples here are given for Taylor sandstone
and/or Dog Creek shale (Figure 2); however, all conclusions
have been checked against several other transversely isotro-
pic models from Thomsen (1986). More importantly, the
concise analytic formulas developed herein allow one to see
intuitively the effects of any putative medium.

The nonhyperbolic moveout, due purely to anisotropy,
can be observed in a single-layer model (Figure 3). The error
of the hyperbolic approximation (1) for both P- and SV-
waves rapidly grows for x,,,, > z. The residual moveout
after the hyperbolic correction is especially high for the
long-spread SV-data. Also, the best-fit moveout velocity
Vo departs significantly, for finite spread lengths, from the
short-spread moveout velocity V, (Figure 4). We consider
single layers first, in the weak anisotropy approximation,
then strong anisotropy, and then generalize to many layers.
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A. Weak anisotropy approximation

The easiest way to give an analytic description of travel-
time curves at large offsets is to apply the weak anisotropy
approximation (WAA). Following Thomsen (1986), we de-
rive the following expression for reflection moveouts of the
P- and SV-wave in a single layer (Appendix A):

w_4
A (14)*
X
1+
(V()!())

*Equations so marked are valid only for weak anisotropy.

=15+ Ayx? +
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Fic. 3. Maximum difference between the exact traveltimes
and the best-fit hyperbola t 4 (i.e., maximum residual move-
out) as a function of spread-length-to-depth ratio x,,,,./z.
Model is Taylor sandstone (Figure 2), with z = 3 km.
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Fic. 4. Effective moveout velocity V,, of the best-fit
hyperbola ¢ty normalized by the short-spread moveout ve-
locity V, for the model of Taylor sandstone (Figure 2).

The parameters A)” and A}’ are Taylor series coefficients
from equation (5) in the limit of weak anisotropy. For the
P-wave,

1 —28

A (P) = 7 (15)*
p0
Ayp) = oY (16)*
4 20V
And, for the SV-wave

’ 1 -20

AF(SV) = 7 (17)*

s0

o (v,,o
2V Vso

Formula (14) is not the only possible weak anisotropy
approximation for reflection moveouts. Byun et al. (1989)
and Byun and Corrigan (1990) suggested the so-called
“skewed’” hyperbolic moveout equation for long-spread
P-wave moveout in a VSP context:

z 2 X 2 x2
— +|—]| | ————. 19)*
v, 2V, , (x)

25+ E

Here, z is depth, and V, is an anisotropic parameter
introduced by Byun et al. (1989). Originally, the ‘‘skewed
formula’’ (19) was suggested as an approximation, with fitted
coefficients V., and V, to be found for example by least-
squares or by a semblance search. Sena (1991) derived
analytical expressions for the parameters of equation (19)
under the assumption of weak anisotropy (defined slightly
differently than here). The quartic Taylor series coefficient
for equation (19) for a single-layer model was given by Sena
(in the present notation) as

2(e = 9) 1
t2ViE (1+2e)(1+29)°

4
AY(SV) = ) AJ(P). (18)*

2=rk+

A4(P)(Sena) = —

(20)*

Because of its algebraic simplicity, the WAA provides a
valuable guide to intuition and an explanation of many
empirically observed results. However, the WAA cannot
explain some existing numerical results, such as the pro-
nounced deviations of the §V-wave moveout from hyper-
bolic for negative o{e < 8) found by Levin {1989). The
obvious reason for this inconsistency is a breakdown of the
WAA. A principal issue to be addressed in the next section
is how weak the anisotropy must be for equations (15)—(18)
to be valid.

B. Exact Taylor series coefficients for P, SV, and P-SV
moveouts in a single layer

While concise analytic expressions for traveltime curves
[using group (ray) velocities] in transversely isotropic media
cannot be obtained without assuming weak or elliptical
anisotropy, squared traveltimes ¢#2(x2) can be expanded in a
Taylor series (Hake et al., 1984). We again analyze the
three-term Taylor series near the vertical, equation (5), but
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with coefficients valid for arbitrary transverse isotropy.
Parameters A, and A, for a single layer may be written as
(Appendix B):

V3(P) = = V2,(1 + 28), 21
2( ) Az(P) pO( ) ( )
28

+ 2 2

AP —2(e — 8) 1- Vv o
4 = s
2V (1+25)*

V(SV) = L =v2i(l+20) (23)

2 Az(SV) 5O ’

| 28

+ e —

20 1- V?O/szo
A4(SV) = (24)

Vi (1+20)°

The first term in each expression (22) and (24) for the quartic
coefficient is the previous (WAA) result, equations (16) and
(18), hence the second term may be considered as the
correction for ‘‘strong’’ anisotropy. The limits of applicabil-
ity of WAA (as of any other asymptotic technique) are
determined qualitatively: anisotropy should be weak enough
for the terms that are quadratic in ¢ and 8 to be negligible. In
general, one expects that the expressions with an isotropic
leading term, equations (15) and (17), will be relatively
well-determined, while those with an anisotropic leading
term, equations (16) and (18), will be considerably less
well-determined. In the formulas for A4, equations (22) and
(24), the WAA breaks down for very small & and o (say, of
the order of 0.05-0.1), because of the influence of the terms
(1 + 28)* and (1 + 20)*. Since usually o > 8, the WAA is less
suitable for the §V-wave than for the P-wave. In fact, even
£ — 8 = 0.02 is ‘“‘strong’’ anisotropy for the SV-wave, since
this may mean ¢ = 0.08 and (1 + 20)* = 1.81! Nevertheless,
although these parameters were originally designed for weak
anisotropy, they facilitate the moveout analysis for arbitrary
transverse isotropy as well.

