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Body-wave radiation patterns and AVO in
transversely isotropic media

Ilya Tsvankin*

ABSTRACT
The angular dependence of reflection coefficients

may be significantly distorted in the presence of elastic
anisotropy. However, the influence of anisotropy on
amplitude variation with offset (AVO) analysis is not
limited to reflection coefficients. AVO signatures (e.g.,
AVO gradient) in anisotropic media are also distorted
by the redistribution of energy along the wavefront of
the wave traveling down to the reflector and back up to
the surface. Significant anisotropy above the target
horizon may be rather typical of sand-shale sequences
commonly encountered in AVO analysis.

Here, I examine the influence of P- and S-wave
radiation patterns on AVO in the most common aniso-
tropic model—transversely isotropic media. A concise
analytic solution, obtained in the weak-anisotropy
approximation, provides a convenient way to estimate
the impact of the distortions of the radiation patterns
on AVO results. It is shown that the shape of the
P-wave radiation pattern in the range of angles most

important to AVO analysis (0_40 0
) is primarily depen

dent on the difference between Thomsen parameters e
and 8. For media with s – 8 > 0 (the most common
case), the P-wave amplitude may drop substantially
over the first 25_400 from vertical. There is no simple
correlation between the strength of velocity anisot-
ropy and angular amplitude variations. For instance,
for models with a fixed positive e – 8 the amplitude
distortions are less pronounced for larger values of s
and 6. The distortions of the SV-wave radiation pat-
tern are usually much more significant than those for
the P-wave.

The anisotropic directivity factor for the incident
wave may be of equal or greater importance for AVO
than the influence of anisotropy on the reflection
coefficient. Therefore, interpretation of AVO anoma-
lies in the presence of anisotropy requires an inte-
grated approach that takes into account not only the
reflection coefficient but also the wave propagation
above the reflector.

INTRODUCTION

Amplitude variation with offset (AVO) analysis is one of
the few exploration methods that is used widely for the
direct detection of hydrocarbons. Conventional AVO algo-
rithms are based on analytic expressions for the plane
P-wave reflection coefficient for isotropic media. The pres-
ence of elastic anisotropy on either side of the reflector may
significantly distort the angular dependence of reflection
coefficients (e.g., Keith and Crampin, 1977; Banik, 1987;
Wright, 1987; Graebner, 1992). Banik (1987) and Thomsen
(1993) developed analytic approximations for the reflection
coefficient at a boundary between two transversely isotropic

media in the limit of weak anisotropy and of small velocity
and density contrasts across the reflector. A numerical
analysis of the P-waves reflection coefficient at the interface
between anisotropic shales and isotropic gas sands was
given in Kim et al. (1993). Blangy (1994) presented an
overview of the influence of transverse isotropy on the
P-wave reflection coefficient. Yet another substantial distor-
tion of the AVO signature in anisotropic media is associated
with the wave propagation above the reflector.

The real goal of AVO is to perform reflection coefficient-
versus-angle analysis rather than directly studying the am-
plitude variation with offset. Hence, correction for the

1 The qualifiers in "quasi-P-wave" and "quasi-S V-wave" will be
omitted for brevity.
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angular amplitude variation caused by the wave phenomena
above the reflector is an essential component of AVO
technology. Propagation effects, usually described in the ray
approximation, include source directivity, energy diver-
gence, and transmission and attenuation losses along the
raypath (Duren, 1992). Although correction for propagation
phenomena in realistic inhomogeneous subsurface models
encounters many practical difficulties (Martinez, 1993), it is
well understood if the medium is isotropic.

If the velocity above the reflector is angle-dependent, the
behavior of body-wave amplitudes becomes much more
complicated, and the isotropic correction becomes inade-
quate. The presence of anisotropic layers above the target
horizon may be quite typical for sand-shale sequences com-
monly considered in AVO analysis (Kim et al., 1993). While
reservoir sands can be expected to exhibit very weak anisot-
ropy (if any), shale formations are often characterized by
strong transverse isotropy, i.e., pronounced velocity varia-
tions in the incidence (vertical) plane (White et al., 1983;
Robertson and Corrigan, 1983; Banik, 1984; Sams et al.,
1993, among others).

A systematic description of point-source radiation pat-
terns in transversely isotropic and orthorhombic media was
given in Tsvankin and Chesnokov (1990a). Along with
numerical analysis based on evaluation of Fourier-Bessel
integrals, Tsvankin and Chesnokov presented an analytic
solution for radiation patterns derived from the stationary-
phase approximation. Their results showed that the distri-
bution of energy along wavefronts in anisotropic media is
substantially distorted by focusing and defocusing of energy,
usually associated with maxima and minima, respectively, in
the angle-dependent velocity.

Asymptotic ray-theory expressions for radiation patterns
in anisotropic media have been derived by Ben-Menahem et
al. (1991) and Gajewski (1993). Gajewski (1993) developed an
efficient numerical scheme to evaluate the Gaussian curva-
ture of the slowness surface needed to calculate radiation
patterns and gave a detailed discussion of body-wave ampli-
tudes in models containing aligned liquid-filled and dry
cracks. A numerical example illustrating the influence of the
distortion of P-wave radiation patterns on AVO was pre-
sented in Samec and Blangy (1992).

The main goal of this paper is to study the influence of the
distortions of body-wave radiation patterns in transversely
isotropic media on AVO analysis. The existing solutions for
point-source radiation in anisotropic models require numer-
ical evaluation and do not provide easy analytic insight into
the problem. Here, I present a concise weak-anisotropy
approximation for radiation patterns in transversely isotro-
pic media that relates the distortions of point-source radia-
tion to the Thomsen parameters E, a (for the P- and S V-
wave) and y (for the SH-wave). The weak-anisotropy
solution is compared with results of exact numerical model-
ing and with the stationary-phase approximation developed
in Tsvankin and Chesnokov (1990a). Analysis of radiation
patterns in the range of angles most important for AVO
(0-400

) is followed by a comparison of the influence of
transverse isotropy on two principal components of the
AVO signature—the wave propagation above the reflector
and the reflection coefficients.

GENERAL ANALYSIS FOR TRANSVERSE ISOTROPY

Far-field point-source radiation in isotropic homogeneous,
nonattenuating media is determined just by the source direc-
tivity factor and the spherical divergence of amplitude (Aki
and Richards, 1980). The far-field approximation for source
radiation in anisotropic media, derived in Tsvankin and
Chesnokov (1990a) by means of the stationary-phase
method, is a much more complicated function that depends
on the shape of the slowness surface. The most significant
distortion of radiation patterns in anisotropic media is caused
by the phenomena defined by Tsvankin and Chesnokov as
"focusing" and "defocusing" of energy. Energy increases
(focuses) in parts of the wavefront with a high concentration
of group-velocity vectors of elementary plane waves (which
comprise point-source radiation). Conversely, defocusing
corresponds to areas with a low concentration of group-
velocity vectors. Often (but not always) focusing takes place
near velocity maxima, while defocusing is often associated
with velocity minima.

Quantitative analysis of radiation patterns in Tsvankin and
Chesnokov (1990a) was performed by a numerical technique
based on plane-wave decomposition of point-source radia-
tion with subsequent evaluation of Fourier-Bessel integrals
in the frequency domain. In contrast with the exact (but
more time-consuming) method in Fryer and Frazer (1987),
the algorithm introduced by Tsvankin and Chesnokov in-
volves an approximate treatment of azimuthal anisotropy;
however, it is exact for azimuthally isotropic media. The
stationary-phase approximation was used by them only for
qualitative estimates. Here, the stationary-phase solution for
radiation patterns is transformed into a much simpler expres-
sion valid for weak transverse isotropy.

