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Reflection moveout and parameter estimation
for horizontal transverse isotropy

Ilya Tsvankin∗

ABSTRACT

Transverse isotropy with a horizontal axis of symme-
try (HTI) is the simplest azimuthally anisotropic model
used to describe fractured reservoirs that contain par-
allel vertical cracks. Here, I present an exact equation
for normal-moveout (NMO) velocities from horizon-
tal reflectors valid for pure modes in HTI media with
any strength of anisotropy. The azimuthally dependent
P-wave NMO velocity, which can be obtained from 3-D
surveys, is controlled by the principal direction of the
anisotropy (crack orientation), the P-wave vertical ve-
locity, and an effective anisotropic parameter equivalent
to Thomsen’s coefficient δ.

An important parameter of fracture systems that can
be constrained by seismic data is the crack density, which
is usually estimated through the shear-wave splitting co-
efficient γ . The formalism developed here makes it pos-
sible to obtain the shear-wave splitting parameter using
the NMO velocities of P and shear waves from hori-
zontal reflectors. Furthermore, γ can be estimated just
from the P-wave NMO velocity in the special case of

the vanishing parameter ε, corresponding to thin cracks
and negligible equant porosity. Also, P-wave moveout
alone is sufficient to constrain γ if either dipping events
are available or the velocity in the symmetry direction is
known. Determination of the splitting parameter from
P-wave data requires, however, an estimate of the ratio
of the P–to–S vertical velocities (either of the split shear
waves can be used).

Velocities and polarizations in the vertical symmetry
plane of HTI media, that contains the symmetry axis, are
described by the known equations for vertical transverse
isotropy (VTI). Time-related 2-D P-wave processing
(NMO, DMO, time migration) in this plane is governed
by the same two parameters (the NMO velocity from a
horizontal reflector and coefficient η) as in media with
a vertical symmetry axis. The analogy between vertical
and horizontal transverse isotropy makes it possible to
introduce Thomsen parameters of the “equivalent” VTI
model, which not only control the azimuthally depen-
dent NMO velocity, but also can be used to reconstruct
phase velocity and carry out seismic processing in off-
symmetry planes.

INTRODUCTION

In horizontally layered, isotropic media, normal-moveout
(NMO) velocity of reflected waves (defined in the zero-spread
limit) is equal to the rms of the velocities in each layer. Con-
ventional velocity analysis takes advantage of this simple rela-
tion by obtaining interval velocities from the stacking (move-
out) velocity via the Dix (1955) formula. If the medium is
anisotropic, NMO velocity in a single layer is no longer equal
to the vertical velocity, nor is Vnmo in multilayered media given
by the rms average of vertical velocities (Hake et al., 1984).
The difference between the vertical and moveout velocities in
anisotropic formations, such as shales, causes errors in time-to-
depth conversion (Banik,1984). On the other hand, inversion
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of moveout velocities can provide estimates of the anisotropic
coefficients that can be used in seismic processing, amplitude
variation with offset (AVO) analysis, and lithology discrimina-
tion.

Analytic expressions for NMO velocities from horizontal
reflectors are well known for transversely isotropic models
with a vertical symmetry axis (VTI media) (e.g., Lyakhovitsky
and Nevsky, 1971; Hake et al., 1984; Thomsen, 1986). Using
Thomsen’s (1986) notation, the NMO velocities of the P-, SV -,
and SH -waves1 in a single VTI layer can be represented as

Vnmo[P-wave] = VPvert

√
1 + 2δ, (1)

Vnmo[SV -wave] = VSvert

√
1 + 2σ , (2)

1I will omit the qualifiers in “quasi-P-wave” and “quasi-SV -wave.”
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Vnmo[SH -wave] = VSvert

√
1 + 2γ , (3)

with

σ ≡
(
VPvert

VSvert

)2

(ε − δ), (4)

where VPvert and VSvert are the vertical velocities of the P- and
S-waves respectively, ε, δ, and γ are Thomsen’s anisotropy
parameters for vertical transverse isotropy, and σ is the effec-
tive parameter introduced in Tsvankin and Thomsen (1994)
to describe SV -wave propagation. Equations (1)–(3) are valid
for VTI models with arbitrary strength of the anisotropy.
In horizontally layered media, normal-moveout velocity of
each mode is given by the rms average of the interval NMO
velocities (1)–(3).

As discussed in Tsvankin and Thomsen (1995), the NMO
velocities from horizontal reflectors in VTI media are not suf-
ficient to recover the vertical velocities and anisotropic param-
eters, even if all three waves are recorded. However, if some
additional information is available (such as the reflector depth
or one of the vertical velocities), equations (1)–(3) make it pos-
sible to obtain all anisotropic coefficients. The accuracy of this
estimation procedure strongly depends on the quality of the tie
between seismic and borehole data (the latter is usually needed
to obtain the vertical velocity).

Another anisotropic model of practical importance is trans-
versely isotropic with a horizontal symmetry axis (HTI). The
most common physical reason for the HTI symmetry is a system
of parallel vertical cracks (fractures), with quasi-circular shapes
(like pennies), embedded in an isotropic matrix (Hudson, 1981;
Crampin, 1985; Thomsen, 1988). It should be emphasized that
while modeling and processing of reflection data are more
complicated for horizontal transverse isotropy than for VTI
media, the azimuthal dependence of moveout velocities and
amplitudes in HTI models (if properly accounted for) provides
additional information for seismic inversion. Obviously, it is
impossible to carry out such an inversion procedure without
relating the attributes of the reflected waves to the anisotropic
parameters.

Thomsen (1988) presented the weak-anisotropy approxima-
tion for NMO velocities of P- and S-waves from a horizontal
reflector in the symmetry plane of HTI media that contains
the symmetry axis. More general nonhyperbolic (“skewed”)
moveout equations for pure modes both in the symmetry and
off-symmetry planes were given in Sena (1991). His results,
however, are valid only for weak anisotropy and horizon-
tal reflectors. A weak-anisotropy formalism similar to that in
Sena (1991) was employed in Li and Crampin (1993) to study
the moveout from horizontal reflectors in a layer with trans-
versely isotropic or orthorhombic symmetry. Dellinger and
Muir (1993) suggested finding reflection traveltimes in hori-
zontally layered anisotropic media as a power series in terms
of ray parameter using the equivalent-medium formulation.

Here, I present an exact equation for normal-moveout veloc-
ities of pure modes valid for any orientation of the survey line
over an HTI layer. If the anisotropy is caused by vertical cracks,
P-wave moveout data can be used to find the crack orientation
and, in some cases, estimate the shear-wave splitting parameter
γ , which is close to the crack density in HTI models. Another
practically important conclusion of this work is that 2-D time

processing of P-wave data in the vertical plane that contains
the symmetry axis is governed by the same two effective pa-
rameters that Alkhalifah and Tsvankin (1995) introduced for
vertical transverse isotropy.

DESCRIPTION OF THE HTI MODEL

The transversely isotropic model with a horizontal symme-
try axis has two mutually orthogonal vertical planes of sym-
metry shown in Figure 1. They will be referred to as the
“isotropy plane” (the one normal to the symmetry axis) and
the “symmetry-axis plane” (the one that contains the symme-
try axis). Note that the kinematic signatures and polarizations
of all three waves in the isotropy plane are described by just
the isotropic equations. As shown below, the velocities and po-
larizations in the symmetry-axis plane can be found by analogy
with VTI media.

The split shear waves in HTI media will be denoted as “S‖”
and “S⊥,” with the S‖-wave polarized in the isotropy plane and
the S⊥-wave polarization vector being in the plane formed by
the symmetry axis and the slowness vector. The form of the
superscripts is explained by the fact that in HTI media caused
by the parallel vertical cracks, the polarization vector of S‖

is parallel to the crack planes, while the wave S⊥ at vertical
incidence is polarized normal to the cracks. In the symmetry-
axis plane, the S⊥-wave represents and in-plane (SV ) motion,
while the S‖-wave is polarized in the direction orthogonal to
the plane and may be called the SH -wave. Therefore, for this
plane the S⊥ and S‖-waves can be denoted as the SV- and SH -
waves, respectively. However, the polarizations of the shear
waves recorded in any other plane do not conform to this sim-
ple rule. For instance, in the isotropy plane the particle motion
of the wave that I refer to as S‖ will be confined to the in-
cidence plane, while the S⊥-wave is polarized parallel to the
symmetry axis and, therefore, orthogonally to the incidence
plane. The mode S‖ is often called the “fast” shear wave since
at vertical incidence it propagates faster than S⊥ (e.g., Crampin,
1985).

Conventionally, the HTI model is characterized by the stiff-
ness tensor ci jk` that corresponds to the coordinate frame in
which x1 represents the symmetry axis (Figure 1). Taking ad-
vantage of the symmetries in the stiffness tensor and using the

FIG. 1. Two vertical symmetry planes in HTI media. In the
plane normal to the symmetry axis (“isotropy plane”), velocity
is independent of propagation angle.
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Voigt recipe, ci jk` can be written as a symmetric 6 × 6 matrix of
the following form (only nonzero elements are shown):

cHTI

=



c11 c13 c13

c13 c33 (c33 − 2c44)
c13 (c33 − 2c44) c33

c44

c55

c55


.