Note that Sena’s (1991) result (20) for A4 is valid only in
the WAA,; the appearance of quadratic terms in 8 and ¢
arises because of his slightly different definition of WAA. By
contrast, equations (21)-(24) are valid for any degree of
anisotropy.

For P-waves, the quadratic coefficient A,, equation (21),
depends only on V ,; and 3, while the quartic coefficient A4,
equation (22), is controlled mostly by three elastic parame-
ters: V0, €, and 8. This means that the dependence of the
P-wave intermediate-spread moveout on the S-wave vertical
velocity Vg is very weak, in accordance with intuition. This
result, developed in more detail in the next section, turns out
to be valid for long-spread P-wave moveout as well.

Equations (21)—(24) enable us to give an analytic descrip-
tion of deviations of 1> from a hyperbola, for offsets where
the three-term Taylor series is (at least qualitatively) accu-
rate. The relative magnitude of the quartic term may be
considered as a measure of inaccuracy of the conventional
hyperbolic moveout equation. Defining this ‘‘relative mag-
nitude’’ as the quartic term normalized by the hyperbolic
terms:

- A4 X4
A=s———
Ag + AQX"
we have, from equations (21)-(24)

2%
1+ ———
~2(e -3) , 1= ViV,
= X
(1+28)4 72
+
1+ 23

A(P)

, (25)

2%
1+ ——
e -2 J
(1+20) X
1+

A(SV) =

(26)

1+ 20

where ¥ = x/2z is the normalized offset.

For P-waves, the ‘‘relative magnitude’’, equation (25), of
deviations from hyperbolic moveout increases with increas-
ing & — 3|. For elliptical anisotropy (¢ = 8), the moveout is
purely hyperbolic. For fixed ¢ — 8 and conventional (small
negative or positive) 8, the relative deviation increases with
decreasing d; this second effect is missing in the weak
anisotropy approximation.

It is interesting to compare the residual P-wave moveout
(after the hyperbolic correction) for the models of Taylor
sandstone and Dog Creek shale (Figure 5), both expressed in
percentages (to cancel the difference in vertical velocities).
The value of € — 8 for both models is almost the same, while
the absolute values of € and 8 for Dog Creek shale are much
higher. Therefore, we would be inclined to describe Dog
Creek shale as more ‘‘anisotropic’’ than Taylor sandstone.
However, anisotropy-induced deviations from hyperbolic
moveout are much more pronounced for Taylor sandstone
because of the lower value of 8, and, consequently, the
bigger quartic Taylor series term, equation (22). Of course,

041

Taylor sandstone

0.2

" Dog Creek ™.,
shale *

-0.2-

Residual Moveout (%)

-0.4 -

Fic. 5. Comparison of the residual P-wave moveout (nor-
malized by the vertical arrival time ty) for the models of
Taylor sandstone and Dog Creek shale (Figure 2). The
spread-length x,,,, = 2z.
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its smaller value of 3 makes its short-spread velocity V ,,
closer to its true vertical velocity V o, but this is a separate
issue.

This example illustrates the danger of a casual analysis of
anisotropic coefficients. Anisotropy is a multidimensional
problem, manifesting itself in different ways in different
contexts. Concise analytic expressions, such as those dis-
cussed here, show these various effects explicitly in terms of
the parameters ¢ and & (or o and 3).

For the SV-wave, moveout differs in character, depend-
ing on the sign of o. If o > 0, the quartic coefficient,
equation (24), reaches a maximum near ¢ = 0.17 and then
decreases at larger o. According to our estimates, for o > 0
the contribution of A, is often smaller for the SV-wave,
equation (26), than for the P-wave, equation (25). If ¢ > 0,
nonhyperbolic moveout for P- and SV-waves is usually mod-
erate and comparable up to x,,,, = 1.5z (Figures 3 and 4).

For longer spreads, not adequately approximated by the
Taylor series, equation (5), the SV-moveout rapidly be-
comes increasingly nonhyperbolic. The high residual move-
out for the SV-wave for x,,,, > 1.5z (Figure 3) is caused by
the influence of the velocity maximum (for o > 0) at
incidence angles of 4045 degrees (Figure 2). The ‘‘instanta-
neous” SV-wave moveout velocity, determined from the
first derivative of the 1> — x2 curve (Radovich and Levin,
1982), sharply decreases from the short-spread velocity V,
equation (7), near the vertical to a much smaller value near
45 degrees, where the phase (and group) velocity (Figure 2)
reach their maximum values. As a result, the SV-moveout
curve rapidly changes its slope near the velocity maximum,
at (x/z2)2 = 3 — 4 (Figure 6). This change cannot be
described by the three-term Taylor series equation (5),
which reflects only near-vertical velocity variations. We
return to the long-spread problem in the next section, where
the curve in Figure 6 marked ¢} is discussed.

When o < 0, the influence of the term (1 + 20)* in the
quartic Taylor series coefficient, equations (24) and (26),

180

140 - o

120 o 12
T..

12 (s2)

40 T T T T ]
0 2 4 [ 8 10

(x/2)?