I consider a simple model of a horizontal reflector below a
transversely isotropic medium with a vertical symmetry axis
(VTI) (Figure 1). Transverse isotropy will be described by
the vertical velocities Vp0 and VSO of P- and S-waves,
respectively, and three dimensionless anisotropic parame-
ters e, 8, and y introduced in Thomsen (1986):

C11 — C 3 3
£ °	 (1)

2c33

Source

Wavefront

Depth	 VPO Vso E s 7

1
REFLECTOR

FIG. 1. Reflection from the bottom of a transversely isotropic
layer. Anisotropy distorts the angular amplitude distribution
of the incident wave.
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(C13 + C44) 2 — (C 33 — C44) 2 	(
2 )

2C33(C33 — C44)

C 66 — C44
y = 2c44 	(3)

where c are stiffness coefficients.
Although originally designed for weakly anisotropic mod-

els, the parameters e, s, and y are convenient to use in TI
media with arbitrarily strong velocity anisotropy (Tsvankin
and Thomsen, 1994). P-SV propagation is described by the
parameters Vpo , VS0 , e, and s, while the SH-wave velocity
depends on VSO and y (SH-wave anisotropy is elliptical).

The influence of the free surface on radiation patterns is
not taken into account, nor is that of source and receiver
arrays. Here I concentrate only on the propagation phenom-
ena caused by velocity anisotropy. These anisotropy-in-
duced distortions of wavefront amplitudes are quite general
since they take place not only in the source layer but in any
other anisotropic layer encountered by the ray. The pure
influence of the wavefront-focusing phenomena is also of
prime interest in crosshole and reverse VSP surveys that
employ buried sources.

It is important to mention that the radiation patterns in this
paper are derived as a function of the phase or group angle
with the symmetry axis; therefore, the analytic develop-
ments below apply not only for VTI media but also for
transverse isotropy with any orientation of the axis of
symmetry.

Derivation of the weak-anisotropy approximation for
point-source radiation is given in the Appendix. The far-field
radiation pattern of P, SV, or SH-waves from a point force
for weak transverse isotropy (II << 1, << 1, 1) is
shown to be

F,, 1
U(R, 9) _

4rrp V2(8 )R Psi 1 d 2V
+—

 V do 2

(4)

where U is the magnitude of the displacement, 0 is the phase
angle measured from the symmetry axis, V is the phase
velocity, p is the density, and R = \/z 2 + r 2 (z is the
receiver depth with r being the horizontal source-receiver
offset). The source term F„ is the projection of the force on
the displacement (polarization) vector. Expression (4)
should be evaluated at the phase angle 0, corresponding to a
given ray (group-velocity) angle 1V = tan -1 (r/z) of the
incident wave. It can be shown that at velocity maxima or
minima the phase and group velocity vectors coincide with
each other.

Equation (4) demonstrates how point-source radiation is
distorted by velocity anisotropy. Although the term F,,l
(4arpV2R) formally coincides with the well-known expres-
sion for the far-field, point-force radiation in isotropic media
(Aki and Richards, 1980), the phase velocity in equation (4)
is angle-dependent. Since body-wave polarizations depend
on the elastic constants (e.g., for the P-wave the polarization
vector deviates from the ray), the source term Fu may also
be distorted by the anisotropy. Also, the expression should

be evaluated in the phase direction (angle 6), which is
generally different from the source-receiver direction be-
cause of the presence of anisotropy. The term under the
radical represents the pure contribution of the anisotropy to
the radiation pattern. As shown in Tsvankin and Chesnokov
(1990a), the second derivative of phase velocity is responsi-
ble for the focusing and defocusing phenomena mentioned
above.

The distinction between the source term F 1, and the rest of
equation (4) is very important. While F,, is itself distorted by
the anisotropy, the existence of the remaining anisotropic
terms means that the redistribution of energy along the
wavefront happens not only in the source layer but also in
any other anisotropic layer along the raypath.

Linearization of equation (4) in terms of the anisotropy
parameters s, 6, and y leads to concise expressions for the
P-, SV- and SH-waves that provide analytic insight into the
amplitude distortions in transversely isotropic media.

P-WAVE RADIATION PATTERNS

Weak-anisotropy approximation for P-wave radiation

The issue of P-wave AVO is of particular importance
because P-waves constitute the overwhelming majority of all
seismic data being used in exploration. The P-wave phase-
velocity function for weak transverse isotropy (I << 1,
<< 1), fully linearized in E and 8, is given by (Thomsen, 1986)

Vp(9)=VP0(1 +8 sin 2 0 cos 2 0 +e sin 4 0). (5)

Differentiating equation (5) twice with respect to the phase
angle 0 yields

d 2[VP( 6 )]

doe	 = 2V
P0 [s cos 40 + 2e sin e 9(1 + 2 cos 20)].

(6)

Also, for weak anisotropy (see Thomsen, 1986)

sin 4 = sin 9{1 + cos 2 8[25 + 4(s — s) sin e 8]}. (7)

Substituting the above equations into equation (4), apply-
ing a Taylor series expansion, and dropping the terms
quadratic in 8 and e, we obtain the weak-anisotropy approx-
imation for the P-wave radiation pattern,

F,, 1-2(e— S)sin e 29 +ssin e 9
UP(R, e) = R47r V 1 + 28P po

(8)

The term 1 + 28 has been retained in the denominator to
make the weak-anisotropy approximation exact in the sym-
metry direction (0 = 0). [By using formula (A-4), it can be
shown that the exact far-field P-wave amplitude in the
symmetry direction is given by F 3 /[4-rrpVpoR(1 + 2s)],
where F3 is the vertical component of the force.] Equation
(8) may produce errors at oblique incidence if a and 8 are not
small.

Note that V 0(1 + 28) is equal to the squared P-wave
normal-moveout (NMO) velocity from a horizontal reflector.
This means that the influence of transverse isotropy on the
amplitude in the symmetry direction and on the NMO
velocity is determined by the same expression: 1 + 28.
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Thus, the focusing (or defocusing) of the P-wave energy at
vertical incidence depends on the single anisotropic coeffi-
cient 8, the parameter responsible for near-vertical P-wave
propagation. If 8 < 0, the velocity function has a maximum
at 0 = 0°, and the amplitude at vertical incidence increases as
a result of the focusing of energy. Conversely, if 8 > 0, a
velocity minimum leads to lower amplitudes at 0 = 0°
because of the defocusing. It should be emphasized that the
velocity maximum or minimum in the symmetry direction
represents the only "3-D" velocity extremum in trans-
versely isotropic media: phase velocity increases (or de-
creases) away from the symmetry axis in all directions, not
just in the incidence plane. Therefore, the focusing (or
defocusing) of energy in the symmetry direction is more
pronounced than that for any other velocity extremum with
the same value of d 2 V/d0 2 . This peculiarity of the symme-
try direction is reflected in equation (4) by the value of the
ratio sin */sin 0 at 4 = 0 = 0 [equation (7)]:

sin 4)
lim	 = 1 + 28,
e-0 sin 0

whereas sin */sin 0 = 1 at any other velocity extremum.
While distortions of absolute amplitude are diagnostic of

anisotropy, the property of radiation patterns of most impor-
tance in AVO analysis is the anisotropic correction to the
angular amplitude distribution. The lowest-order anisotropic
angular term in equation (8) depends on the difference E - S
(more exactly, at small angles the angular amplitude varia-
tion is determined by 8e - 98). If s - 8 > 0 (the most
common case in crustal rocks), transverse isotropy causes
the P-wave amplitude to decrease away from vertical. For
elliptical anisotropy (e = 8), the term 2(E - 8) sin e 20 van-
ishes, and the anisotropic angular correction reduces to
8 sin e 0. This means that for elliptical anisotropy P-wave
angular amplitude and velocity variations [see equation (5)]
correlate with each other because both depend on 8 in a
similar fashion. However, the magnitude of the anisotropy-
induced angular correction (given by 8 sin e 0) between 0 and
40° is relatively small unless 8 is unusually large. Finally, if
e - 6 < 0 we can expect an increase in the P-wave amplitude
with angle because of transverse isotropy.