(5)

Alternatively, it is possible to use to stiffness tensor c(R)
i jk` (the

R stands for “rotated”) or Thomsen’s (1986) parameters de-
fined in a rotated coordinate system with the x3-axis pointing
in the symmetry direction. These “generic” Thomsen param-
eters include the P- and S-wave velocities (V (R)

P0 and V (R)
S0 ) in

the symmetry (horizontal) direction and the anisotropic co-
efficients ε(R), δ(R) and γ (R). They are expressed through the
components of the tensor c(R)

i jk` exactly in the same fashion as
in VTI media (Appendix A). This set of Thomsen parameters

Gik − ρV 2δik =


c11n2

1 + c55n2
3 − ρV 2 0 (c13 + c55)n1n3

0 c66n2
1 + c44n2

3 − ρV 2 0

(c13 + c55)n1n3 0 c55n2
1 + c33n2

3 − ρV 2

 . (8)

makes it possible to apply the phase-velocity equations devel-
oped for VTI media (including the concise weak-anisotropy ap-
proximations) and express P-wave velocities and traveltimes
as functions of just three coefficients—V (R)

P0 , ε(R), and δ(R) (plus
the azimuth of the symmetry axis).

However, the analysis below shows that the generic Thomsen
notation is not well-suited to describe normal-moveout ve-
locities in HTI media that depend on near-vertical velocity
variations. In the next section, I introduce another set of di-
mensionless anisotropic coefficients that is more convenient in
characterizing moveout velocities and other reflection seismic
signatures for horizontal transverse isotropy.

LIMITED EQUIVALENCE BETWEEN VERTICAL AND
HORIZONTAL TRANSVERSE ISOTROPY

The results of moveout analysis for VTI models can be ex-
tended to the vertical plane that contains the symmetry axis in
HTI media (the “symmetry-axis plane”) by using an “equiva-
lence” between vertical and horizontal transverse isotropy. By
the “equivalent” VTI model, I will mean the VTI medium that
can be used to describe velocities, traveltimes, and polariza-
tions of body waves in the symmetry-axis plane of the original
HTI model. To prove the equivalence between VTI media and
the symmetry-axis plane of HTI media, it is sufficient to exam-
ine the Christoffel equation that determines the phase velocity
V and polarization vector U of plane waves (e.g., Musgrave,
1970): [

Gik − ρV 2δik
]
Uk = 0, (6)

where ρ is the density, and Gik is the Christoffel matrix given
by

Gik = ci jk`n jn`, (7)

n is the unit vector in the slowness direction. Let us find Gik for
wave propagation in the [x1, x3] plane (n2 = 0) of a transversely
isotropic medium with the axis of symmetry pointing in the x1

direction (Figure 2). Using equations (5) and (7), I find the
nonzero components of the Christoffel matrix in the [x1, x3]
plane as

G11 = c11n
2
1 + c55n

2
3,

G33 = c55n
2
1 + c33n

2
3,

G13 = (c13 + c55)n1n3,

G22 = c66n
2
1 + c44n

2
3.

Although c66 = c55, I will keep c66 in the expression for G22 to
facilitate the comparison with VTI media.

The matrix Gik − ρV 2δik in the [x1, x3] plane then becomes

It is easy to verify that Gik − ρV 2δik from equation (8) and
the Christoffel equation (6) as a whole are identical to the
corresponding equations in the [x1, x3] plane of VTI media.
As for vertical transverse isotropy, equation (6) splits into two
independent equations for the SH(S‖) motion (U1 = U3 = 0)
and P − SV motion (U2 = 0). I conclude that velocities and
polarizations in the symmetry plane of TI media that contains
the horizontal symmetry axis represent exactly the same func-
tions of the stiffness coefficients and the slowness direction
as for vertical transverse isotropy. For instance, we can use
the well-known phase-velocity equations for P − SV -waves
in VTI media expressed through the stiffness coefficients and
the phase angle with vertical to describe phase velocities of
P − S⊥-waves in the symmetry-axis plane of HTI media. Note
that the phase angle in the VTI equations applied to HTI
media should be measured from vertical (as in VTI models),
not from the actual symmetry axis of the HTI model.

Although the Christoffel equation has exactly the same form
in VTI and HTI media, the relations between the stiffnesses
c44, c55, and c66 do depend on whether the medium is VTI or
HTI. If the symmetry axis is vertical, then c44 = c55, while for
a horizontal symmetry axis c66 = c55. Thus, the coefficients ci j
in equation (8) do not specify the same equivalent VTI model
(since c44 6= c55, the shear-wave vertical velocities are differ-
ent). However, since P−S⊥ and S‖-waves in the symmetry-axis
plane are decoupled, we can just use two different VTI mod-
els to describe P−S⊥ and S‖ propagation in the symmetry-axis
plane. One VTI model, designed for P−S⊥-waves, will be char-
acterized by c11, c33, c55, and c13, while the other (“S‖”) model
will include c44 and c66.
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Since phase velocity controls group (ray) velocity and group
angle, all kinematic signatures and body-wave polarizations in
the symmetry-axis plane of HTI media are given by the known
VTI equations expressed through the stiffness constants ci j .
Seismic signatures for vertical transverse isotropy are particu-
larly convenient to describe in Thomsen notation (Tsvankin,
1996), so it is natural to introduce the Thomsen parameters
for this “equivalent” VTI medium. These parameters (I will
denote them with the superscript V ) are represented through
the stiffness coefficients ci j using the same equations as those
used by Thomsen (1986) in VTI media:

ε(V ) ≡ c11 − c33

2c33
, (9)

δ(V ) ≡ (c13 + c55)2 − (c33 − c55)2

2c33(c33 − c55)
, (10)

γ (V ) ≡ c66 − c44

2c44
. (11)

FIG. 2. Symmetry plane [x1, x3] of a transversely isotropic
medium with the symmetry axis pointing either in the x3 (VTI)
or in the x1 (HTI) direction. The slowness surface in the symme-
try-axis plane remains the same if the HTI medium is replaced
with the equivalent VTI model.

To complete this Thomsen-style description of wave prop-
agation in the symmetry-axis plane of HTI media, I need to
specify two “isotropic” quantities—the vertical phase (and
group) velocities of the P-wave and one of the S-waves:

VPvert =
√
c33

ρ
, (12)

VS⊥vert =
√
c55

ρ
. (13)

The vertical velocity of the other (fast) shear wave is given by

VS‖vert =
√
c44

ρ
= VS⊥vert√

1 + 2γ (V )
. (14)

To obtain kinematic seismic signatures (e.g., NMO veloci-
ties), polarizations, and plane-wave reflection coefficients in
the symmetry-axis plane of HTI media, it is sufficient to sub-
stitute the Thomsen parameters defined above into the known
VTI equations. P − S⊥ velocities and polarizations are con-
trolled by VPvert, VS⊥vert, ε

(V ), and δ(V ), while the S‖-wave ve-
locity depends on VS‖vert and γ (V ).

The relations between this set of Thomsen parameters and
the generic Thomsen coefficients are given in Appendix A.
Note that if the vertical and horizontal P-wave velocities are
equal to each other [ε(V ) = 0], the phase and group velocities of
the P- and S⊥-waves in the symmetry-axis plane are symmetric
with respect to the 45◦ angle. As a result, in this case P − S⊥

velocities do not change if I rotate the symmetry axis by 90◦,
and δ(V ) is equal to δ(R) [ε(V ) = ε(R) = 0]. The same holds for
the S‖-wave if γ (R) = 0, but this is the trivial case of a medium
with no S‖-wave velocity anisotropy.

Although the direct analogy between HTI and VTI media
is limited to the single symmetry plane that contains the sym-
metry axis, the anisotropic coefficients of the equivalent VTI
medium turn out to be responsible for the azimuthal depen-
dence of NMO velocity as well.

NORMAL MOVEOUT FROM A HORIZONTAL REFLECTOR

NMO velocity in symmetry planes

First, let us consider the influence of anisotropy on the
normal-moveout velocity for survey lines in the planes of sym-
metry of an HTI layer (Figure 1). If the CMP line is perpen-
dicular to the symmetry axis, the incident and reflected rays
are confined to the isotropy plane, and the NMO velocities of
each wave are just equal to the corresponding vertical veloci-
ties. Henceforth, therefore, I consider only the symmetry plane
that contains the symmetry axis (the “symmetry-axis” plane).

