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Normal moveout from dipping reflectors in
anisotropic media

lIya Tsvankin*

ABSTRACT

Description of reflection moveout from dipping in­
terfaces is important in developing seismic processing
methods for anisotropic media, as well as in the
inversion of reflection data. Here, I present a concise
analytic expression for normal-moveout (NMO) veloc­
ities valid for a wide range of homogeneous anisotro­
pic models including transverse isotropy with a tilted
in-plane symmetry axis and symmetry planes in or­
thorhombic media.

In transversely isotropic media, NMO velocity for
quasi-P-waves may deviate substantially from the
isotropic cosine-of-dip dependence used in conven­
tional constant-velocity dip-moveout (DMO) algo­
rithms. However, numerical studies of NMO veloci­
ties have revealed no apparent correlation between the
conventional measures of anisotropy and errors in the
cosine-of-dip DMO correction ("DMO errors"). The

analytic treatment developed here shows that for
transverse isotropy with a vertical symmetry axis, the
magnitude of DMO errors is dependent primarily on
the difference between Thomsen parameters E and &.
For the most common case, E - & > 0, the cosine-of­
dip-corrected moveout velocity remains significantly
larger than the moveout velocity for a horizontal
reflector. DMO errors at a dip of 45 degrees may
exceed 20-25 percent, even for weak anisotropy. By
comparing analytically derived NMO velocities with
moveout velocities calculated on finite spreads, I
analyze anisotropy-induced deviations from hyper­
bolic moveout for dipping reflectors.

For transversely isotropic media with a vertical
velocity gradient and typical (positive) values of the
difference E - &, inhomogeneity tends to reduce
(sometimes significantly) the influence of anisotropy
on the dip dependence of moveout velocity.

where «\> is the dip angle. For homogeneous isotropic media,
reflection moveout is purely hyperbolic, and equation (1) is
exact for any spread length.

INTRODUCTION
Conventional methods of seismic processing and interpre­

tation are designed for isotropic velocity fields and, there­
fore, are subject to error in anisotropic media. It has been
shown that elastic anisotropy may seriously distort the
results of velocity analysis, normal-moveout (NMO) correc­
tion and stacking, migration, etc. (Banik, 1984; Thomsen,
1986; Tsvankin and Thomsen, 1994; Sams et aI., 1993;
Lamer and Cohen, 1993; among others). Clearly, dip-move­
out processing cannot be an exception because most existing
algorithms rely on the behavior of moveout velocity with
reflector dip established for isotropic models (Levin, 1971):

V nmo ( <<\» = Vnmo(O)/cos «\>, (1)

It is well known that anisotropy may distort the normal
(short-spread) moveout velocity for horizontal reflectors as
well as enhance deviations from hyperbolic moveout (Banik,
1984; Thomsen, 1986; Tsvankin and Thomsen, 1994). There­
fore, it is natural to expect formula (1) to become inaccurate
in the presence of anisotropy.

Levin (1990) modeled P-wave reflection moveout for
dipping reflectors beneath homogeneous transversely isotro­
pic media with two different orientations of the axis of
symmetry (for brevity, I will omit the qualifiers in "quasi­
P-wave" and "quasi-SV-wave"). He showed that if the axis
is perpendicular to the reflector, isotropic dip-moveout
(DMO) formula (1) holds with good accuracy. However, if
the symmetry axis is kept vertical, the error of equation (1)
for one of the models in Levin's study (the shale-limestone)
reaches almost 40 percent at 60-degree dip. For the other
three media used by Levin, the errors were relatively small,
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NORMAL-MOVEOUT VELOCITY IN ANISOTROPIC MEDIA

FIG.}. Common-midpoint gather over a homogeneous aniso­
tropic medium. Vgr and Vp,h are the group and phase velocity
vectors, respectively. For brevity, henceforth In the text Vp h
!s r~ferre~, to just .as V. Note that .the zero-offset ("normal­
incidence ) ray IS not necessanly perpendicular to the
reflector.

Let us consider a CMP gather over a homogeneous
anisotropic medium; the CMP line is perpendicular to the
strike of the reflector (Figure 1). The only assumption made
about anisotropy at this stage is that the phase and group
velocity vectors do not deviate from the sagittal (incidence)
plane, i.e., the sagittal plane is a plane of symmetry. For
instance, the present treatment is valid for any plane con­
taining the symmetry axis in transversely isotropic media
(plus the isotropy plane), as well as for symmetry planes in
orthorhombic media.

Out-of-plane phenomena cannot be neglected if the sagit­
tal plane lies outside symmetry planes in azimuthally aniso­
tropic media; still, the formula derived below remains a good
approximation if azimuthal anisotropy is weak. Azimuthally
anisotropic models with orthorhombic symmetry caused by
a combination of thin horizontal layering and vertical frac­
ture systems with a low fracture density seem to be typical
for sedimentary basins (Leary et aI., 1990). Such media are
characterized by relatively weak azimuthal anisotropy and
more pronounced velocity variations in vertical planes. It is
likely that for models of this type, the normal-moveout
equation discussed here would be acceptable even outside
symmetry planes.

Our goal is to find an analytic expression for the normal­
moveout velocity in the CMP geometry (Figure 1):

Normal Moveout in Anisotropic Media 269

although one of the models (Cotton Valley shale) may be ity with the moveout velocity calculated from t 2 - x 2

considered even more "anisotropic" with respect to curves on conventional short spreads to verify analytic
P-waves than the shale-limestone. Indeed, anisotropic pa- solutions and to estimate the influence of nonhyperbolic
rameters E and 3 (Thomsen, 1986) for the shale-limestone are moveout. For values of E and 3 believed to be typical for real
E = 0.134, 3 = 0, while for Cotton Valley shale E = 0.135, rocks, the cosine-of-dip-corrected moveout velocity re-
3 = 0.205. Small errors for the other two models (Pierre mains significantly higher than the NMO velocity for a
Shale and Berea sandstone) are not surprising since both are horizontal reflector. Finally, I use Lamer's (1993) ray-
characterized by very weak P-wave anisotropy. It is also tracing algorithm to analyze the combined influence of
important to mention that Levin has not found noticeable transverse isotropy and vertical velocity gradient on P-wave
nonhyperbolic moveout on common-midpoint (CMP) gath- NMO velocity from dipping reflectors.
ers with a spread length equal to the distance from the CMP
to the reflector.

Recently, it has been recognized that depth-variable ve­
locity may have a significant impact on dip-moveout pro­
cessing. However, existing DMO algorithms built for depth­
variable velocity fields still ignore anisotropy (e.g., Hale and
Artley, 1993). The combined influence of anisotropy and
inhomogeneity on DMO has been studied by Larner (1993),
who has performed calculations similar to those of Levin
(1990) but for "factorized" transversely isotropic models
with a vertical velocity gradient ("factorized" means that
the ratios of the elastic constants are independent of spatial
position). The main conclusion of that work is that the DMO
errors remain close to those found by Levin, provided
isotropic DMO correction takes the velocity gradient into
account.

Thus, the existing numerical results show no simple cor­
relation between DMO errors and the "degree of anisotro­
py." Evidently, further insight into the character of DMO
performance requires analytic description of reflection mo­
veout from dipping planes in anisotropic media.