Angular distortions of the radiation pattern may also be
caused by the source term Fu , which depends on the
polarization vector. As shown by Tsvankin ("P-wave signa-
tures and notation for transversely isotropic media: An
overview," accepted for publication in GEOPHYSICS, 1996), in
the weak-anisotropy approximation the P-wave polarization
angle 4) (measured from the symmetry axis) is given by

tan 4) = tan 9{1 + B[28 + 4(e - 8) sin e 0]},	 (9)

B =
2(1 - VsoIVPO)

An analysis of equation (9) [compare with equation (A-20)
for the group angle] and the numerical study in Tsvankin and
Chesnokov (1990a), show that for moderate velocity anisot-
ropy, the P-wave polarization vector does not diverge much
from the group (ray) direction. This means that the source
term F,, for the P-wave is almost "isotropic," i.e., for a unit
force it is close to the absolute value of the cosine of the

angle between the force and the group-velocity vector. For
moderate anisotropies JsI <_ 0.2, <- 0.2, the distortions of
the point-force directivity factor F in the angular range
0-40° are limited to a few percent. For other sources, such as
dislocations or explosions, the dependence of the source
term on anisotropy is more complicated and can make a
more significant contribution to the distortions of the angular
amplitude distribution (Tsvankin and Chesnokov, 1990b).

It is more convenient to represent radiation patterns as a
function of the group angle 4) that determines the source-
receiver direction O = tan (r/z)). Formally, the difference
between the phase and group angles for the terms 2(s - 8)
sin e 20 and 6 sin e 0 in equation (8) can simply be ignored. If
we replace 0 in formula (8) by the group angle 4) [using
equation (7)] and do linearization in s and 8, we get exactly
the same expression (8) but with the group angle in place of
the phase angle. Nevertheless, when the absolute values of
the anisotropies approach 15-20%, the accuracy of the
weak-anisotropy approximation is increased by evaluating
expression (8) at the phase angle corresponding to a given
group angle.

Normalized P-Wave Amplitude
1.2

N................. :.................

0.9

Group Angle (Degrees)

P-Wave Phase Velocity
8.4

8 .2	 ....................	 ........
Y	 '

8.0
0	 15 30 45 60 75

Phase Angle (Degrees)

FIG. 2. P-wave amplitude from a point vertical force in
transversely isotropic olivine (V 0 = 8.328 km/s, Vso =
4.606 km/s, E = -0.008, 8 = -0.059). The dotted curve is
the exact result obtained by evaluating Fourier-Bessel inte-
grals; the solid curve is the stationary-phase solution (A-4);
and the dashed curve is the weak-anisotropy approximation
(8). All curves are normalized by the radiationattern in the
corresponding isotropic medium (E = 0, 5 = 0). The phase-
velocity curve is shown at the bottom. The receiver is
located at a constant distance R from the source in the
far-field (R/An = 12, where Xp is the average P-wavelength
in the isotropy plane).
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Analysis of far-field P-wave amplitudes

I begin by discussing the amplitude signature for the
olivine model considered in Tsvankin and Chesnokov
(1990a) and proceed with a systematic analysis for a suite of
transversely isotropic models parameterized by s and S.
Figure 2 shows the P-wave amplitudes excited by a point
vertical force for transversely isotropic olivine with E — S =
0.051. The dotted curve in Figure 2 is the exact result
obtained by evaluating Fourier-Bessel integrals as described
in Tsvankin and Chesnokov (1990a); the solid curve is the
stationary-phase solution, equation (A-4), valid in the far-
field for arbitrary strength of the anisotropy; and the dashed
curve is the far-field, weak-anisotropy approximation (8) (it
can hardly be distinguished from the solid curve). The
weak-anisotropy result was calculated using equations (7)
and (9) for the group and polarization angles, respectively.

To demonstrate the influence of anisotropy, all three
curves in Figure 2 are normalized by the radiation pattern for
the corresponding isotropic medium (a = 0, S = 0), given as
cos /(4-rrpVPRR) (for a unit force). In addition to revealing
the angular distortions, this correction makes it possible to
see the difference in the absolute amplitude caused by the
anisotropy.

For the olivine model in Figure 2, transverse isotropy
leads to a decrease in amplitude away from vertical down to
a minimum near 45-50°. At a group angle of 45°, the exact

V0/V0 = 1.73

P-Wave Amplitude
0.9

0.8

0.7

0.6

0.5

Group Angle (Degrees)

P-Wave Phase Velocity
3.6

	3 .4	 .	 .......	 .......	 ......

	Y 3.2	 .......	 .......	 .......

3.0
0	 15	 30	 45	 60

Phase Angle (Degrees)

a

normalized amplitude (dotted curve) is 14% lower than that
at vertical incidence. Note that the P-wave phase velocity
has a maximum at 0 = 0° and a minimum near 0 = 49°. Thus,
the decrease in the P-wave amplitude is caused by the
focusing of energy at vertical incidence and defocusing near
45-50°. Although a distortion of 14% over a 45° interval does
not seem to be significant, it occurs in a medium with less
than 2% maximum variation in the P-wave phase velocity!

The stationary-phase result (A-4) diverges from the exact
amplitude only in the vicinity of the minimum of the radia-
tion pattern (located at t = 90°, not shown in Figure 2)
because of the nongeometrical effects described in Tsvankin
and Chesnokov (1990a). The values of e and S for trans-
versely isotropic olivine are small and, predictably, the
accuracy of the weak-anisotropy approximation is high.

Before proceeding with the P-wave amplitude analysis for
a range of TI models, it is necessary to find out what
parameters have an impact on P-wave radiation. Clearly, the
influence of transverse isotropy on P-wave amplitudes is
mostly determined by the anisotropy parameters a and S.
However, the P-wave radiation pattern also depends on the
vertical velocities Vp0 and VSO . While the P-wave velocity
V 0 is just a scaling coefficient that does not change the
shape of the radiation pattern (for constant e, S, and
V 0 / Vso),  the contribution of the S-wave velocity VSO to
the P-wave amplitude needs to be evaluated.

Vp0 /V0 = 2.2

P-Wave Amplitude
0.9

0.8

0.7

0.6

0.5

Group Angle (Degrees)

P-Wave Phase Velocity
3.6

	

3.4	 ................................

	Y 3.2	 .......	 .......	 .......

3.0
0	 15	 30	 45	 60

Phase Angle (Degrees)

R
FIG. 3. The influence of the S-wave vertical velocity on P-wave amplitudes from a vertical force for the model
with a = 0.25, S = 0.1, and V 0 = 3 km/s. The solid curve is the stationary-phase solution (A-4); the dashed
curve is the weak-anisotropy approximation (8). The amplitude curves are normalized by the radiation
pattern in the corresponding isotropic model (E = 0, S = 0). The plots at the bottom show the exact phase
velocity (solid curve) and its weak-anisotropy approximation (5) (dashed curve).
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Tsvankin and Thomsen (1994) showed that if a TI medium
is parameterized by Vp0 , VSO , a and 8, the influence of the
S-wave vertical velocity on P-wave traveltimes is practically
negligible, even for strong anisotropy. The situation with the
amplitudes looks more complicated. Although there is no
explicit dependence on VSO in the weak-anisotropy approx-
imation (8), the source term F,, is somewhat dependent on
VSO through the polarization direction [equation (9)]. The
influence of VSO on the stationary-phase solution [equation
(A-4)] is expected to be stronger because several compo-
nents of the Christoffel tensor in equation (A-4) contain the
elastic coefficient c 44 and, consequently, the velocity Vs0
(see Appendix).

