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Inversion of reflection traveltimes for
transverse isotropy

lIya Tsvankin* and Leon Thomsent

ABSTRACT

In anisotropic media, the short-spread stacking ve­
locity is generally different from the root-mean-square
vertical velocity. The influence of anisotropy makes it
impossible to recover the vertical velocity (or the
reflector depth) using hyperbolic moveout analysis on
short-spread, common-midpoint (CMP) gathers, even
if both P- and S-waves are recorded.

Hence, we examine the feasibility of inverting long­
spread (nonhyperbolic) reflection moveouts for param­
eters of transversely isotropic media with a vertical
symmetry axis. One possible solution is to recover the
quartic term of the Taylor series expansion for t 2 - X 2

curves for P- and SV-waves, and to use it to determine
the anisotropy. However, this procedure turns out to
be unstable because of the ambiguity in the joint
inversion of intermediate-spread (i.e., spreads of
about 1.5 times the reflector depth) P and SV move-

INTRODUCTION

One of the common assumptions in conventional velocity
analysis of reflection seismic data is the equivalence of the
moveout velocity [determined by semblance analysis on
common-midpoint (CMP) gathers] and the vertical root­
mean-square (rms) velocity (c.f., Taner and Koehler, 1969).
If the rms velocity in a horizontally layered isotropic me­
dium is found, recovery of the interval velocities and time­
to-depth conversion can be performed using variations of the
Dix (1955) formula. This simple approach is invalid for
anisotropic media since the short-spread moveout velocity is
not equal to the rms vertical velocity [Tsvankinand Thomsen
(1994) and many prior works cited therein]. In the presence of
anisotropy, inversion of moveout velocities by means of the
Dix formula results in errors in interval velocities and, there­
fore, in inaccurate estimates of the reflector depth. A good

outs. The nonuniqueness cannot be overcome by using
long spreads (twice as large as the reflector depth) if
only P-wave data are included. A general analysis of
the P-wave inverse problem proves the existence of a
broad set of models with different vertical velocities,
all of which provide a satisfactory fit to the exact
traveltimes. This strong ambiguity is explained by a
trade-off between vertical velocity and the parameters
of anisotropy on gathers with a limited angle coverage.

The accuracy of the inversion procedure may be
significantly increased by combining both long-spread
P and SV moveouts. The high sensitivity of the
long-spread SV moveout to the reflector depth permits
a less ambiguous inversion. In some cases, the SV
moveout alone may be used to recover the vertical
S-wave velocity, and hence the depth. Success ofthis
inversion depends on the spreadlength and degree of
SV-wave velocity anisotropy, as well as on the con­
straints on the P-wave vertical velocity.

example of mis-ties in time-to-depthconversion resultingfrom
anisotropy was given in Banik (1984).

Not only velocity analysis, but practically all other con­
ventional seismic processing and interpretation techniques
become inaccurate if the medium is anisotropic (e.g., Lynn
et al., 1991; Alkhalifah and Lamer, 1994; Tsvankin, 1995).
However, distortions in velocity analysis are especially
dangerous because they propagate into all subsequent pro­
cessing steps.

Inversion of reflectiondata in the presence of anisotropy has
two principal aspects. On the one hand, it is important to be
able to look "past" anisotropy (i.e., correct for anisotropy)
when recovering vertical velocity and performing such pro­
cessing steps as time-to-depth conversion, migration, and dip
moveout. For instance, Alkhalifah and Lamer (1994) showed
that accurate 2-D imaging in transversely isotropic media
requires good estimates of the anisotropy parameters of
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V~ = lim --z- = - 2: V~i~t;,
x--.o d(t) to i=1

dt21
Ao = t~, A z = dx z '

x=o

t} = A 0 +A 2X Z +A 4x 4 + ... ,

with the coefficients

1 d (dt
2) I

A 4
= 2" dx 2 dx z x=o'

(2)

where to is the vertical arrival time. The normal (short­
spread) moveout velocity is given by V;mo = vi = 1/A z- In
the conventional hyperbolic approximation, expansion (1) is
truncated after the second (quadratic) term, and the mea­
sured moveout velocity is identified with the analytic short­
spread value V z- In this section, we briefly explore the
natural idea of including the next (quartic) Taylor series
coefficient in the inversion procedure.

The transversely isotropic model may be characterized by
the elastic moduli Cij, or alternatively by the P- and S-wave
vertical velocities (Vpo and Vso; we assume that the axis of
symmetry is vertical) plus three dimensionless parameters of
anisotropy, introduced in Thomsen (1986) as

(C\3 + C44)Z - (C33 - C44)2
S = ------=--.:...:...:....-

2C33 (C33 - C44)

The parameters e and 'Yare the conventional measures of P­
and SH-wave velocity anisotropy (respectively), and are
close to the fractional differences between the horizontal and
ver,tical veloc,ities. The parameter S influences P-SV propa­
gation, especially the P-wave velocity at near-vertical inci­
dence. All three parameters equal zero in isotropic media.

The normal (short-spread) moveout velocity in a horizon­
tally layered transversely isotropic model is given in Hake et
al. (1984) as

where V2i and Ali are the short-spread moveout velocity
and two-way vertical traveltime in layer i, The values of vi­
for different wave types and any strength of the anisotropy
can be expressed through the anisotropic coefficients as
(Thomsen, 1986)

V~i(P) = V~oi(1 + 2Si),

V~i(SV) = V~oi(1 + 2<Ti),

V~i(SH) = V~oi(1 + 2"Yi),

1096 Tsvankin and Thomsen

Thomsen (1986)-£ and S. On the other hand, it may be also
Important to look "at" the anisotropy, for example by using
the anisotropic coefficients in lithology inversion.

Here, we consider a common anisotropic model: horizon­
tally-layered, transversely isotropic media with a vertical
symmetry axis (VTI media). Seismic velocities in such
media vary in the vertical plane but not azimuthally. VTI
formations (e.g., shales) have been documented in a number
of publications (e.g., White et aI., 1983; Robertson and
Corrigan, 1983;Banik, 1984;Sams et aI., 1993). The present
con~lus,ions may be extended to azimuthally anisotropic
~edla, If the surveys are performed along the principal
directions of such anisotropy, i.e., if the incidence plane
represents a plane of symmetry.