Fic. 6. Long-spread S V-wave moveout for the model of Dog
Creek shale (Figure 2), with z = 3 km. Moveout time ¢7 is
the three-term Taylor series expansion with the coefficients
given in equations (22) and (24). Moveout time ¢, is the
approximation (30).

leads to strongly nonhyperbolic S V-moveout, even at small
offsets. This effect was found numerically by Levin (1989) in
his study of the relation between P, SV, and P-SV moveout
velocities. Figure 7 shows the SV-wave traveltime curve for
Mesaverde mudshale, which displayed the most anomalous
behavior in Levin’s calculations. For this model, the critical
term in equation (26) is close to zero (1 + 20 = 0.006), and
the quartic term becomes very large compared to the qua-
dratic term. In fact, the Taylor series expansion practically
breaks down, since derivatives of the function t2(x?) be-
come almost infinite. The traveltime curve starts out with an
extremely low moveout velocity (V, is almost zero) and then
rapidly changes its slope. Thus, our analytic expressions
give a clear explanation for the S V-wave moveout anomalies
discussed by Levin (1989).

The above moveout anomaly is not caused by particularly
strong anisotropy: the difference ¢ — 8 = —0.177. The
problem is that o is negative, implying that the SV-wave
phase velocity has a maximum at the symmetry axis. If this
maximum is strong enough, the SV-wave traveltime curve
may have a cusp near the vertical (Helbig, 1966).

Thus, the sign of o is very important for the character of
the SV-wave moveout. The existing experimental data
(Thomsen, 1986) indicate that the values of o are predomi-
nantly positive. For transverse isotropy caused by thin
bedding of isotropic layers, o is always positive (Berryman,
1979). However, some rocks from Thomsen’s (1986) table
exhibit negative o.

The short-spread moveout velocity for the converted
P-SV wave is given by (Seriff and Sriram, 1991; see also
Appendix B):

1

V%(P— SV) =m

tho tso
= vip) —— 4 VISV) ———,
p0 + £50 tpO + t50

10_ ’

12 (s2)
<
\

4 T I T T t

0 0.5 1 1.5 2 25
(x/z)?

Fic. 7. SV-wave moveout with negative o for the model of
Mesaverde mudshale from Levin (1989). V,, = 4.529 km/s,
Vo = 2.703 km/s, € = 0.034, 5 = 021 (@ = —0.497,
1 + 20 = 0.006), z = 3 km.
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SVP() + oV

1+ —=
(Vyo + Vio)l2

= ¥po VsO . (27)

In Appendix B, we derive a corresponding expression (B-15)
for the quartic Taylor series coefficient of the P-SV wave.

If the Taylor series coefficients are known for any two of
the P-, SV-, or P-SV-waves, these equations make it
possible to find the coefficients for the third one. For
instance, if only P-waves are excited, the coefficients of the
P and P-SV reflections can be used to recover A, and A4 for
the SV-wave. In isotropic media, equation (27) reduces to a
simple relation

V2(SV) = VAP - SV)IV,(P). (28)

Tessmer and Behle (1988) showed that equation (28) can be
effectively used to obtain the SV-wave stacking velocity
from P and P-SV data. Levin (1989) carried out numerical
calculations for several transversely isotropic models and
demonstrated that equation (28) loses its accuracy for many
anisotropic solids. Levin computed all three velocities in
equation (28) from the exact traveltimes on finite (but
unspecified) spread lengths. The largest errors in V,(SV)
found from equation (28) corresponded to the models with
negative o, which are characterized by strongly nonhyper-
bolic SV-wave moveout.

These results triggered a lively discussion in the literature
(Berge, 1991; Seriff and Sriram, 1991). The latter demon-
strated that if the isotropic formula (28) is replaced with the
exact expression (27), the SV-wave short-spread moveout
velocity, derived from the P and P-SV data, becomes much
closer to the value computed by Levin from the exact
traveltimes. Noticeable discrepancies between the value
recovered from equation (27) and the measured SV-wave
moveout velocity remained only for the models with nega-
tive o.

To clarify the point of the above discussion, it is helpful to
distinguish between two different questions:

1) Is it possible to accurately find the SV-wave short-
spread moveout velocity V, from equation (27) using
the P and P-SV moveout velocities measured on
conventional short (but finite) spreads, i.e.,

VASV)? = WE(P — SV) ————— V2, (P) ==
50 Ls50

2) Is the value of V,(SV) close to the V,,,(SV) measured
on conventional short spreads, i.e.,

Vo (SV)? = 2V,(SV).

To answer the first question, we have to determine whether
the P and P-SV moveouts are close enough to hyperbolas,
so that V,,, may be used in place of V, in equation (27) (the
second question is not relevant to this problem). As shown
above, the short-spread P-wave moveout usually does not
diverge much from hyperbolic, whether o is positive or
negative. From equations (27) and (B-15), it is also clear that
the converted P-SV wave does not exhibit the same extreme
anomalous behavior for negative o, as does the SV-wave.
Therefore, in most cases the values of V,(P) and V(P —

SV) can in fact be extracted from short-spread moveout
curves. This means that equation (27) does represent a viable
tool for recovering the short-spread SV moveout velocity
V,(SV) from P and P-SV data.