However, as illustrated by Figure 3, not only the velocity
but also the far-field amplitude of the P-wave is practically
independent of the S-wave vertical velocity. For a Vp0I VS0
ratio varying from 1.73 (a) to 2.2 (b), the exact far-field
amplitude in the 0-40 0 angular range changes by less than
1.5%. In the suite of plots starting with Figure 3, I show
P-wave radiation patterns from a vertical (parallel to the
symmetry axis) force calculated using the stationary-phase
expression (A-4) (solid curve) and the weak-anisotropy
approximation (8) (dashed curve). As in Figure 2, both
curves are normalized by the radiation pattern in the corre-
sponding isotropic medium (a = 0, 6 = 0). The exact phase
velocity (solid curve) and its weak-anisotropy approximation
(5) (dashed curve) are shown at the bottom.

Now, I continue with a discussion of P-wave amplitude
signatures for a representative set of transversely isotropic
models. The olivine model in Figure 2 is a weakly anisotro-
pic medium with small negative 6(-0.059) and a = 0. While
both positive and negative values of 8 are plausible, a is
almost always positive (Thomsen, 1986). With decreasing 6
and increasing a (s > 0, 8 < 0), the second derivative of the
velocity function [equation (6)] increases more rapidly with
angle. Consequently, the defocusing of energy away from
vertical [equation (4)] becomes more pronounced and
spreads over a wider range of angles. It is important to
mention that the maximum energy defocusing in this case is
shifted from the velocity minimum towards larger angles
because d 2 V 1d0 2 continues to increase even beyond the
velocity minimum. In equation (8), this defocusing trend
manifests itself through the behavior of the two anisotropic
angular terms.

Therefore, for more typical weakly anisotropic models
with 6 < 0, s > 0(161 s 0.1, <_ 0.1), the P-wave amplitude
may drop by 20-30% and more between 0 and 40° (Figure 4a).
Note that there is no direct correlation between the P-wave
amplitude anomalies in the 0-40° range and the shape of the
phase-velocity function. Figure 4 also shows that the P-wave
radiation pattern is controlled more by the difference e - 6
than by the individual values of the anisotropic coefficients.

According to the existing measurements made at seismic
frequencies, typically s > 6 (Thomsen, 1986; Tsvankin and
Thomsen, 1994). For instance, a is always greater than 6 for
transversely isotropic media formed by thin bedding of
isotropic layers (Berryman, 1979). Thus, decrease in amplitude
with angle may be typical for P-wave propagation through
transversely isotropic subsurface formations such as shales.

In spite of the apparent similarity, there is a certain
difference between the P-wave amplitude signatures for the

two models with a-6 = 0.1 in Figure 4. First, the anisotropy
leads to a higher amplitude at vertical incidence in Figure 4a
because of the focusing/defocusing phenomena near vertical,
discussed above. Second, in agreement with the weak-
anisotropy approximation (8), the angular amplitude varia-
tions (that are of primary interest to us in this problem) are
milder for the model with a larger value of 6 (Figure 4b).

The angular dependence of P-wave amplitudes for two
media with a larger positive e - 8 = 0.2 is shown in Figure 5.
As predicted by the weak-anisotropy approximation, the
influence of the anisotropy on the P-wave amplitude be-
comes more pronounced with increasing e - 8. For the
model in Figure 5a, which is still formally considered weakly
anisotropic, the drop in the normalized amplitude (using the
solid curve) from 0 to 40° reaches 35%! For the model in
Figure 5b, despite a much larger value of a and more
significant phase-velocity variations, the amplitude distor-
tions are more moderate (about 21%).

As illustrated by this example, the terms "weak anisotro-
py" or "strong anisotropy" are meaningless without refer-
ence to a particular problem. While the model with e = 0.1,
6 = -0.1 is weakly anisotropic in terms of velocity varia-
tions, it qualifies as strongly anisotropic in terms of P-wave
amplitude distortions. Different seismic phenomena (e.g.,
group velocities, normal moveout velocities, dip-moveout
signatures, amplitudes, etc.) depend on different combina-
tions of anisotropic coefficients. These effective parameters
are not easy to infer from the exact solutions. The power of
the weak-anisotropy approximation is in providing a conve-
nient tool for developing analytic insight into the influence of
anisotropy on wave propagation.

While the weak-anisotropy approximation gives a valid
qualitative description of the amplitude anomalies, it devi-
ates from the exact solution with increasing al and 181, as
well as with increasing angle. For the model with a = 0.25,
8 = 0.05, the exact amplitude at a group angle of 40° is about
10% higher than the weak-anisotropy result. Although this
error cannot be considered as large given the value of s, it
may still look surprising, because the weak-anisotropy
phase-velocity curve in the 0-60° range is close to the exact
one (Figure 5). However, we should keep in mind that while
deriving the weak-anisotropy expression (8), we have linear-
ized in s and 8 not only the phase velocity itself, but also its
two derivatives, the group-velocity angle, the expression for
JUpe l containing the components of the Christoffel matrix
(see the Appendix), and the fraction in equation (4). This
multiple linearization may lead to much higher errors in the
weak-anisotropy approximation for amplitude than those in
the linearized phase-velocity function.

Next, I consider elliptical anisotropy—a special case of
transverse isotropy that occurs if e = 8. For elliptical
anisotropy the stationary-phase solution reduces to a simple
function of the group angle it without application of the
weak-anisotropy approximation

F,, 1
Up(elliptical) _

4rrpVp0R V(1 + 28)(1 + 26 cos t 'ir)

(10)
As discussed above, the influence of anisotropy on the

P-wave radiation patterns in elliptically-anisotropic models
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FIG. 4. Normalized P-wave amplitude from a vertical force for two models with the same E - 8 = 0.1.
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FIG. 5. Normalized P-wave amplitude from a vertical force for models with e - 8 = 0.2.
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is well-correlated with the character of the velocity varia-
tions (Figure 6). If the value of s = 8 is positive, both the
velocity and the normalized amplitude increase away from
vertical, but the amplitude variations in the angular range
0-40° remain mild, even for models with significant velocity
anisotropy (Figure 6b). For the medium with s = 6 = 0.25,
the angular variation in the normalized amplitude (13% from
0 to 400

) is caused in part by the source term F,, because the
P-wave polarization vector deviates somewhat from the
source-receiver (group) direction. Elliptical anisotropy,
however, may lead to a more significant change in the
absolute value of the amplitude. For the same model with
e = 6 = 0.25, for example, the amplitudes near vertical are
about 30% smaller than in the isotropic medium with the
same Vp0 and p.

To complete the analysis of P-wave radiation patterns, I
examine amplitude signatures for models with negative e -
8 (Figure 7). In this (less typical) case, in agreement with the
weak-anisotropy result [equation (8)], the anisotropy leads
to an increase in the P-wave amplitude with angle. Note,
that for models with s - 8 < 0, the amplitude signature is
much more controlled by the difference s - 8 than for
models with positive e - 6. For both media in Figure 7,
which have the same s - 6 = -0.1 but different individual
values of 8 and e, the increase in the normalized amplitude
from 0 to 40° is almost the same (=25%).

The accuracy of the weak-anisotropy approximation turns
out to be higher for elliptical anisotropy (s = 6) and models
with negative s - 8 than for media with E - 8 > 0. Even for
e and 8 in the 20-25% range, the weak-anisotropy result in
Figures 6 and 7 does not deviate much from the exact
amplitude for incidence angles up to 40-45 degrees.