Most previous work on the inversion of reflection data in
anisotropic media has been focused on recovering the aniso­
tropic coefficients in the case when the vertical velocity (or
the layer-thicknesses) is known (e.g., Banik, 1984;
Winterstein, 1986; Sena, 1991). For instance, Byun and
Corrigan (1990) suggested a technique to obtain all five
elastic constants for layered transversely isotropic media
from P- and SH-data (we omit the qualifiers in "quasi-P-
wave" and "quasi-SV-wave"). They developed a
"skewed" hyperbolic formula to recover the long-spread
P-wave moveout curve and employed a numerical algorithm
to find the elastic parameters in a layer-stripping mode. Sena
(1991) derived an analytic version of the "skewed" hyper-
bolic formula using the weak anisotropy approximation and
applied it to obtain the interval elastic parameters without
time-consuming numerical search. However, as shown by
Tsvankin and Thomsen (1994), the domain of validity of that
formalism is rather limited. In principle, if the vertical
velocities (or layer thicknesses) are known, the anisotropic
coefficients may be determined from short-spread moveouts
(P, SV, and SH) alone. Byun and Corrigan (1990) and Sena
(1991) had to use long-spread P-wave moveout (along with
vertical velocity) because they did not include SV data.

Here we treat the more general problem, important in the
exploration context, where all model parameters (except for
the type of symmetry and orientation of the symmetry axis)
are unknown. In this case, the inverse problem cannot be
solved by means of the conventional hyperbolic moveout
analysis on short-spread gathers, even if all waves (P, SV,
and SH) are recorded. Our goal here is to examine the
feasibility of including long-spread (nonhyperbolic) reflec­
tion moveouts in the inversion procedure. First, using ana­
lytic results of Tsvankin and Thomsen (1994), we examine an
inversion technique based on the quartic Taylor series for
t 2 - x 2 curves. This algorithm turns out to be unstable
because of the trade-off between quadratic and quartic move-
out coefficients. Then, we carry out direct numerical analysis
of the objective function for the kinematic inverse problem and
establish the conditions necessary to avoid ambiguous solu-
tions, given realistic uncertainty in traveltimes.

(10)(
VPO)2

<T = - (e - S).
Vso

The coefficient <T was introduced in Tsvankin and Thomsen
(1994) as the most influential parameter in the SV-wave

with
TRAVELTIME SERIES IN TRANSVERSELY ISOTROPIC

MEDIA

Squared arrival times of reflected waves may be approxi­
mated by the Taylor series expansion near vertical (Taner
and Koehler, 1969; Hake et aI., 1984):
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Inversion for Transverse Isotropy 1097

moveout and velocity equations. Note that a reduces to zero
both in isotropic and elliptically anisotropic media; for
elliptical anisotropy, E = 8.

It is clear from equations (7)-(9) that the short-spread
moveout velocity given by equation (6) equals the rms
vertical velocity (V rms = (1/t o) Ii VGiati) only if the
anisotropic coefficients (4), (5), and (10) are zero. Hence, if
we equate the measured stacking (moveout) velocity to V 2
and try to derive interval vertical velocities VGi from vi by
applying the Dix formula (as is usually done in conventional
processing), we get instead the values V~, which contain
contributions of the anisotropic parameters 8i, ai' or -yi
(depending on wave type). Thus, application of the Dix
formula in anisotropic formations results in erroneous inter­
val velocities, hence inaccurate estimations of reflector
depths, i.e., in mis-ties in time-to-depth conversion (e.g.,
Banik, 1984).

If the reflector depth (or at least one of the vertical
velocities) is known, the short-spread moveout velocities are
sufficient to recover the anisotropic coefficients. For in­
stance, if the P-wave vertical velocity VPO in a certain layer
is determined, we can find the vertical S -wave velocity using
the vertical P and S traveltimes t PO and tso for this layer:
Vso = Vpotpo/tso. Thus, having obtained both vertical
velocities, we can then recover the anisotropies from the
moveout velocities (7)-(9). If only P data are available, the
short-spread moveout and vertical velocity enable us to
determine a single anisotropic coefficient 8 from
equation (7).

The question we will address is: how can we invert
reflection moveouts for the true vertical velocities and
parameters of anisotropy, given the simple VTI model,
without such prior information. From equations (6)-(9) it is
clear that conventional hyperbolic moveout analysis does
not provide enough data to solve this problem. Even if all
three short-spread moveout velocities in a VTI layer are
measured (plus the ratio Vpo/Vso = tso/tpo, independent of
anisotropy), these four measurements are insufficient to
determine the five parameters (VPO, V so, 8, a, -y). In
particular, neither vertical velocity may be determined. The
combination of the short-spread moveout velocities [equa­
tions (7)-(9)] and the vertical arrival times is sufficient to
solve the inverse problem only with an artificial assumption,
e.g., elliptical anisotropy or no anisotropy. It is difficult even
to detect the presence of transverse isotropy in short-spread
eMP gathers, especially if only P data are available. The
only diagnostic of anisotropy on short spreads is the differ­
ence between the moveout velocities of SVand SH-waves.

The inadequacy of short-spread moveout represents a
fundamental problem in velocity analysis for anisotropic
media. In isotropic media, nonhyperbolic (long-spread)
moveout is necessary only in certain applications (e.g., in
AVO analysis, suppression of multiples, processing of shal­
low reflections), while velocity inversion (for horizontally
layered media) can be performed using short spreads alone.
However, in the presence of anisotropy, recovery of the true
vertical velocity from reflection traveltimes requires (at a
minimum) analysis of nonhyperbolic moveout on long
spreads.

Thus, while in conventional processing nonhyperbolic
moveout is usually considered as a hindrance that distorts

velocity estimation and deteriorates the quality of stacked
sections, such information is necessary for solution of the
inverse problem in anisotropic media. In fact, we would
prefer to work with maximum deviations from hyperbolic
moveout to separate the vertical velocities and the parame­
ters of anisotropy.