The second question was answered in the previous sec-
tion. For short spreads, the SV-wave moveout will be
approximately hyperbolic if ¢ > 0, so there the answer is
yes. But if ¢ < 0, the short-spread velocity V,(SV) may be
far different from the measured moveout velocity V,,,(SV),
even for x,,, < z, so the answer is no. This concisely
explains the results of Seriff and Sriram (1991).

C. Exact quartic Taylor series coefficients in multilayered
media

In a stratified medium, the quartic Taylor series coefficient
reflects the combined influence of layering and anisotropy.
In Appendix B, we derive the quartic coefficient for the
P-SV waves, equation (B-15), and obtain the quartic coeffi-
cients for pure P- and SV-waves as special cases:

(i V3AL)? — 193 VAL,
43, V3AL)*

A4(P or SV) =

103 AgVEAL]

(Z;V3Ar)* it
V, and Ay; for individual layers are given by equa-
tions (21)-(24). Hake et al. (1984), who derived an expression
equivalent to this, attributed the first term in equation (29) to
the effect of inhomogeneity, noting that it formally reduces
to the expressions for isotropic media first found by Taner
and Koehler (1969), and in the present form by Al-Chalabi
(1974). However, in transversely isotropic media, the hyper-
bolic coefficients V5; in the first term are affected already by
anisotropy. The second term is caused entirely by anisot-
ropy.

According to the Cauchy-Schwartz inequality, the first
term is always nonpositive (Hake et al., 1984). The second
term may be either positive or negative depending on the
wave type and the signs of Ay;, i.e., of o;. If the o; are
predominantly positive, the two terms have the same sign
(negative) for the P-wave and different signs for the
SV-wave.

It is easy to show, using the quartic expansion (5), that the
spread-length dependence of moveout velocity, V,,,(X,,./2);
should be approximately quadratic (Figure 4), as described by
Al-Chalabi (1974) without explanation in principle. The quartic
parameter A, derived here provides a way to interpret that
quadratic variation in terms of layer properties.

The coefficient A, for the SV-wave does not become
infinite even if 1 + 20; = 0 (V,; = 0) in some of the layers.
This means that the impact of layers with negative o on
deviations from hyperbolic moveout is considerably damp-
ened by the layered structure. Unless a layer with o < 0
happens to be directly below the free surface, we should not
expect to encounter such an anomalously nonhyperbolic
moveout curve as the one in Figure 7.

In Appendix C, we show how to recover interval values of
the quartic terms A 4;, hence a measure of layer anisotropy,
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from seismic data, using a Dix-type differentiation of equa-
tion (29).

Long-spread reflection moveout

Although the three-term Taylor series provides valuable
analytical insight into peculiarities of nonhyperbolic moveout,
it loses accuracy rapidly with increasing offset (Figure 8). It is
interesting that, for a single layer with o > 0, the exact
traveltimes for both P- and SV-waves exceed the value given
by the three-term Taylor series. Therefore (since A, has
different signs for two wave-types), the estimates of deviations
from hyperbola based on equations (21)~(24) are overstated for
the P-wave, and understated for the SV-wave (if o > 0).

The increasing error of the three-term Taylor series for
Xmax > 1.5z is not surprising, since this expansion reflects
the shape of the velocity curve at small incidence angles and
therefore cannot account for changes in velocity at larger
angles. A better analytic approximation may be obtained by
combining the functional form of t%, found for weak anisot-
ropy, equation (14), with the exact Taylor series coefficients:

A4)C4

2 _ 2 2
ta =ty + A xc + .
A= 70 2 1+ A*x?

(30)
A, and A, are given by equations (21)—(24) for a single layer,
and by equations (13)-(29) for multilayered media. The
parameter A* is introduced in the denominator to ensure the
correct behavior of moveout at large x. The far-offset limit of
equation (30) is

Ay Ay
e = 15— +x2(A2+——)+

(A*) 2 <
therefore
Ay
A* = S .
e
30 W Exact Traveltimes —°
| 2
25 tA
&; ....................
F .
‘L 2
15
10 T | | I I I
0 2 4 6 T . 12
(x/z)2

FiG. 8. Three-term Taylor series ¢7 and approximation 7,4 for
P-wave moveout in a layer of Dog Creek shale (Figure 2),
with z = 3 km.

where V, is the horizontal velocity. Although 7, inherits its
functional form from the weak anisotropy approximation, it
is based on the exact Taylor series coefficients, and con-
verges at large x as well.

For P-waves, the new approximation provides an excellent
fit to the exact traveltimes, even for long spreads and substan-
tial anisotropy (Figure 8). The results for a more complicated,
four-layered transversely isotropic model (Figure 9) are
presented in Figure 10. The horizontal velocity V), used in
equation (31) is the root-mean-square of the horizontal
velocities in the individual layers. In spite of pronounced
anisotropy in the two bottom layers and strongly nonhyper-

2 L2 LLLL L LLLLSLLLLLLLLLLLLLL

L

05km P =28 6=0

V Vo =15 e=0
0.5¢km Voo = 2.9 5 = 004

v Vo = 1.5 e = 007
O.S’ka Voo = 3.1 5 = 0.10

| Vso = 1.7 e = 0225
] 5¢km Vpo = 3.37 5 = —0035

v Vso = 1.83 e = 0.11

Fic. 9. Layered transversely isotropic model used to test
analytical approximation ¢ .

e}

Exact
Traveltimes

-

10 20 30 40

FiG. 10. Comparison between the exact P-wave traveltimes
and approximation 7, [equation (30), solid curves] for the
primary reflections from each boundary of the model in
Figure 9. The subsurface layer is isotropic, so the first
reflection has purely hyperbolic moveout. The two lowest
layers have significant anisotropy.
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bolic moveout of the corresponding reflections, ¢, remains
numerically accurate at large horizontal offsets.