Another important aspect of this problem is the possibility
of using the dip-dependence of normal-moveout (NMO)
velocity in the inversion for the anisotropic parameters.
Tsvankin and Thomsen (1995) showed that for transversely
isotropic media, P-wave reflection moveout from horizontal
interfaces is not sufficient to resolve the vertical velocity and
anisotropic coefficients, even if long spreads (twice as large
as the reflector depth) are used. Moveout from dipping
reflectors makes it possible to extend the aperture of reflec­
tion data without recourse to large offsets (i.e., without using
nonhyperbolic moveout).

Byun (1982) and Uren et al. (1990b) derived analytic
expressions for normal-moveout velocity from dipping re­
flectors in elliptically anisotropic models. Uren et aI. (1990b)
also showed that, for elliptical anisotropy, reflection move­
out remains hyperbolic irrespective of the orientation of the
elliptical axes. However, elliptical anisotropy is no more
than a special case of transverse isotropy, hardly typical for
real rocks (Thomsen, 1986). Byun (1984) obtained an ana­
lytic expression for normal-moveout velocity in general
transversely isotropic media by applying a local elliptical fit
to the wavefront. The results discussed below show that
Byun's formula deviates from the exact NMO velocity for
nonelliptical models.

Here, I derive a formula for normal-moveout velocity
valid for many anisotropic models of practical importance.
For weak transverse isotropy with a vertical symmetry axis,
this exact expression for NMO velocity is transformed into a
simple function of the anisotropies E and 3. I then compare
the exact and weak-anisotropy expressions for NMO veloc-
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270 Tsvankin

For models with a horizontally homogeneous overburden,
the ray parameter does not change between the reflector and
the surface. In this case, it is convenient to represent the
NMO velocity in the following way (Hale et aI., 1992;
Lamer, 1993),

Using equation (6), we find

The derivative d (tan I/J)/dp in equation (4) may be written
as

(6)

d tan I/J da

da dp

1 dV
tan a + -­

V da

tan a dV
1---­

V da

tanI/J=-----

d tan I/J

dp

(2)

(3)
2 2 . dh

V nmo(4)) = - hm -,
to h .....O dp

where Ihl = x/2 is half the source-receiver offset (h > 0 in
the down-dip direction), to is the two-way traveltime along
the zero-offset ("normal-incidence") ray, and p is the ray
parameter. Note that the zero-offset ray (h = 0) is not
necessarily perpendicular to the reflector in the presence of
anisotropy; it is the phase-velocity vector associated with
the zero-offset ray that is normal to the reflector.

Normal-moveout velocity (3) is derived under the assump­
tion that the reflection point dispersal can be ignored (Hale et
aI., 1992). As shown in Hubral and Krey (1980, Appendix
D), the difference between the true (specular) and zero-offset
reflection points changes only the quartic and higher-order
moveout terms and does not influence NMO velocity; their
conclusion holds for anisotropic media as well. This implies
that we can use zo (Figure 1) as the depth of the zero-offset
reflection point. Then h = zo (tan I/J - tan I/Jn), where I/Jn
and I/J are the group-velocity (ray) angles for the zero-offset
and nonzero-offset rays, respectively. Now equation (3)
becomes

(7)

V

(
tan a dV) ,

cos a 1----
V da

da
-=--------
dp

d tan I/J

da

d tan I/J

dp

(
tan a d~2'

cos? a 1----
V da

Since p = sin a/v,

[ (
tan a dV)] 3 •

cos a 1- V da

The vertical distance from the zero-offset reflection point
to the surface is given by

zo = &Vgr(I/Jn) to cos I/Jn'

Using expression (5) for group velocity yields

then

(4)
2 2z0 . d tan I/J

V nmo(4)) = - hm ---
to h .....O dp

To evaluate equation (4), we use the general relation
between group and phase velocities in anisotropic media
(Berryman, 1979)

a(kV) a(kV) a(kV)
V =--x+--y+--z

gr ak ak ak'x y z

where k is the wave vector with magnitude k, and Vgr and V
are the group and phase velocities, respectively. If the
incidence plane [x, z] is both a plane of symmetry and the
dip plane of the reflector, group- and phase-velocity vectors
for eMP reflections remain in the vertical plane and depend
only on the in-plane phase angle a (we measure a from the
z-axis, see Figure 1). Therefore, group velocity may be
represented as

Vgr = (V sin a + :~ cos a)x + (V cos a - :~ sin a)z.
(5)

Note that the vertical axis is not necessarily an axis of
symmetry. From equation (5), the group angle I/J is given by

1 (tan ad~zo = - Vto cos a 1 - -- - .
2 V da

Since the phase angle a for the zero-offset ray is equal to
the dip angle 4>, z 0 becomes

1 (tan 4> dV)
zo = 2 V(4)) to cos 4> 1 - V(4)) da ' (8)

where the derivative dV/da should be calculated at the angle
4>.

Substituting equations (7) and (8) into formula (4) for
NMO velocity, we finally obtain

/ 1 d 2V

V( 4> ) V 1 + V(;j;) d(j2
V nmo (4)) = cos 4> tan 4> dV' (9)

1----
V(4)) da

where both derivatives of phase velocity should be evaluated
at the dip angle 4>.

Equation (9) is valid for NMO velocity of P- and S -waves
in symmetry planes of arbitrary anisotropic media. Diflicul-
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Normal Moveout in Anisotropic Media 271

TRANSVERSE ISOTROPY WITH A TILTED AXIS OF
SYMMETRY

may be far different from the NMO velocity for a horizontal
reflector Vnmo(O), if anisotropy is present. Below, I examine
the behavior of the normal-moveout velocity and perfor­
mance of the isotropic DMO correction for transversely
isotropic media.

(15)

(13)

(14)

Cll - C33
E==----

2C33

(C13 + C44)2 - (C33 - C44)2
8 == ----------

2C33 (C33 - C44)

C66 - C44
oy==

2C44

P- and SV-wave propagation is described fully by four
parameters: V po, V so, E, and 8.

The SH-wave slowness surface and wavefront are ellipti­
cal with the phase velocity given (exactly) by

Levin (1990) points out that the orientations of the sym­
metry axis most likely to be encountered in practice are
close to either the vertical or the normal to reflectors. In the
previous section it was proved that in the latter case dip­
dependence of normal-moveout velocity remains the same
as in isotropic media. Therefore, although formula (9) allows
for rather general anisotropy, in the following I concentrate
on transversely isotropic media with a vertical symmetry
axis, or vertical transverse isotropy (VTI).

I will characterize VTI by the vertical P- and S-wave
velocities (Vpo = V C33/P and V so = V C44/P), and the
anisotropic parameters E, 8, and oy, defined by Thomsen
(1986):

TRANSVERSE ISOTROPY WITH A VERTICAL AXIS OF
SYMMETRY

Special cases: comparison with previous results

In this section, formula (9) is compared with analytic
expressions for the normal-moveout velocity from a horizon-

responsible for P-wave velocity near the symmetry axis
(Thomsen, 1986); this will be discussed in more detail below.