This strategy is obviously hopeless for elliptically aniso­
tropic media, where P, SV, and SH moveouts in a single
layer are purely hyperbolic (in multilayered media, moveout
is nonhyperbolic because of ray bending). In elliptical media
(a = 0), however, the SV-wave's short-spread moveout
velocity alone can provide us with the true vertical velocity
and reflector depth [c.f., equation (8)]. In any case, elliptical
anisotropy is an idealization based on mathematical conve­
nience, whose occurrence in nature is relatively rare
(Thomsen, 1986).

TRAVELTIME INVERSION USING THE QUARTIC TAYLOR
SERIES

One possible way to use nonhyperbolic moveout in the
inversion procedure is to recover the fourth-order Taylor
series coefficients a , from long-spread reflection moveouts.
Analytic expressions for the coefficientzt, of P«, SV-, and
P-SV traveltime curves are given in Tsvankin and Thomsen
(1994). In a single transversely isotropic layer we have

28
1 + 2 2

2a 1 - Vso/Vpo
A 4 (SV ) = -2-4- 4 (12)

tsoVso (1 + Zo)

For multilayered media, the coefficient A 4 of pure modes
is given by (Hake et aI., 1984; Tsvankin and Thomsen, 1994)

(Ii v~iatd2 - toI; Vi;M;
A 4(P, SV, or SH) = 2 4

4(IiV2iMd

toI iA 4iv~iatl
+ 2 4' (14)

(I iV2iMi)

which includes (in the first term) ray-bending because of the
layered structure. Here, A 4i is the quartic coefficient A 4
[equations (11)-(13)] for layer i. Equations (11)-(14) are valid
for arbitrary (not just weak) transverse isotropy; the values
of anisotropic parameters govern only the maximum offset to
which the Taylor series (1) may be applied accurately.

In principle, expressions (11), (12), (14) make it possible to
obtain the vertical velocities and anisotropic parameters E

and 8 from the second- and fourth-order Taylor series
coefficients for P- and SV-waves. Since for SH-waves the
quartic coefficient in any VTI layer is zero, nonhyperbolic
moveout analysis cannot be used to resolve the parameter 'Y
responsible for SH-wave propagation. The main steps of the
inversion algorithm for P - SV-waves are
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1098 Tsvankin and Thomsen
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The results of the previous section show that the major
problem in the inversion of reflection traveltimes for trans-

FIG. 1. Error in the P-wave quartic Taylor series coefficient
obtained using approximation tA' The parameters of tA are
found by the least-squares method from the exact reflection
times for a layer of Taylor sandstone (Figure 2). Here, X max
is the speadlength and Z is the thickness of the layer.

NUMERICAL ANALYSIS OF THE NONUNIQUENESS OF THE
INVERSE PROBLEM

where Vh is the horizontal velocity. It has a form similar to
that for weak anisotropy, but remains numerically accurate
in the description of P-wave moveout for strong anisotropy
and long spreads (xmax/z = 2 and larger). Tsvankin and
Thomsen (1994) show that approximation (15) may be used
successfully for nonhyperbolic moveout correction, even for
pronounced deviations from the hyperbola, which cannot be
handled by the quartic Taylor series (1).

To obtain the coefficients A 2 , A 4 , and A, we have
performed the least-squares fitting of equation (15) to calcu­
lated arrival times in models discussed by Tsvankin and
Thomsen (1994). When the exact P-wave traveltimes are
used, the quartic coefficient A 4 can be recovered with
relatively good accuracy for intermediate spreads up to
about 1.5Z (Figure 1).

However, if plausible errors in traveltimes are admitted,
the second-order coefficient A 2 remains relatively well­
determined, while the fourth-order coefficient A 4 does not.
Small variations in traveltimes cause significant deviations of
A 4 from the exact value, for both P- and SV-waves. This
means that models with markedly different quartic coeffi­
cients and slightly different quadratic coefficients may have
almost identical moveout curves; examples of this kind will
be discussed in the next section.

The failure of the "direct" inversion technique, based on
the quartic Taylor series, stems from the ambiguity in the
joint inversion of P and SV intermediate-spread moveouts
(x max = 1.5z). The results discussed in this section have
prompted us to address the general issue of ambiguity in the
inversion of reflection traveltimes for transverse isotropy.

(15)

with

1) Find the three Taylor series coefficients for the t 2
- X

2

curves corresponding to the reflections from the top
and from the bottom of any particular layer using both
P and SV modes (in principle, the quartic coefficient
for either one of the waves is sufficient). If the SV-wave
is not recorded, the SV-wave coefficients may be
obtained from the coefficients ofthe P-wave and P-SV
converted wave.

2) Apply the Dix-type formulas derived in Tsvankin and
Thomsen (1994) to recover the P- and SV-waves
Taylor series coefficients A 2i , A 4i for the layer.

3) Invert the coefficients zl j, (V2i) [equations (7) and (8)]
andA 4i [equations (11) and (12)], in combination with
the vertical arrival times, for the vertical velocities and
anisotropies.

For P or SV propagation, we are searching for four
unknown parameters for each layer: Vpo, Vso, 8, and E (or
0'); the thickness of the layer can be obtained from the
vertical velocities and arrival times. It is important to
mention that P-wave traveltimes are determined almost
entirely by three parameters: Vpo, 8, and E. Although the
ratio VPO/Vso can slightly change the quartic coefficient
A 4(P) [equation (11)], the influence of the shear-wave ver­
tical velocity Vso on P-wave traveltimes is practically neg­
ligible, even for long spreads and strong anisotropy
(Tsvankin and Thomsen, 1994; Tsvankin, 1995). However,
the quadratic and quartic P-wave Taylor series coefficients
alone [equations (7) and (11)] are not sufficient to recover the
three unknowns Vpo, 8, and E.

If both P and SV data are used, the ratio Vpo/Vso
(independent of the unknown reflector depth z) can be
determined from the ratio of vertical arrival times, and so the
number of unknowns is still three. In principle, the problem
can be solved using the P and SV second-order Taylor series
coefficients [short-spread moveout velocities in equations (7)
and (8)], plus one of the fourth-order coefficients [equations
(11) and (12)]. The other fourth-order coefficient provides
redundancy.