The new approximation represents a fast and efficient way
to estimate deviations from hyperbolic moveout for layered
transversely isotropic models without doing actual ray trac-
ing. Also, it can be applied in moveout correction on
long-spread gathers, refining the more conventional way to
correct for nonhyperbolic moveout, using the quartic Taylor
series (Gidlow and Fatti, 1990). In the sequel paper men-
tioned in the Introduction, we use moveout equation (30) to
analyze the ambiguity in deducing the parameters of anisot-
ropy from long-spread data.

Equation (30) can be extended directly to symmetry
planes of azimuthally anisotropic media, provided the appro-
priate Taylor series coefficients are substituted. It can even
be applied outside symmetry planes, although it will not
account properly for significant out-of-plane energy propa-
gation.

The exact equations for P-wave phase and group velocities
contain four coefficients: V,, Vg, ¢, and 3. However, in
the previous section it was shown that the P-wave interme-
diate-spread moveout is practically independent of the
S-wave vertical velocity V ;. The same is true for P-wave
traveltimes on long spreads, even when the anisotropy is
strong. From equations (30)—(31), it is clear that Vg can
affect P-wave moveout slightly through the quartic coeffi-
cient A,, but this influence is very weak.

Thomsen (1986) showed that the P-wave phase velocity
for weak transverse isotropy is determined just by the
P-wave vertical velocity V¢ and the anisotropies € and 8. It
turns out that although Thomsen’s (1986) velocity equations
linearized in € and & become inaccurate for strong anisot-
ropy, the overall influence of V3 on P-wave velocity and
traveltimes remains insignificant. This conclusion is sup-
ported by the exact numerical calculations discussed in more
detail by Tsvankin (‘‘Normal moveout from dipping reflec-
tors in an isotropic media,”” accepted for publication in
GEeoprHYsICcs). The possibility to reduce the number of inde-
pendent parameters affecting P-wave traveltimes from four
to three (Vpo, €, and 3) represents one of the most important
advantages of the present notation over the conventional
elastic moduli C;;. This advantage is especially valuable in
the inversion of P-wave traveltimes for the anisotropic
coefficients.

For §V-waves, the area of validity of approximation is
much more limited (Figures 6 and 11). The accuracy of 74
decreases at x = (1.7 — 2)z as the result of the sharp
changes in the slope of the SV-moveout curve near the
velocity maximum (Figure 6). The model of Dog Creek shale
used in Figure 6 is characterized by strong anisotropy-
induced nonhyperbolic moveout on long spreads, with the
residual moveout after the hyperbolic correction reaching
almost 200 ms at x,,,. = 2z (2.75 percent of ;). For more
mild SV-wave anisotropy, ¢, is much closer to the exact
moveout curve, but still diverges (toward smaller times) near
the velocity maximum.

The accuracy of the moveout approximation (30) for the
SV-wave may be significantly increased if analytically derived
parameters A*, A,, and A, are replaced with fitted coefficients
determined by the least-squares method (Figure 11). For mod-
els with ¢ < 0.5, approximation (30) with fitted coefficients

practically eliminates SV-wave residual moveout for spread
lengths up to at least x,,,, = 2z.

The difficulties with an analytical description of the SV-
moveout reflect a general difference between the character
of long-spread P- and SV-wave moveouts for transverse isot-
ropy. The P-wave moveout curve on long spreads (x,,,, = 2z
or more) is usually much smoother and more hyperbolic,
because the phase (and group) velocities for the P-wave
rarely have pronounced minima or maxima between 0 de-
grees and 90 degrees (Figure 2). For the most common case,
o > 0 (¢ > 9), the P-wave phase velocity contains a
minimum if 8 < 0 (assuming € > 0), but since 3 is usually
small, this minimum is shallow. For the §V-wave, the phase
velocity always has either a minimum (f ¢ < 0) or a
maximum {if ¢ > 0} near an incidence angle of 45 degrees,
which might be relatively sharp since o is often large.
Therefore, deviations from hyperbolic moveout for spread
lengths of about x,,,, = 2z are usually more significant for
the SV-wave, although the overall P-wave velocity anisot-
ropy may be stronger. Refraction of rays in multilayered
media is likely to make the SV-wave moveout anomaly near
45 degrees less pronounced and extend it over a wide range
of incidence angles.

Ultimately, the shape of the S V-wavefront near the veloc-
ity maximum may lead to a cusp on the traveltime curve. In
Figure 12, the cusp occupies a range of offsets starting at x =
1.48z (group velocity angle 36.5 degrees). The presence of a
cusp, though diagnostic of anisotropy, may seriously impede
the analysis of reflection moveout. Our approximations will
properly describe only the first branch of a cusp up to the
first turning point. However, the cusp will only occur if the
anisotropy 1is sufficiently strong (Helbig, 1966; Musgrave,
1970).

