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P-wave signatures and notation for transversely
isotropic media: An overview

Ilya Tsvankin*

ABSTRACT

Progress in seismic inversion and processing in aniso-
tropic media depends on our ability to relate different
seismic signatures to the anisotropic parameters. While
the conventional notation (stiffness coefficients) is suit-
able for forward modeling, it is inconvenient in devel-
oping analytic insight into the influence of anisotropy on
wave propagation. Here, a consistent description of
P-wave signatures in transversely isotropic (TI) media
with arbitrary strength of the anisotropy is given in terms
of Thomsen notation.

The influence of transverse isotropy on P-wave prop-
agation is shown to be practically independent of the
vertical S-wave velocity VS0 , even in models with strong
velocity variations. Therefore, the contribution of trans-
verse isotropy to P-wave kinematic and dynamic signa-
tures is controlled by just two anisotropic parameters, e
and 8, with the vertical velocity V, 0 being a scaling
coefficient in homogeneous models.

The distortions of reflection moveouts and amplitudes
are not necessarily correlated with the magnitude of

INTRODUCTION:
CONVENTIONAL AND THOMSEN NOTATION

The influence of anisotropy on seismic processing and
interpretation is well documented in the literature (e.g., Banik,
1984; Winterstein, 1986; Sams et al., 1993; Lamer, 1993).
However, the large number of independent parameters re-
quired to describe anisotropic models makes seismic inversion
and processing in anisotropic media difficult. Further progress
in extending seismic algorithms to anisotropic media requires a
better understanding of the dependence of seismic signatures
on the parameters of the anisotropic velocity field. In spite of
significant attention devoted to this problem, there is no
consistent description of body-wave velocities and amplitudes
in transversely isotropic (TI) media. One of the main reasons

velocity anisotropy. The influence of transverse isotropy
on P-wave normal-moveout (NMO) velocity in a hori-
zontally layered medium, on small-angle reflection coef-
ficient, and on point-force radiation in the symmetry
direction is entirely determined by the parameter 8.
Another group of signatures of interest in reflection
seismology—the dip-dependence of NMO velocity, mag-
nitude of nonhyperbolic moveout, time-migration im-
pulse response, and the radiation pattern near verti-
cal—is dependent on both anisotropic parameters (e and
8) and is primarily governed by the difference between e
and 8. Since P-wave signatures are so sensitive to the
value of e — 8, application of the elliptical-anisotropy
approximation (e = 8) in P-wave processing may lead to
significant errors.

Many analytic expressions given in the paper remain
valid in transversely isotropic media with a tilted sym-
metry axis. Moreover, the equation for NMO velocity
from dipping reflectors, as well as the nonhyperbolic
moveout equation, can be used in symmetry planes of
any anisotropic media (e.g., orthorhombic).

for this situation is that the notations used by different authors
are incompatible with each other and often are not convenient
in describing seismic wave propagation.

Although the matter of notation seems trivial, it is of utmost
importance in studying seismic signatures in anisotropic media.
Historically, wave propagation was described using the elastic
(stiffness) coefficients c. Since both Hooke's law and the wave
equation are expressed through the stiffnesses cy , these coef-
ficients are convenient to use in all types of forward-modeling
algorithms. The problems arise when it is necessary to go
beyond specific examples and find the effective parameters that
govern seismic wavefields in anisotropic media. As shown by
the discussion of various P-wave signatures below, the conven-
tional notation is not well-suited for this purpose. Without an
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understanding of the relations between the medium parame-
ters and seismic signatures, it is hardly possible to make
qualitative estimates of the influence of anisotropy on seismic
wavefields and, even more importantly, to develop inversion
and processing algorithms for anisotropic media.

Throughout the paper, I assume that the medium is trans-
versely isotropic with a vertical symmetry axis, or VTI. (The
expressions for an unbounded homogeneous medium are valid
for any orientation of the symmetry axis.) The main disadvan-
tages of the conventional notation in VTI media can be
summarized as follows:

1) The strength of the anisotropy is hidden in the elastic
coefficients. The medium is isotropic if c 11 = c33, c44 =

c 66 , and c13 = C33 — 2c 44 i clearly, it is difficult to estimate
the degree of velocity anisotropy just from inspection of
the elastic constants. Also, the condition satisfied by
elliptically anisotropic media is complicated.

2) Since most reflection data are acquired at small offsets, it
would be useful to have a parameter responsible for
P-wave velocity near the (vertical) symmetry axis. How-
ever, no such parameter exists in the conventional nota-
tion.

3) P-SV propagation is described by four stiffness coeffi-
cients: c 11 , c 33 , c44i and c 13 . As I show below, by using
Thomsen notation it is possible to reduce the number of
independent parameters needed to describe P-wave sig-
natures. Also, the inversion of P-wave traveltime data for
the c ii coefficients is ambiguous because the trade-off
between c 44 and c 13 cannot be resolved from P-wave data
alone; this will be discussed in the section about P-wave
phase and group velocity.

4) The expressions for normal-moveout velocities in the
conventional notation are complicated. Since surface
seismic processing operates with reflection moveouts, it is
important to have easily tractable equations for NMO
velocities in anisotropic media.

An improvement over the conventional notation can be
achieved by targeting the combinations of elastic constants
most suitable for the description of seismic wavefields. An
alternative notation based on this principle was suggested by
Thomsen (1986). The idea of the Thomsen parameters is to
separate the influence of the anisotropy from the "isotropic"
quantities, i.e., P and S velocities along the symmetry axis (I
omit the qualifiers in "quasi-P-wave" and "quasi-SV-wave").
Five independent elastic coefficients needed to describe verti-
cal transverse isotropy (c 11 , c 33 , c 44 , c 66 , and c 13 ) can be
replaced by the vertical velocities Vp and Vso of P- and
S-waves, respectively, and three dimensionless anisotropic
parameters e, 8, and y (Thomsen, 1986):

VPo — C33 (1)= p

V _ rC44 (2)
sa =,

C11 — C33 (3)
C

2C 33

s=
(C13+C44) 2— (C33 — C44) 2

2C 33 (C 33 — c44)
(4)

C 66 — C 44
y °	 (5)2C 44

where p is the density.
P- and SV-wave signatures depend on four coefficients

— V o , Vso , e, and 8, while the SH-wave is fully described by
the vertical velocity V50 and parameter -y.

One subtle point in the relation between the conventional
notation and Thomsen parameters needs to be mentioned.
From equations (1) through (5) it is clear that Vp 0 , Vso , e, 8,
and y are uniquely defined by the stiffness coefficients. The
inverse transition from Thomsen parameters to the stiffnesses,
however, is unique for only four coefficients (C 11 , C33, c44, and
C 66 ). The fifth coefficient, C 13 , can be uniquely determined
from equation (4) only if the sign of the sum C 13 + C44 is
specified. In principle, it is possible for the coefficient C 13 , as
well as for the sum c 13 + C 44 , to be negative (Helbig and
Schoenberg, 1987). Helbig and Schoenberg (1987) also show
that while phase velocities are not dependent on the sign of C 13

+ C44, P-wave polarizations in media with C13 + C44 < 0
become anomalous (e.g., the polarization vector may even
become perpendicular to the phase-velocity vector). However,
since models with negative C 13 + C 44 are extremely rare (in this
case, C 13 should be negative and relatively large), for practical
purposes of seismic modeling and processing it can be assumed
that C 13 + C44 > 0. Note that if 8 is small (a common case), it
can be approximated by 8 — ( C 13 + 2C44 — C33)1C33 (Thomsen,
1993), and the problem with the unique determination of C 13

does not arise.
Some of the advantages of Thomsen notation are immedi-

ately obvious. The dimensionless anisotropies e, 8, and -y go to
zero for isotropic media and, therefore, conveniently charac-
terize the strength of the anisotropy. The parameter e, close to
the fractional difference between the horizontal and vertical
P-wave velocities, defines what is often simplistically called the
"P-wave anisotropy." Likewise, y represents the same measure
for SH-waves. The parameter 6 is responsible for near-vertical
P-wave velocity variations; as shown in Thomsen (1986), it is 8
rather than e that determines the influence of anisotropy on
short-spread reflection data. It should be mentioned, however,
that the Thomsen parameters are less convenient for describ-
ing seismic signatures that depend on near-horizontal velocity
variations; this situation is typical for crosswell geometries in
VTI media.