Application of formula (9) remains straightforward in a
more general case when the symmetry axis is tilted at an
arbitrary angle. Phase velocity in transversely isotropic
media is usually expressed through the angle between the
phase-velocity vector and the symmetry axis. The formula
for the P-wave phase velocity in standard notation (using the
elastic coefficients cij and density p) can be found, for
instance, in White (1983):

2pV
2(6 ) = (Cll + C44) sin? 6 + (C33 + C44) cos 2 6

+ {[(Cll - C44) sin 2 6 - (C33 - C44) cos? 6]2

+ 4(c13 + C44)2 sin 2 6 cos 2 6}1/2. (12)

To get the SV-wave velocity, the plus sign in front of the
radical should be replaced with a minus. Thomsen (1986)
gives analogous formulas in his notation and transforms
them into much simpler expressions for weakly anisotropic
media. To use any of these velocity equations in the calcu­
lation of the NMO velocity (9), they should be evaluated at
the angle between the symmetry axis and the reflector's
normal.

(10)

(11)
V(<!» / 1 d 2V

V nmo(<!» = cos <!> V 1 + V(<!» d0 2 •

The values of V(<!» and d 2V/d6 2 at any dip correspond
to the symmetry direction and, therefore, are independent
of <!>. Hence, equation (11) coincides with the isotropic
equation (1)

ties in application of formula (9) can be expected only in
anomalous areas near shear-wave singularities and cusps,
where the group-velocity function is multivalued. This ex­
pression is relatively simple to use because it does involve
just the phase-velocity function, not the components of the
group-velocity vector of the zero-offset ray (note that the
angle between the zero offset ray and vertical is generally
different from <!». For example, it can be used in symmetry
planes of orthorhombic media just by substituting the appro­
priate phase velocity function and its derivatives.

From equation (9), the result of the conventional isotropic
dip-moveout correction

Levin (1990) showed numerically that the cosine-of-dip
correction remains accurate in the case when the symmetry
axis is perpendicular to the reflector. Equation (9) gives a
clear analytic explanation for this result. If the reflector's
normal coincides with the symmetry direction, then dV/d6
at the dip angle is zero, and formula (9) reduces to

This means that the isotropic DMO correction holds if the
symmetry axis is perpendicular to the reflector. However,
this result is derived for normal (zero-spread) moveout
velocities rather than for moveout velocities measured on
finite spreads. If the medium above the reflector is homoge­
neous and isotropic, reflection moveout on eMP gathers is
purely hyperbolic, and equation (1) is exact irrespective of
the maximum offset. In the presence of anisotropy, how­
ever, moveout is generally nonhyperbolic (Tsvankin and
Thomsen, 1994), and equation (11) may become inaccurate
with increasing spread length. Although the spreads used by
Levin (1990) are not long (equal to the normal distance to the
reflector), his results for the models with the symmetry axis
perpendicular to the reflector show small errors in the
cosine-of-dip relationship (1), indicative of the influence of
nonhyperbolic moveout on the moveout velocity.

While dip dependence of the NMO velocity is not dis­
torted by the anisotropy when the symmetry axis is perpen­
dicular to the reflector, the value of Vnmo(O) is not the same
as the NMO velocity for isotropic media. The P-wave
Vnmo(O) depends on the anisotropic parameter 8, which is
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272 Tsvankln

Using equation (12) to evaluate the second derivative of
phase velocity and substituting expression (14) for 8, we find
for the P-wave

V 1 d
2V

Vnmo(O) = V o 1 + - --2.
Vo d6

tal reflector beneath VTI media (Hake et aI., 1984; Thomsen,
1986), and from dipping reflectors beneath elliptically aniso­
tropic media (Byun, 1982; Uren et aI., 1990b). Formula (9)
and the P-wave moveout velocity computed from t 2

- X

curves are also compared with analytically based calcula­
tions for general transverse isotropy presented by Byun
(1984).

In the case of a horizontal reflector (<!> = 0), equation (9)
reduces to

I demonstrate below that the formula for elliptical anisot­
ropy may lead to significant errors in the P-wave NMO
velocity even for "almost" elliptically anisotropic models.

Byun (1984) generalized his elliptical normal-moveout
formula for arbitrary transverse isotropy by applying a local
elliptical fit to the wavefront. The resulting expression for
the normal-moveout velocity involves the group velocity and
group angle of the normal-incidence ray. The moveout
velocity multiplied with the cosine of the angle '"n between
the zero-offset ray and vertical ("emergence angle" in
Byun's paper) Byun calls the "diffractorvelocity." Figure 2
shows the P-wave moveout velocity for the limestone­
sandstone model used in Byun's study with his normaliza­
tion. The dotted curve is the analytic NMO velocity com­
puted from formula (9); the solid curve is the moveout
velocity recovered directly from traveltimes (t 2 - x 2

curves) calculated by a ray-tracing code over a spread of
1500 m. The distance from the eMP to the reflector in the
traveltime calculations on this and all subsequent plots
(except for Figure 16) is 3000 m [for a description of the
algorithm used to calculate traveltimes, see Lamer (1993)].

Figure 2 was designed to reproduce the result in Figure 6a
of Byun's (1984) paper. However, with increasing dip the
moveout velocities in Figure 2 become substantially higher
than those computed by Byun; a similar discrepancy was
found for the second model used in Byun's work. Since the
analytic and numerical results in Figure 2 are close to each
other (the small difference between the two curves will be
explained below), it seems that Byun's formula deviates (at
least for these two models) from the exact Vnmo for nonel­
liptical media.

We can only speculate about the reason for this inaccu­
racy. One of the assumptions made by Byun in his derivation
is that V nmo for VTI media can be found by fitting an ellipse

(17)

(18)
V 90

V nmo(<!» =-­
cos <!>

which coincides with Thomsen's (1986) result. It should be
emphasized that equation (17), along with the original equa­
tion (9), is valid for VTI media with an arbitrary degree of
anisotropy, not just for weak transverse isotropy. When the
symmetry axis is perpendicular to a dipping reflector, the
P-wave NMO velocity is given just by equation (17) and the
cosine-of-dip factor [equation (1)]. Similarly, we get Thom­
sen's expression for the zero-dip NMO velocity of the
SV-wave.

For elliptical anisotropy,

V(6) = VVJ cos? 6 + V~o sin 2 6,

where V 90 is the horizontal velocity.
The NMO velocity (9) then becomes

6015 30 45
Dip (deg)

. . .
.......... "." 0.0 "." ..

1.0 +---,..---,..---.,..-----1
o

FIG.2. P-wave moveout velocity calculated from formula (9)
(dotted curve) and from traveltimes (solid curve) for the
limestone-sandstone model from Byun (1984). Both curves
are converted into the "diffractor velocities" as suggested
by Byun. Model parameters are VPO = 10 483 It/s, V so =
5753 ft/s, E = 0.183, 8 = -0.004.

x10 4
1.4 ...---.,.------...-------,.----,

-(J)

~1.3
o
E
>
"0 1.2

~
~ 1.1
oo

(19)

Since for the SH-wave Vnmo(O) = V soVI + 2"'(, equa­
tion (19) may be represented as

Vnmo(O) VsH(<!»
Vnmo(<!>)(SH) = , (20)

cos <!> V so

V S H(<!» is the SH-wave phase velocity at the dip angle.
Therefore, for elliptical anisotropy the error of the cosine­
of-dip-DMO correction is determined directly by phase
velocity variations, i.e., the error is given just by the phase
velocity at the dip angle divided by the vertical velocity.