The simplest way to obtain NMO velocities in the symmetry
plane is to use the known NMO equations for vertical trans-
verse isotropy (e.g.,Thomsen, 1986) and the analogy between
VTI and HTI media described in the previous section. Alterna-
tively, as shown in Appendix C, normal-moveout velocity can
be found directly from the phase-velocity equations for hori-
zontal transverse isotropy. Both approaches lead to the same
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expression for the NMO velocity of the P-wave, valid for any
strength of the anisotropy:

Vnmo[P-wave] = VPvert

√
1 + 2δ(V )

= V (R)
P0

√
1 − 2

[
ε(R) − δ(R)

]
1 + 2ε(R)

/
f (R)

, (15)

f (R) ≡ 1 −
[
V (R)
S0

/
V (R)
P0

]2
,

in accordance with the corresponding VTI equation (1) and the
analogy between VTI and HTI media. Here, δ(V ) is expressed
through the generic Thomsen coefficients in equation (A-9).
As discussed below, the parameter δ(V ) for HTI media is typ-
ically negative, and the NMO velocity in the symmetry-axis
plane usually is smaller than the vertical velocity. In contrast,
for vertical transverse isotropy, δ may be both positive and neg-
ative, but most experimental data show that NMO velocity over
VTI formations (such as shales) is higher than the rms verti-
cal velocity (e.g., Banik, 1984), which indicates positive values
of δ.

As discussed in the previous section, for ε(V ) = ε(R) = 0 the
P-wave phase and group velocity in the plane containing the
symmetry axis are symmetric with respect to the 45◦ angle, and
the NMO velocities an terms of δ(R) and δ(V ) become identi-
cal. Note that the symmetry-direction shear-wave velocity V (R)

S0
contributes just to the term quadratic in the anisotropic coef-
ficients ε(R) and δ(R) and, therefore, has only a small impact on
the P-wave NMO velocity.

Clearly, the parameter δ(V ) is much more convenient in
describing the P-wave NMO velocity than are the generic
Thomsen coefficients defined with respect to the symmetry axis.
Also note that not just the moveout velocities, but also non-
hyperbolic moveout equations for vertical transverse isotropy
(e.g., Tsvankin and Thomsen, 1994) remain entirely valid in
the symmetry-axis plane of HTI media, if the parameters of
the equivalent VTI medium are used.

For weak anisotropy (|δ(V )| ¿ 1, |ε(R)| ¿ 1, |δ(R)| ¿ 1), I
can simplify equation (15) by retaining only the terms linear in
the anisotropic coefficients:

Vnmo[P-wave]≈VPvert
[
1 + δ(V )]≈V (R)

P0

[
1 + δ(R) − ε(R)].

(16)
Equation (16) coincides with the expression given in Sena

[1991, equation (A-10)], who calls the NMO velocity the
“skewed” moveout velocity. Note that the corresponding equa-
tion (12a) in Thomsen (1988) is in error.

Similarly, the exact NMO velocity for the wave S⊥ is given
by equation (2) as

Vnmo[S⊥-wave] = VS⊥vert

√
1 + 2σ (V )

= V (R)
S0

√
1 + 2σ (R)

1 + 2ε(R)
/
f (R)

, (17)

with

σ (V ) =
(
VPvert

VS⊥vert

)2[
ε(V ) − δ(V )]. (18)

Since for the S⊥-wave the velocities in the symmetry direc-
tion and in the perpendicular (isotropy) plane are identical,
VS⊥vert = V (R)

S0 . As for P-waves, the S⊥-wave NMO velocity in
HTI media is given by the VTI equation in terms of the generic
Thomsen parameters, if ε(V ) = ε(R) = 0. In the limit of weak
anisotropy, equation (17) becomes

Vnmo[S⊥-wave] ≈ VS⊥vert

[
1 + σ (V )] ≈ V (R)

S0

[
1 + σ (R)].

(19)
Since VS⊥vert = V (R)

S0 , for weak anisotropy the NMO velocity of
the wave S⊥ has the same form whether it is expressed through
σ (V ) or σ (R) (in the weak-anisotropy approximation, σ (V ) =
σ (R)). Equation (19) is equivalent to equation (12b) in Thomsen
(1988) presented in a different form.

For the S‖-wave, a 90◦ rotation of the symmetry axis amounts
to interchanging the elliptical axes, and the NMO velocity re-
mains equal to the horizontal shear-wave velocity as

Vnmo[S‖-wave] = VS‖vert

√
1 + 2γ (V ) = V (R)

S0 . (20)

Azimuthal dependence of NMO velocity

Normal-moveout velocity in symmetry planes of any
anisotropic medium can be studied using the equation in
Tsvankin (1995) derived under the assumption that the phase-
and group-velocity vectors of the reflected waves lie in the in-
cidence plane. For a survey line that is neither parallel nor
perpendicular to the horizontal symmetry axis (Figure 3), the
phase-velocity vectors may deviate from the incidence plane,
thus making this equation inaccurate. A more general NMO
expression for a horizontal HTI layer that fully honors the 3-D
behavior of the phase- and group-velocity vectors is obtained
in Appendix B:

V 2
nmo = V 2

vert
1 + A

1 + A sin2 α
, (21)

FIG. 3. Common-midpoint reflections over a transversely
isotropic layer with a horizontal axis of symmetry. The sym-
metry axis makes the angle α with the survey (CMP) line. As
shown in Appendix B, the incident and reflected rays of pure
modes lie in the incidence (sagittal) plane, while the corre-
sponding phase-velocity vectors may deviate from the plane.
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where α is the angle between the common depth-point (CMP)
line and the symmetry axis, and A is an anisotropic term given
by

A = 1
V

d2V

dθ2

∣∣∣∣
θ=90◦

. (22)

Here, V is the phase velocity as a function of the phase an-
gle θ with the symmetry axis; the phase velocity and its second
derivative are evaluated at the vertical phase (and group) direc-
tion. Equation (21) is valid for HTI models with any strength
of the anisotropy and can be used for all three pure modes
(P, S⊥, S‖).

Two special cases considered in the previous section corre-
spond to the survey line parallel (α = 0◦) and perpendicular
(α = 90◦) to the symmetry axis. In the latter case (α = 90◦),
the incident and reflected rays lie in the isotropy plane, and
the NMO velocity from equation (21) becomes equal to the
vertical velocity,

Vnmo(α = 90◦) = Vvert. (23)

If the survey line is confined to the symmetry-axis plane (i.e.,
is parallel to the symmetry axis, α = 0), equation (21) reduces
to

V 2
nmo(α = 0) = V 2

vert(1 + A) = V 2
vert

(
1 + 1

V

d2V

dθ2

∣∣∣∣
θ=90◦

)
,

(24)
which is identical to the symmetry-plane NMO equation of
Tsvankin (1995) for the special case of a horizontal reflector.
Equation (24) has been discussed in detail for each wave type
(P, S⊥, S‖) in the previous section.

The most interesting and somewhat surprising feature of
equation (21) is that the influence of anisotropy on NMO veloc-
ity is absorbed just by the axis orientation and a single velocity
term A that can be rewritten as

A = V 2
nmo(α = 0)
V 2

vert
− 1. (25)

Using equations (25), (15), (17), and (20), I can identify A
for different wave types as

A[P-wave] = 2δ(V ), (26)

A[S⊥-wave] = 2σ (V ), (27)

A[S‖-wave] = 2γ (V ). (28)

Equations (26)–(28) demonstrate that the azimuthal depen-
dence of NMO velocity for horizontal transverse isotropy is
governed by the Thomsen parameters of the equivalent VTI
medium. Therefore, the generic Thomsen coefficients are not
needed even in the description of moveout velocity outside the
symmetry planes.

In the weak-anisotropy approximation∣∣∣∣ 1
V

d2V

dθ2

∣∣∣∣
θ = 90◦

∣∣∣∣ ¿ 1,

equation (21) becomes simply

V 2
nmo = V 2

vert(1 + A cos2 α). (29)

Equation (29) can be reduced to the expression for the
“skewed” moveout velocity given in Sena (1991) in terms of
the generic Thomsen parameters for each mode individually.

Thus, the exact NMO velocity from horizontal reflectors in
HTI media is a relatively simple function of three parameters:
the vertical velocity, the azimuthal angle between the survey
line and the symmetry axis, and the anisotropic term A.

PARAMETER ESTIMATION USING NMO VELOCITY

The NMO equations given above can be used to invert the
moveout velocities for the anisotropic parameters. One of the
potential complications in this inversion is the distortion caused
by nonhyperbolic moveout. Indeed, reflection moveout even
in a homogeneous anisotropic medium is generally nonhyper-
bolic, and the moveout velocity on a finite-length spread may
be different from the “zero-spread” NMO velocity (Hake et al.,
1984). However, as shown by Tsvankin and Thomsen (1994) for
horizontal reflectors beneath VTI media, anisotropy-induced
deviations of P-wave moveout from hyperbolic for conven-
tional spread lengths (close to the distance between the CMP
and the reflector) usually are small. SV -wave moveout on these
spreads is also close to hyperbolic for the most common, pos-
itive values of the difference ε − δ (Tsvankin and Thomsen,
1994). [It should also be mentioned that the magnitude of P-
wave nonhyperbolic moveout in VTI media usually decreases
with reflector dip (Tsvankin, 1995).] These conclusions can be
applied to moveout measurements in the vertical plane of HTI
media that contains the symmetry axis by using the limited
equivalence between VTI and HTI media. Note that the S‖-
wave moveout in this plane is purely hyperbolic for a single
layer, both for horizontal and dipping reflectors (Uren et al.,
1990), and deviates from a hyperbola only due to ray bending
in stratified media. Obviously, reflection moveouts of all three
waves are purely hyperbolic on the survey line in the isotropy
plane of an HTI layer (α = 90◦).