Another advantage of Thomsen notation is the simplicity of
the elliptical condition: e = 8 in elliptically anisotropic media.
In this case, the P-wave slowness surface and the wavefront are
elliptical, while the SV-wave velocity is independent of angle,
implying a spherical wavefront. For SH-waves, transverse
isotropy always means elliptical anisotropy, with the degree of
the velocity variations determined by the parameter y. At the
same time, for P and SV-waves, elliptical anisotropy is just a
special case of transverse isotropy. As we will see throughout
the paper, the sensitivity of P-wave signatures to deviations
from elliptical anisotropy makes the difference c — 8 one of the
most important parameters in surface seismic processing.

Existing laboratory and field data indicate that the horizon-
tal velocity of P- and SH-waves is usually larger than the
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vertical velocity, i.e., that the parameters £ and -y are predom-
inantly positive (Thomsen, 1986). Also, most measurements
made for transversely isotropic formations at seismic frequen-
cies indicate that £ > 8 (Thomsen, 1986; Sayers, 1994;
Tsvankin and Thomsen, 1994). For instance, £ > 8 for
transversely isotropic media caused by the thin bedding of
isotropic layers (Berryman, 1979).

The introduction of the dimensionless anisotropic coeffi-
cients allowed Thomsen (1986) to develop the weak-anisotropy
approximation (J£J G 1, 181 < 1, -y < 1) by linearizing seismic
velocities, and group and polarization angles in e, 8, and y. The
weak-anisotropy approximation is an extremely powerful tool
in understanding the behavior of seismic wavefields in aniso-
tropic media. At the same time, it should not be regarded as a
substitute for the exact equations in modeling, inversion, and
processing algorithms. Below, I use the weak-anisotropy ap-
proximation to gain analytic insight into different wave-prop-
agation problems.

Although originally designed for weakly anisotropic models,
the dimensionless anisotropic parameters turned out to be
convenient in TI media with arbitrary strength of velocity
anisotropy. This point, which is not well understood in the
literature, will be repeatedly stressed throughout the paper.

The following sections are devoted to a systematic descrip-
tion of body-wave velocities, polarizations, and amplitudes in
transversely isotropic media. The present discussion is focused
on P-waves, which represent a majority of data being acquired
in oil and gas exploration. However, most of the analytic
developments discussed here can be easily applied to SV-waves
as well. Treatment of SH-waves in transversely isotropic media
is straightforward because SH-wave anisotropy is elliptical.

KINEMATIC PROPERTIES

Phase and group velocity

Here, I present two refinements to the phase-velocity equa-
tions given in Thomsen (1986). First, the exact phase velocity
for P- and SV-waves is expressed in a relatively simple fashion
through the anisotropies £ and 8. Second, the phase-velocity
term quadratic in £ and 8 is derived and used to estimate the
influence of VS0 on the P-wave phase velocity. The results in
this section are given for an unbounded homogeneous medium
and can be used for any orientation of the symmetry axis.

The formula for the P-wave phase velocity in standard
notation can be found, for instance, in White (1983):

2 PV 2 ( 6 ) = (C11 + C44) sin 2 0 + (C33 + C44) cos 2 0

+{[(C11 — C44) sin2 0— (C33—C44) cos2 0]2

+ 4(c 13 + c44) 2  sin g 0 cost 0}h/2, (6)

where 0 is the phase angle measured from the symmetry axis.
To obtain the SV-wave velocity, the plus sign in front of the
radical should be replaced with a minus.

Dividing both parts of equation (6) by the squared vertical
velocity Vp o [equation (1)] and substituting the anisotropic
coefficients £ [equation (3)] and 8 [equation (4)] yields the
exact phase-velocity function expressed through the Thomsen
parameters:

	V2(e) 	f
Z = 1 + £ sin 2 o — —

	V pO	2

	f 	 4 sin` 0	 4£ sin" 0
+ 2 1+ 	f 	(28cos 2 6—£cos20)+ 	f2

(7)

where

f °1—VS201Vp0=1 — c44/c33	 (8)

is the only term containing the S-wave vertical velocity. This is
equivalent to equations (10a) and (10b) from Thomsen (1986);
however, the velocity equations in Thomsen's paper are more
complicated and contain an intermediate coefficient 8* instead
of 8.

For elliptical anisotropy (e = 8), the P-wave phase velocity
becomes (exactly)

V2(e)
2
 =

(9)
VP0

Equation (7) can be simplified further by separating out
under the radical a "nonelliptical" term containing £ — 8:

	V 2(e) 	f
2 = 1 + £ sin 2 0 --

2

f	2c sin 2 0\ 2 2(e-8) sin 2 20
+ z 	l+	 f 	I — 	 . (10)

As before, the squared SV-wave velocity (normalized by
V 0) can be obtained by putting a minus sign before the
radical. From comparison of equation (10) with equation (6) it
is clear that the exact phase velocity, both for P- and SV-waves,
becomes no more complicated when represented as a function
ofe and 8.

Let us now transform the phase-velocity equation (10) under
the assumption of weak anisotropy (J£J < 1, 181 < 1). Expanding
the radical in a Taylor series and dropping terms quadratic in
the anisotropies £ and 6, we obtain

V2(0) = I + 28 sin 2 0 cos 2 0 + 2e sin 4 0,	 (11)
VPO

or, separating the elliptical and nonelliptical terms,

VV(6) =1+28sin 2 0+2(£-6)sin 4 0.	 (12)
PO

Taking the square root and linearizing equation (11) further
in £ and 8 leads to Thomsen's (1986) weak-anisotropy approx-
imation

V(9) = Vp 0 (1 + 8 sin 0 cos 2 0 + £ sin 4 0). (13)

The P-wave phase velocity, linearized in £ and 8 [equation
(13)], is independent of the shear-wave vertical velocity V s0 .

To estimate the contribution of VSO , the weak-anisotropy
approximation can be refined by adding terms that are qua-
dratic in the anisotropies.

Note that for elliptical anisotropy the weak-anisotropy for-
mula for the squared velocity (12) reduces to the exact
expression (9). Hence, our refinement to the weak-anisotropy
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approximation for the squared velocity should contain the
difference e — S. Therefore, equation (10), which contains an
explicitly separated nonelliptical term, is ideally suited for our
purposes. By expanding the radical in equation (10) in a Taylor
series and retaining the terms quadratic in e and S, we find

V2 (o )
2 =1+28sin 2 9cos 2 6+2£sin 4 9

VP0

+ f (e—S)(esin 2 0+Scos 2 0)sin 4 6cos 2 0. (14)

Equation (14) can be called the "moderate-anisotropy ap-
proximation" for the squared P-wave phase velocity since it
contains the terms linear and quadratic in the anisotropies e and
S. As expected, the quadratic term vanishes for elliptical anisot-
ropy. However, if we continued the derivation to find a similar
expansion for the phase velocity itself, it would contain a qua-
dratic term that does not go to zero for e = S; this is clear from
the fact that equation (13) is not exact for elliptical anisotropy.

Because of these quadratic terms, equation (14) is numeri-
cally more accurate than equation (11), and may be used with
larger e and S. However, formula (14) serves best in developing
analytic insight into the influence of the shear-wave vertical
velocity VS0 on P-wave phase velocity. The contribution of V 0
[or f; see equation (8)] is limited to the quadratic term in
equation (14). For a practically important range of VSo corre-
sponding to 2.5 > Vp O /VSO > 1.5, f changes from 1.19 to 1.8;

hence f and the quadratic term as a whole change by about
50%. This is a substantial variation that can lead to tangible
phase-velocity changes provided the quadratic term itself is
significant. However, the quadratic term vanishes for 0 = 00

and 0 = 90°, and remains relatively small at intermediate
angles. Of course, this conclusion applies to the range of e and
S for which equation (14) can be used. For instance, for a
model with e = 0.5, and S = 0, formula (14) predicts just a
1.8% maximum variation in the P-wave phase velocity over the
range in Vp 0 !Vso from 1.5 to 2.5. Moreover, the estimates of
the influence of Vso based on equation (14) turn out to be
overstated because the contribution of the neglected higher-
order terms reduces the influence of VS0 even further. For the
same model with e = 0.5, and S = 0, the exact phase velocity
changes by no more than 0.6% for the range of the shear-wave
vertical velocity considered above.