Radiation pattern versus reflection coefficient

How do the distortions of the P-wave radiation pattern
compare with the influence of transverse isotropy on the
reflection coefficient? Thomsen (1993) derived an approxi-
mation for the P-wave reflection coefficient in the limit of
weak transverse isotropy, and small velocity and density
contrasts at the reflector. Here, I give Thomsen's equation
with a correction by Ruger ("P-wave reflections and azi-
muthal dependence of AVO in transversely isotropic me-
dia," Center for Wave Phenomena Project Review, CSM,
1995):

R(6) =R 0 (8) + R a i s(9), (11)

where R jot (0) is the reflection coefficient in the absence of
anisotropy (e = 0, S = 0), and

Ranis ( 0 ) = 2 (82 — 81) sin g 0

+ 2 (E 2 - El) sin 2 0 tan g 0. (12)

Subscripts 1 and 2 refer to the media above and below the
reflector, respectively. One of the convenient features of
equations (11) and (12) is the separation of the "isotropic"
and "anisotropic" parts of the reflection coefficient. For-
mula (12) is an improvement over Banik's (1987) approxima-
tion, which is limited to small incidence angles.

Unlike the radiation pattern, the reflection coefficient at
normal incidence is not distorted by transverse isotropy if

the density and P-wave vertical velocity are the same in the
isotropic and TI models. Note that the lowest-order angular
correction to the reflection coefficient depends just on the
change in S across the reflector (no dependence on E), while
the lowest-order angular term in radiation pattern (8) con-
tains the difference between s and 8.

To compare the influence of transverse isotropy on the
radiation pattern and on the reflection coefficient, we assume
that the medium below the reflector is isotropic (e.g., the
shale/sand AVO model discussed in Kim et al., 1993). Then

R a„is (0) = - za 1 sin e 0 - ze 1 sin e 0 tan g 0. (13)

For the two models shown in Figure 8, the importance of
the propagation phenomena is quite different. If e = 0.1 and
8 = -0.1 (Figure 8a), the anisotropy causes a 35% drop in
the amplitude from 0 to 40°, while the anisotropy-induced
angular variations in the reflection coefficient do not exceed
0.01. Hence, for a typical value of Risot of about 0.1,
transverse isotropy would make less than a 10% change in
the total reflection coefficient. Thus, in this case the redis-
tribution of energy above the reflector is likely to be a much
more important factor in AVO than the influence of the
anisotropy on the reflection coefficient.

In contrast, for the model in Figure 8b, the distortions of
the radiation pattern in the 0-40° range are limited to 7% as
compared with the absolute change in the anisotropic part of
the reflection coefficient (R anis ) of about 0.05. For typical
(small) values of R isot , we can expect the distortions of the
reflection coefficient to be the dominant effect of transverse
isotropy on AVO for this model. Obviously, it is difficult to
make a general comparison between the influence of anisot-
ropy on wave propagation and reflection coefficients. The
angular variations in the reflection coefficient depend on the
difference in the anisotropic parameters across the reflector,
while the radiation pattern is determined entirely by the
properties of the incidence medium. Also, the influence of
anisotropy on the reflection coefficient depends on the
impedance contrast, i.e., it is more pronounced for weak
reflectors. However, it is clear that the two phenomena are
often of the same order of magnitude.

More examples of P-wave reflection coefficients in trans-
versely isotropic media are provided in Kim et al. (1993) and
Blangy (1994). Kim et al. (1993) studied a shale/sand bound-
ary under the assumption that only the shale (the medium
above the reflector) is anisotropic. For moderate values of s
and 8 in the shale, the difference between the isotropic and
anisotropic reflection coefficients at an incidence angle of 40°
is usually limited by ±0.05. In one of the typical cases
considered in Kim et al. (1993) (Class 2 gas sands), this
difference amounts to a 30-35% error in the reflection
coefficient, which is comparable to the distortions of the
radiation pattern we have discussed above.

In isotropic AVO analysis, the presence of gas is often
identified by an increase in the absolute value of the P-wave
reflection coefficient with angle. Kim et al. (1993) concluded
that transverse isotropy above the reflector usually enhances
this behavior by further increasing the absolute value of the
reflection coefficient away from vertical. Our analysis shows
that the propagation phenomena in typical TI media (with
s - 6 > 0) above the reflector may lead to a decrease in the
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amplitude with angle and, therefore, reduce or reverse the
influence of the anisotropy on the reflection coefficient. For
"bright spots" with large normal-incidence reflection coef-
ficients and a relatively slow increase in the absolute value of
the reflection coefficient with angle [Class 3 sands from Kim
et al. (1993)], amplitude distortions above the reflector may
even reverse the sign of the AVO gradient!

SHEAR-WAVE RADIATION PATTERNS

SV-wave

The phase velocity of the S V-wave in transversely isotro-
pic media is mostly determined by the effective parameter
denoted in Tsvankin and Thomsen (1994) as r:

2
vP0

	Q = z (e — 8).	 (14)
Vso

In the weak-anisotropy approximation, the S V-wave
phase velocity is given by (Thomsen, 1986)

Vsv(9) = Vso (1 + v sin e 0 cos t 8).	 (15)

The terms "weak" or "strong" velocity anisotropy for the
SV-wave refer mostly to the value of Q [equation (14)] rather

	

6=U.1	 $=-0.1

Incident P-Wave Amplitude

than to the individual values of s and 8, although e, 8, and the
Vpo /Vso ratio do have some separate influence on the
SV-wave velocity if v is not small.

Equation (15) can be obtained from the P-wave phase
velocity [equation (5)] by replacing Vp0 with Vs0 , 6 with v,
and setting E = 0. Since the radiation pattern in the weak-
anisotropy approximation (4) is a function of phase velocity
(except for the source term Fu ), the SV-wave radiation
pattern can be derived from the P-wave formula (8) by
making the same substitutions (V 0 = VSO , 8 = o, e = 0):

F„ 1 + 2Q sin e 20 + v sin e 0

Usv(R, 0) = 0R4rr V 1 + 2QP s
(16)

The weak-anisotropy formula is exact in the symmetry
direction where the anisotropic correction factor is given by
1/(1 + 2v). Note that Vs0 is the SV-wave NMO
velocity from a horizontal reflector. Therefore, as for the
P-wave, the S V-wave amplitude in the symmetry direction
(0 = 0) and the NMO velocity are controlled by the same
expression; for the SV-wave, this expression is 1 + 2v.

In addition to maxima or minima at 0 = 0 and 0 = 90 0 , the
S V-wave phase velocity function has an extremum near 45°
(unless e = 8, in which case Vs v is constant). In the most

E=0.2 8=0.1

Incident P-Wave Amplitude
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b
FIG. 8. Comparison of the influence of transverse isotropy on the P-wave radiation pattern (from a vertical
force) and on the reflection coefficient. (Top) The exact far-field amplitude of the incident wave from equation
(A-4) normalized by the amplitude in the corresponding isotropic medium with s = 8 = 0. (Bottom) The
angular variation in the reflection coefficient caused solely by the anisotropy [equation (13)]. It is assumed
that the transversely isotropic models with s and 8 shown on the plot overlie an isotropic medium.
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common case of positive o (a > 8), the SV-wave phase
velocity has a minimum at vertical incidence followed by a
maximum near 45° (exactly the same as the P-wave velocity
for a = 0, 8 > 0). As shown by formula (16) and the analysis
in the previous section, this leads to an increase in the
incident wave amplitude with angle. An important differ-
ence, however, is that Q is often much bigger than 8 because
of the contribution of the squared velocity ratio. It is also
noteworthy that the polarization direction and, conse-
quently, the term F,, is often much more distorted by
transverse isotropy for the SV-wave than for the P-wave
(Tsvankin and Chesnokov, 1990a).