A synthetic example demonstrating the feasibility of recov-
ering the P-wave NMO velocity outside the symmetry planes
of a horizontal HTI layer is displayed in Figure 4. HTI mod-
els used in this test correspond to realistic cracked media
(Thomsen, 1995) with the magnitude of nonhyperbolic move-
out in the symmetry-axis plane ranging from moderate for
model (a) to large for model (b). [The estimates of the nonhy-
perbolic moveout in the symmetry-axis plane are based on the
analytic expressions given by Tsvankin and Thomsen (1994).]
The moveout velocity was determined by least-squares fitting
of the hyperbolic moveout equation to the exact reflection trav-
eltimes calculated using a 3-D ray-tracing code. Despite some
deviations caused by nonhyperbolic moveout, the moveout ve-
locity on a conventional-length spread (equal to the reflector
depth) is close to the analytic NMO velocity [equation (21)] for
the full range of azimuthal angles. In fact, the maximum differ-
ence between the two velocities is observed in the symmetry-
axis plane, where moveout is described by the known VTI
equations. It should be emphasized that even if the moveout
curve does deviate significantly from a hyperbola, the NMO ve-
locity can still be recovered using nonhyperbolic (e.g., quartic)
moveout correction.

Despite the fact that the NMO equations derived in the
previous section are valid for a single HTI layer, they can
be applied in a straightforward fashion to certain types of more
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realistic vertically inhomogeneous models. If the survey line
lies in a vertical symmetry plane of any anisotropic medium, I
can use the generalized Dix equation presented by Alkhalifah
and Tsvankin (1995). In the case when all reflectors are hor-
izontal, this equation reduces to the standard Dix (1995) for-
mula that allows one to obtain the NMO velocity for a given
layer from the NMO velocity for the reflections from the top
and bottom of this layer. This implies that the Dix equation
works in the two planes of symmetry of a stack of HTI layers
with a uniform orientation of the symmetry axis. In a more gen-
eral case, a model may be composed of vertically and horizon-
tally transversely isotropic layers with the symmetry axis in HTI
media pointing in either of two arbitrary but orthogonal direc-
tions. Then these directions will determine two thoroughgoing
vertical symmetry planes of this anisotropic model in which the
Dix equation is entirely valid. Thus, we can recover the inter-
val (single-layer) NMO velocities in the symmetry planes of
VTI–HTI horizontally layered media by the conventional Dix
differentiation procedure. For a thorough discussion of reflec-
tion moveout in layered VTI media and numerical examples,
see Tsvankin and Thomsen (1994); their results are fully appli-
cable in the symmetry planes of horizontally layered VTI–HTI
models.

Although the Dix equation does not work exactly outside the
symmetry planes, it can still be expected to provide a good ap-
proximation in HTI models with weak and moderate azimuthal
anisotropy, for which out-of-plane effects can be ignored (Sena,
1991). Performance of the Dix formula and the influence of
nonhyperbolic moveout outside the vertical symmetry planes
of stratified HTI media with pronounced anisotropy require a
separate study that will be described in a sequel paper. Apart
from problems caused by anisotropy, the Dix differentiation
procedure in HTI media has the same major limitation as
in isotropic media: the accuracy of the estimation of interval
NMO velocities becomes inadequate for thin layers. For reser-
voirs with a relatively small thickness, the azimuthal variation
of the reflection coefficient may be a more reliable diagnostic
of azimuthal anisotropy (Rüger and Tsvankin, 1995).

In the following, it is assumed that the NMO velocity for a
horizontal layer of interest [equation (21)] has been obtained

a) b)

FIG. 4. The influence of nonhyperbolic moveout on the estimation of P-wave normal-moveout velocity. The solid
curve represents the moveout velocity determined by fitting a straight line to the exact t2 − x2 curves on the
spread length equal to the reflector depth (1.5 km); the traveltimes were generated using a 3-D ray-tracing code.
The dashed curve is the normal-moveout (zero-spread) velocity from equation (21). The model parameters are
(a) VPvert = 2.66 km/s, ε(V ) = −0.14, δ(V ) = −0.18 [V (R)

P0 = 2.25 km/s, ε(R) = 0.2, δ(R) = 0.1]. (b) VPvert = 2.62 km/s,
ε(V ) = −0.045, δ(V ) = −0.20 [ V (R)

P0 = 2.5 km/s, ε(R) = 0.05, δ(R) = −0.15 ].

using the reflections from the top and bottom of this layer. As
mentioned above, in the case of a horizontal symmetry axis
we can exploit the azimuthal dependence of reflection data by
measuring NMO velocities on CMP lines with different orien-
tation (e.g., using 3-D surveys). It should be mentioned that
a small reflector dip does not pose a serious problem for this
inversion because NMO velocity for mild dips (up to 5–10◦) is
close to the zero-dip value, even if the influence of anisotropy is
pronounced (Tsvankin, 1995; Alkhalifah and Tsvankin, 1995).

In principle, we can expect to recover the three unknowns
(the vertical velocity Vvert, the axis orientation, and A) from
three NMO-velocity measurements at different azimuthal an-
gles (i.e., on nonparallel lines) for any wave type. NMO velocity
[equation (21)] can be represented as an ellipse in the horizon-
tal plane:

V 2
nmo = V 2

nmo1V
2

nmo2

V 2
nmo1 sin2 α + V 2

nmo2 cos2 α
, (30)

where Vnmo1 = Vnmo(α = 0◦) and Vnmo2 = Vnmo(α = 90◦).
Equation (30) shows that azimuthal moveout measurements
make it possible to recover the NMO velocity in the symmetry
planes and their orientation, but are not sufficient to distinguish
between the isotropy plane and the symmetry-axis plane. To
identify the symmetry direction and resolve all three parame-
ters unambiguously, we have to take into account that NMO
velocity is typically higher in the isotropy plane (parallel to the
cracks).

Evidently, the parameter-estimation procedure becomes
much more straightforward if the direction of the symmetry
axis is known. For instance, for fractured reservoirs the crack
orientation that determines the azimuth of the symmetry axis
can sometimes be obtained from shear waves, geologic infor-
mation, or borehole data (e.g., tiltmeter, breakouts). Then the
NMO velocities in two azimuthal directions making different
angles with the symmetry axis are sufficient to invert for the
vertical velocity and the coefficient A. For instance, we may be
able to determine the vertical velocities by performing move-
out analysis on the survey line normal to the symmetry axis
[equation (23)]. Then the NMO velocities on a line with any
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other orientation make it possible to find the anisotropic pa-
rameter A. Finally, if both the axis orientation and the vertical
velocity are known, a single value of NMO velocity (not too
close to the isotropy plane) can be inverted for the parameter A.
Once the moveout inversion has been carried out for one of
the modes (e.g., for the P-wave), a single NMO velocity for
any other mode (say, S⊥) is sufficient to find the anisotropic
parameter A for this wave since the vertical velocity (VS⊥vert)
in this case can be found from VPvert and the vertical P and S⊥

traveltimes.
Although A is determined by the parameters of the equiv-

alent VTI model [δ(V ), σ (V ), or γ (V ), depending on the wave
type], such an algorithm for moveout inversion cannot be de-
vised for vertical transverse isotropy; obviously, in VTI media,
moveout velocities do not vary with azimuth. As mentioned
above, NMO velocities in VTI media are not sufficient to in-
vert for the vertical velocities and anisotropic coefficients, even
if both P and shear data are used.

Estimation of the shear-wave splitting parameter

It is believed that the most common physical reason for hor-
izontal transverse isotropy is the presence of parallel vertical
cracks (fractures) embedded in an isotropic medium (Gupta,
1973; Crampin, 1985). Thus, the question to be answered next
is: what kind of information about the properties of crack sys-
tems can be obtained from moveout data?

An important parameter in the characterization of fractured
reservoirs is the crack density (ζ ) that is proportional to the
product of the number of cracks per unit volume and their
mean cubed diameter. Although all three generic anisotropic
coefficients [ε(R), δ(R), γ (R)] are dependent on ζ , the parameter
most directly related to the crack density is γ (R), which governs
the degree of shear-wave splitting at vertical incidence. For
parallel, circular ellipsoidal (penny-shaped) cracks distributed
in a porous isotropic rock, γ (R) is given by (Thomsen, 1995)

γ (R) = 8
3

1 − P

2 − P
ζ, (31)

where P is the Poisson’s ratio of the dry isotropic porous
medium.