Figure 1 shows the influence of VS0 on the exact P-wave
phase velocity for several combinations of e and S. With
increasing difference e — S, the curves corresponding to two
extreme values of VS0 diverge slightly from each other, but the
overall contribution of the variations in the S-wave vertical
velocity remains practically negligible, even for uncommonly
strong velocity anisotropy. Comparison of the two media with
g = 0.8 in Figure 1 demonstrates that the magnitude of the
influence of VS0 is controlled more by the difference between
e and S than by the individual values of the coefficients: the
dependence of the P-wave phase velocity on VS0 is less
pronounced for the model with larger S but smaller e — S.

FIG. 1. P-wave phase velocity for two Vy0/VSO ratios. The dashed curve corresponds to Vp 0 /VS0 = 1.5, the solid gray curve to
V 0 1VS0 = 2.5.
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It is intuitively comfortable to reach this conclusion of the
negligibility of Vso in the expression for P-wave phase velocity.
However, since Vso appears several times in equation (7), this
analytic and numerical verification of intuition is useful. It
should be emphasized that in the conventional notation, the
influence of c 44 = pVV() on P-wave velocity cannot be ignored.
We have been able to reduce the number of parameters by
switching to Thomsen notation, because the influence of c 44 is
absorbed by the parameter 6 [equation (4)].

Phase velocity is a fundamentally important function in
anisotropic wave propagation because it determines (along
with its derivatives) the expressions for group and moveout
velocities, as well as the group (ray) angles. In general, any
kinematic P-wave signature in transversely isotropic media can
be represented as

K	 KP°` + L(e, 8) + Q(e, 8, V so ),	 (15)

where KP°` is the isotropic signature (s = 0, 8 = 0), L is the
term linear in the anisotropies e and 8, and Q denotes the
quadratic and other higher-order terms in e and 8, which
contain Vso . Since the S-wave vertical velocity Vso contributes
only to the second correction term Q, its influence is not
significant unless, in some particular case, the anisotropic
terms dominate the function Kp (one such case is described in
the section about normal-moveout velocity). The weak depen-
dence of the P-wave phase velocity on the S-wave vertical
velocity implies that the influence of Vso can be expected to be
small in all kinematic problems involving P-waves.

The group velocity responsible for energy propagation is
expressed (exactly) through phase velocity as (Berryman, 1979)

1 dV 2
vgr=V I+/

VdB) ,	
(16)

and the derivative dV/do, linearized in e and 8, is given by

dVP (0 )
d8 	= Vp o sin 20 (8 cos 20 + 2e sin e 9).	 (17)

Since the term containing the first derivative of phase
velocity is squared, it has only quadratic and higher-order
terms in e and 8. Therefore, in the weak-anisotropy approxi-
mation, linearized in e and 6, the group velocity as a function
of the phase angle coincides with the phase velocity. However,
the group velocity should be evaluated not at the phase angle,
but instead at the group angle i4, expressed through the phase
angle as (Berryman, 1979)

1 dV
tan 6+

Vd9
tangy=

tan 0 dV

1 	V de

1 dV

VdO
= tan 9 1 +	 I(18)

tan 9 d V
sin 0 cos 0(1— 

V de^

Dropping the terms quadratic in e and 8 from equation (18)
yields for P-waves (Thomsen, 1986)

tan 0V= tan 6[1+26+4(e-8)sin 2 6].	 (19)

Because of the presence of terms linear in the anisotropies
in equation (19), the difference between the group and phase
angles is more pronounced than that between the phase and
group velocities. Also note that in the symmetry direction and
in the isotropy plane, the phase and group velocities and angles
coincide with each other. The conclusion about the weak
influence of the S-wave vertical velocity drawn for the phase-
velocity function, holds for the P-wave group velocity as well.

In reflection seismology, we are interested not just in the
group velocity itself, but rather in the behavior of reflection
moveout, which depends on the group velocity and group
angle. Normal-moveout velocity and nonhyperbolic reflection
moveout are examined in the following sections.

Normal-moveout velocity for horizontal reflectors

Anisotropy causes two major distortions of reflection move-
outs. First, the normal (short-spread) moveout velocity is not
equal to the root-mean-square (rms) vertical velocity (e.g.,
Banik, 1984). Second, anisotropy may enhance deviations from
hyperbolic moveout since reflection moveout is generally non-
hyperbolic even in a single homogeneous anisotropic layer
(Hake et al., 1984).

Reflection moveout is usually approximated by the Taylor
series expansion near vertical (Taner and Koehler, 1969):

tT=A o +A 2x 2 +A 4x 4 +	 ,	 (20)

with the coefficients

	z 	d(t2) 	1 d [d(t 2) 1

	

Ao = to ,	 A z = d(x 2)L0	
A4 

2 d(x2) d(x2) X=o

(21)

where to is the two-way vertical arrival time.
The quantity of most practical importance in exploration is

the normal-moveout velocity V„mo , which determines the
hyperbolic moveout on conventional-length spreads compara-
ble to the distance between the common midpoint (CMP) and
the reflector.

d (x 2 )
Vnmo = 1/A 2 = d(tz) 	(22)

x=o

In a horizontally layered, transversely isotropic model with a
vertical axis of symmetry, the normal-moveout velocity is equal
to the rms average of the NMO velocities in the individual
layers (Hake et al., 1984):

N

V^ mo = t^ I rVn` "] 2At (i) ,	 (23)n

where V; r̀) o and 11t (()`1 are the NMO velocity and vertical
traveltime in layer i.

The values of normal-moveout velocities in a single layer for
different wave types can be expressed through the anisotropic
coefficients as follows (Thomsen, 1986):

	

Vnmo[P -wave] = VP 0(1 + 28),	 (24)

	Vn mo[SV-wave] = Vs0(1 + 2r),	 (25)

	Vnmo[SH -wave] = Vs 1 (1 + 2y),	 (26)
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with

z
VPp

Q =	 (e — 8).	 (27)
Vso

It should be emphasized that these equations are valid for
arbitrary strength of the anisotropy. The effective coefficient •
was introduced in Tsvankin and Thomsen (1994) as the most
influential parameter in the SV-wave moveout and velocity
equations. Here, I distinguish between the original Thomsen
coefficients and their combinations, which are convenient to
use in different applications; the latter will be called "effective"
parameters. Note that the parameter if goes to zero not only
for isotropy, but also for elliptical anisotropy (e = 8).

Another "anellipticity" parameter (es ) was introduced in
Carrion et al. (1992):

(C11 — C44)(C33 — C44) — (C 1 3 +C44 ) 2
£ S =	 (28)

(C11 — C44)(C33 — C44)

The parameter e s governs the deviation of the P-wave slowness
surface from elliptical and of the SV-wave slowness surface
from circular. It is normalized so that Je 5 1 1; note that, unlike
•, e5 is not designed to simplify the NMO velocity for the

S V-wave.
In this paper, we are concerned mostly with P-wave signa-

tures. Using equation (24), formula (23) can be rewritten for
the P-wave as

Vnmo = Vrms(1 + 2^),	 (29)

where Vrms is the root-mean-square average of the true vertical
velocities VA and is the value of 6 averaged as follows over
the stack of layers:

1	 N
= V .^ to  [V b] 21 	(r)Ot0'^.

Equation (29) reduces to the conventional Dix (1955) for-
mula only if the medium is isotropic or in the unlikely situation
that the average value of 8 is zero. Hence, if we try to derive
interval vertical velocities VJI from equation (29) by applying
the Dix formula, we get instead the NMO layer velocities,
which contain a contribution of the anisotropic parameter 8.
Ignoring the influence of 8 in conventional processing leads to
errors in time-to-depth conversion (e.g., Banik, 1984).

Hence, application of the anisotropic coefficients e, 8, and y
makes it possible to obtain concise expressions for normal-
moveout velocities that are valid for arbitrary strength of the
anisotropy and are symmetric for all wave types. For the
P-wave, the NMO velocity depends on the vertical velocity and
the parameter 8 responsible for near-vertical velocity varia-
tions.

Dip-dependence of NMO velocity

Reflection moveout from dipping interfaces is important
both in the inversion of reflection data and in the development
of dip-moveout (DMO) algorithms for anisotropic media.
Conventional constant-velocity DMO is usually based on the
cosine-of-dip correction for moveout velocity valid for homo-
geneous, isotropic media (Levin, 1971):

V nmo (() = V nmo (0)/COS ,	 (30)

where Vnmo (^) is the normal-moveout velocity for a reflector
dipping at the angle , and Vnmo (0) is the zero-dip NMO
velocity. For homogeneous isotropic media, reflection move-
out is purely hyperbolic, and equation (30) is exact for any
spreadlength.