Figure 9 shows the S V-wave amplitude for the same
olivine model as in Figure 2, which has a positive value of
a — 8, thus yielding v > 0. The SV-wave velocity anisotropy
(i.e., the maximum variation in velocity) for this model is
only about 4.3%. Nevertheless, the focusing of energy near
the velocity maximum causes a pronounced increase in the
normalized SV-wave amplitude near the 45° angle.

The stationary-phase solution (solid curve) remains close
to the exact amplitude (dotted curve) within the whole
angular range shown in Figure 9 [the area near the symmetry
(vertical) axis, not shown on the plot, corresponds to the
minimum of the radiation pattern where the amplitude goes
to zero]. This verifies the accuracy of the stationary-phase
result [equation (A-4)] in describing far-field SV amplitudes.

Normalized SV-Wave Amplitude
1.2

1.0

0.8

0.6

0.4

Group Angle (Degrees)

SV-Wave Phase Velocity
5.0

Y

4.6
15 30 45 60 75 90

Phase Angle (Degrees)

FIG. 9. SV wave amplitude from a vertical force in trans-
versely isotropic olivine (model from Figure 2, v = 0.168).
The dotted curve is the exact result obtained by evaluating
Fourier-Bessel integrals; the solid curve is the stationary-
phase solution (A-4); and the dashed curve is the weak-
anisotropy approximation (16). All three curves are normal-
ized by the radiation pattern in the corresponding isotropic
medium (a = 0, 6 = 0).

Although the coefficient Q is not small (a = 0.168), the error
of the weak anisotropy approximation (16) for this model
does not exceed 6%.

Figures 10 and 11 show the normalized SV-wave radiation
patterns from a horizontal force for a suite of models with Q

varying from zero (elliptical anisotropy) to 0.45. The ampli-
tudes were calculated using the stationary-phase solution
[equation (A-4)] (solid curve) and the weak-anisotropy ap-
proximation (16) (dashed curve).

Elliptical anisotropy (v = 0, Figure 10a) seems to be
equivalent to isotropy for the S V-wave because the SV-
wave phase and group velocities do not change with angle.
However, even in this case the S V radiation pattern deviates
from the isotropic one because of the influence of the source
term F, i.e., as a result of the polarization anomalies. In the
example with e = 8 = 0.2 shown in Figure 10a, the anisot-
ropy tilts the S V-wave polarization vector towards vertical,
thus reducing the amplitude generated by a horizontal force.
It is interesting that for the S V-wave from a vertical force in
the same model, the influence of the anisotropy leads to
higher amplitudes. This explains the distortions of the SV-
wave radiation pattern found by Ben-Menahem et al. (1991)
and Gajewski (1993) for the elliptically anisotropic model of
"Wills Point shale," which has e = 6 = 0.37. It should be
mentioned that the original elastic constants of Wills Point
shale, experimentally determined in Robertson and Corrigan
(1983), did not yield elliptical anisotropy; Ben-Menahem et
al. (1991) adjusted the elastic coefficients reported in
Robertson and Corrigan (1983) to make the model elliptical.
On the whole, for elliptical anisotropy the S V-wave ampli-
tude distortions in the range 0-40° are mild unless the value
of e = 8 is unusually large.

Although the medium with a — 8 = 0.05 (Figure 10b)
seems to be close to elliptical and the maximum velocity
variation is just about 3.5%, the SV-wave amplitude signa-
ture is distinctly different from the one for elliptical anisot-
ropy. The value of v = 0.15 is sufficient to make the
normalized amplitude increase by 34.5% from 0 to 40°.

For larger v, the velocity minimum at vertical and the
maximum near 45° become sharper, making the SV-wave
amplitude anomaly much more pronounced (Figure 11). For
the medium with Q = 0.3 (Figure lla), the increase in the
normalized amplitude between 0 and 40° reaches 85%, while
the maximum S V-wave velocity variation is only about
6.3%.

These results are in good agreement with S V-wave focus-
ing phenomena described in Tsvankin and Chesnokov
(1990a) and Gajewski (1993). Here, the numerical results are
supported by a consistent analytic treatment of the ampli-
tude anomalies in terms of Q. It should be mentioned,
however, that for models with relatively large Q (like the
ones in Figure 11), the SV radiation pattern becomes more
dependent on the individual values of s, 8, and Vp0!V 0.

With a further increase in o, the Gaussian curvature of the
slowness surface at the velocity maximum decreases, even-
tually leading to a parabolic point where the curvature goes
to zero [see a discussion in Gajewski (1993)]. At parabolic
points, the stationary-phase solution (A-4) is invalid since its
denominator goes to zero and the amplitude becomes infi-
nite. This deficiency is common for all high-frequency ray-
theory solutions, including those presented in Ben-Menahem
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et al. (1991) and Gajewski (1993). Note that the numerical
method based on evaluation of Fourier-Bessel integrals
(Tsvankin and Chesnokov, 1990a) remains valid even at
parabolic points.

For even larger o, SV-wavefronts exhibit cusps centered
near phase-velocity maxima. The distribution of energy
within the cusps is more complicated than just a single
amplitude maximum as in the models considered above, and
may not be adequately described by the stationary-phase
expression (A-4).

As demonstrated in Figures 10 and 11, the error of the
weak-anisotropy approximation (16) in the angular range
0-40° does not exceed 10% if a < 0.2 — 0.25. In a more
limited range, 0-30° , the weak-anisotropy result remains
close to the exact amplitude for much higher values of if (see
the model with Q = 0.45). However, for Q = 0.45 the
weak-anisotropy approximation breaks down completely for
group angles over 40 ° , mostly because of the inaccuracy in
the weak-anisotropy expression for the group angle.

Large-magnitude distortions of SV amplitudes, even in
models with moderate velocity anisotropy, mean that AVO
for SV-waves will be impossible to carry out without an
elaborate correction for propagation phenomena. Such cor-
rection, however, will require accurate estimates of the
anisotropic coefficients, especially the effective parameter u.

SH-wave

The SH-wave slowness surface in a homogeneous trans-
versely isotropic medium is elliptical, and the phase velocity
is given (exactly) by

VSH( 8 ) = VsoV1 + 2y sin e 0,

where -y is as defined in equation (3).
As discussed above, for elliptical anisotropy the far-field

solution [equation (A-4)] reduces to a concise formula with-
out using the weak-anisotropy approximation. For the SH-
wave, equation (A-4) yields

Fu 
Usx(R, 

') = 4apVs0R V(1 + 2y)(1 + 2y cos t 'I, )

(17)
where is the group angle. In any plane containing the
symmetry axis, the source term F,, is constant: F„ = F2 ,

where F2 is the force component perpendicular to the
incidence plane. Equation (17) coincides with a formula
obtained by Ben-Menahem (1990) in a different way. Again,
as for the P- and SV-waves, the contribution of the anisot-
ropy to the SH amplitude in the symmetry direction and to
the NMO velocity is determined by the same expression
(1 + 2y).

The SH-wave radiation pattern [equation (17)] is practi-
cally identical to the P-wave pattern for elliptical anisotropy
[r = 8, equation (10)], with V pG and S replaced by V so and y,
respectively. The only difference between the two expres-
sions is that the source term F2 for the SH-wave is constant
because the polarization direction does not change with
incidence angle.

For weak SH-wave velocity anisotropy (y << 1),
equation (17) reduces to

	F2 	 1 + y sin e iy
UsH(R, ') = 4TrpVS OR	 1 + 2-y	

(18)

Again, expression (18) has the same form as the weak-
anisotropy approximation for the P-wave [equation (8)] in
elliptically anisotropic media.