300

)
£ 2001 at,
] (analytic)
§ 160 -
[ 4
>
°
=2 100
]
3
k=
3 §0 )
o
atg (fitted coefiiclents)
-50 T T T }
0 0.5 1 15 2

Fic. 11. Accuracy of approximation ¢4 for the SV-wave.
At4 is the residual moveout after application of the analyt-
ical approximation (30) (Az4 = exact traveltime r — ¢, Afp
is the residual moveout for the same approximation, but with
fitted coefficients). Model is Dog Creek shale (Figure 2), with
z = 3 km.
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DISCUSSION AND CONCLUSIONS

We have given a description of long-spread reflection
moveout of P- and S-waves in multilayered transversely
isotropic media. Two analytic approximations were used to
describe deviations from the conventional hyperbolic move-
out equation. The first one is the three-term (quartic) Taylor
series for 1> — x2 moveout curves. We derived the quartic
Taylor series coefficient for the converted P-SV wave in
multilayered transversely isotropic media with arbitrary
strength of anisotropy and obtained the quartic coefficients
for P- and SV-waves, found earlier by Hake et al. (1984), as
special cases. The expressions for the Taylor series coeffi-
cients, formulated in terms of € and & (or o and d), give a
clear analytic explanation for deviations from hyperbolic
moveout caused by anisotropy.

We also suggested a new, more general moveout equation,
which inherits its form from the weak anisotropy approxi-
mation but is based on the exact Taylor series coefficients
and converges at large offsets as well. For the P-wave, the
new approximation provides a very good fit to the exact
traveltimes, even for relatively strong anisotropy and long
spreads. For the S V-wave, the accuracy of the new equation
decreases in the area of sharp moveout changes near the
velocity maximum, at x = (1.7 — 2) z. To obtain an accurate
result for the SV-wave in this offset range, the analytic
parameters should be replaced with fitted coefficients de-
rived either by the least-squares method or by semblance
search.

Comparison with the exact solution shows that the weak
anisotropy approximation breaks down, in the description of
nonhyperbolic moveout, for surprisingly small values of
anisotropic coefficients. The characterization of anisotropic
media and effects in terms of suitably defined parameters is
crucial in this analysis. For application to S V-wave moveout
and velocity equations, we introduced a dimensionless pa-
rameter o, equation (9), which reduces to zero for isotropy
or elliptical anisotropy. Coefficient o often replaces the more

35
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Fic. 12. S V-wave moveout curve with a cusp. Model param-
eters are (from Thomsen, 1986): Vo = 3.048 km/s, V, =
1.490 km/s, ¢ = 0.255, 8 = —0.05 (o = 1.276), z = 3 km.

intuitive quantity ¢ as a more suitable parameter in the
moveout problem for transverse isotropy. The sign of o
determines the sign of the quartic Taylor series coefficient in
the single-layer model.

The results of our analysis of reflection moveout may be
summarized as follows:

1) On short spreads, limited by the reflector depth, the
P-wave moveout remains close to hyperbolic even in
the presence of anisotropy.

2) The difference between the short-spread moveout veloc-
ity and the vertical rms velocity, caused by anisotropy, is
much more significant for the SV-wave (40 percent and
more for models considered here) than for the P-wave.

3) P-wave moveout is almost entirely controlled by the
P-wave vertical velocity V,,, 8, and . The depen-
dence of P-wave traveltimes on the S-wave vertical
velocity V is very weak, even for long spreads and
strong anisotropy.

4) For a single transversely isotropic layer, the P-wave
moveout diverges from hyperbolic with increasing | — §|
and (for fixed ¢ — &) with decreasing 8.

5) The character of the SV-wave moveout is strongly
dependent on the sign of o. If o > 0 (the most common
case), deviations from a hyperbola for SV-wave are
moderate and comparable to those for the P-wave up to
x = 1.5z. The SV-wave moveout at small offsets can
become strongly nonhyperbolic if o is negative (¢ < ).

6) While the P-wave moveout is usually relatively smooth
up to at least x = 2z, the §V-wave traveltime curve
exhibits a sharp change in moveout velocity at x =
(1.7 = 2)z caused by the influence of the velocity
maximum (for o > 0) located at incidence angles near
45 degrees. For x,, = 2z the SV-wave residual
moveout, after the hyperbolic correction, may reach
several percent of ¢.

7) The P-SV wave does not exhibit the same anomalous
nonhyperbolic moveout at very small offsets for ¢ < 0,
as does the SV-wave. Therefore, the short-spread P
and P-SV moveouts usually can be used to recover the
analytical value of the S V-wave short-spread moveout
velocity.

8) In multilayered media, anisotropy may either enhance
or weaken the influence of layering on deviations from
hyperbolic moveout. The contribution of layering is
determined by contrasts in short-spread moveout ve-
locities rather than true vertical velocities.