The discussion of dip-dependent NMO velocity given below
is based on the analytic study of NMO velocities presented in
Tsvankin (1995a). Let us consider a common-midpoint (CMP)
gather over a homogeneous anisotropic medium with the CMP
line perpendicular to the strike of the reflector (Figure 2). The
only assumption made about anisotropy is that the incidence
(sagittal) plane is a plane of symmetry. For instance, this
treatment is valid for any plane containing the symmetry axis in
transversely isotropic media (plus the isotropy plane), as well as
for symmetry planes in orthorhombic media. Under this assump-
tion, the normal-moveout velocity for all wave types can be
expressed through the phase velocity V as (Tsvankin, 1995a)

1 d ZV

	Vnmo(4) = 
V(4) 1 + V(_ d8^ 	(31)

cosh 	tan4dV
1-

where  the derivatives should be evaluated at the dip angle 4.
Alkhalifah and Tsvankin (1995) generalize this equation for
layered anisotropic media.

In the following, I concentrate on transversely isotropic
media with a vertical symmetry axis (VTI media). The most
convenient way to understand the influence of anisotropy on
NMO velocity is to use the weak-anisotropy approximation.
Using the weak-anisotropy equation for the P-wave phase
velocity (13) and further linearizing in e and 6 yields

Vnmo(4) cos

Vnmo(0)	
= 1 + 6 sin 2

+ 3(E — 8) sin e 4(2 — sin z 4).	 (32)

Equation (32) describes the anisotropy-induced distortions
in the dip-dependence of P-wave NMO velocity. The P-wave
dip-moveout error in transversely isotropic media can be split

X
sr-CMP

Z ^I Vph	 \ H o

normal-incidence" ray	 ^^^^^^o^

P

FIG. 2. Common-midpoint gather over a homogeneous aniso-
tropic medium. V gr and Vph are the group and phase velocity
vectors, respectively. The phase-velocity vector of the zero-
offset ray (rather than the ray itself) is normal to the reflector.
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into two major components, which may be called the "elliptical
error" and "nonelliptical error." Since elliptical anisotropy
corresponds to e = 8, the latter component is represented by
the last term in expression (32). Analysis of the trigonometric
coefficients in equation (32) shows that this noneIliptical term
usually makes the most significant contribution to the total
error. Thus, the difference e — 8 determines, to a large degree,
the angular behavior of the P-wave NMO velocity. For typical
positive values of the difference e — 8, the cosine-of-dip
corrected moveout velocity is usually higher than the moveout
velocity for a horizontal reflector.

Equation (32) gives a clear analytic explanation for the
numerical results for specific transversely isotropic models
reported in the literature (Levin, 1990). Note that the distor-
tions of the isotropic cosine-of-dip dependence are not corre-
lated with the magnitude of the P-wave velocity variations,
which are usually determined by the value of F.

What is the influence of the S-wave vertical velocity V 0 on
the P-wave normal moveout velocity? If the reflector is hori-
zontal, P-wave V„ r„o depends just on Vp p and 8 [equation (24)].
The weak-anisotropy approximation for the dip-dependent
NMO velocity (32) does not contain V 0 either. However, from
the phase-velocity equation (14) it is clear that VSO does have
an influence on the terms that are quadratic in e and 8 in the
NMO equation (31).

Figure 3 shows the dependence of the P-wave NMO velocity
on VSO for several combinations of e and 8, including those

corresponding to uncommonly strong anisotropy. The NMO
velocity in Figure 3 is multiplied with cos 4, as is conventionally
done in the isotropic DMO correction. If the medium were
isotropic, the cosine-of-dip corrected normal-moveout velocity
would be independent of the dip angle. Because of the
influence of the anisotropy, the corrected NMO velocity
increases with dip.

For a representative range of VSO in Figure 3, the influence
of the S-wave vertical velocity is relatively weak. The maximum
difference between the two extreme curves reaches about 7%
at steep dips for the model with a large e = 0.5, and 8 = 0.1.
This is one of the rare cases when the term quadratic in the
anisotropies (that contains 1V50 ) has a noticeable magnitude.
For large e — 8 and large dips, the contribution of the
anisotropy to the NMO velocity may even exceed the isotropic
term. Indeed, for the model with £ = 0.5 and 8 = 0.1
(Figure 3), the anisotropic term

tan dV

V(4) d0

in the denominator of the NMO equation (31) becomes large
(on the order of 0.5) for steep reflectors. However, NMO
velocities at large dips are so high that a variation in ,,, no of
7% would hardly change the traveltimes in a measurable way.

Figure 3 also shows that the influence of VSO becomes more
pronounced with increasing difference e — 8 and is relatively

FIG. 3. The influence of VSO on the cosine-of-dip corrected P-wave normal moveout velocity computed from formula (31). The
dashed curve corresponds to Vp IVSo = 1.5, the black curve to Vp 0 /VsO = 1.75, the gray curve to Vp /VSO = 2.5. Vp 0 = 3 km/s is
the same on all plots.
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insensitive to the individual values of the anisotropic parameters.
On the whole, the contribution of VS0 to P-wave NMO velocities
is insignificant and, for most practical purposes, can be ignored.

As pointed out above, in a homogeneous medium Vp 0 is just
a scaling coefficient for the P-wave phase velocity, if e and 6 are
kept constant. Therefore, Vp o does not change the depen-
dence of the P-wave normal moveout velocity Vnmo on the dip
angle 4).

The influence of E and 6 on the P-wave NMO velocity is
illustrated in Figures 4 and 5. Each plot in these two figures
contains three curves: the moveout velocity determined from
t 2 - x 2 functions [calculated using Larner's (1993) ray-tracing
code] using a spreadlength equal to the distance from the CMP
to the reflector (solid); the exact analytic normal moveout
velocity computed from equation (31) (dotted); and the weak-
anisotropy approximation for Vnmo (dashed). Comparison
between the first two curves makes it possible to estimate the
influence of nonhyperbolic moveout on the moveout velocity
for a typical-length spread. The difference between the second
and third curves shows the error of the weak-anisotropy
approximation.

If e - 6 is positive (the most common case, Figure 4), the
anisotropy causes a pronounced increase in the cosine-of-dip

corrected moveout velocity with dip angle. Even for relatively
small E - 6 = 0.1 (not shown here), the dip-moveout error
reaches 25% at a 45° dip and 30-35% at a dip of 60°. For c -
6 = 0.2 (Figure 4), the corrected moveout velocity at a 60° dip
is consistently about 60% higher than the zero-dip moveout
velocity!

For elliptically anisotropic models (e - 6 = 0), shown for
comparison in Figure 5, the DMO error is moderate: the differ-
ence between the corrected moveout velocity and the zero-dip
Vnmo for 4) < 60°, £l < 0.2, and 181 < 0.2 is less than 15%.

Figures 4 and 5 demonstrate that the P-wave DMO signa-
ture is controlled, to a significant degree (but not entirely), by
the difference e - 6. The dominant role of c - 6 is particularly
pronounced for the most typical case E - 6 > 0.

The weak-anisotropy approximation for the NMO velocity is
sufficiently accurate for small and moderate values of e and 6.
The error of the weak-anisotropy result (as compared with the
exact NMO velocity) does not exceed 5% for e1 0.2,1 0.2
(except for media with 6 < -0.15).