It is easy to see that for plausible values of the Poisson’s
ratio the coefficient 8(1 − P)/[3(2 − P)] is close to unity, and
γ (R) ≈ ζ . Therefore, for penny-shaped cracks, measurements
of γ (R) provide a good direct estimate of the crack density.

The parameter γ (R) in HTI media is usually obtained directly
from the fractional difference between the vertical S⊥ and S‖

velocities using the traveltimes of split shear waves at vertical
incidence (e.g., Crampin, 1985; Thomsen, 1988):

γ (R) = 1
2

(
V 2
S‖vert

V 2
S⊥vert

− 1

)
. (32)

The above results suggest an alternative way of recovering
γ (R) using just S‖ moveout data. The azimuthal dependence of
the S‖-wave NMO velocities can be inverted for γ (V ) = A/2
and, consequently, for γ (R) [equations (21), (28), and [(A-10)].
If the symmetry direction is known, this inversion requires the
S‖-wave NMO velocities on two lines with different orienta-
tion. In the simplest case of the lines parallel and perpendicular
to the symmetry axis,

γ (R) = 1
2

[
V 2

nmo(α = 90◦)
V 2

nmo(α = 0)
− 1

]
. (33)

Note that if both S‖ and S⊥ data were available, the ra-
tio of the vertical shear-wave velocities could be obtained not
only from the vertical traveltimes, but also from the respective
NMO velocities (e.g., measured in the isotropy plane). Then
γ (R) could be calculated from equation (32), which would pro-
vide useful redundancy in the evaluation of this parameter.

Next, I discuss the possibility of obtaining the shear-wave
splitting parameter from the moveout velocities of the P and
S⊥-waves. As shown by Thomsen (1995), the relations between
ε(R), δ(R) (and, consequently, ε(V ) and δ(V )) and the crack density
are complicated by such quantities as the incompressibility of
the solid grains and the fluid in the cracks, as well as by the
so-called “fluid influence factor.” This makes the inversion of
ε(V ) and δ(V ) for the crack density an ambiguous procedure,
unless detailed information about the physical properties of
the rock is available. Since the moveouts of the P and S⊥-
waves are controlled by the vertical P and S⊥ velocities, δ(V ),
and ε(V ), it seems that there is no straightforward way to obtain
an estimate of the crack density from the NMO velocities of
the P- and S⊥-waves.

However, the main difference between general transverse
isotropy and TI media due to a system of thin parallel cracks is
that in the latter case the elastic constants satisfy the following
constraint that reduces the number of independent stiffness
coefficients from five to four (Schoenberg and Sayers, 1995;
Thomsen, 1995):

c11c33 − c2
13 = 2c44(c11 + c13). (34)

Equation (34) is written for the cracks perpendicular to the x1-
axis. Other constraints for such a medium require that ε(R) ≥ 0
[i.e., ε(V ) ≤ 0] and γ (R) ≥ 0 [i.e., γ (V ) ≤ 0].

Replacing the stiffness coefficients with γ (R) [equations (11)
and (A-10)] and the parameters ε(V ) and δ(V ) of the equivalent
VTI medium [equations (9) and (10)], we find (assuming c13 +
c55 > 0),

ζ ≈ γ (R)

= V 2
Pvert

2V 2
S⊥vert

ε(V )
[
2 − 1

/
f (V )

] − δ(V )

1 + 2ε(V )
/
f (V ) +

√
1 + 2δ(V )

/
f (V )

,

(35)

with f (V ) ≡ 1 − V 2
S⊥vert

/V 2
Pvert.

Equation (35) expresses γ (R) through the parameters that
can be determined from P and S⊥ moveout data. Although
Vvert and A are the only two medium parameters (except for
the axis orientation) that can be obtained for any single wave
type, we can combine P and S⊥-waves to resolve the required
anisotropic coefficients individually. Indeed, the P-wave NMO
velocity from horizontal reflectors can provide the parameters
VPvert and δ(V ). By inverting S⊥-wave NMO data, we can ob-
tain the vertical S⊥-wave velocity VS⊥vert and the anisotropic
term A = 2σ (V ) [equation (18)]. In fact, it is sufficient to
find one of the vertical velocities, since the second velocity
can then be recovered from the ratio of the vertical P and
S⊥ traveltimes.Using the coefficients VPvert, δ

(V ), VS⊥vert, and
σ (V ), we can find the parameter ε(V ) from equation (18). Once
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VPvert/VS⊥vert, δ
(V ), and ε(V ) have been recovered, the parame-

ter γ (R) can be calculated directly from equation (35).
In general, P-wave NMO velocities from horizontal reflec-

tors do not provide enough information to determine γ (R).
However, P-wave moveout data, combined with an approxi-
mate value of the ratio of the vertical velocities (VPvert/VS⊥vert),
are sufficient to estimate the shear-wave splitting param-
eter if the P-wave velocity along the symmetry direction
(V (R)

P0 ) has been obtained (e.g., from head-wave traveltimes,
crosshole tomography, or nonhyperbolic moveout). Then ε(V )

is given by

ε(V ) = 1
2

(
V (R)
P0

VPvert

)2

− 1

 ,

and all parameters in the right-hand side of equation (35) are
known. Below, I suggest an alternative way of estimating ε(V )

using the dip-dependence of P-wave NMO velocity.
Of course, the value ofVPvert/VS⊥vert cannot be found from P-

wave moveout alone, but it is usually possible to obtain a rough
estimate of this ratio from other information, such as well logs.
[If, instead, the ratio VPvert/VS‖vert is known, equation (35) for
γ (R) can be modified in an obvious way using equation (32).]
Since errors in VPvert/VS⊥vert directly propagate into γ (R) [as
determined by equation (35)], evaluation of the shear-wave
splitting parameter using P-wave data may not be quantita-
tively accurate. Nonetheless, the magnitude of the splitting pa-
rameter is relatively small, and even a substantial percentage
error in γ (R) may not prevent this algorithm from producing
reliable qualitative estimates. For instance, suppose γ (R) goes
up from a value of 0.05 in one location to 0.15 in another.
Even an error of, say, 30% in the squared velocity ratio would
not prevent detection of this anomaly using P-wave moveout
parameters and equation (35). Thus, the primary application
of the method based on just P-wave data is to identify areas
of high values of γ (R) that correspond to intensely fractured
zones.

The inversion of P-wave data for the shear-wave splitting
parameter becomes particularly simple in the special case of
the equal vertical and horizontal (along the symmetry direc-
tion) velocities of the P-wave (ε(V ) = 0), which corresponds
to negligible equant porosity and “very thin” fluid-filled cracks
(for quantitative estimates, see Thomsen, 1995). Such a model
may be typical, for instance, for fractured coals, of primary im-
portance in methane production. If ε(V ) = 0, equation (35)
reduces to

γ (R) = V 2
Pvert

2V 2
S⊥vert

−δ(V )

1 +
√

1 + 2δ(V )
/
f (V )

. (36)

Since the parameter δ(V ) can be found from P-wave NMO
velocity, P-wave data in this case are sufficient to obtain the
shear-wave splitting parameter given an approximate value of
the VPvert/VS⊥vert ratio. Then the combination of P and S⊥ data
may be necessary only to get the exact ratio VPvert/VS⊥vert.

In the limit of weak anisotropy [|ε(V )| ¿ 1, |δ(V )| ¿ 1], equa-
tion (35) becomes

γ (R) = V 2
Pvert

4V 2
S⊥vert

[
ε(V )

(
2 − 1

f (V )

)
− δ(V )

]
. (37)

If VPvert/VS⊥vert = 2, equation (37) further simplifies to

γ (R) = 0.67ε(V ) − δ(V ). (38)

Equation (38) suggests that for weakly anisotropic HTI mod-
els the parameter γ (R) is close to the difference between ε(V )

and δ(V ). As demonstrated below, this difference can be eval-
uated using the dip-dependence of the P-wave NMO veloc-
ity. Also, γ (R) can be roughly estimated using just the S⊥-
wave NMO velocity, which provides the parameter σ (V ) =
V 2
Pvert/V

2
S⊥vert

[ε(V ) − δ(V )].
In terms of the generic Thomsen coefficients, the weak-

anisotropy approximation for γ (R) can be rewritten as (using
the results of Appendix A)

γ (R) =
[
V (R)
P0

2V (R)
S0

]2 [
ε(R)

1 − [
V (R)
S0

/
V (R)
P0

]2 − δ(R)

]
, (39)

in agreement with Thomsen (1995). Since γ (R) is nonnegative, it
is clear from equation (39) that the difference between ε(R) and
δ(R) for TI media caused by parallel cracks is typically positive.

Once the crack density has been estimated from the param-
eter γ (R) (for ellipsoidal cracks), the coefficients ε(V ) and δ(V )

can be used to obtain more information about the properties
of the crack system (e.g., about the fluid filling the cracks).

Determination of phase velocity

The phase-velocity function governs group velocities, travel-
times, and other kinematic properties of body waves. It is also
needed in depth imaging, such as prestack depth migration
for HTI media. Hence, a question that arises is what informa-
tion about phase velocity can be obtained from the vertical
velocities and parameters A determined using moveout data
for different modes.