The above algorithm seems to be quite straightforward.
However, the crucial point in this inversion is in step 1, i.e.,
in the possibility of recovering the fourth-order coefficient
A 4 from reflection data. The analytic three-term (fourth­
order) Taylor series (1) diverges from the exact traveltimes
even for the spreadlenght x max such as xmax/z = 1.5
(Tsvankin and Thomsen, 1994). For these spreads and
plausible values of anisotropy, the quartic coefficient of the
three-term Taylor series determined by the least-squares
method from the exact traveltimes is substantially different
from the analytic values [equations (11) and (12)]. Hence, the
quartic Taylor series (1) may not be used in the inversion.

Tsvankin and Thomsen (1994), however, introduced a
better nonhyperbolic moveout approximation:D
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Inversion for Transverse Isotropy 1099

In essence, we have performed an extensive search in the
model space to determine the behavior of the objective
function near the exact solution. The objective function was
defined as the rms value of time residuals /1t calculated with
respect to the reference (exact) curve

Since P-waves constitute the overwhelming majority of all
seismic data being acquired in the oil industry, the most
important question is whether long-spread P-wave moveout
alone is sufficient for unambiguous inversion. As shown
above, intermediate-spread (x max = 1.5z) P-wave moveout
cannot be used to resolve the quartic moveout coefficient
A 4 • In this section, we extend the spread-length up to
x max = 2z (corresponding to a maximum incidence group

(1986) and used extensively in Tsvankin and Thomsen
(1994). Both have positive 0', an important characteris­
tic discussed in Tsvankin and Thomsen (1994).

2) For each, the model parameters were systematically
varied, within a reasonable range, and a multidimen­
sional objective function (error surface in model-pa­
rameter space) was constructed in the neighborhood of
the exact solution.

3) The set of equivalent models (given a certain level of
accuracy and a certain kind of input data) was deter­
mined.

(16)/1trms =

Inversion of P·wave traveltimes

1 M

- 2: /1tl,
M j=l

where M is the number of receivers.

verse isotropy is not how to carry out the inversion, but what
types of data are necessary for unambiguous inversion.
Ambiguity is a typical feature of most geophysical problems;
usually the interpreter is satisfied with a solution that fits the
experimental data and seems reasonable from the geological
standpoint. This approach is difficult to follow in anisotropic
media because our understanding of what anisotropy in real
rocks is reasonable is still rather poor. Therefore, here we
examine directly the objective function for the problem at
hand to find out what kind of ambiguity exists and what data
are necessary for unambiguous inversion, given realistic
uncertainty in traveltimes.

We consider the inversion of P- and SV-reflection move­
outs for the simple model of a single transversely isotropic
layer. In the following analysis, it is convenient to replace
the parameters 8 and E (or 8 and 0') as independent variables
by the short-spread moveout (or normal-moveout) velocities
of the P- and SV-waves [hereafter denoted as Vp 2 and VS2
and determined through equations (7, 8)]. Therefore, the
layer will be described by four velocities: Vpo, V so, VP2 ,

VS2 ' and the unknown thicknessz. The parameters zl , and
A of equation (15) may be calculated directly from these.

Application of any formalized inversion algorithm would
enable us to recover some "best-fit" set of model parame­
ters, but the degree of ambiguity of the traveltime problem
would remain unknown. Instead, we use the following
procedure to give a direct estimate of the nonuniqueness of
the inverse problem:

1) The moveout curves for P- and/or SV-waves were
calculated for two models, Taylor sandstone and Dog
Creek shale (Figures 2 and 3), taken from Thomsen

Phase Angle with Vertical

2.3

2.2

- 2.1
(/)

---E
.:¥:. 2-e-,-'0 1.9
0

~ 1.8(J)
(/) ............
ca ............
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0.82
0 15 30 45 60 75

Phase Angle with Vertical
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E 3.5.:¥:.-
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0 15 30

FIG. 2. Phase velocities of the P- and SV-waves for Taylor
sandstone. Elastic parameters are taken from Thomsen
(1986): V po = 3.368 km/s, Vso = 1.829 km/s, E = 0.110,
8 = -0.035 (0' = 0.492).

FIG. 3. Phase velocities of the P- and SV-waves for Dog
Creek shale. Elastic parameters are taken from Thomsen
(1986): Vpo = 1.875 km/s, Vso = 0.826 km/s, E = 0.225,
8 = 0.1 (0' = 0.644).
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1100 Tsvankin and Thomsen

angle of 45°) to determine what kind of information can be
recovered from long-spread P-wave data .

Since the shear vertical velocity Vso has a negligible
influence on P-wave traveltimes , in the analysis of the
objective function for the P-wave inverse problem we deal
with three variables: Vpo, VP2 , and VS 2 (in calculating VS2 '

we used the correct value for V PO /Vso ratio). The depth of
the reflector z was computed through the vertical velocity as
z = Vpot PO/2, and tpo was fixed at the correct value.

Figures 4 and 5 illustrate our numerical procedure. First,
we calculated the exact P-wave traveltimes for the reference
model (in this case, Taylor sandstone) on the spread
X max = 2z. Then, for each pair (VP2 , VS2 ) of moveout
velocities within a certain range around the exact (reference)
values, we scanned vertical velocity VPO and calculated the
reflection times for each model. Then we computed the rms
time residual (16) with respect to the reference model, and
picked the model with the minimum t!.trms- The values of
M rms for these best-fit models are shown in the plane (VP2'

VS2 ) in Figure 4, where VP2 and VS2 are the parameters
normalized by the short-spread moveout velocities for the
reference model; the corresponding values of VPO are shown
in Figure 5. The centers of the plots in Figures 4 and 5
represent the results for the exact (reference) model.
Figure 4 may be considered a special projection of the
objective function containing only local minima of M rm s for
each pair (Vn , VS 2 ) '

Comparison of Figures 4 and 5 makes it possible to
estimate the ambiguity of the P-wave traveltime inversion .
The figures show only narrow intervals of Vnand VS 2
(limited within ±2 percent of the correct values), indicating
highly resolved moveout velocities, and M rms for the best-fit
models are indeed smalI (Figure 4). Nonetheless, the corre­
sponding vertical P-wave velocity may be far different from
the value for the reference model (Figure 5). This means that
there is a broad set of models with different Vpo, whose
reflection traveltimes almost coincide with one another,
even for the spread-length x max = 2z.