The above suite of plots also allows us to estimate the
moveout-velocity distortions at various dips caused by nonhy-
perbolic moveout. Note that the difference between the move-
out velocity on a finite spread and the NMO velocity changes

FIG. 4. Cosine-of-dip corrected P-wave moveout velocity for models with E - 6 = 0.2. The solid curve is the moveout velocity
calculated from t 2 - x 2 functions over a spreadlength equal to the distance from the CMP to the reflector; the dotted curve is the
exact NMO velocity from formula (31); and the dashed curve is the weak-anisotropy approximation. All curves are normalized by
the exact value of Vnmo (0)•

Downloaded 25 Apr 2011 to 138.67.12.49. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



P-wave Signatures in TI Media

sign with increasing dip. It should be emphasized that the 	 where
influence of nonhyperbolic moveout for steep reflectors is
typically smaller than for zero dip. We conclude that if Ie - 61 	 y(4y 2 - 9y + 6)
< 0.15 to 0.2, nonhyperbolic moveout does not seriously 	 f(y) -	 1 - y 	y =p^Vnmo (0);

distort the P-wave moveout velocity on typical-length spreads.
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NMO velocity as a function of ray parameter

In the above analysis, we examined the NMO velocity as a
function of the dip angle . However, since reflection data do
not carry any explicit information about the dip angle, for the
purposes of seismic processing and inversion Vnmo should be
expressed through the ray parameter p(^) corresponding to
the zero-offset reflection:

l dt 0 	sin
p(^) = 2 dx

o V(^) 	 (33)

where t 0 (x0 ) is the two-way traveltime on zero-offset data.
The replacement of the angle 4 by the ray parameter p

(horizontal slowness) can be done in a straightforward fashion
using the phase-velocity equations for transverse isotropy. The
NMO velocity (31) as a function of ray parameter for weak
transverse isotropy reduces to (Alkhalifah and Tsvankin, 1995)

V...(p) = 1^ [1 + (e - 8)f(y)],	 (34)

Equation (34) is derived under the assumption thaty < 1 (it is
always true if the dip is not too steep). It is interesting to
compare formula (34) with the corresponding weak-anisotropy
NMO equation as a function of the dip angle (32). While the
difference e - 8 was emphasized as the most influential
parameter in the NMO equation (32), Vnmo(4) does contain a
separate contribution of 8. However, as Vnmo varies with the
ray parameter, in the weak-anisotropy approximation it de-
pends only on the combination e - 8 and the zero-dip NMO
velocity Vnmo(0)•

Although equation (34) is valid for weak transverse isotropy,
the numerical study in Alkhalifah and Tsvankin (1995) leads to
similar results for transversely isotropic media with arbitrary
strength of the anisotropy. The exact P-wave Vnmo (p) turns out
to depend just on Vnmo (0) and the horizontal velocity Vp90 =
Vp V1 ''. The velocities Vnmo,(0) and VP90 can be com-
bined to form a new effective parameter (Alkhalifah and
Tsvankin, 1995)

P90E - s

2 V	 - 

'\

	 1 + 26 ,	
(35)

nmo 

		

FIG. 5. Cosine-of-dip corrected P-wave moveout velocity for models with e - 6 = 0 (elliptical anisotropy).
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which reduces to the difference e - 8 for weak anisotropy.
Thus, P-wave NMO velocity can be represented as a function
of just two parameters: the zero-dip velocity V„mo (0) and q.
For elliptical anisotropy (e = 8, q = 0), NMO velocity is the
same function of the ray parameter as in isotropic media.

This conclusion has important implications in the inversion
of the dip-dependence of the NMO velocity for the anisotropic
coefficients. The P-wave NMO velocities for two distinct dips
provide enough information to recover the two effective pa-
rameters and reconstruct the NMO velocity as a function of ray
parameter (Alkhalifah and Tsvankin, 1995). In the most com-
mon case when the zero-dip NMO velocity has been found by
conventional NMO analysis, the moveout from a single dipping
reflector makes it possible to recover the parameter q. Once
V,,m0 (0) and ri have been obtained, equation (31) can be used
to reconstruct NMO velocity as a function of p and carry out
DMO processing (Anderson and Tsvankin, 1994). Note that it
is impossible to resolve the trade-off between Vp 0 , E, and 8
from P-wave NMO velocities, no matter how many dips are
used.

Therefore, the effective parameters governing NMO veloc-
ities depend on the variable being used. P-wave NMO velocity
as a function of the ray parameter is controlled by -ri, i.e., by the
normalized difference e - 8. However, as shown in the previous
section, if NMO velocity varies with the dip angle, the effective
parameter (especially for positive e - 8) is just e - 8, without
any normalization.

The importance of the family of models with the same
V,,,r,o (0) and -n will be discussed in more detail after the
description of nonhyperbolic moveout.

Dip dependence of NMO velocity in vertically
inhomogeneous media

Next, let us consider the so-called "factorized" transversely
isotropic (FTI) media with linear variation in vertical velocity
with depth using the results in Tsvankin (1995a) and Lamer
(1993). In terms of the notation used here, the velocity Vpo in
this model linearly increases with depth, while the VPO/Vso
ratio and the anisotropic coefficients e and 8 remain constant.
The moveout velocity is calculated from t 2 - x 2 curves
generated using Larner's (1993) ray-tracing algorithm
(Figure 6).

Comparison of Figure 6 with Figure 4 shows that for typical
positive values of e - 8, angular variations of the cosine-of-dip
corrected moveout velocity are substantially suppressed by the
velocity gradient, and the accuracy of the simplest constant-
velocity DMO formula (30) is satisfactory. This means that for
FTI models with c - 8 > 0 and a typical (positive) vertical
velocity gradient, the DMO correction that ignores both
anisotropy and inhomogeneity is often more accurate than a
V(z) DMO that ignores anisotropy.

Another important conclusion from Figure 6 is that in
factorized, vertically inhomogeneous VTI media, the P-wave
moveout velocity is still primarily controlled by the difference
between a and 8, rather than by the individual values of these

parameters. However, in V(z) media, dip-dependence of the
moveout velocity is also a function of the velocity gradient, the
rms vertical velocity, and the depth of the reflector. The
influence of the shear-wave vertical velocity on the P-wave
NMO velocity in FTI media remains insignificant.

Nonhyperbolic reflection moveout

The standard hyperbolic approximation for reflection move-
outs in inhomogeneous media is accurate only for relatively
short spreads, even in the absence of anisotropy. Angle-
dependent velocity makes reflection moveout nonhyperbolic
even in a horizontal homogeneous layer. Here, I use the results
of Tsvankin and Thomsen (1994) and Hake et al. (1984) to
examine nonhyperbolic moveout in a horizontally homoge-
neous, transversely isotropic medium with a vertical symmetry
axis. An alternative way of treating nonhyperbolic moveout
was developed by Dellinger and Muir (1993) who suggested
expressing reflection traveltime in horizontally layered aniso-
tropic media as a power series in terms of ray parameter using
an equivalent-medium theory.

Qualitative description of nonhyperbolic moveout on "inter-
mediate" spreads (offset-to-depth ratio x/z < 1.7 - 2) can be
given in terms of the quartic Taylor series expansion (20). The
quartic moveout term for a single transversely isotropic layer
with arbitrary strength of the velocity anisotropy is (Tsvankin
and Thomsen, 1994):

2(s - 8) 1 + 28/f

A4 tp0V 0 (1 + 2b) 4 ' (36)

where f = 1 - Vs^IV 0 [equation (8)]. Clearly, the influence of
the S-wave vertical velocity VS0 on the quartic term (36) is
relatively weak because, as before, VSO is contained only in the
term quadratic in the anisotropies e and 5.

Deviations from hyperbolic moveout can be measured by the
relative magnitude of the quartic term as a function of the
normalized offset .x = x/2z:

Fio. 6. P-wave moveout velocity corrected for the cosine of the
dip angle for VTI models with e - 8 = 0.2 and a velocity
gradient of 0.6 s -1 . The curves are normalized by the moveout
velocity for a horizontal reflector. Each curve corresponds to a
different pair of e, 8. The distance from the CMP to the
reflector and the spreadlength are 3000 m; the rms vertical
velocity down to 3000 m is 3500 m/s.
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26

	A 4x 4 4 2(e — 8)	
1+ f

	A 0 +A2x2 —x (1 + 28) 4	z2 	(37)
1+

1+28

The strength of the P-wave nonhyperbolic moveout is propor-
tional to the magnitude of the difference e — 8, i.e., to
deviations from the elliptical model. If anisotropy is elliptical
(e = 8), moveout is purely hyperbolic. For fixed s — 8 and
conventional (small negative or positive) 8, deviations from
nonhyperbolic moveout increase with decreasing 8. Hence,
there is no simple correlation between the degree of velocity
anisotropy and nonhyperbolic moveout.

The quartic moveout equation rapidly loses accuracy with
increasing offset and should be replaced by a more accurate
moveout formula as presented in Tsvankin and Thomsen
(1994):

A 4x 4
	t2(x)=tp0+A2x2+

1+Ax
2,	 (38)

where

A4
A= 

z	 2
V P90

and VP90 is the horizontal velocity.
Equation (38) is valid not only for the single-layer model but

also for stratified transversely isotropic media, provided the
appropriate coefficients A 2 , A 4 , and A are used. Tsvankin and
Thomsen (1994) show that the moveout formula (38) remains
numerically accurate for long spreads (2-3 times, and more,
the reflector depth) and for pronounced anisotropy.