The phase velocity of P- and S⊥-waves in the symmetry-
axis plane (that contains the symmetry axis) can be found us-
ing equation (C-2) for vertical transverse isotropy (Tsvankin,
1996):

V 2(θ̄ )
V 2
Pvert

= 1 + ε(V ) sin2 θ̄ − f (V )

2
± f (V )

2

×

√√√√[
1 + 2ε(V ) sin2 θ̄

f (V )

]2

− 8
[
ε(V ) − δ(V )

]
sin2 θ̄ cos2 θ̄

f (V )
,

(40)

where the plus sign corresponds to the P-wave, and the minus
to the S⊥-wave; θ̄ is the phase angle with respect to vertical
(symmetry direction of the equivalent VTI medium). Replac-
ing θ̄ with the phase angle θ with respect to the symmetry axis
(θ̄ = 90◦ − θ) yields

V 2(θ)
V 2
Pvert

= 1 + ε(V ) cos2 θ − f (V )

2
± f (V )

2

×
√[

1 + 2ε(V ) cos2 θ

f (V )

]2

− 8
[
ε(V ) − δ(V )

]
sin2 θ cos2 θ

f (V )
.

(41)
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Although equation (41) has been derived just for the
symmetry-axis plane, it expresses phase velocity in HTI media
through the phase angle θ with the symmetry axis for any value
of θ . Since phase velocity in TI media depends only on the
phase angle with the symmetry axis, equation (41) is valid for
any phase direction, not necessarily confined to the symmetry-
axis plane.

Equation (41) makes it possible to calculate phase veloc-
ity directly from the parameters responsible for the reflection
moveout of the P- and S⊥-waves in HTI media. As shown
above, the orientation of the symmetry axis can be deter-
mined from the azimuthal dependence of NMO velocities. All
other unknown quantities needed to obtain phase velocity us-
ing equation (41) can be found by combining P and S⊥ NMO
velocities from horizontal reflectors (see the analysis in the
previous section).

However, the question of most practical importance is
whether P-wave NMO velocity alone contains enough in-
formation to build the P-wave phase-velocity function. Note
that, in accordance with results for VTI media (Tsvankin and
Thomsen, 1994), the shear-wave vertical velocity hidden in the
coefficient f (V ) has only a small influence on the P-wave phase
velocity. Thus, the three parameters to be determined are the
P-wave vertical velocity VPvert and the anisotropic coefficients
ε(V ) and δ(V ). In general, just two of them (VPvert and δ(V )) can
be recovered from P-wave NMO velocities from horizontal
reflectors. Nonetheless, the symmetry–direction velocity and,
consequently, the parameter ε(V ) may be known from addi-
tional data or, for some formations, ε(V ) is equal to zero (see
the discussion in the previous section). As shown below, the
presence of dipping events makes it possible to obtain ε(V )

from the dip dependence of P-wave NMO velocities.
In the weak-anisotropy approximation, P-wave phase veloc-

ity from equation (41) reduces to a simple expression

V (θ) = VPvert
[
1 + δ(V ) sin2 θ cos2 θ + ε(V ) cos4 θ

]
.

For the wave S‖ the anisotropy is elliptical, and phase velocity
is given by

V (θ)[S‖-wave] = VS‖vert

√
1 + 2γ (V ) cos2 θ.

Both the vertical velocity VS‖vert and the coefficient γ (V ) can be
found from the azimuthally dependent NMO velocity of the
S‖-wave [equations (21) and (28)].

NMO VELOCITY FROM DIPPING REFLECTORS

Normal-moveout velocity from both horizontal and dipping
reflectors in symmetry planes of any homogeneous anisotropic
medium, including horizontal transverse isotropy, can be stud-
ied using the following equation given in Tsvankin (1995):

Vnmo(φ) = V (φ)
cos φ

√
1 + 1

V (φ)
d2V

d θ̄2

∣∣∣∣
θ̄=φ

1 − tan φ

V (φ)
dV

d θ̄

∣∣∣∣
θ̄=φ

, (42)

where V is phase velocity, θ̄ is the phase angle with vertical, and
φ is the dip angle of the reflector. Equation (42) is strictly valid
for 2-D wave propagation, with phase and group velocities
of the reflected waves confined to the incidence plane. This

implies that the incidence plane should represent both a sym-
metry plane of the medium and the dip plane of the reflector.

Equation (42) is applied below to the symmetry-axis plane
of HTI media. To comply with the assumptions behind
equation (42), the incidence plane is taken to be the dip plane
of the reflector, i.e., the strike of the reflector is perpendicular
to the symmetry axis. The dip dependence of NMO velocity in
the isotropy plane is trivial because velocity is independent of
propagation angle. For any other survey (CMP) line making an
arbitrary angle with the symmetry axis, equation (42) can be
used only under the assumption of weak azimuthal anisotropy.

For homogeneous, isotropic media, equation (42) reduces to
the simple cosine-of-dip relationship (Levin, 1971),

Vnmo(φ) = Vnmo(0)
cos (φ)

. (43)

Velocity variations with the phase angle θ̄ [represented
by the derivatives in equation (42)] lead to deviations from
the cosine-of-dip formula (43). Therefore, NMO velocities
from dipping reflectors can provide useful information about
anisotropy (Alkhalifah and Tsvankin, 1995). Description of the
dip-dependent NMO velocity is also important in developing
dip-moveout (DMO) algorithms, as well as other seismic pro-
cessing methods for anisotropic media (Anderson et al., 1996).
These observations, discussed originally for VTI media, pertain
to the symmetry-axis plane of HTI media as well.

NMO velocity as a function of dip

Although wave propagation in the symmetry-axis plane of
HTI media can be described using VTI equations, the param-
eters of the equivalent VTI medium are different from those
conventionally used for real vertical transverse isotropy. For
instance, since in HTI media the vertical P-wave velocity is
higher than the velocity in the symmetry (horizontal) direc-
tion, the parameter ε(V ) of the equivalent VTI medium is neg-
ative, an extremely unusual case for actual media with vertical
transverse isotropy. Also, the parameter δ(V ) ≈ δ(R) − 2ε(R)

[equation (A-9)] is typically negative [since ε(R) and ε(R) − δ(R)

are usually positive] and its magnitude may be larger than that
for Thomsen’s δ in VTI media.

To understand the influence of the anisotropic parame-
ters on NMO velocity, it is convenient to apply the weak-
anisotropy approximation (|ε(V )| ¿ 1, |δ(V )| ¿ 1, |γ (V )| ¿ 1)
to equation (42). Using the equivalence with VTI media, the
P-wave NMO velocity in the symmetry-axis plane of HTI me-
dia can be represented (Tsvankin, 1995) as

Vnmo(φ) cos φ

Vnmo(0)
= 1 + δ(V ) sin2 φ

+ 3
[
ε(V ) − δ(V )] sin2 φ(2 − sin2 φ).

(44)

To separate the influence of the anisotropy, the NMO velocity
in equation (44) has been normalized by the isotropic cosine-
of-dip relationship. Since for weak anisotropy, as follows from
equations (A-8) and (A-9),

ε(V ) − δ(V ) = ε(R) − δ(R),
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the main (last) term in equation (44) is typically positive, and
the NMO velocity increases with dip faster than in isotropic
media. However, the δ-term, which is usually small in VTI me-
dia, is relatively large and negative in the HTI case. As a result,
for typical positive values of ε(V ) − δ(V ) the cosine-of-dip cor-
rected NMO velocity increases with dip much slower than in
typical VTI media with the same value of the difference be-
tween ε and δ, and the accuracy of the isotropic cosine-of-dip
relationship tends to be higher in HTI than in VTI media. Also,
in contrast with the results for vertical transverse isotropy de-
scribed in Tsvankin (1995), the dependence of P-wave NMO
velocity on dip is not tightly controlled by the difference be-
tween ε(R) and δ(R) or ε(V ) and δ(V ) (Figure 5).

The dip-dependence of NMO velocity for the waves S⊥ and
S‖ can be treated in the same fashion, using the results obtained
by Tsvankin (1995) for vertical transverse isotropy.

Parameter η and time processing in HTI media

For purposes of seismic processing, it is more convenient to
treat NMO velocity as a function of the ray parameter corre-
sponding to zero-offset reflection. Then, as shown in Alkhalifah
and Tsvankin (1995), the P-wave NMO velocity in VTI media
is governed by just two parameters: the zero-dip NMO velocity
Vnmo(0) [equation (1)] and the anisotropic coefficient η:

η = ε − δ

1 + 2δ
. (45)

Both parameters Vnmo(0) and η can be reliably recovered
from P-wave surface data using NMO velocities and ray pa-
rameters for two distinctly different dips. In VTI media, the pa-
rametersVnmo(0) andη are sufficient to perform all time-related
processing steps including NMO correction, dip-moveout re-
moval, and prestack and poststack time migration (Alkhalifah
and Tsvankin, 1995). (Note that the contribution of the shear-
wave vertical velocity to P-wave traveltimes is small.)