Equation (18) agrees with the normal-moveout formulas of
Byun (1982) and Uren et aI. (1990b). In elliptically anisotro­
pic media, reflection moveout remains purely hyperbolic
irrespective of reflector dip or the orientation of the elliptical
axes (Uren et aI., 1990b).

In general VTI media, equations for elliptical anisotropy
are strictly valid only for the SH-wave. If the SH-wave
phase velocity is parametrized by "'( as in equation (16),
formula (18) yields

V soV 1 + 2"'( ~ /---....."...-
Vnmo(<!»(SH) = vI + 2"'( sin 2 <!>.

cos <!>

D
ow

nl
oa

de
d 

10
/3

1/
13

 to
 1

38
.6

7.
12

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Normal Moveout in Anisotropic Media 273

6,---------------.

6020 40
Dip(deg)

3-+----_r_-----r-----1
o

o
E 4c
>

.-
en
E 5
~-

variations in the P-wave normal moveout are insignificant,
as is supported by the result in Figure 4.

Thus, in VTI media the dip dependence of the P-wave
NMO velocity is primarily a function of just two anisotropic
coefficients E and 3. More than that, in the next two sections
I show that the angular behavior of the NMO velocity is
mostly determined by a particular combination of these
parameters; i.e., by the difference E - 3. If the symmetry
axis is inclined, the NMO velocity is also dependent on the
tilt angle.

Weak-anisotropy approximation for normal-moveout
velocity

A convenient way to understand the influence of anisot­
ropy on normal-moveout velocity is to use the weak-anisot­
ropy approximation (WAA). Although WAA is no substitute
for exact equations [such as formula (9)] in DMO correction,
it can provide us with simple analytic relations elucidating

FIG. 4. Influence of Vso on the cosine-of-dip--corrected P-wave
normal-moveout velocity calculated from formula (9). The
black curve corresponds to VPOIVso = 1.5, the gray curve to
VPOIVso = 2.5. Vpo = 3 km/s, E = 0.3, and 3 = 0.1 are the same
for both curves.

How many parameters determine the P-wave DMO
signature?

with vertical and horizontal axes to the wavefront. It is
possible that the correct moveout velocity at nonzero dips is
given by a tilted fitted ellipse, even though the symmetry
axis is vertical. However, this is no more than a tentative
conclusion; the nature of the above discrepancy needs
further investigation.

This important question has to be answered before starting
a systematic study of the behavior of NMO velocities in
transversely isotropic media. In conventional notation, the
P-wave phase velocity (12) is a function of four elastic
coefficients: c 11, C 33, C 13, and c 44' This might lead one to
believe that dip dependence of the P-wave V nmo is also
determined by four variables.

However, it is possible to cut down on the number of
parameters by switching to Thomsen's (1986) notation.
First, note that VPO is just a scaling coefficient for the
P-wave phase velocity, if VpolVso, E, and 3 are kept
constant. Therefore, V PO does not change the dependence of
the P-wave normal-moveout velocity V nmo on the dip angle
<1>. This conclusion is illustrated in Figure 3, which shows
that the normalizedP-wave NMO velocity Vnmo(<I»IVnmo(O)
(Figure 3b) is independent of the vertical velocity V po, The
velocity in Figure 3 is the moveout velocity in equation (9)
multiplied with cos <1>, as it is conventionally done in the
isotropic DMO correction.

Another parameter that can be eliminated from the
P-wave dip-moveout problem is the shear-wave vertical
velocity V so (or the ratio VpoIVso). Although the P-wave
phase velocity formally depends on four Thomsen parame­
ters (Vpo, V so, E, and 3), the contribution of V so is
practically negligible.

Indeed, in the weak-anisotropy approximation, the
P-wave phase velocity is a function just of V po and the
anisotropic coefficients E and 3 (Thomsen, 1986). If anisot­
ropy is not weak, Thomsen's velocity equation becomes
inaccurate, but the P-wave phase velocity remains practi­
cally independent of V so (Tsvankin and Thomsen, 1994).
Hence, even for a wide range of V so' the corresponding

6 1.4
0- E

~5
c:
>

~ "0- .~ 1.20

§ 4 (ij
E> ...
0z

3 1.0
0 15 30 45 60 0 15 30 45 60

Dip (deg) Dip (deg)

FIG. 3. Influence of V PO on the cosine-of-dip-corrected P-wave normal-moveout velocity calculated from formula (9). The black
curve corresponds to the shale-limestone model with V po = 3.306 km/s, V§'o = 1.819 km/s, E = 0.134, 3 = O. The gray curve
is for the model with V po = 4.200 km/s, and the same VpolVso, E, and 3. (a) NMO velocity without normalization; (b) NMO
velocity normalized by the zero-dip value Vnmo(O).
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isotropy e = 8, and the error is determined just by angular
variations in the P-wave phase velocity. This result has
already been discussed in the previous section [equations
(18) and (20)]. The second, nonelliptical component of the
DMO error is the term containing the difference e - 8.

To compare the two components, I substitute the weak­
anisotropy approximation for V p (<!» in equation (21) into
equation (23) and drop the terms quadratic in the anisotro­
pies e and 8. The dip-moveout error then becomes

The nonelliptical error in the fully linearized expres­
sion (24) is represented by the last term. Analysis of the
trigonometric coefficients in equation (24) shows that, unless
1£ - 8/ « 181, the nonelliptical term usually makes the most
significant contribution to the total error. Thus, for typical
values of the anisotropic coefficients, the difference £ - 8
determines, to a large degree, the angular behavior of the
P-wave NMO velocity. This conclusion is supported by
exact numerical calculations in the next section.

Now we can explain the puzzling difference between the
DMO signatures for the models of Cotton Valley shale and
the shale-limestone (Levin, 1990; Lamer, 1993). For Cotton
Valley shale (e = 0.135, 8 = 0.205), 8 is positive, while e - 8
is small and negative. As a result, the two components of the
DMO error in equations (23) and (24) almost cancel each
other, and the accuracy of the isotropic DMO correction is
quite satisfactory.

Figure 5 shows the comparison between the moveout
velocity calculated directly from traveltimes (t 2

- x 2 curves)
over a spread of 3000 m, the exact NMO velocity (9), and the
weak-anisotropy normal-moveout approximation (22) for the
model of Cotton Valley shale. All three curves display only
small variations (-3-4 percent) in the corrected moveout
velocity with angle, confirming the conclusion about the
validity of the cosine-of-dip correction for this particular
model. Though Cotton Valley shale has a large value of 8,

the dependence of the NMO velocity on the parameters e
and 8.