The parameter y is usually positive (Thomsen, 1986); y is
always positive for transverse isotropy resulting from thin
bedding of isotropic layers. If -y > 0, the defocusing of
energy at vertical incidence leads to an increase in the
SH-wave amplitude with angle. However, as for the P-wave
in elliptically anisotropic media, distortions of SH radiation
patterns are relatively mild. For instance, even for a large y
of 0.3 (yielding about 26% SH-wave velocity anisotropy),
the amplitude increase from 0 to 45° is limited to just 11%.
The absolute change in the amplitude caused by the anisot-
ropy is much more pronounced, but this is a different issue.

We have discussed the angular distribution of amplitude
for a fixed source-receiver distance (R = const). It is also
interesting to examine the SH-wave amplitude along the
wavefront at a fixed time t. Then equation (17) becomes

F2

USH(t, ,) = 2 (19)
4arpVso(Vsot)(l + 2y)

Equation (19) shows that the SH-wave amplitude along
the wavefront is constant (as in isotropic media), although
the wavefront is elliptical rather than spherical; the influence
of anisotropy reduces to the scaling factor 1 + 2-y. Note that
this conclusion is not quite true for the P-wave in elliptically
anisotropic media: the source term F,, and, consequently,
the P-wave amplitude variation along the wavefront is
influenced by the anisotropy even in this case.

The conclusion that the influence of transverse isotropy on
the shape of SV radiation patterns is much more significant
than that on SH patterns is in good agreement with experi-
mental results by Robertson and Corrigan (1983), who mea-
sured shear-wave radiation patterns in anisotropic shales
with positive Q. They have found a strong focusing of energy
of the S V-wave near the 45° incidence angle, while the SH
radiation pattern did not deviate much from the isotropic
one, despite significant velocity anisotropy for the SH-wave.

DISCUSSION AND CONCLUSIONS

Since conventional methods used to compensate for prop-
agation phenomena in AVO analysis are based on the
assumption of isotropy, the influence of anisotropy on wave
propagation to and from a reflector may have a direct
influence on the character of AVO anomalies. These propa-
gation phenomena may be of equal or greater importance to
AVO analysis than the influence of anisotropy on the reflec-
tion coefficient, especially for strong reflectors or small
differences in the anisotropic coefficients across the reflec-
tor. If not properly corrected for, the anisotropic directivity
factor may lead to a change or even a sign reversal in the
AVO gradient that is conventionally used for hydrocarbon
detection.

Here, the relation between P- and S-wave radiation pat-
terns from a point force and AVO response has been
analyzed for transversely isotropic models. A concise ana-
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FIG. 10. S V-wave amplitude from a horizontal force. The solid curve is the stationary-phase solution (A-4);
the dashed curve is the weak-anisotropy approximation (16). The am plitude curves are normalized by the
radiation pattern in the corresponding isotropic model (e = 0, fi = 0). The plots at the bottom show the exact
phase velocity (solid curve) and its weak-anisotropy approximation (15) (dashed curve).
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lytic solution, obtained in the weak-anisotropy approxima-
tion, relates the angular dependence of body-wave ampli-
tudes to the anisotropic parameters e, S (for the P-wave), Cr

(SV-wave), and y ( SH-wave). Combined with the Thom-
sen's (1993) approximation for reflection coefficients in
transversely isotropic media, this solution provides a frame-
work for a comprehensive qualitative analysis of the influ-
ence of transverse isotropy on AVO. All analytic expres-
sions in this paper are derived as a function of the phase or
group angles with respect to the symmetry axis and, there-
fore, can be easily applied not only to VTI media, but also to
transverse isotropy with any symmetry-axis orientation.

The character of the P-wave angular amplitude variations
in the range of angles commonly used in AVO analysis
(0-40°) is controlled mostly by the difference between the
anisotropies a and 8, and is practically independent of the
shear-wave vertical velocity V so . For models with e - 8 >
0, believed to be typical for subsurface formations, trans-
verse isotropy may cause the P-wave amplitude to drop by
30% or more over the first 40 ° from vertical. If the difference
s - 8 is positive, the influence of the anisotropy becomes
stronger with increasing e - S and, for fixed E - S, with
decreasing values of s and 8. Thus, there is no simple
relation between the strength of the velocity anisotropy and
the amplitude anomalies.

For elliptical anisotropy (e = S), the distortions of the
angular amplitude dependence are well-correlated with the
velocity variations. For positive e = 8, the anisotropy leads
to an increase in amplitude with angle, but these distortions
in the 0-40° angular range are mild, even for models with
significant velocity anisotropy. Thus, application of the
elliptical-anisotropy approximation (s = S) to P-wave ampli-
tudes may lead to unacceptable errors even if the medium is
relatively close to elliptical.

The weak-anisotropy approximation for P-wave radiation
(8) is more accurate for models with a <- 6 than for media
with positive e - 8. If e - S > 0, the weak-anisotropy result
tends to overstate the angular amplitude variations caused
by the anisotropy, with the error becoming higher for larger
e - 8. For models with 0 < e - S < 0.2 (believed to be most
typical), the accuracy of the weak-anisotropy approximation
is sufficiently high. For example, the difference between the
weak-anisotropy and exact amplitudes in the angular range
0-40° remains within 10%, even if 8 reaches 0.25. The main
importance of the weak-anisotropy formula, however, is in
providing a convenient tool for qualitative amplitude esti-
mates for a wide range of transversely isotropic models.

The distortions of the S V-wave radiation pattern in typical
TI models are much more significant than those for the
P-wave. The influence of transverse isotropy on SV-wave
amplitudes is determined mostly by the effective parameter
if introduced in Tsvankin and Thomsen (1994). For the
SH-wave, the anisotropy is elliptical, and the distortions in
the angular amplitude dependence are relatively mild, even
for substantial velocity variations. Moreover, the SH-wave
amplitude along the wavefront (rather than at a constant
source-receiver distance) in any plane containing the sym-
metry axis does not change at all. These results for shear
waves agree with those in the case study by Robertson and
Corrigan (1983).

Here, I have examined the influence of radiation patterns
on AVO only for VTI models. As shown in Tsvankin and
Chesnokov (1990a), azimuthal anisotropy may significantly
reinforce distortions of radiation patterns, even within sym-
metry planes (e.g., in orthorhombic media). Also, body-
wave amplitudes may be significantly disturbed by shear-
wave point singularities (Crampin, 1991).

An approximate correction for anisotropic propagation
phenomena in simple models such as the one considered
here can be made by using asymptotic expressions for
radiation patterns like those discussed in this paper or
presented in Gajewski (1993). However, the redistribution of
energy along the wavefront may occur not only in the source
layer but also in any anisotropic layer between the reflector
and the surface. In this case, it is necessary to apply
numerical methods capable of allowing for anisotropy in
wave propagation through layered media. Anisotropic prop-
agation phenomena should also be included in any algorithm
designed to use reflection coefficients to invert for the
anisotropic parameters.

If the overburden is laterally homogeneous, it is possible
to correct for the propagation effects by doing amplitude
calibration at well locations (J. Castagna, pers. comm.).
However, such a correction allows one to recover only
lateral variations in the reflection coefficient unless it is
possible to obtain the reflection coefficient itself from, say,
rock properties measurements. And, of course, any lateral
changes in the overburden will make this calibration inaccu-
rate.