In essence, η is responsible for the influence of vertical trans-
verse isotropy on P-wave NMO velocity and time-related pro-
cessing in general. For elliptical anisotropy, η = 0, and NMO
equation (42) reduces to the well-known expression valid for
isotropic media:

FIG. 5. The dip-dependence of P-wave normal-moveout velocity in the symmetry plane of HTI media that
contains the symmetry axis. NMO velocity is calculated from equation (42) and divided by the isotropic equa-
tion (43). The curves on the left plot correspond to models with ε(R) − δ(R) = 0.1: ε(R) = 0, δ(R) = −0.1
(solid black); ε(R) = 0.1, δ(R) = 0 (gray); ε(R) = 0.2, δ(R) = 0.1 (dashed). On the right plot, ε(R) − δ(R) = 0.2:
ε(R) = 0.1, δ(R) = −0.1 (solid black); ε(R) = 0.2, δ(R) = 0 (gray); ε(R) = 0.3, δ(R) = 0.1 (dashed).

Vnmo(p) = Vnmo(0)√
1 − p2V 2

nmo(0)
, (46)

where p is the ray parameter. The contribution of anisotropy
in equation (46) is hidden in the values of the zero-dip NMO
velocity Vnmo(0) and the ray parameter p. All isotropic time-
processing methods remain valid for elliptical models, irrespec-
tive of the strength of velocity anisotropy.

Despite the uncommon values of the parameters of the
equivalent VTI model, time-related processing of P-wave data
in the symmetry-axis plane of HTI media can be carried out
using the algorithms developed for vertical transverse isotropy.
Indeed, the P-wave NMO velocities for HTI models with
the same value of η(V ) practically coincide with each other
(Figure 6a). This proves that the P-wave NMO velocity as a
function of the ray parameter is entirely controlled by the zero-
dip value Vnmo(0) and the parameter η(V ), whether the medium
has a vertical or horizontal symmetry axis. Also, as demon-
strated by Figure 6b, the resolution in η(V ) is high enough for
stable recovery of this parameter from the dip-dependence of
P-wave NMO velocity.

It is interesting that the parameter η(V ) turns out to be close
to the coefficient η(R) defined through the generic Thomsen
parameters. Indeed, using equations (A-8) and (A-9), I find

η(V ) = ε(R) − δ(R)

1 + 2δ(R)

[
1 − 2ε(R)

(
1 − 1

/
f (R)

)
1 + 2δ(R)

]−1

= η(R)

[
1 − 2ε(R)

(
1 − 1

/
f (R)

)
1 + 2δ(R)

]−1

. (47)

Thus, if we apply VTI inversion algorithms to the dip-
dependence of P-wave NMO velocity in the symmetry-axis
plane of HTI media, we get the value of η(V ). Alternatively, in
principle the parameter η(V ) can also be obtained from the P-
wave velocity in the symmetry direction (which may be known
from head waves, crosshole tomography, etc.) and the zero-
dip NMO velocity in the symmetry-axis plane without using
dipping events (Alkhalifah and Tsvankin, 1995).
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The value of η(V ) adds new information to the inversion pro-
cedure described in the previous section and makes it possi-
ble, in the following way, to estimate the shear-wave splitting
parameter γ (R) just from P-wave moveout data. As discussed
above, the parameter δ(V ) can be found using the P-wave NMO
velocity from horizontal reflectors. The presence of dipping
events makes it possible to recover ε(V ) from the parameter
η(V ). Then, given an estimate of the ratio of the P-to-S⊥ verti-
cal velocities, γ (R) can be calculated from equation (35).

Even if no other data are available, just the value of η(V ) can
be used to constrain the shear-wave splitting parameter. First,
in the special case of ε(V ) = 0, the parameter η(V ) is sufficient to
obtain δ(V ) and compute γ (R) from equation (36) (provided an
approximate ratio of the vertical P and S⊥ velocities is avail-
able). In the more general case of nonzero ε(V ), we can use the
weak-anisotropy approximation (38) and make a crude esti-
mate of γ (R) by further assuming γ (R) ≈ ε(V ) −δ(V ) ≈ η(V ). This
approximation works better for substantially different ε(V ) and
δ(V ) than for media close to elliptically anisotropic with close
values of ε(V ) and δ(V ).

DISCUSSION AND CONCLUSIONS

Horizontal transverse isotropy is usually associated with par-
allel vertical penny-shaped cracks (fractures) embedded in an
otherwise isotropic matrix. This work provides an analytic basis
for estimating the anisotropic parameters of HTI media from
normal-moveout information. The methodology is based on a
new exact equation for NMO velocities from horizontal reflec-
tors that is valid for arbitrary direction of the survey line with
respect to the axis of symmetry. Normal-moveout velocity for
any pure mode is controlled by the vertical velocity, the angle
between the symmetry axis and the survey line, and a single
effective anisotropic parameter.

Therefore, information about the true vertical velocity
(hence the reflector depth) and the principal directions of the
anisotropy can be obtained from the azimuthal dependence
of P-wave NMO velocity without using converted and shear
modes. On the other hand, if shear data are available, the sym-
metry direction can be determined from S-wave polarizations,

a) b)

FIG. 6. P-wave normal-moveout velocity in the symmetry-axis plane of HTI media calculated from equation
(42) and normalized by the expression for isotropic media (46). The dips range between 0◦ and 70◦. (a) Mod-
els with the same η(V ) = 0.2: ε(R) = 0.1, δ(R) = −0.0838 (solid black); ε(R) = 0.2, δ(R) = −0.0248 (gray);
ε(R) = 0.3, δ(R) = 0.0343 (dashed)—the curves practically coincide with each other [the ratio V (R)

S0 /V (R)
P0 = 0.55].

(b) Models with different η(V ): η(V ) = 0.1 (solid black); η(V ) = 0.2 (gray); η(V ) = 0.3 (dashed).

which simplifies the inversion of P-wave data for the vertical
velocity and anisotropy. In general, it is highly beneficial to
combine different types of data, such as moveout velocities, the
azimuthal dependence of AVO response (Rüger and Tsvankin,
1995), and polarizations of shear waves.

Analysis of the Christoffel equation for HTI media shows
that velocities and polarizations in the symmetry-axis plane
can be found using the known equations for vertical trans-
verse isotropy. Hence, not only NMO velocities but also non-
hyperbolic moveout in the symmetry-axis plane of HTI media
can be studied using the formalism developed for VTI me-
dia (e.g., Tsvankin and Thomsen, 1994). Note, however, that
point-source radiation patterns (and body-wave amplitudes in
general) in the symmetry-axis plane depend on the azimuthal
velocity variations (Tsvankin and Chesnokov, 1990) and, there-
fore, would be different in the actual HTI medium and the
equivalent VTI model. Radiation patterns in HTI media should
be calculated using the phase and group angles with the sym-
metry axis.

The analogy between HTI and VTI media makes it possible
to introduce the Thomsen coefficients of the “equivalent” VTI
medium, which are more convenient in describing reflection
seismic signatures in HTI media than are the stiffness coeffi-
cients or the generic Thomsen parameters defined with respect
to the symmetry axis. For instance, the anisotropic coefficient
that controls the azimuthally dependent P-wave NMO velocity
is equal to the parameter δ of the equivalent VTI medium.

The limited equivalence with vertical transverse isotropy
also implies that time-related 2-D processing (NMO, DMO,
time migration) of P-waves in the symmetry-axis plane of HTI
media is governed by the zero-dip NMO velocity Vnmo(0) and
the parameter η introduced by Alkhalifah and Tsvankin (1995)
for VTI media. Though the values of the Thomsen parame-
ters of the equivalent VTI medium are extremely uncommon
for truly VTI media, time-related processing of P-wave data
can still be performed by means of NMO, DMO, and migra-
tion algorithms developed for vertical transverse isotropy. The
anisotropic parameters recovered from moveout data make it
possible to reconstruct the phase-velocity function and process
data in off-symmetry planes as well. However, this processing
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cannot be carried out without a proper treatment of the 3-D
relation between phase and group velocities, which is not ac-
counted for by VTI algorithms.

If the anisotropy is caused by parallel ellipsoidal (penny-
shaped) cracks, the coefficients of the equivalent VTI model
are related to the crack density—an important parameter of
fractured reservoirs. The crack density is close to the shear-
wave splitting parameter γ , which determines the fractional
difference between the velocities of split shear waves at ver-
tical incidence. The shear-wave methods are designed to ob-
tain γ directly from the shear-wave traveltimes and reflection
amplitudes. That technology, however, has drawbacks associ-
ated with the cost of multicomponent surveys and the need
to acquire high-quality shear data suitable for reliable polar-
ization analysis. Also, shear-wave splitting yields an estimate
of a single anisotropic parameter γ , which is not sufficient for
processing of P-wave data in HTI media.