Although the analytic developments in this paper are strictly
valid for transversely isotropic models with a vertical sym-
metry axis, they can be directly extended to symmetry
planes of azimuthally anisotropic media.
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APPENDIX A
TRAVELTIME CURVES OF P- AND SV-WAVES IN THE WEAK ANISOTROPY APPROXIMATION

In this Appendix, traveltimes of reflected P- and SV-
waves are derived using the weak anisotropy approximation,
as described by Thomsen (1986). We consider the reflections
from the bottom of a horizontal homogeneous transversely
isotropic layer. The P-wave traveltime is

VpO tpO
Vg() cos ¢’

V, () is the group (ray) velocity for propagation at ray angle
U (measured from the vertical), and ¢, is the (two-way)
vertical arrival time. Assuming that anisotropy is weak, so
that terms quadratic in € and 3 may be dropped, we can
equate the group velocity V, at { with the phase velocity
Von at phase angle 8, and write (Thomsen, 1986):

1) = (A-1)

Vo) = Vpu(8) = V(1 + 8 sin® 8 cos 8 + ¢ sin* 9),
(A-2)*
tan s
1+28+4(s—3) sin? 9’

tan 0 = (A-3)*

Substituting | for 8 and retaining only terms linear in € and
3, we get from (A-2) and (A-3):

*Equations so marked are valid only for weak anisotropy.

Vo) = Vpo(1 + 3 sin? y cos® ¢ + € sin §).  (A-4)*
Now for 2, we have from equation (A-1)

20
2 ) 2 TN
cos” Y(1 + 23 sin“ ¥ cos” ¢ + 2¢ sin” )
(A-5)*

t

12(h) =

Expressing the group angle & through x and z, and lineariz-
ing further in & and €, we get

28 2e
2z = t§0[1 + f2<1 -7 ) -z } (A-6)*

+ 52 1+ x?
where the normalized offset is

X X
X=—=

2z Vpo tpo '

Equation (A-6) may be expanded as a Taylor series in x2, as

in equation (5), with coefficients A}’ (P) and A}’ (P) (bearing
superscript " to denote the WAA):

1—2%
Voo (A-7)*

AF(P) =
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2(e — d)

AY(P)= - ——.
tpOVpO

Then, equation (A-6) may be rewritten as

X 2
1+
Voto

For large offsets (x — ), equation (A-6) becomes

=13+ AYx+ (A-8)*

2
x
=21+ 2 — 28) + et (A-9)*
h
where Vi = V,fo(l + 2¢) is the square of the horizontal
velocity.
The SV-wave phase velocity in the weak anisotropy
approximation is (Thomsen, 1986):

Von(8) = V(1 + o sin® 8 cos? 8).  (A-10)*

Following the derivation above, the SV-wave traveltime
curve may be represented by equation (A-8), with coeffi-
cients:
1-2¢

140 (A-11)*

Ay (SV) =

v 20
A4 (SV) = Z__T .
LoV s0

In the limit of large offsets, the traveltime is given by
2

X
2= th(1 = 20) + —5. (A-12)*
VsO

APPENDIX B
EXACT TAYLOR SERIES EXPANSION OF REFLECTION MOVEOUTS

Here, generalize the results of Hake et al. (1984) and
derive the fourth-order Taylor series coefficient for P-SV
reflections in multilayered transversely isotropic media with
a vertical symmetry axis, not restricted to weak anisotropy.
The corresponding coefficients for P-P and SV-SV waves
are then obtained by inspection.

Let us consider the Taylor series expansion (5) of the
squared arrival time ¢*>(x2). Our goal is to express the
parameters A, and A4 through the parameters of a trans-
versely isotropic medium. The horizontal offset for the P-SV
reflection in N-layered transversely isotropic media may be
written as

N N
x=p| > UpAty + 2, UgAtg|, (B-1)
i=1 i=1
where
Vaii
U, =2 (B-2)
p

Here, p is the horizontal component of the slowness
vector (the ray parameter, dt/dx) for the ray emerging at
offset x, At; is the oblique one-way traveltime in the ith
layer. V; is the horizontal component of the group velocity

vector; subscript ‘‘p”’ refers to the P-wave, subscript ‘s’ to
the §V-wave. The first derivative of t*, needed for Ay, is

N N

2 Up,-Atp,‘ + 2 U, Atg;
dx? xdx x i=1 i=1
— =— = . (B-3)

i’ 1 dr 1p N N
S Aty + >, Arg

i=1 i=1

Evidently, for the pure P-P reflection

N

2 UpiAtpi
dx? i=1 B4
—(P) = —————, -
dtz( ) ~ (B-4)

2 Atpi
i=1

and for the SV-SV reflection

N

2 UsiAtsi
dx? i=1
;172- SsV)= —. (B-5)

N
2 Aty

i=1

Using V2 = lim U;, the second-order parameters are:
2i p

x—0
vi(P) im =L S vy
= = lim — (P)=— iAlp;
2 A(P) Lo dt? tpo ;=4 pe
N
1 2
=— > Vi1, (B-6)
tpo =
ViSV) li - (SV) : ng A
= = lim — = — (AL
2 Ay(SV) . dr? L0 1 e
1 N
=— > ViAtg,  (B-7)
Is0 ;=

where the times are either one- or two-way vertical travel-
times. For the P-SV converted wave we find from equations
(B-3), (B-6), and (B-7) (Seriff and Sriram, 1991):
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2 1 2 ’p0
VP —SV)=—(P~SV)=V5P)
A, tpg + 250

2 tSO
+ VHSV) —=— . (B-8)
tpg + 250

For the quartic coefficient4 4, we need the second derivative
of t2, c.f., equation (5) of the main text. Differentiating
equation (B-3), we get

1 d [di?
2 dx? \dx?)

where

1dG
G- (EiAtpi + EiAtsi);;

4G3 ’

(B-9)

X

G =p = EiUpiAtpi + EiUsiAtsi-

To find A4, we only need the limit of equation (B-9) atx = 0.
Following the derivation in Hake et al. (1984), in terms of
one-way traveltimes

Ay(P~SV)=A4(P - SV)(tp0 + t50)Y4.