In the case of weak anisotropy (e « 1, 8 « 1), phase
velocities ofP- and SV-waves can be significantly simplified
by retaining only the terms linear in e and 8. The P-wave
phase velocity linearized in e and 8 is given by (Thomsen,
1986)

V p(6) = V p o(1 + 8 sin ' 6 cos 2 6 + e sin" 6). (21)

The derivatives of equation (21) needed in the expression
for NMO velocity (9) are then

dVp(6 )
---= V p o sin 26(8 cos 26 + 2£ sin 2 6),

d6

dVt(6)
--2- = 2Vp o [8 cos 46 + 2£ sin 2 6 (1 + 2 cos 26 )].

d6

After substitution of the above weak-anisotropy equations
into equation (9) and further linearization in e and 8, we get

Vp (<!» .
Vnmo(<!» = -- [1 + 8 + 2(£ - 8) sm 2 <!> (1 + 2 cos 2 <!»].

cos <!>
(22)

Vp (<!» is the phase velocity given by equation (21). In the
isotropic DMO correction, multiplication of Vnmo(<!» with
cos <!> is supposed to convert the moveout velocity at dip <!>

into the moveout velocity for a horizontal reflector. Hence,
the anisotropy-induced DMO error in the weak-anisotropy
approximation is given by (again, only the terms linear in e
and 8 are retained)

Vnmo( <!» cos <!>
----

Vnmo(O)

x [1 + 2(£ - 8) sin 2 <!> (1 + 2 cos ' <!»]. (23)

The structure of equation (23) suggests that the P-wave
dip-moveout error in transversely isotropic media has two
major components, which may be called the "elliptical
error" and "nonelliptical error." Indeed, for elliptical an-

Vnmo(<!» cos <!> 2
------= 1 + 8 sin <!>

Vnmo(O)

+ 3(£ - 8) sin 2 <!> (2 - sin? <!». (24)

. . .
~ . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

6015 30 45
Dip (deg)

b)

~5.0

.::t:.
;:4.5

8
(j) 4.0
>-53.5

~
::E 3.0 -I-----,----r--.,.---"1

o6015 30 45
Dip (deg)

a)

06.0 -r------------...,
E.:.:.
;:5.8

8
Q) 5.6
>

~ 5.4

~
~ 5.2 -I---..-----,..---r----I

o

FIG.5. Cosine-of-dip--corrected P-wave moveout velocity for (a) Cotton Valley shale and the (b) shale-limestone. The solid curve is
the moveout velocity calculated from the traveltimes on a spread of 3000m (the CMP-to-reflector distance is also 3000m); the dotted
curve is the exact NMO velocity computed from formula (9); the dashed curve is the weak-anisotropy approximation (22).
Parameters of Cotton Valley Shale are Vpo = 4.721 km/s, Vso = 2.890 km/s, e = 0.135, 8 = 0.205; for the shale-limestone, Vpo =
3.306 km/s, Vso = 1.819 km/s, e = 0.134, 8 = O.
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Normal Moveout In Anisotropic Media 275

the weak-anisotropy result is close to the exact NMO
velocity (the difference is less than 2 percent).

For the shale-limestone (E = 0.134, 8 = 0), a positive value
of E - 8 leads to a pronounced increase in the cosine-of-dip
corrected moveout velocity with dip angle. Note that the
accuracy of the weak-anisotropy approximation for the
shale-limestone is high. A systematic comparison between
the weak-anisotropy approximation and the exact NMO
velocity is presented in the next section.

Formula (9) can also be transformed into the weak­
anisotropy approximation for the SV-wave normal-moveout
velocity. Using the weak-anisotropy expression for the
SV-wave phase velocity (Thomsen, 1986)

V sv(6) = V so(l + U' sin 2 6 cos 2 6),

we obtain

Vsv(l\»
Vnmo(I\>)(SV) = --­

cos I\>

x [1 + U' - 2U' sin2 I\> (1 + 2 cos2 1\»], (25)

where U' is the effective parameter introduced in Tsvankin
and Thomsen (1994) to describe SV-wave propagation:

(
VPO)2

U' == - (E - 8).
V so

Hence, the DMO signature for the SV-wave is mostly
determined by just one anisotropic parameter-o,

Equations (22) and (25) can be rewritten (not done here)
for the more general case of transverse isotropy with a tilted
axis of symmetry.

Dip-moveout signature for P-waves

Before doing a systematic analysis for vertical transverse
isotropy, it is worthwhile to explain the small difference be­
tween the moveout velocity calculated directly from travel­
times (t 2 - x 2 curves), and NMO velocity from formula (9) in
Figures 2 and 5. Since the moveout velocity was determined
from a least-squares fit to t 2 - x 2 curves on a finite spread
length, it could have been distorted by nonhyperbolic move­
out, while the analytic NMO velocity describes purely

hyperbolic moveout on very short spreads. To check out this
possibility, Figure 5 is reproduced in Figure 6, but with the
moveout velocity calculated on a much shorter spread
(1000 m instead of 3000 m), reduced to just 1/3 of the distance
from the CMP to the reflector. Now the moveout velocity
recovered from the traveltimes (solid curve) practically
coincides with the analytic solution for the NMO velocity
(dotted curve). Therefore, the analytic and numerical results
are in good agreement with each other.

Since the two models studied above exhibit such different
behavior of the P-wave NMO velocity, it is important to find
out what can be expected for transversely isotropic media
that are likely to be encountered in the subsurface. Existing
laboratory and field data indicate that in most cases E > 8
(Thomsen, 1986; Tsvankin and Thomsen, 1994). For in­
stance, E > 8 for transversely isotropic media caused by thin
bedding of isotropic layers (Berryman, 1979). This means
that the cosine-of-dip corrected moveout velocity in trans­
versely isotropic media is usually higher than the moveout
velocity for a horizontal reflector [see formulas (23) and (24)].
Hence, the behavior of the corrected moveout velocity for
the shale-limestone model may be typical for subsurface
formations.

Rather than examine specific transversely isotropic mod­
els published in the literature, I present a systematic analysis
of the P-wave DMO signatures for transversely isotropic
media parametrized by E and 8. Since the weak-anisotropy
approximation suggests the difference E - 8 as the most
influential parameter in the DMO correction, I generate
four suites of plots for E - 8 = -0.1, 0, 0.1, and 0.2
(Figures 7-10). The choice ofthe values of E - 8 is explained
above; although E - 8 is believed to be predominantly pos­
itive, the value of -0.1 is included for completeness. Each
plot contains the same three types of curves shown in
Figures 5 and 6: the moveout velocity calculated from
t 2 - x 2 curves on the spread 3000-m long (solid), the exact
analytic normal-moveout velocity computed from equation (9)
(dotted), and the weak-anisotropy approximation for V nmo
given by equation (22) (dashed). Comparison between the
first two curves makes it possible to estimate the influence of
nonhyperbolic moveout on the moveout velocity for the
typical spread length equal to the distance from the CMP to
the reflector. The difference between the second and third

604530
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FIG. 6. Same as Figure 5 with (a) Cotton Valley shale and (b) shale-limestone, but the spread length used to calculate the
moveout velocity from t 2 - x 2 curves (solid curve) is 1000 m instead of 3000 m. The analytic curves of the exact NMO velocity
(dotted) and the weak-anisotropy approximation (dashed) have not been changed.
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FIG. 7. Cosine-of-dip-corrected P-wave moveout velocity for models with E - & = -0.1. The solid curve is the moveout
velocity calculated from (2 - x 2 curves on a spread length of 3000 m (equal to the distance between the CMP and reflector);
the dotted curve is the exact NMO velocity from formula (9); and the dashed curve is the weak-anisotropy approximation from
formula (22). On each plot in Figures 7-13, the vertical P-wave velocity V po is adjusted so that the exact analytic Vnmo(O)
(dotted curve) is 1 km/s. The solid curve for to = 0.3, & = 0.4 stops around 52 degrees because the algorithm used to calculate
traveltimes broke down at higher dips.
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FIG. 8. Cosine-of-dip-corrected P-wave moveout velocity for models with E - & = 0 (elliptical anisotropy).
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Normal Moveout in Anisotropic Media 277

curves shows the error of the weak-anisotropy approxima­
tion. On each plot, the vertical P-wave velocity V po is
adjusted so that the exact analytic Vnmo(O) (dotted curve) is
1 km/s.