Still, the greatest challenge in correcting AVO signatures
for anisotropy is to determine the anisotropic parameters
with sufficient accuracy. The lowest-order correction to the
reflection coefficient depends just on the value of 8 above
and below the reflector. For VTI media, S can be determined
in a straightforward way from the P-wave normal-moveout
(NMO) velocity and the true vertical velocity, if well logs or
check shots are available. However, an accurate correction
for propagation phenomena requires knowledge not only of
8, but also of F. If shear data are acquired, the parameter e
can be obtained from the NMO velocity of the S V-wave (or
P - S V-wave) and the vertical velocity, provided 8 has been
determined. Also, Alkhalifah and Tsvankin ("Velocity anal-
ysis for transversely isotropic media," GEOPHYSICS this
issue) show that in the presence of dipping reflectors, both e
and S can be recovered from the dependence of the P-wave
NMO velocity on the ray parameter, if the true vertical
velocity is known.
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APPENDIX

WEAK-ANISOTROPY APPROXIMATION FOR RADIATION PATTERNS IN TRANSVERSELY ISOTROPIC MEDIA

In Tsvankin and Chesnokov (1990a), point-source radia-
tion in homogeneous arbitrarily anisotropic media was de-
composed into a Weyl-type integral over plane waves. The
displacement (in the frequency domain) from a point force
located at the origin of a Cartesian coordinate system
[x1, x2, x31 was shown to be

3
lW

U= 
v=1

X	 Upe e-iW(m1x1+m2x2+m3vx3) dml dm2,	 (A-1)

with the plane-wave displacement Uoe given by the residual

1	

1 1n 3v

Upe = Resi	 GadF (A-2)
D(m 3) 

The summation over v corresponds to three possible
wave types; m is the slowness vector; G 1k = c ykemJ m e -
p6 jk is the Christoffel matrix; G ad is the adjoint matrix of
G; m 3„ (the vertical slownesses of the plane waves) are
roots of D(m 3 ) = detG = 0; and F is the point-force vector.
To obtain the solution in the time domain, equation (A-1)
should be multiplied with the frequency spectrum of the
source pulse and substituted into the inverse Fourier
transform.

It is convenient to represent equation (A-1) in polar
coordinates (m1 = m0 cos 4), m Z = m0 sin 4)):

lW	 3
U = (2 z

vi

X	 UP,, e-iw(morcos(^-a)+m3vz)m0 
dm0 d), (A-3)

fo	 0

xl = r cos a,X2 = r sin a, x3 =Z.

In Tsvankin and Chesnokov (1990a), the radiation pat-
tern was derived from equation (A-3) by means of the
stationary-phase approximation which is valid in the far-
field. For the special case of transversely isotropic media,
the stationary-phase point lies in the incidence plane 4) =
a, and the phase velocity depends only on the angle with
the vertical (symmetry) axis. Then the general stationary-
phase solution for the amplitude of the with wave (for
brevity, henceforth I omit the superscript v) given in
Tsvankin and Chesnokov (1990a) becomes

cos 0 d(1/V)
IU e sin 0	 V + d0 sin 0 /I

J

UI
__

 2'rrV	 r sin 0 dz	
(A-4)

^

v d62
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d 24	 1 d'(1/V
d0z=(rsin0+zcos0) —

	 d02

2 (rcoso—zsin0) 2

(A-5)
V r sin 0+ z cos 0

where (D = —m o r — m 3iz is the frequency-independent part
of the phase function in the incidence plane [see equation
(A-3)], 0 is the phase angle measured from the vertical (z)
axis, and V is the phase velocity. Expression (A-4) should be
evaluated at the phase angle 0, corresponding to a given ray
(group velocity) angle 1V determined by the receiver position
(tan , = r/z).

I will now transform the exact far-field solution for trans-
verse isotropy (A-4) into a much simpler weak-anisotropy
approximation. The derivation is given for the P-wave only;
the radiation patterns of S-waves are obtained in a similar
way.

In the following, it is assumed that the source and
receiver are located in the [x 1 , x3 ] plane. In this case, at
the stationary-phase point 4) = a = 0. It is convenient to
represent IUpe 1 in equation (A-2) as an explicit function of
the P-wave slowness vector. The nonzero components of
the Christoffel matrix in the plane [X i , x3 ] are

G11 = C11m0 + C44m3 P,	 (A-6)

G22 = c66mo + c44m3 — P,	 (A-7)

G33 = C44m0 + C33m3 — P,	 (A-8)

G13 = G31 = mom3(C13 +X44)•	 (A-9)

The determinant of G is

D = detG = G 22(G 11 G33 — G13).

The vertical slownesses of the P- and S V-waves are the
roots of the polynomial G 11 G33 — G 13, while the solutions
of G 22 = 0 give the vertical slownesses for the SH-wave.
Since the P-wave displacement vector lies in the [x 1 , x 3 ]
plane, formula (A-2) for the P-wave yields

U1 = H(F'1G33 — F3G13),	 (A-10)

Upe3 =H(F3G11 — F1G13),	 (A-11)

with

H= 
m3 — m3P I	 =	

1 2	 2 , (A-12)
detG m3P 2c33C44m3P(m3P—m3SV)

m 3p and m 3sv are the vertical slownesses of the P- and
SV-waves for a fixed m 0 . m 3SV is given by

(cllmo — P)(c44mo — P)
m3sv =	 Z	 (A-13)

C33C44m3P

Taking into account that for m 3p, the expression
G 11 G 33 — G 13 = 0, we find from equations (A-10) and
(A-11) that

where F,, is the projection of the force on the plane-wave
displacement vector U.

Substituting H from equations (A-12) and (A-13), G 11

from equation (A-6) and G 33 from equation (A-8) into
equation (A-14) yields

Fu m3P m0(c11 + C44) + m3P(C33 + C44) — 2 P
U

pel =	 2 	m3PC33c44 — (c11mo — P)(c44mo — P)

(A-15)

Equation (A-15) is valid for general transverse isotropy.
At this point, we substitute m 0 = sin 0/V, m 3p = cos 0/V
and introduce the weak-anisotropy approximation for the
P-wave phase velocity (Thomsen, 1986)

	V P (0) = VP0 (1 + 8 sine 0 cos t 0 + e sin 4 0).	 (A-16)

Formula (A-16) along with the expressions for and 8
[equations (1), (2) of the main text] can be used to find the
weak-anisotropy approximation for equation (A-15). Linear-
ization in s and 8, after tedious but straightforward algebra,
gives

F„
IUpel 2Vp(0) p cos 0

	x [1 + 2 sin e 0 (8 cos 20 + 2e sin e 0)].	 (A-17)

The next step is to obtain the weak-anisotropy approxi-
mation for d 2I/d0 2 , equation (A-5). Expressing r and z
through the source-receiver distance R (r = R sin ,, z = R
cos ), we find

	

r sin 0 +z cos 0 =R cos (j — 0), 	 (A-18)

and

r cos 0 —z sin 0	 tan — tan 0
(A-19)

r sin 0+ z cos 0 t+ tan it tan 0

The weak-anisotropy approximation for the P-wave group
angle is (Thomsen, 1986)

tan ii= tan 0[1+28+4(e-8)sin 2 0].
(A-20)

Substituting equations (A-18), (A-19), (A-20) along with
the derivative of the phase-velocity function (A-16) into
formula (A-5) and dropping the terms quadratic in a and 8,
we get

d2q) R'	 1 d 2V\

d0 2 V 1 + V d0 2 J	 (A-21)

Using the phase-velocity function [equation (A-16)] in the
numerator of equation (A-4) yields

cos 0 d(1 /V) 	cos 0

V + dO 
sin 0 = V

^Up = HFu (G 11 + G 33 ),	 (A-14)	 x [1 — 2 sin e 0(8 cos 20 + 2e sin e 0)].	 (A-22)
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	Finally, formulas (A-17), (A-21), and (A-22) are substi- 	 Equation (A-23) can be fully linearized in the aniso-

	

tuted into the original stationary-phase expression (A-4): 	 tropics e and 8. However, expression (A-23) is a useful
intermediate result because analogous derivations lead

^Ul = F"	 1	(A-23)
 )
A-23	 to the same formula for S-waves. Linearized expressions

4irp V2R	 sin ^r	 1 d Z V	 for each wave type (P, SV, SFI) are discussed in the main
1+---- )

	V sin 8	 V d9 z I	 text.
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