Finally, using equations (B-6), (B-8), and (B-12)-(B-14), the
desired coefficient is

_ _ to [A(P-SV)]*
A4(P = SV)=A4(P)
tho +to | A2(P)
- tg  [A2(P-SV)]*
+A,(8V)
tho +ts0 | Ay(SV)

_tpotse AP ~ SV)[A,(SV) — A,(P)]?
(tpo + 250)* 4435(P)A5(SV)

(B-15)

Equation (B-15) is valid for layered transversely isotropic
models with arbitrary strength of the anisotropies. Unlike P
and SV moveouts, the moveout curve for the converted
P-SV reflection is nonhyberbolic even in a single isotropic
layer; the fourth-order coefficient A, in this case is deter-
mined by the last term in equation (B-15).

To express the Taylor series coefficients through the
parameters of transversely isotropic media, it is necessary to
determine the values of V, and H for a single layer. Hake et

1dG 2i(Hp + Vgpi)Atpi +3i(Hy + Vig)At al. (1984) found V', and H as functions of the elastic moduli
; dx|x=0 EngpiAtpi + 3, V3 At ’ Cqp and .density p. In 'the present nota.tion, thei{ results for
p=0 B-10 V’, are given as equations (6) and {7) in the main text, and
(B-10) those for H are given by
where
. 25
1 dU; H(P) = 8V (e — 3)[1 + 51 (B-16)
H; = lim e (B-11) _Us0
x—>0P ap Vzo
for each wave type (P or S). Also, for conciseness, here we 2%
write V7P’ = VZ(P) for the lth layer etc. o H(SV) = —SV;‘()O' 1+ > (B-l?)
Taking the limit of equation (B-9) atx = 0 and substituting 0
equation (B-10) gives T2
po
CiVE Aty + 3 VE ML) = (8,0 + ts0)[Si(Hyi + Vi )AL, + 3;(Hg + Vi)t ]
Ay(P~SV)= 2P 2T P Nim e mep oS W (B12)

where all times are now two-way vertical traveltimes. For
the pure P-P and SV-SV reflections, (B-12) reduces (Hake
et al., 1984) to:

(SiVaibtpi)? = tpo2i(Hpi + Vi) Aty
42 Vit p)*
(S VEAL): — 1503 (Hy + Vi)Aty
A3 VAt g)* )

Now we can represent the quartic coefficient for the P-SV
waves, equation (B-12), through the coefficients of the P-P
and SV-SV reflections. First we define quartic parameters
that are independent of the (two-way) traveltimes:

A4(P) = A4(P)t,
AL (SV) = Ay (SV)Eh,

Ay(P) = . (B-13)

Ay(SV) =

(B-14)

(EngpiAtpi + 3, Vi)

For the quartic Taylor series coefficient in a single layer we
get, from equations (B-13) and (B-14) for either P or SV:

H

advy
Then, using equations (B-16)-(B-18), we get the single-layer
equations (22) and (24) in the main text. Substitution of V,
and H, with subscripts i on all quantities, into equations
(B-6)-(B-8), (B-13), and (B-14) permits the calculation of the
Taylor series coefficients A, and 44 for P- and SV-waves in
multilayered media.

Equation (29) of the main text expresses A,(P or SV)
from equations (B-13) and (B-14) through the coefficients V;
and A, of the individual layers. The Taylor series coeffi-
cients for the P-SV converted wave, in one or many layers,
are given by using these quantities V,(4,) and A, in
formulas (B-8) and (B-15).

Ay =

(B-18)
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APPENDIX C
DIX-TYPE FORMULAS FOR THE TAYLOR SERIES COEFFICIENTS

Here, we derive interval properties from global parame-
ters by Dix-type differentiation. The Dix (1955) formula
makes it possible to recover the interval velocity for any
particular layer from the short-spread moveout velocity, in
flat-layered isotropic media. In flat-layered transversely iso-
tropic media, the interval velocity V,y for P-P or SV-SV
waves in the N-th layer may be recovered similarly, using
the short-spread moveout velocities for the reflections from
the top [V,(N — 1)] and bottom [V,(N)] of the layer,
equations (B-6) and (B-7):

, _ ViN)to(N) = VE(N = D)tg(N - 1)
. 1o(N) = (N = 1)

(C-1

The expressions for the quartic coefficient are more compli-
cated. Equations (B-13) and (B-14) may be rearranged using
(B-6) and (B-7), as

N
> (Vs + H)At; = VR(N)[1 — 44,(N)t3(N)V3(N)].
i=1

to(N)
We denote the right-hand side as
F(N) = V3(N)[1 = 4A4(N)13(N)V3(N)].

F(N) is thus a known function of the Taylor series coeffi-
cients for the reflection from the Nth boundary. Having
found F(N) and F(N — 1) using the reflections from the top
and bottom of the Nth layer, we may obtain

B F(N)ty(N) — F(N — 1)to(N - 1)

_ y4 )
to(N) — to(N = 1) Van. (C-2)

N
This expression determines Hy and hence, using equation
(B-18), A 5. Thus, Dix-type formulas are valid for both the
second-order and fourth-order Taylor series coefficients in
transversely isotropic media.