First, I examine dip-dependence of the cosine-of-dip cor­
rected moveout velocity using the exact analytic expres­
sion (9) (dotted curve). Later on, I discuss the accuracy of
the weak-anisotropy approximation and the influence of
nonhyperbolic moveout.

The whole suite of plots in Figures 7-10 suggests that the
P-wave DMO signature is controlled, to a significant degree
(although not entirely), by the difference 6 - 8. In spite of
certain variations from one pair of 6, 8 to another, the
general behavior and range of variation of the moveout
velocity are similar for all curves with fixed 6 - 8, especially
for moderate anisotropies 161 < 0.2, 181 < 0.2. The dominant
role of 6 - 8 is particularly pronounced for the most typical
case 6 - 8 > 0 (Figures 9 and 10). It is interesting that on
most of the plots, the exact NMO velocity, for a fixed 6 - 8,
shows even less dependence on a specific combination of 6

and 8 than does the weak-anisotropy result (for instance, see
Figure 10).

When 6 - 8 = -0.1 (Figure 7), the cosine-of-dip-cor­
rected moveout velocity decreases with dip (for mild dips),
as predicted by the weak-anisotropy approximation. This
trend becomes less pronounced with increasing 6 and 8

because of a more significant increase in the phase velocity
with angle [formula (23)]. Note that for a fixed negative
6 - 8, the cosine-of-dip correction becomes more accurate
(i.e., the curves are closer to unity) with increasing anisotro­
pies 6 and 8. On the whole, the DMO error, determined by
the amplitude of the angular variations in the cosine-of-dip­
corrected moveout velocity, is relatively small (the "Cotton
Valley shale" case).

For elliptically anisotropic models (6 - 8 = 0, Figure 8),
the anisotropy-induced distortions of the cosine-of-dip de­
pendence are entirely determined by the amplitude of the
phase-velocity variations with angle. The DMO error for
elliptical anisotropy is moderate: the difference between the
corrected moveout velocity and the zero-dip Vnmo for <!> < 60
degrees, 161 < 0.2, and 181 < 0.2 is less than 15 percent. The
cosine-of-dip correction is, of course, perfect for the isotro­
pic case, 6 = 8 = O.

If to - 8 is positive (the most common case, figures 9
and 10), the anisotropy causes a pronounced increase in the
cosine-of-dip-corrected moveout velocity with dip angle.
Even for relatively small 6 - 8 = 0.1, the dip-moveout error
reaches 25 percent at a 45-degree dip and 30-35 percent at a
dip of 60 degrees ("the shale-limestone" case). For 6 - 8
= 0.2 (Figure 10), the corrected moveout velocity at a
60-degree dip is consistently about 60 percent higher than the
zero-dip moveout velocity! A remarkable feature of models
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FIG. 9. Cosine-of-dip-corrected P-wave moveout velocity for models with 6 - 8 = 0.1.
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278 Tsvankln

with constant positive 8 - B is the weakness of the depen­
dence of the exact NMO velocity on 8 and B.

Thus, for typical VTI media, with positive 8 - B, the
isotropic cosine-of-dip correction severely understates move­
out velocities at dips exceeding 20 to 30 degrees, even when
the anisotropy is weak.

The range of dips on the plots above was limited to
60 degrees. For typical models with 8 - B > 0, curves of the
cosine-of-dip--corrected moveout velocity flatten out at dip
angles exceeding 60 degrees (Figure 11). Therefore, the error

of the cosine-of-dip dependence remains practically constant
at steep dips in the 60-90 degree range.

The weak-anisotropy approximation for the normal­
moveout velocity given by equation (22) remains suffici­
ently accurate in the most important range of small
and moderate values of 8 and B. The error of the weak­
anisotropy result, as compared with the exact NMO
velocity from equation (9), does not exceed 5 percent for
181 :s 0.2, 181 :s 0.2 (the only exception is the model with
8 = 0, B = -0.2).
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FIG. 10. Cosine-of-dip-corrected P-wave moveout velocity for models with 8 - 8 = 0.2.
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FIG. 11. Cosine-of-dip-corrected P-wave moveout velocity for steep reflectors; 8 - 8 = 0.2.
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, Vnmo(O)
sin <!> = pVnmo(O) = sin <!> (27)

V(<!»

TRANSVERSELY ISOTROPIC MEDIA WITH VERTICAL
VELOCITY GRADIENT

where V( <!» is the phase velocity at the dip angle. This
expression for p is valid for both isotropic and anisotropic
media.

Equation (26) implies that the true dip angle <!> is replaced
in the DMO correction with the apparent dip </J (Lamer,
1993)

In a homogeneous isotropic medium Vnmo(O) = V o
= V( <!> ), and the apparent and true dip angles coincide with
each other. If the medium is vertically transversely isotro­
pic, the zero-dip normal-moveout velocity given by equation
(17) (for P-waves) is generally different from the phase
velocity at the dip angle V( cf». This means that substituting
the apparent dip for the true dip in the presence of anisot­
ropy introduces an additional error into a constant-velocity
DMO process. In principle, this new error may either
reinforce or reduce the error in moveout velocity discussed
above.

As shown in Figures 12 and 13, the DMO correction using
the apparent dip leads to higher DMO errors for both
10 - & > 0 and E - & < 0, especially at steep dips (cf> > 45
degrees). Note that after the correction for the apparent dip,
moveout velocities for models with the same 10 - & remain
close if 10 - & > 0 and become even closer if 10 - & < O.

The only class of models for which the introduction of
the apparent dip has a benign influence on the overall
DMO performance is elliptical anisotropy (e - & = 0). It is
interesting that for elliptical models the correction of move­
out velocity with cos </J instead of cos cf> eliminates the DMO
error completely (Figure 12); this result is easy to confirm
analytically using equation (27) and velocity equations for
elliptical anisotropy. Thus, the isotropic constant-velocity
DMO correction is exact for elliptically anisotropic models,
of which isotropic models are a special case.