Since the P-wave horizontal velocity VJJo and the quadratic
moveout termA 2 are independent of the S-wave vertical velocity,
Vso can change P-wave moveout (38) only through the quartic
coefficient A 4 , but this influence is practically negligible.

Let us now rewrite the moveout equation (38) using the
effective parameters Vnmo (0) and q suggested in Alkhalifah
and Tsvankin (1995). Substituting Vnmo (0) and q into formula
(38) and ignoring the contribution of V 0 to the quartic term
A 4 , we obtain

x Z

t2(x) = tPO + V(0)nmo

2 Tqx 4

Vnmo( 0)[t 2 0Vnmo( 0) + (1 + 20x2] . (39)

Thus, P-wave long-spread moveout is determined just by the
vertical traveltime and two effective parameters—V nmo (0) and
ri, with no separate dependence on Vp o , E, or 8. If q = 0, the
medium is elliptical and the moveout is purely hyperbolic.

To use equation (38) in the description of nonhyperbolic
moveout for horizontally layered VTI media, the quadratic
(A 2 ) and quartic (A 4 ) moveout coefficients and VP9 0 should
be calculated for the stack of layers above the reflector.
Tsvankin and Thomsen (1994) show how the coefficients A 2 ,
A 4 , and V190 for a layered medium can be determined from
the values of A 2 , A 4 , and VP90 in the individual layers. Since
the single-layer coefficients A 2 , A 4 , and VP90 are functions of

the two effective parameters Vnmo (0) and 9, the P-wave
moveout curve for a layered medium depends on the values of
Vnmo (0) and q averaged in a complicated fashion over the
stack of layers.

Although equations (38) and (39) describe moveout for a
horizontal reflector, they also can be regarded as the diffrac-
tion curves, accurate to a certain dip on the zero-offset (or
stacked) section. Since time migration is based on collapsing
such diffraction curves to their apex, the values of V nmo (0) and
i should be sufficient to generate an accurate poststack
time-migration impulse response (at least, up to a certain dip).
Alkhalifah and Tsvankin (1995) show that both poststack and
prestack time migration in VTI media are indeed fully con-
trolled by the parameters Vnmo (0) and q. Depth migration will
still produce depth errors if the value Vp 0 is inaccurate, but this
is a different issue.

POLARIZATION VECTOR

The vector of particle motion, or the polarization vector,
plays an important role in the processing and interpretation of
multicomponent VSP and crosshole surveys. Also, deviations
of the polarization vector from its "isotropic" direction may
cause distortions of radiation patterns in anisotropic media
(discussed in more detail in the next section).

To obtain the polarization vector, we have to substitute the
expression for a steady-state plane wave into the wave equation
and solve the resulting simultaneous equations (the so-called
Christoffel equations), which involve the components of the
slowness and displacement vectors. For P- and SV-waves in the
[x 1 , x3 1 plane of a transversely isotropic medium (the x3 -

direction coincides with the symmetry axis), the Christoffel
equations reduce to (Musgrave, 1970)

	

G1 1 U 1 + G 13 U3 = 0,	 (40)

	G13U1 + G33U3 = 0,	 (41)

where U l and U3 are the components of the displacement
vector, and G is the Christoffel matrix. The components of the
Christoffel matrix can be expressed in terms of phase velocity
as follows:

sin2 0	 cos2 0
Gil =C11 	 +C44

sin 2 0 	cost 0
G 33 = C 44 ,2 + C 33

l	sin 0 cos 0
G13 = (C13 +C44)	 V2

For the P- or SV-wave phase velocity, G11G33 = G13, and
either of equations (40) or (41) can be used to find the
polarization direction. Substituting G11, G33, and G 13 into (40)
or (41), we obtain the polarization angle -y as

U1	 sin0 cos 0(C13 +C44)
tan y° U3 =

PV2 —c II sin 2 0—c44 cos 2 0	 (42)

Equation (42) is valid for any strength of the anisotropy.
Using the weak-anisotropy approximation for the phase

velocity (13) and carrying out further linearization in e and 8,
we get a concise expression for the P-wave polarization angle:
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tan y = tan 9{1 + B[28 + 4(e - 8) sin e 0]}, (43)

1	1
B 	 -

2f 2(1 - Vs0IV 0)

If a P-wave is generated by a point source, the polarization
at any receiver location can be obtained by applying equation
(43) at the phase angle corresponding to the group (source-
receiver) direction.

Thomsen (1986) showed that for weak anisotropy cos (y -
0) differs negligibly from unity. However, since cos (y - 0) =
1 - O[(y - 0)2], it does not follow that (y - 0) itself differs
negligibly from zero, i.e., it is not true that the deviation of the
polarization angle from the phase angle can be ignored
(Rommel, 1994).

In fact, the P-wave polarization angle is closer to the group
angle than to the phase angle. The weak-anisotropy expres-
sions for the P-wave group (19) and polarization (43) angles
are quite similar; the difference between the two is in the
quantity B, which is dependent on the VPO/Vso ratio. Since for
plausible values of VPO!Vso , B satisfies 0.5 < B < 1, the
polarization vector lies between the phase and group-velocity
vectors, usually being closer to the group vector. This analytic
result is in good agreement with the numerical analysis of
P-wave polarizations given in Tsvankin and Chesnokov
(1990a), who show that the P-wave polarization and group-
velocity vectors usually remain close to each other even in
more complicated orthorhombic models.

Unlike the weak-anisotropy formulas for the P-wave phase
and NMO velocity, equation (43) does depend on the shear-
wave vertical velocity through the parameter B. Variation in
Vso within a realistic range can cut the P-wave polarization
anomaly (i.e., the difference between the group and polariza-
tion angles) in half (Figure 7). However, since the anomaly as
a whole is small, the influence of VS0 on the P-wave polariza-
tion angle for moderate anisotropies El ^ 0.2, ^ 0.2 is weak.

The analysis above is valid for typical transversely isotropic
media with c 13 + c44 > 0. Helbig and Schoenberg (1987) show
that for "abnormal" media that have negative c 13 + c44 , the
P-wave polarization vector may even become perpendicular to
the phase-velocity vector.

DYNAMIC PROPERTIES

Radiation pattern

The shape of body-wave radiation patterns is important in
many applications both in earthquake seismology and seismic
exploration. Here, I follow Tsvankin (1995b) to discuss the
influence of anisotropic radiation patterns on amplitude vari-
ation with offset (AVO) analysis—one of the few exploration
methods capable of direct detection of hydrocarbons. It is now
well known that the angular dependence of reflection coeffi-
cients may be significantly distorted in the presence of elastic
anisotropy (Banik, 1987; Wright, 1987). Yet another distortion
of AVO signatures (e.g., of AVO gradient) results from the
influence of anisotropy on the distribution of energy along the
wavefront of the wave traveling down to the reflector and back
up to the surface (Figure 8), a transmission effect completely
independent of the reflector. Significant anisotropy above the
target horizon may be rather typical of sand-shale sequences
commonly encountered in AVO analysis (Kim et al., 1993).

Far-field, point-source radiation in isotropic homogeneous,
nonattenuating media is determined just by the source direc-
tivity factor and spherical divergence of amplitude (Aki and
Richards, 1980). The far-field approximation for source radi-
ation in anisotropic media (Tsvankin and Chesnokov, 1990a;
Ben-Menahem et al., 1991; Gajewski, 1993), is a much more
complicated function that depends on the shape of the slow-
ness surface. The most significant distortion of radiation
patterns in anisotropic media is caused by the phenomenon
defined in Tsvankin and Chesnokov (1990a) as "focusing" and
"defocusing" of energy. Energy increases (focuses) in parts of
the wavefront with a high concentration of group-velocity
vectors of elementary plane waves (which comprise point-
source radiation). Conversely, defocusing corresponds to areas
with a low concentration of group-velocity vectors. Often (but
not always), focusing takes place near velocity maxima, while
defocusing is often associated with velocity minima.