For brevity, similar figures for Dog Creek shale are
omitted. However, the results for both Taylor sandstone and
Dog Creek shale are summarized in Figure 6. The error in
VPO is calculated as the maximum deviation in the vertical
velocity among the models with a given time residual. For
instance, some models with M rms s 2 ms have vertical
velocities that differ by 20% from the correct value. As
mentioned above, the depth z of the boundary is changed
along with VPO to keep tPO constant.

This procedure shows that the P-wave traveltime inver­
sion problem is highly ambiguous, even for long spreads
(x max = 2z). The actual nonuniqueness is even greater since
we have considered the moveout velocity V S2 to be well­
resolved. This ambiguity is caused by the trade-off between
the velocities Vpo , V P2 , and VS2 (or between VPO and
anisotropies II and E). The most influential parameter is the

1.02

1.02--r-- - - - - - - - - - - - - """""

0.98;-------"'P"------~
0.98

2.0 - 30
1.0 - 2.0

BELOW 1.0

FIG. 4. P-wave rms time residuals (in ms) calculated with respect to the reference model of Taylor sandstone. Vn and Vl2are
the parameters VP2 and VS2 normalized by the exgct values (the short-spread moveout velocities for the reference model. The
plot shows the smallest residual for each pair of (VP2 , VS2 ) , obtained by scanning the vertical velocity Vpo. The spread ength
X max = 2z, z = 3 km, tpo = 1.781 s.
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Inversion for Transverse Isotropy 1101

short-spread moveout velocity VP2 , which must be close to
the correct value if time residuals are to be small. Keeping
VP2 constant, we may change VPO and V52 together so that
the average time residual remains almost the same up to at
least x max = 2z (Figure 4).

If VP2 coincides with the exact value , we may achieve an
almost ideal coincidence of the traveltimes (Figure 6) using
Vpo, differing by about 3--4% from the correct value. When
V P2 contains an error of about 1-3%, it is still possible to get
small time residuals by compensating for this change by
much more pronounced alterations in VPO and V52 (implying
a corresponding change in the quartic coefficient).

The above results demonstrate that the extension of
spread-length to 2z has not even eliminated the trade-off
between the quadratic and quartic moveout terms found in
the previous section on smaller (intermediate) spreads. For
instance, a model with V po = 3.609 km/s, e = 0.021,
3 = -0.087,z = 3.215 km and the reference model of Taylor
sandstone (withz = 3 km) yield practically indistinguishable
P-wave moveout curves up to X max = 2z, although the
magnitude of the quartic coefficient zt , for Taylor sandstone
is 24% higher than that for the erroneous model. However,
the short-spread moveout velocity for Taylor sandstone is
1% smaller, and the trade-off between the hyperbolic and
nonhyperbolic terms [see equation (15)] almost eliminates
the difference inP-wave traveltimes between the two models
up to at least x max = 2z.

Thus , the only parameter tightly constrained by P-wave
travel times on the spread x max = 2z is still the short-spread
moveout velocity. The magnitude of P-wave nonhyperbolic
moveout is not insignificant yet is not sufficient to recover
the quartic coefficient with acceptable accuracy.

The accuracy in VPO is less for Dog Creek shale than for
Taylor sandstone because the P-wave moveout for the
former model is closer to a hyperbola, because of the smaller
quartic Taylor series term (Tsvankin and Thomsen, 1994).
Clearly , for purely hyperbolic moveout the vertical velocity
cannot be resolved at all (the conventional velocity analysis
"succeeds" only because of the artificial assumption of zero
anisotropy). The difference between the results for the two
models would be even more pronounced if we normalized
I1trms by the vertical arrival time to. From equations (7) and
(8), it is clear that percentage errors in 3 and e(a) are much
greater than the corresponding errors in VPO and V 52.

In short, the objective function for the P-wave inverse
problem has too flat a minimum near the exact solution to
ensure a nearly unique inversion result, even for relatively
small errors in travel times . While some of the kinematically
equivalent models can be disregarded on the basis of unre­
alistic values of the anisotropic coefficients, many other
models are equally plausible, unless some additional infor­
mation is available. These conclusions are valid for trans­
versely isotropic models with typical values of the anisotro-

1.02

VP2 1

1.02
0.98

0.98

vPO / VPO (exact)

l3tI ABOVE 1.12
1.10 - 1.12
1.08 - 1.10
1.06 - 1.08
1.04 - 1.08
1.02 - 1.04
0 .98 - 1.02

[§] 0 .96 - 0 .98
0.94 - 0 .96
0.92 - 0 .94

~ 0.90 - 0.92
[§ill 0 .88 - 0 .90
61 BELOW 0.88

FIG. 5. The vertical P-wave velocity (normalized by the exact value of Vpo) for the models whose time residuals are shown in
Figure 4.
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1102 Tsvankin and Thomsen

pic coefficients E and 0; the present procedure can be used to
test the ambiguity of any inverse problem.

Inversion of P and SV data

One natural way to reduce ambiguity is to combine P- and
SV-wave data. SV-wave traveltimes depend on the same
three unknowns used in theP-wave problem (Vpo, VS2 ' and
VP 2 or, alternatively, V po, E, and 0) and the shear vertical
velocity Vso. Further, since Vso can be determined through
Vpo as Vso == Vpotpoltso, the number of unknowns remains
the same, while the amount of data is increased. As before,
the depth of the layer is expressed through the P-wave
vertical velocity as z == Vpotpo/2; again, we fix t po and tso
at the correct values. In general, we can expect the vertical
times to be better resolved than the short-spread moveout
velocities which, in turn, are better resolved than the quartic
moveout coefficients.