The analysis in the previous sections was carried out for
homogeneous transversely isotropic models. Lamer (1993)
has studied the P-wave dip-moveout error for factorized VTI
media with a constant gradient in vertical velocity. In terms
of the notation used here, the velocity VPO in factorized
transversely isotropic media varies with position, while the
VpolVso ratio and the anisotropic coefficients e and & remain
constant. The four models used in Lamer's work have the
same anisotropic parameters and root-mean-square (rms)
vertical velocity down to the reflector as the models in
Levin's (1990) study. One of the interesting results reported
by Lamer is that for the shale-limestone model with a typical
value of the velocity gradient, the constant-velocity (cosine­
of-dip) DMO correction gives a higher accuracy than does
V(z) DMO (both DMO corrections ignore anisotropy). Com­
parison of the moveout velocities for homogeneous and
inhomogeneous shale-limestone suggests that inhomogene-

(26)

Normal Moveout In Anisotropic Media

The above suite of plots also presents a comprehensive
picture of the moveout-velocity distortions at various dips
caused by nonhyperbolic moveout. The influence of nonhy­
perbolic moveout manifests itself through the difference
between the moveout velocity, calculated from (2 - x 2

curves (solid curves), and the exact NMO velocity (dotted
curves). It is well known that deviations from hyperbolic
moveout rapidly increase with spread length; this trend may
be enhanced by anisotropy (Tsvankin and Thomsen, 1994).
For a maximum offset-to-depth ratio of 1, used in my
calculations, the contribution of nonhyperbolic moveout to
the moveout velocity is not significant, but the difference
between the NMO and finite-spread velocities is clearly
visible on some of the plots.

For small dips, the distortions of the moveout velocity
caused by deviations from hyperbolic moveout are in good
agreement with the analytic results in Tsvankin and Thom­
sen (1994) who gave a description of nonhyperbolic moveout
for horizontal reflectors using the quartic Taylor series term
for (2 - x 2 curves. For the P-wave, the influence of
nonhyperbolic moveout is largely proportional to the abso­
lute value of e - &; if e - & is fixed, nonhyperbolic moveout
is more pronounced for smaller &. The analytic analysis also
shows that the P-wave moveout velocity measured on finite
spreads is larger than the NMO velocity if 10 - & > 0, and
smaller than V nmo if s - & < O. The validity of these
conclusions is clearly seen in Figures 7-10. For elliptical
anisotropy (10 = &) the moveout is purely hyperbolic, and the
dotted and solid curves fully coincide with each other.

The observed differences between the NMO velocity and
the finite-spread moveout velocity seem to contradict the
results in Levin (1990) and Lamer (1993), who have not
noticed visible deviations of their moveout curves from
hyperbolas for the same spread length. However, this is an
apparent discrepancy. Tsvankin and Thomsen (1994) show
that for spread lengths close to the depth of the reflector, the
best-fit hyperbola is close to the actual moveout curve
although the moveout velocity of this hyperbola may be
different by several first percent from the NMO velocity.

It is interesting that the difference between the moveout
velocity on a finite spread and the NMO velocity changes
sign with increasing dip (i.e., the solid and dotted lines
cross); moreover, the influence of nonhyperbolic moveout
for steep reflectors is typically smaller than for zero dip (e.g.,
Figure 11). I conclude that if 1£ - &1 < 0.15-4>.2, nonhyper­
bolic moveout does not seriously distort the P-wave move­
out velocity on spreads common for eMP acquisition design,
even if dips are large.

In the discussion above, we have not made a distinction
between the true dip angle and an apparent dip used in
constant-velocity DMO. Since the true dip is usually un­
known, NMO velocity is conventionally expressed through
ray parameter p as

Apparent versus true dip

where p is determined from the zero-offset section (0 (y ) :
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280 Tsvankin

ity can compensate (to a certain degree) for the distortions of
moveout velocity caused by the anisotropy.

The results obtained in the previous section indicate that
the behavior of NMO velocity for the homogeneous shale­
limestone may be considered typical for a wide range of VTI
models. To verify whether the "compensation effect,"
found by Lamer, is typical for inhomogeneous (factorized)
VTI media, I carry out the same calculations as in the
previous section, but for factorized transversely isotropic
media with a vertical velocity gradient of 0.6 s -1 (Figure 14).
The moveout velocity is calculated from t 2 - x 2 curves
using Lamer's (1993) ray-tracing algorithm.

Comparison of Figure 14 with Figures 9 and 10 shows that
for typical positive values of E - 8, angular variations of the
cosine-of-dip-corrected moveout velocity are substantially
suppressed by the velocity gradient. It is noteworthy that
Lamer and Cohen (1993) have found a similar "compensa­
tion effect" in their study of migration error in factorized
transversely isotropic media. When velocity increases with
depth, small-offset reflections from dipping interfaces travel
more closely to vertical than in a homogeneous medium.
This makes the "effective dip" of the reflector smaller and
reduces the increase in the moveout velocity with dip angle,
both in isotropic and anisotropic media. For E - 8 = 0.1, the

influence of vertical velocity variations even leads to "over­
correction" in constant-velocity DMO, making the cosine­
of-dip-corrected moveout velocity decrease with dip angle.

Figure 14 is reproduced in Figure 15, but with the DMO
correction that honors inhomogeneity but ignores anisotropy
[v(z) DMO, Lamer (1993)]. Although the DMO error
caused by the anisotropy is somewhat smaller than in
homogeneous media with the same E and 8 (Figures 9 and
10), it is much larger than the error of the simplest cosine­
of-dip correction (Figure 14). Therefore, consistent with
Lamer's results for the shale-limestone model, for typical
factorized transversely isotropic models the DMO correc­
tion that ignores both anisotropy and inhomogeneity is often
more accurate than the correction that honors inhomogene­
ity but ignores anisotropy. Another important conclusion
from Figures 14 and 15 is that in factorized vertically
inhomogeneous VTI media, the P-wave moveout velocity is
still controlled primarily by the difference between E and 8,
rather than by the individual values of these parameters.
However, in V(z) media, dip dependence of the moveout
velocity is also a function of the velocity gradient, the rms
vertical velocity, and the depth of the reflector. As illus­
trated by Figure 16, for more shallow reflectors the influence
of the velocity gradient is less pronounced, and the corrected
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(28)

moveout velocity is closer to the result for a homogeneous
medium. It is interesting that for the rather typical model
parameters used in the left portion of Figure 16, the anisot­
ropy and inhomogeneity cancel each other's influence, and
the cosine-of-dip formula yields almost an ideal correction.

So far in this section the DMO error has been estimated
using the true dip angle <1>. The simplistic constant-velocity
DMO approach, described in the previous section, would
result in the apparent dip <f> given by equation (27):

A Vnmo(ZO, 0)
sin <I> = sin <I> ,

V(Zl, <1»

where the velocities V nmo and V in FTI media depend on the
depths of the zero-offset reflection points Zo (for the hori­
zontal reflector) and Z 1 (for the dipping reflector).

For models with e - 8 > 0, the apparent dip angle turns
out to be smaller than the true one and, consequently, the
cosine-of-dip-corrected moveout velocity becomes larger
(compare Figure 17 with Figure 14). If e - 8 = 0.2, the
introduction of the apparent dip may lead to much higher
errors in constant-velocity DMO and a noticeable separation
of curves corresponding to different pairs of e, 8. For
e - 8 = 0.1, the difference between the apparent and true dip
angles is somewhat smaller.