Tsvankin (1995b) shows that the far-field radiation pattern
of P-, SV-, or SH-waves from a point force for weak transverse
isotropy (IE1 < 1, 181 < 1, J-y < 1) reduces to

F(y) 1 (44)
U(R, 0) = 41TPV

2(8)R sin 1 d 2V 

^
sing ( 1+ Vd6^^

where U is the magnitude of the displacement, V is the phase
velocity, R = z 2 + r2 (z is the receiver depth, r is the
horizontal source-receiver offset), and the source term F,, is
projection of the force on the displacement (polarization)
vector. Equation (44) does not take the influence of the free
surface into account. This equation should be evaluated at the
phase angle 0, corresponding to a given ray (group-velocity)
angle 41 = tan -t (r/z) of the incident wave; both angles are
measured from the symmetry axis.

Formula (44) demonstrates how point-source radiation is
distorted by velocity anisotropy. The leading term F,, (y)/

FIG. 7. The difference between P-wave group and polarization
angles (exact computation) for a model with e = 0.3, 8 = 0.1,
and two values of VP0/V0 ratio. The angles are measured from
the symmetry axis.
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(4irpV2R) formally coincides with the well-known expression
for the far-field, point-force radiation in isotropic media
(Aki and Richards, 1980). However, the phase velocity in
equation (44) is angle-dependent; also, the source term F u may
be distorted by the anisotropy because the polarization direc-
tion deviates from the ray direction. The term under the
radical represents the pure contribution of the anisotropy to
the radiation pattern.

Source

Wavefront

Depth

1
VPOVs0E87

REFLECTOR

FIG. 8. Reflection from the bottom of a transversely isotropic
layer. Anisotropy distorts the distribution of energy along the
wavefront of the incident wave.

Further linearization of equation (44) in the anisotropic
parameters c and 8 leads to the following expression for the
P-wave:

F,,(y) 1-2(e-8)sin 2 20 + 8sin 2 0
Up(R, 

0) = 4TrpVV OR	 1 + 28
(45)

From formula (45) it is clear that transverse isotropy distorts
the amplitude even in the symmetry direction (0 = 0). More-
over, by using the stationary-phase expression in Tsvankin and
Chesnokov (1990a), it can be shown that the weak-anisotropy
approximation (45) is exact (in the far-field) for 0 = 0. The
distortion of the P-wave amplitude in the symmetry direction
depends on just one anisotropic coefficient — 8. If 8 < 0, the
velocity function has a maximum at 0 = 0°, and the amplitude
in the symmetry direction increases because of the focusing of
energy; conversely, if 8 > 0, a velocity minimum leads to lower
amplitude at 0 = 0° because of the defocusing.

The above equations for the radiation pattern are derived
for an unbounded medium and, therefore, can be used for any
orientation of the symmetry axis. Assuming that the symmetry
axis is vertical, angular amplitude distortions near the symme-
try direction are of most concern in AVO analysis. Equation
(45) shows that the lowest-order anisotropic angular correction
to the radiation pattern near the symmetry axis is determined

c—b=0 (Elliptical Anisotropy)
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FIG. 9. Normalized P-wave amplitude from a force parallel to the symmetry axis for models with E — 8 = 0 (elliptical anisotropy).
The solid curve is the far-field amplitude calculated by the stationary phase method; the dashed curve is the weak-anisotropy
approximation (45). The amplitude curves are normalized by the radiation pattern in the corresponding isotropic model (E = 0,
8 = 0). The plots at the bottom show the exact phase velocity (solid curve) and its weak-anisotropy approximation (13) (dashed
curve).
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by the difference e — 8. For elliptical anisotropy (s = 8), the
term 2(e — 8) sin 2 20 vanishes, and the anisotropic angular
correction reduces to 6 sin 2 0. Therefore, the distortions of the
shape of the radiation pattern in this case (given by 8 sin 2 9)
are relatively small between 00 and 40°, unless 8 is unusually
large.

Angular distortions of the radiation pattern may also be
caused by the source term F0 (y), which depends on the
polarization vector [equations (42) and (43)]. However, for
moderate c and 6 (lei 0.2, 61 <_ 0.2), the influence of
anisotropy on the point-force directivity factor F,, in the
angular range 0-40° is limited to a few percent. For other
sources, such as dislocations or explosions, the dependence of the
source term on anisotropy is more complicated, and can make a
more significant contribution to the distortions of the angular
amplitude distribution (Tsvankin and Chesnokov, 1990b).

Clearly, the influence of transverse isotropy on P-wave
amplitudes is determined mostly by e and 8. However, P-wave
radiation pattern also depends on the velocities VPO and V50.
While the P-wave velocity Vp 0 is just a scaling coefficient, the
situation with the velocity ratio V 0/VSo looks more compli-
cated. As we have seen in the previous sections, the influence
of the S-wave vertical velocity on P-wave phase and group
velocities is practically negligible, even for strong anisotropy.
The amplitude, however, depends not just on phase velocity
and its derivatives, but also on the components of the Christ-
offel matrix. Nonetheless, as shown in Tsvankin (1995b), not
only the velocity but also the far-field amplitude of the P-wave
is practically independent of the S-wave vertical velocity.

Figures 9 and 10 display P-wave radiation patterns from a
force parallel to the symmetry axis. The amplitude is calculated

using the stationary-phase expression from Tsvankin and
Chesnokov (1990a) valid in the far-field (solid curve), and the
weak-anisotropy approximation (45) (dashed curve). Both
curves are normalized by the radiation pattern in the corre-
sponding isotropic medium (e = 0, 8 = 0).

In elliptically anisotropic media with positive e = 8 (Figure 9),
the normalized amplitude increases with angle, but the amplitude
variations in the angular range 0°-40° remain mild, even for
models with significant velocity anisotropy. This conclusion is
confirmed by the exact analytic expression for radiation patterns
in elliptically anisotropic media (Ben-Menahem, 1990; Tsvankin,
1995b).

For models with e — 8 > 0, believed to be typical for
subsurface formations, transverse isotropy may cause the P-
wave amplitude to drop by 30% and more over the first 40°
from the symmetry direction (Figure 10). If the difference c —
S is positive, the influence of the anisotropy becomes stronger
with increasing e — 6 and, for fixed £ — 5, with decreasing values
of e and 8. Thus, there is no direct correlation between the
strength of the velocity anisotropy and the amplitude anomalies.

The weak-anisotropy approximation for P-wave radiation
(45) is closer to the exact solution for models with e <_ 8 than
for media with positive e — 8. Still, for models with typical 0 <
e — 8 < 0.2, the accuracy of the weak-anisotropy approxima-
tion is sufficiently high.

Reflection coefficient

The presence of elastic anisotropy on either side of the
reflector may significantly distort the angular dependence of
reflection coefficients. Analytic approximations for reflection
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FIG. 10. Normalized P-wave amplitude from a force parallel to the symmetry axis for models with c — S = 0.2.
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coefficients at a boundary between two transversely isotropic
media with a vertical symmetry axis were developed by Banik
(1987) and Thomsen (1993). In the limit of weak anisotropy
and of small velocity and density contrasts across the reflector,
the P-wave reflection coefficient is given by (Thomsen, 1993):

R(0) =R1s0i(8) +Ranis(8), (46)

where R is0,(6) is the reflection coefficient in the absence of
anisotropy (e = 0, S = 0), and

R.. is (0)=z(6 2 -8 1 )sin 2 0 +2(F 2 —e 1 )sin 2 0tan 2 0.

(47)

Equation (47) is presented here in the corrected form given
in Riiger (1995). Subscripts 1 and 2 refer to the media above
and below the reflector, respectively. One of the convenient
features of equations (46) and (47) is the separation of the
"isotropic" and "anisotropic" parts of the reflection coefficient.
Unlike Banik's (1987) approximation, formula (47) is not
restricted to small incidence angles.

In contrast with the radiation pattern, the reflection coeffi-
cient at normal incidence is not distorted by transverse isot-
ropy, i.e., R an is = 0 if e = 8 = 0. Note that the lowest-order
angular correction to the reflection coefficient depends only on
the change in 8 across the reflector (no dependence on E),

while the lowest-order angular term in the radiation pattern
(45) contains the difference between e and 8. For examples of
P-wave reflection coefficients at the boundary between trans-
versely isotropic shales and isotropic sands, see Kim et al.
(1993).

It should be emphasized that the influence of the S-wave
vertical velocity J/ on the P-wave reflection coefficient is
limited to the isotropic term R10 (0), at least for weak trans-
verse isotropy. The anisotropic correction to the reflection
coefficient, derived in the weak-anisotropy approximation, is
entirely independent of V.