As mentioned above, here we consider models with pos­
itive {J'. Media with negative {J' (E - 0 < 0) require a special
analysis because SV-moveout may become strongly nonhy­
perbolic even on short spreads (Tsvankin and Thomsen,
1994). However, existing measurements at seismic frequen­
cies indicate predominantly positive {J' (Thomsen, 1986;
Tsvankin and Thomsen, 1994).

Despite the addition of SV traveltimes, the inversion
remains nonunique for intermediate SV-spreadlength
(x max == 1.5z). As an example, one of the equivalent models
for Dog Creek shale is shown in Figure 7. Since Vp 2 and V S 2
in this particular model are different from the correct values
(VP 2 == 2.054, V S2 == 1.250), the minima of the curves

40~

M(Vpo) for both the P-wave and the SV-wave are shifted
from the correct vertical velocity (Vpo == 1.875 km/s). For
Vpo == 1.775 km/s (which is 5.3% less than the correct
value), the time residuals for both waves are small: dt rms

(P-wave) == 0.73 ms, dt rms (SV-wave) == 1.8 ms.
Another example is the equivalent model for Taylor

sandstone discussed in the previous section (Vpo == 3.609
km/s, E == 0.021, 1) == -0.087, z == 3.215 km). We have
shown that P-wave traveltimes for this model and Taylor
sandstone are almost identical up to X max == 2z. Moreover, if
Vso == 1.960 km/s is used, the values of tso and VS2 for this
model and Taylor sandstone practically coincide with each
other and SV-wave moveout on short-to-intermediate
spreads is not sufficient to resolve the trade-off between the
vertical velocities and anisotropic parameters.

This general nonuniqueness in the joint inversion of P and
SV data for the case of intermediate SV-wave spreads
explains the failure of the inversion algorithm based on the
quadratic and quartic moveout coefficients. Clearly, it is
necessary to use longer spreads to reduce this ambiguity.

As shown in Figure 8, a significant improvement in the
accuracy of the inversion procedure can be achieved by
extending the SV-wave spread to x max == 2z. The residuals in
Figure 8 are calculated as rms averages for both the P and
SV moveouts. If the SV-wave spreadlength is limited by
1.5z, the error in Vpo is about 10% for the models with
dt rms == 2 ms. Combination of P and SV data for the spread
length X max == 2z (Figure 8) makes the recovery of the
vertical velocity for Dog Creek shale much more accurate.

The success of this inversion results from the high sensi­
tivity of the SV moveout near x == 2z to the depth of the
boundary z (and hence to V so). Because of the influence of
the velocity maximum, located at incidence angles 40-45°,
the SV-wave moveout curve exhibits a sharp turn caused by

2.4

P-Wave (Xmax = 2Z)

1.8 2 2.2

Vertical P-velocity (km/s)

25
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til
E- 15
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:::J
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10"(jj
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a:
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5E
F

I

2.5 0
1.6

Model 2 =--s. _ _ -

I I
0.5 1 1.5 2

Time Residuals (ms)

0-+-----------------
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W

-~o-o
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>
.5

FIG. 6. Accuracy of the inversion of long-spread P-':Nave
data. The error in Vpo is calculated as the maximum
deviation in the P-wave vertical velocity among the set of
models with a given rms time residual. The u1?per .and lower
curves show the maximum over- and underestimation of V po
respectively. The reference models (Figures 2, 3) are Taylor
sandstone (Modell, tpo == 1.781 s) and Dog Creek shale
(Model 2 tpo == 3.200 s); the spreadlength x.j.; == 2z. Only
a subset' of models with the constrained SV-wave short­
spread moveout velocity is taken into account (VS2 is ±2
percent of the exact value).

FIG. 7. A family of equivalent models in the joint inversion of
P- and SV-traveltimes. Time residuals are calculated as the
rms averages for both P and SV data. The sprea.d~engths are
2z (P-wave) and 1.5z (SV-wave). The velocities VP2 ==
2.047 km/s and V S2 == 1.253 km/s are different from the
values for the reference model of Dog Creek shale (VP2 ==
2.054 km/s, V S2 == 1.250 krnzs), and the. ,?inimu,? time
residual is shifted towards vertical P-velocitles, which .are
smaller than the correct Vpo == 1.875 km/s, The vertical
times are t po == 3.200 sand tso == 7.264 s.
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Inversion for Transverse Isotropy 1103

the rapid decrease in the "instantaneous" moveout velocity
[for discussion and examples see Tsvankin and Thomsen
(1994)]. The strongly nonhyperbolic SV-moveout near the
velocity maximum cannot be described either by the three­
term Taylor series (1) or by a more elaborate approximation
(15). However, as shown in Tsvankin and Thomsen (1994),
the accuracy of equation (15) can be significantly increased
by determining its coefficients numerically using a least­
squares fit.

If we pick the wrong vertical velocity, we get the wrong
depth of the boundary, and this anomalous part of the
traveltime curve moves into a different range of offsets.
Even for relatively small errors in Vso andz (and Vpo, since
VpolVso ratio is fixed by the vertical traveltimes), the
departure of the SV-wave moveout from the curve for the
reference model is so significant that it cannot be easily
compensated for by changes in the parameters of anisotropy.
This explains why the inclusion of long-spread SV-moveout
leads to a significant reduction in the trade-off between the
model parameters.

The more pronounced SV-wave traveltime anomaly near
x = Zz for Dog Creek shale than for Taylor sandstone is
because of the fact that for the former model the velocity
maximum is larger (because U' is higher) and is located at
slightly lower incidence angles (Figures 2 and 3). Conse­
quently, the joint P-SV inversion for Dog Creek shale is
more accurate than for Taylor sandstone (Figure 9). The
time residuals for the SV-wave at large offsets (x close to Zz)
are 2 to 4 times higher than the rms value over all offsets.
Therefore, it may be possible to distinguish between differ­
ent models on this basis, even for relatively low values of the
rms residual.

In the above discussion, the vertical arrival times have
been fixed at the correct values. Changes in t PO and tso may

30

lead to a certain increase in the maximum error in VPO and
Vso, but do not materially alter our conclusions.