In analyzing these results, one should keep in mind that
the computation of the apparent dip in FTI media using
equation (28) is strongly dependent on the relative spatial

positions of the horizontal and dipping reflectors. The results
in Figure 17 are obtained for the reflectors located at the
same distance from the CMP point. If, instead, we compare
the moveout velocities of reflectors at the same zero-offset
time, the apparent dip usually becomes much closer to the
true one.

DISCUSSION

In the presence of anisotropy, the dip dependence of
moveout velocity deviates from the isotropic cosine-of-dip
function, thus leading to errors in conventional isotropic
DMO correction. Here, I have given an analytic description
of NMO velocities that provides a clear explanation for
existing numerical results, such as Levin's (1990) conclusion
that the cosine-of-dip dependence of moveout velocity re­
mains valid for transverse isotropy if the symmetry axis is
perpendicular to the reflector.

Transversely isotropic models with a vertical symmetry
axis (VTI media) were considered in most detail. A simple
weak-anisotropy approximation, derived from the exact
NMO expression, relates the distortions of NMO velocity to
the anisotropic parameters. The weak-anisotropy expression
for the P-wave normal-moveout velocity is sufficiently ac­
curate for common small and moderate values of e and 8.
The error of the weak-anisotropy result usually does not
exceed 5 percent for lei s 0.2, 181 s 0.2.
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FIG. 15. P-wave moveout velocity after V(z) DMO correction. All parameters are the same as in Figure 14.
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FIG. 16. Cosine-of-dip-corrected P-wave moveout velocity for the same elastic parameters as in Figure 14, but for a more
shallow reflector: the distance from the CMP to the reflector and the spread length are 1500 m.
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Dip dependence of the P-wave moveout velocity for vn
media is a function of only two parameters-E and 8, with the
influence of the S-wave vertical velocity V so being practi­
cally negligible. More than that, the P-wave DMO signature
is controlled, to a significant degree, by the difference E - 8.
The systematic study of VTI med ia parameterized by E and
8 shows that for E - 8 > 0 (the most common case), the
cosine-of-dip-corrected moveout velocity remains signifi­
cantly larger than the moveout velocity for a horizontal
reflector. Even for relatively small E - 8 = 0.1 and E :5 0.2,
the error of the cosine-of-dip formula reaches 25 percent at a
45-degree dip and exceeds 30 percent at a dip of 60 degrees .
For E - 8 = 0.2 (also a feasible value), the cosine-of-dip­
corrected moveout velocity at 60-degree dip is almost 60
percent higher than the zero-dip moveout velocity. The
DMO errors become even higher if the true dip angle is
replaced with the apparent dip calculated from the conven­
tional formula used in constant-velocity DMO.

The analytic study of NMO velocities was supplemented
by calculations of the P-wave moveout velocity from reflec­
tion (2 - x 2 curves on relatively short-spread CMP gathers
(i.e ., spread length = distance between CMP and reflector),
typical for CMP acquisition design. Comparison between the
analytic NMO velocity and the moveout velocity calculated
on finite spreads makes it possible to analyze the magnitude
of nonhyperbolic moveout (induced by the anisotropy) as a
function of reflector dip. The difference between the two
velocities changes sign with increasing dip, but is usually
smaller for large dips than for horizontal reflectors. If IE - 81
< 0.15-0.2, nonhyperbolic moveout does not seriously dis­
tort the P-wave moveout velocity on conventional length
spreads, even for steep reflectors.

Significant errors of conventional cosine-of-dip DMO cor­
rection for typical transversely isotropic models mean that it
is imperative to develop dip-moveout algorithms for aniso­
tropic media. Uren et a1. (1990a) have generalized Gardner
DMO for elliptically anisotropic models; however, as shown
in the present paper, the elliptical P-wave DMO correction
becomes inaccurate even for " almost" elliptically anisotro­
pic models. The formula for NMO velocity, derived here,
can provide a basis for building DMO algorithms for general
transversely isotropic and even orthorhombic media.

One of the major problems in developing dip-moveout
processing (as well as migration, amplitude variation with
offset algorithms, etc.) in anisotropic media is recovery of
the input anisotropic parameters with sufficient accuracy.
For VTI media, the parameter 8 can be determined using the
P-wave NMO velocity from a horizontal reflector and the
true vertical velocity (such as from check shots or VSP
data). However, the parameter E cannot be recovered from
short-spread P-wave data alone. If the vertical P- and/or
S-velocities (or reflector depth) are known, both Eand 8 can
be determined from the P- and SV-wave NMO velocities.
Tsvankin and Thomsen (1995) show that it is possible to find
all four anisotropic parameters governing P-SV propagation
(Vpo, Vso, E, 1» from the combination of long-spread P- and
SV-traveltimes; however, this algorithm is not easy to
implement in practice. Since E is directly related to the
horizontal velocity, it can also be determined from head­
wave velocities or results of crosshole tomography.

Another way to overcome the ambiguity in the recovery of
the anisotropic parameters is to include moveout from
dipping reflectors in the inversion procedure. Appl ication of
the analytic NMO formula developed here to inversion in
anisotropic media will be discussed in a sequel paper.

CONCLUSIONS

I have introduced an analytic expression for normal­
moveout velocity from dipping reflectors valid in symmetry
planes of homogeneous arbitrary-anisotropic media . The
new formula describes NMO velocities ofP- and S-waves in
many anisotropic models of practical importance, such as
transverse isotropy with an in-plane symmetry axis , and
symmetry planes in orthorhombic media.

The dip dependence of P-wave NMO velocity in VTI
media is determined more by the difference between the
parameters E and 8, than by the individual values of the
anisotropic coefficients. For the most common case, E - 8 > 0,
the NMO velocity increases with dip much faster than in
isotropic media, even for models with moderate E - 8 = 0.1
to 0.2. This implies that conventional constant-velocity
DMO algorithms, based on the isotropic cosine-of-dip de-
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FIG. 17. P-wave moveout velocity corrected with the cosine of the apparent dip angle <1>. All parameters are the same as in
Figure 14.
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pendence, are subject to significant errors in transversely
isotropic media.

Deviations of P-wave NMO velocity from the cosine-of­
dip dependence are much less pronounced for factorized
VTI media with positive e - 8 and an increase in vertical
velocity with depth, than for homogeneous media. There­
fore, if a medium is not only anisotropic, but also has a
vertical-velocity gradient, isotropic constant-velocity DMO
can perform better than can be expected from the results for
homogeneous anisotropic media.

In principle, the expression for normal-moveout velocity
derived here can be used for only the short-spread (hyper­
bolic) portion of the moveout curve. However, analysis of
moveout velocity on conventional spreads close to the
distance between the CMP and the reflector shows that the
magnitude of anisotropy-induced nonhyperbolic moveout
for P-waves is relatively small and tends to decrease at steep
dips.

The formula for NMO velocity derived in the paper
provides a basis for building dip-moveout algorithms in
anisotropic media. It can also be used to overcome the
ambiguity in the inversion of reflection moveouts for aniso­
tropic parameters by including dip dependence of moveout
velocities in the inversion procedure.
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