In AVO analysis, it is important to compare the distortions
of the P-wave radiation pattern with the influence of transverse
isotropy on the reflection coefficient. Obviously, it is difficult to
make a general comparison, because angular variations in the
reflection coefficient depend on the difference in the anisotro-
pic parameters across the reflector, while the radiation pattern
is entirely determined by the properties of the incidence
medium. Also, the influence of anisotropy on the reflection
coefficient depends on the impedance contrast, i.e., it is more
pronounced for weak reflectors. However, Tsvankin (1995b)
shows that the distortions of the radiation pattern and reflec-
tion coefficient often are of the same order of magnitude. For
"bright spots" with a large amplitude of the normal-incidence
reflection and a relatively slow variation in the absolute value
of the reflection coefficient with angle, amplitude distortions
above the reflector may even reverse the sign of the AVO
gradient.

DISCUSSION: NOTATION

A proper choice of parameterization was very important to
this study. Here, I have used the notation for transversely
isotropic media developed by Thomsen (1986). Some advan-
tages of the Thomsen parameters, explained in his original
paper, were discussed further in the introduction. A major
misconception about Thomsen notation that still persists in the

literature is that it is useful only for weak anisotropy. This work
shows that application of the Thomsen parameters is helpful in
solving a wide range of practically important seismological
problems in transversely isotropic media with any strength of
velocity anisotropy. The results of this paper, which support
this conclusion, can be summarized as follows:

1) It is possible to cut down on the number of independent
parameters needed to describe P-wave propagation be-
cause the shear-wave vertical velocity VSO has a weak
(usually negligible) influence on P-wave signatures, even
in media with strong velocity variations. Although the
P-wave reflection coefficient does depend on the jump in
V 0 across the interface, the contribution of transverse
isotropy to the reflection coefficient is practically inde-
pendent of V 0 . Therefore, the influence of transverse
isotropy on P-wave propagation is controlled just by the
P-wave vertical velocity Vp 0 and two anisotropic coeffi-
cients, e and 8, with V, being no more than a scaling
coefficient in homogeneous media. This facilitates our
understanding of anisotropic wave propagation and im-
plementation of inversion and processing algorithms in
transversely isotropic media.

2) Traveltime inversion of P-wave data using the conven-
tional notation is always ambiguous because the trade-off
between the parameters c 13 and c 44 can never be re-
solved, unless some independent information about one
of these coefficients is available. This ambiguity is ex-
plained by the fact that c 13 and c44 contribute to P-wave
phase and group velocity only through the parameter 8.

3) Not just NMO velocity [as shown in Thomsen's (1986)
paper], but also the phase velocity (a fundamentally
important function), the quartic moveout coefficient, and
nonhyperbolic P-wave moveout for horizontal reflectors
can be expressed concisely through the anisotropic pa-
rameters e and 8. These analytic developments are valid
for arbitrary strength of the anisotropy.

4) The coefficients c, 8, and -y are well-suited for developing
the weak-anisotropy approximation for a wide range of
seismic signatures, including body-wave amplitudes. Sys-
tematic application of the weak-anisotropy approxima-
tion provides valuable analytic insight into the influence
of transverse isotropy on seismic wavefields.

This paper is devoted mostly to the generic P-wave signa-
tures (such as phase velocity, polarization vector, and radiation
pattern), as well as the signatures important in reflection
seismology and vertical seismic profiling. Analysis and inver-
sion of seismic data may require defining different effective
parameters for specific acquisition geometries. For instance,
P-wave traveltimes measured in crosswell surveys usually cor-
respond to near-horizontal rays and, therefore, are weakly
dependent on near-vertical velocity variations. While the exact
phase-velocity equation (10) remains valid for any propagation
angle, it is difficult to resolve the vertical velocity Vp 0 and the
parameter 8 (assuming a vertical symmetry axis) from crosswell
measurements. In this case, it may be more useful to parame-
terize the medium by the horizontal velocity and a combination
of the anisotropic parameters responsible for the phase veloc-
ity variation near horizontal. However, a more comprehensive
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discussion of crosswell surveys is outside of the scope of this
paper.

CONCLUSIONS

The description of P-wave signatures given in the paper
included phase, group, and normal-moveout velocities, nonhy-
perbolic moveout, polarization vector, radiation pattern, and
reflection coefficient. The analysis was based on a series of
analytic solutions valid for transversely isotropic media with
arbitrary strength of anisotropy (the only exception is the
reflection coefficient, which was studied in the weak-anisotropy
approximation). Although these solutions are convenient to
implement numerically, some of them are not simple enough
to elucidate the relation between various seismic phenomena
and the parameters of the anisotropic velocity field. To gain
insight into the influence of transverse isotropy on seismic
signatures, I have applied the weak-anisotropy approximation
systematically and checked its accuracy by comparing it with
the exact solutions.

The influence of transverse isotropy on P-wave signatures is
controlled by two dimensionless anisotropic parameters —e
and 6, with the P-wave vertical velocity Vp0 being a scaling
coefficient, for homogeneous models. P-wave signatures of
most interest in reflection seismology can be divided into two
main groups. For the first group, that includes the normal-
moveout velocity for horizontal reflectors, small-angle reflec-
tion coefficient, and point-force radiation in the vertical (sym-
metry) direction, the influence of transverse isotropy is entirely
determined by the parameter 8.

The second group comprises the dip-dependence of NMO
velocity, magnitude of nonhyperbolic moveout, time-migration
impulse response, the shape of the radiation pattern in the
angular range 0 0-400, and the subcritical reflection coefficient.
The influence of transverse isotropy on these signatures is
determined by both anisotropies (e and 8) and (with the
exception of the reflection coefficient) is primarily governed by
the difference e — 8, i.e., by deviations from the elliptically
anisotropic model. Because of the high sensitivity of P-wave
signatures to e — 8, application of the elliptical-anisotropy
approximation in P-wave processing may lead to unacceptable
errors, even if the medium is relatively close to elliptical.

Therefore, the results for a wide range of seismic phenom-
ena show that there is no apparent correlation between the
strength of P-wave velocity anisotropy and the influence of
transverse isotropy on reflection moveouts and amplitudes.
The magnitude of the P-wave velocity variations is usually
determined by the value of s (unless e is much smaller than
161), while signatures used in reflection seismology depend
either just on 8 or on both coefficients — e and S (with the
difference between the two coefficients being the most influ-
ential parameter). Therefore, the terms "weak anisotropy" or
"strong anisotropy" are meaningless without a reference to a
particular problem. For instance, while the model with e = 0.1,
6 = —0.1 is weakly anisotropic in terms of velocity variations,
it can be characterized as strongly anisotropic regarding the
distortions of the P-wave radiation pattern.

As shown in Alkhalifah and Tsvankin (1995), the influence
of vertical transverse isotropy on time processing is determined
by the effective parameter q = (e — 8)/(1 + 28). The
parameter q and the zero-dip, normal-moveout velocity

V„mo (0) control the P-wave NMO velocity expressed as a
function of the ray parameter, long-spread (nonhyperbolic)
reflection moveout for a horizontal reflector, and poststack
and prestack time-migration impulse responses. In principle, q
can be replaced by other anellipticity parameters formed by
combining the NMO velocity for a horizontal reflector V n,,,o (0)

and the horizontal velocity. Alkhalifah and Tsvankin (1995)
have developed an inversion procedure designed to obtain rl
and V,,,,o (0) from P-wave NMO velocities measured for two
different dips. This inversion technique provides enough infor-
mation to perform all essential time-processing steps including
NMO correction, DMO processing, and time migration.

Thus, P-wave reflection moveout (including nonhyperbolic
moveout on long spreads and NMO velocity from dipping
refectors) depends just on V,, mo (0) and q and, therefore, is
insufficient to obtain the true vertical velocity required for
time-to-depth conversion. In some cases, the vertical velocity
can be determined directly if check shots or well logs are
available. Then, dip-dependent P-wave NMO velocity can be
used to obtain £ and 8. Other sources of additional information
are the short-spread moveout velocities of SV or P-SV waves
and long-spread SV-wave moveout (Tsvankin and Thomsen,
1995).

Although the discussion here was centered on vertical
transverse isotropy, many analytic results in this paper (such as
those for an unbounded homogeneous medium) are valid for
any orientation of the symmetry axis.
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