One important problem to be addressed in the practical
implementation of the joint inversion of P and SV data is the
possible presence of local minima of the objective function
(multimodality). In the above analysis we have seen that the
objective function has a well-defined global minimum and no
local minima in the vicinity of the exact solution. Neverthe­
less, local minima might exist elsewhere in the model space.
However, we can expect to get good initial estimates of at
least two parameters in our problem-the short-spread mo­
veout velocities. Also, since the absolute value of the
anisotropic coefficient 8 rarely exceeds 10-15%, we have a
reasonable approximation for the vertical P-wave velocity.
Furthermore, the VpolVso ratio can be reliably determined
from the vertical P and S traveltimes. Therefore, our initial
model cannot be far from the exact solution.

Inversion of SV-wave traveltimes

Given the strongly nonhyperbolic SV-moveout near the
velocity maximum, might long-spread SV-wave data alone
be sufficient for unambiguous inversion? In the weak-anisot­
ropy approximation, the SV-wave velocity depends only on
Vso and VS2 (or Vso and U') (Thomsen, 1986;Tsvankin and
Thomsen, 1994). However, numerical results show that for
the models we consider here, the influence of VPO and VP2

(8) on the SV-wave traveltimes cannot be neglected. In the
following, we switch back to 8 as an independent parameter
because we find it useful to separate the influence of the
P-wave vertical velocity and the parameter of anisotropy (8)
on the SV-moveout. The depth of the boundary is again
determined through the correct vertical time as z = Vsotso/2.

Figures 10 and 11 show the dependence of the time
residuals and of the best-fit Vso, respectively, on Vpo (for
fixed 8). The influence of V po is stronger for small values of
the ratio VpolVso (Figure 11). If the changes in Vpo are
within ±25% of the correct value, the vertical S-velocity for

FIG. 8. Influence of the SV-wave spreadlength X max on the
accuracy of the joint inversion of P and SV reflection
traveltimes for Dog Creek shale. The error in VPO is calcu­
lated as the maximum deviation in the vertical P-velocity
among the set of models with a given rms time residual
(which includes both P- and SV-residuals). The spreadlength
for the P-wave equals 2z.
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FIG. 9. Accuracy of the joint inversion of P and SV data for
Taylor sandstone (Modell) and Dog Creek shale (Model 2).
The spreadlength X max = Zz for both P- and SV-waves.
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1104 Tsvankin and Thomsen

Dog Creek shale may be recovered with a relatively good
accuracy (Figure 12). Variations in &do not substantially
change the maximum error in Vso. Although this inversion
can provide us with good estimates of only two parameters,
Vso and V S2 (J"), this is all that is needed to carry out
accurate time-to-depth conversion.

For Taylor sandstone, the long-spread, SV-wave moveout
is not so sensitive to the depth of the boundary as for Dog
Creek shale. Hence, the inversion becomes more ambiguous
because of the trade-off between the model parameters.
However, an extension of the SV-wave spread to x max =
2.1z brings about a substantial improvement in the accuracy
of the inversion procedure (Figure 13).

Thus, long-spread SV-wave data are marginally good for
traveltime inversion. The vertical S-velocity can be accu­
rately determined if the spread is at least 2z long, and the
vertical P-wave velocity is loosely constrained.

DISCUSSION

Ambiguity in the inversion of P-wave reflection moveout
in transversely isotropic media may be significantly reduced
by combining long-spread P and SV data. In multilayered
media, inversion can be performed from the top to the
bottom in a layer-stripping mode. Because of the accumula­
tion of errors with depth, however, the accuracy for any
internal layer would be lower than that for the present results

pertaining to a single-layer model. Feasibility of the joint
inversion of the P, SV, and SH data in VSP geometry was
shown in Leary et al. (1987), who used the traveltimes of the
direct arrivals to determine the parameters of an inhomoge­
neous transversely isotropic medium near a fault zone.

Although we have proved the viability of the joint inver­
sion of P- and SV-wave reflection traveltimes, the practical
realization of this approach is a challenging task. Both
acquisition and processing of long-spread P- and SV-data
are expensive and complicated. One of the potential obsta­
cles is the presence of cusps on SV-wave wavefronts that
occur for relatively strong (but not uncommon) SV-wave
anisotropy (Musgrave, 1970) and may seriously impede the
analysis of SV-wave moveout.

Application of the proposed algorithm requires the recov­
ery of nonhyperbolic moveouts from long-spread CMP gath­
ers. While deviations from a hyperbola are an advantage in
traveltime inversion, they are difficult to account for in
moveout-correction procedures. Previously developed algo­
rithms for nonhyperbolic moveout correction are based on
the quartic moveout equation (May and Straley, 1979; Gid­
low and Fatti, 1990). Our approximation (15) is more accu­
rate than the quartic polynomial because it contains an
additional independent parameter and converges at large x.

However, even equation (15) may fail to describe the
long-spread SV-wave traveltimes in the case of pronounced

1.25-.--"""'!'!'!"

VPO 1

1.02
0.75-.'-----......:

0.98

~trms(ms)

o ABOVE 14.0o 12.0 - 14 0
[ffJ 10 0 - 12 0

B.O - 10 0
6.0 - B.O
4.0 - 6 .0

o 2 0 - 4.0
BELOW 20

FIG. 10. SV-wave rms time residuals calculated with respect to the reference model of Dog Creek shale. VPO and VS2 are the
parameters V po and V S2 normalized by the exact values. The parameter &is fixed at the correct value (& = 0.1). The plot shows
the smallest residual for each pair of (Vpo, Vsz), obtained by scanning the vertical S-wave velocity Vso. The spreadlength
X max = 2z, t se = 7.264 s.
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Inversion for Transverse Isotropy 1105

nonhyperbolic moveout. The semblance search at high inci­
dence angles is also hindered by phase shifts in postcritical
reflections. A possible solution is to try to pick SV-wave
traveltimes at large offsets or to use forward modeling (e.g.,
ray tracing) to find the moveout curve that maximizes the
stacked trace.

In our modeling and inversion, we have assumed a hori­
zontally-homogeneous, azimuthally isotropic medium. It is
likely that in many cases the assumption of horizontal
homogeneity may be violated at large offsets, and this may
lead to significantdistortions of the nonhyperbolic portion of
moveout curves. Further complications might be caused by
the presence of azimuthal anisotropy.

Because of the above difficulties, it is important to find out
what other kinds of additional information may be used to
supplement P-wave traveltimes in the inversion procedure.
In areas with sufficient well control, one may use check
shots or sonic logs to recover the true vertical velocity and
then obtain the anisotropic coefficients from the short-spread
moveout velocities. The elastic parameters, determined at
well sites, can then be used to constrain the inversion of
surface data between the wells.

One of the ways to overcome the limited angle coverage of
reflection moveouts from horizontal interfaces is to use
reflections from dipping planes (Alkhalifah and Tsvankin,
1995) or head waves, which propagate along interfaces with
the velocity of the faster underlying medium. The head
waves formed at shallow boundaries have been successfully

used in isotropic media (Lankston, 1989). P-head waves
formed at horizontal boundaries in transversely isotropic
media can provide us with the horizontal velocity that gives
an additional equation for VPO and E.

We have not discussed the dynamic properties (ampli­
tudes, waveforms) of reflected waves in transversely isotro­
pic models. However, the high sensitivity of body-wave
amplitudes in anisotropic media to velocity maxima and
minima (Tsvankin and Chesnokov, 1990) is a potentially
useful feature in the inversion procedure.

In this paper, we have considered horizontally-homoge­
neous models. The above results suggest that the reconstruc­
tion of 2-D anisotropic velocity fields from reflection travel­
times is a highly ambiguous problem.

CONCLUSIONS

We have examined the feasibility of inverting reflection
traveltimes from horizontal interfaces for the parameters of
a transversely isotropic model with a vertical symmetry axis,
in the case when vertical velocities are unknown. Conven­
tional hyperbolic moveout analysis on short-spread gathers
does not provide enough information to solve this problem,
even if all three waves (P, SV, SH) are recorded. Correct
determination of the vertical velocities and accurate time-to­
depth conversion require, at a minimum, analysis of nonhy­
perbolic moveout on long-spread gathers.

1.25

VPO 1

1.02
0.75

0.98

ABOVE lOB
106 - LOB
1.04 - 1.06
1.02 - 1.04
0 .98 - 1.02

EEl 0 .96 - 0 .98
BELOW 0 .96

vso / Vso (exact)

FIG. 11. The vertical S-wave velocity (normalized by the exact value of Vso) for the models whose time residuals are shown
in Figure 10.

D
ow

nl
oa

de
d 

10
/3

1/
13

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



1106 Tsvankin and Thomsen

-5 --+--------r--------,

FIG. 12. Accuracy of the inversion of long-spread SV data
for Dog Creek shale. The error in Vso is calculated as the
maximum deviation in the vertical S -wave velocity among
the set of models with a given SV-wave rms time residual.
This plot summarizes the results of Figures 10 and 11. The
P-wave vertical velocity is constrained by ±25% of the exact
value, and 8 is fixed at the correct value (8 = 0.1).
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have carried out numerical analysis of the objective function
(rms time residuals) for the inversion of p. and SV-wave
reflection traveltimes. The results show that P data alone are
insufficient for accurate determination of vertical velocity,
even if long spreads are used (x max = 2z). The degree of
nonuniqueness may be significantly reduced by combining
long-spread P- and SV-wave data. This improvement is
ensured by the high sensitivity of the SV moveout near the
velocity maximum to the depth of the boundary. The accu­
racy of the inversion is thus higher for the models with
stronger nonhyperbolic moveout.

In some cases, the SV-wave moveout alone may be used
to recover the vertical S-wave velocity and parameter 17.

Success of this inversion depends on the spreadlength and
the degree of SV-wave velocity anisotropy, as well as on
plausible constraints on the P-wave vertical velocity.

For multilayered media, the joint inversion of P and SV
data may be performed in a layer-stripping mode. The
accuracy for any internal layer, however, is likely to be
lower in comparison with our estimates made for the single­
layer case .

Practical realization of the above algorithm, in any case, is
not straightforward. Acquisition and processing of multi­
component, long-spread reflection data is technically com­
plicated and expensive. Recovery of strongly nonhyperbolic
moveouts is time-consumingand requires advanced methods
of moveout correction. Moreover, the present analysis may
break down in the presence of cusps on SV-wavefronts. The
results of the inversion on long spreads may also be impeded
by horizontal inhomogeneities and azimuthal anisotropy.
Therefore, whenever possible, P-wave data from horizontal
reflectors should be supplemented with additional informa­
tion (e.g., well data, dip moveout, head waves) to reduce the
ambiguity of the inverse problem.

We considered the simple case of transversely isotropic
media with a vertical symmetry axis. There is no doubt that
for more complicated azimuthally anisotropic models the
degree of nonuniqueness in the traveltime inversion is even
higher.

One more general conclusion that may be drawn from this
study is that inversion algorithms in anisotropic media
should be designed to use the data mostly sensitive to
changes in model parameters. Because of the large number
of independent variables, "blind" formal inversion in the
presence of anisotropy is usually unstable.
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One way to incorporate information from nonhyperbolic
moveout into the inversion procedure is to recover the
quartic Taylor series terms of moveout (t 2 - X

2 ) curves and
use them along with the short-spread moveout velocities for
P- and SV-waves. However, this algorithm fails because of
the trade off between the guadratic and quartic movement
coefficients.

To determine the degree of ambiguity and find out what
kind of data is necessary for unambiguous inversion, we

10

-';Ie.
- 5Q

en
>
.5...
o 0 ---1«;;::::--------------­......
W

2 4 6 8
Time Residuals (ms)

FIG. 13. Influence of spreadlength on the accuracy of the
inversion of SV data for Taylor sandstone. The vertical
P-wave velocity is constrained by 1.5 < Vpo/Vso < 2.45,
and 8 is fixed at the correct value (8 = -0.035). The vertical
traveltime t se = 3.280 s.
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