The simplest way of inverting normal-moveout velocities for
the shear-wave splitting parameter is to use the S‖-wave NMO
velocity on lines parallel and perpendicular to the symmetry
axis. However, it is also possible to infer γ from P- and S⊥-
wave NMO velocities from horizontal reflectors by using a
constraint on the elastic constants for a medium with a sys-
tem of thin parallel cracks. P-wave NMO velocity from hori-
zontal reflectors is sufficient to estimate the parameter γ only
in the special case of P-wave velocities that are equal in the
vertical and symmetry directions. Such a model, which corre-
sponds to negligible equant porosity and “very thin” fluid-filled
cracks, may be relevant for coalbed methane plays with gas pro-
duction from low-porosity fractured coals. In the general case,
P-wave NMO velocity from horizontal reflectors can be sup-
plemented with moveout from dipping events or the velocity
in the symmetry direction (obtained from cross hole tomog-
raphy, head waves, etc.) to constrain the shear-wave splitting
parameter. The equation for γ , however, includes the ratio of
the P-to-S⊥ vertical velocities that cannot be determined from
P-wave NMO velocities alone and should be estimated using
well logs or surface shear-wave data. The main application of
the P-wave inversion for the shear-wave splitting parameter is
to identify pronounced anomalies of γ and the crack density
corresponding to “sweet spots” in fractured reservoirs. Once
the crack density has been estimated from the coefficient γ ,
the other anisotropic parameters of the equivalent VTI model
can be used to obtain additional information about the physical
properties of the cracks.

While the above results provide an analytic foundation for
moveout inversion in HTI media, practical difficulties in the
implementation of the algorithms outlined above should not
be underestimated. The behavior of reflection moveout out-
side the symmetry planes of strongly anisotropic layered HTI
media requires a separate study that will be reported in a se-
quel paper. As is true for isotropic, layered media, the accuracy
of the Dix differentiation, needed to obtain the interval NMO
velocity, reduces with decreasing thickness of the layer of in-
terest. More reliable estimates of azimuthal anisotropy in thin
layers can be obtained using amplitude methods (e.g., the az-
imuthal variation of the reflection coefficient). Also, the pres-
ence of anisotropy in the uncracked medium or deviation of
the crack shapes from circular ellipsoids lead to more compli-
cated types of symmetry than horizontal transverse isotropy.
For instance, if vertical cracks are embedded in a transversely

isotropic material with a vertical symmetry axis, the medium
will have orthorhombic symmetry, which requires a special
treatment.

Although the moveout equation derived here is limited to
horizontal transverse isotropy, the same approach can be used
to study the azimuthal dependence of NMO velocities from
both horizontal and dipping reflectors in more complicated az-
imuthally anisotropic media semianalytically, without the need
to perform ray tracing.
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APPENDIX A

RELATIONS BETWEEN THE TWO SETS OF THOMSEN PARAMETERS

The “generic” Thomsen parameters are defined in the ro-
tated coordinate system in which the symmetry direction coin-
cides with the x3-axis. The relations between these Thomsen pa-
rameters and the corresponding stiffness coefficients c(R)

i j have
the same form as for vertical transverse isotropy:

V (R)
P0 ≡

√
c(R)

33

ρ
, (A-1)

V (R)
S0 ≡

√
c(R)

55

ρ
, (A-2)

ε(R) ≡ c(R)
11 − c(R)

33

2c(R)
33

, (A-3)

δ(R) ≡
[
c(R)

13 + c(R)
55

]2 − [
c(R)

33 − c(R)
55

]2

2c(R)
33

[
c(R)

33 − c(R)
55

] , (A-4)

γ (R) ≡ c(R)
66 − c(R)

44

2c(R)
44

, (A-5)

where ρ is the density [c(R)
44 = c(R)

55 ]. The parameters V (R)
P0 and

V (R)
S0 , which in VTI models correspond to the vertical P and
S-wave velocities respectively, in this case represent the P and
S-wave velocities in the symmetry (horizontal) direction. The
velocities and traveltimes of the P − S⊥-waves for horizon-
tal transverse isotropy are determined by the azimuth of the
axis and the same four generic Thomsen coefficients as for
P−SV -waves in VTI media [V (R)

P0 , V (R)
S0 , ε(R), and δ(R) ]. Further-

more, P-wave velocities and traveltimes depend mostly just on
V (R)
P0 , ε(R), and δ(R), even for strong anisotropy (Tsvankin and

Thomsen, 1994; Tsvankin, 1996).
To relate the coefficients of the equivalent VTI medium in-

troduced in the main text to the generic Thomsen parame-
ters, we have to express the stiffnesses ci jk` of the HTI model
through the components of the VTI tensor c(R)

i jk` by interchang-
ing the indices 1 and 3. Using the matrix notation (Voigt recipe),
we find the following transformation rule for the nonzero

stiffness components responsible for wave propagation in the
[x1, x3] plane:

c11 = c(R)
33 ; c33 = c(R)

11 ; c13 = c(R)
13 ; c55 = c(R)

55 ,

(A-6)
and

c44 = c(R)
66 ; c66 = c(R)

44 . (A-7)

Using equations (A-6) and (A-7) and the definition of both
sets of Thomsen parameters [equations (9)–(14), (A-1)–(A-5)],
we obtain

ε(V ) = − ε(R)

1 + 2ε(R)
, (A-8)

δ(V ) = δ(R) − 2ε(R)
[
1 + ε(R)

/
f (R)

][
1 + 2ε(R)

][
1 + 2ε(R)

/
f (R)

] , (A-9)

γ (V ) = − γ (R)

1 + 2γ (R)
, (A-10)

VPvert = V (R)
P0

√
1 + 2ε(R), (A-11)

VS⊥vert = V (R)
S0 , (A-12)

VS‖vert = V (R)
S0

√
1 + 2γ (R), (A-13)

where

f (R) ≡ 1 −
[
V (R)
S0

/
V (R)
P0

]2
. (A-14)

The S⊥-wave coefficient σ should be transformed according to

σ (V ) = σ (R)

1 + 2ε(R)
/
f (R)

. (A-15)

Equations (A-8)–(A-13) can be used to describe velocities
and polarizations in the symmetry-axis plane of HTI media, as
well as NMO velocity as a function of azimuth, in terms of the
generic Thomsen parameters.

APPENDIX B

AZIMUTHALLY DEPENDENT NMO VELOCITY IN HTI MEDIA

Here the approach suggested in Tsvankin (1995) for move-
out analysis in symmetry planes of anisotropic models is ex-
tended to an arbitrary incidence plane in transversely isotropic
media with a horizontal symmetry axis.

Suppose the symmetry axis makes the azimuthal angle α

with the common-midpoint (CMP) line (Figure B-1). Normal-

moveout (NMO) velocity is defined on CMP gathers as

V 2
nmo ≡ lim

x→0

d(x2)
d(t2)

, (B-1)

where x is the source-receiver offset and t is the two-way trav-
eltime.
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The derivation below is limited to the relatively simple case
of horizontal reflectors, but the same approach can be used to
find NMO velocity for reflections from dipping interfaces. Since
a horizontal reflector represents a symmetry plane in HTI me-
dia, the group-velocity (ray) vector of any pure (nonconverted)
reflected wave is the mirror image of the incident ray with re-
spect to the horizontal plane. This means that the incident and
reflected rays (SO and OR in Figure B-1) are confined to the
incidence (sagittal) plane, even if this plane is not a plane of
symmetry. Furthermore, since the incident and reflected rays
lie in the incidence plane and make the same angle with the re-
flector, they also make the same angle with vertical, and there
is no reflection point dispersal on CMP gathers. However, the
phase-velocity vectors of the incident and reflected waves may
deviate from the incidence plane, while still being symmetric
with respect to the reflector.

Hale et al. (1992) gave a convenient form of equation (B-1)
in terms of the one-way reflection traveltime:

V 2
nmo = 2

t0
lim
h→0

[
d

dh

(
dt

dh

)]−1

, (B-2)

where h = x/2 is half the source-receiver offset, t is the one-
way traveltime from the zero-offset reflection point to the re-
ceiver, and t0 is the two-way traveltime along the zero-offset
ray. In the case of a horizontal reflector beneath HTI media,
both the phase- and group-velocity (ray) vectors of the zero-
offset reflection are vertical. Note that the zero-offset ray is not
necessarily vertical for other azimuthally anisotropic models,
even for horizontal reflectors.

Equation (B-2) was derived under the assumption that the
specular reflection point does not change with offset. As dis-
cussed above, this assumption is satisfied for our model; more-
over, reflection point dispersal has no influence on NMO ve-
locity anyway because it contributes only to the quartic and
higher-order terms of the traveltime series (Hubral and Krey,
1980, Appendix D; Tsvankin, 1995).

FIG. B-1. Geometry of the group- and phase-velocity vectors
reflected waves in HTI media. The incident (SO) and reflected
(OR) group-velocity vectors (rays) are confined to the inci-
dence plane. The phase-velocity vector (direction OD) corre-
sponding to reflected ray OR lies in the plane formed by OR
and the axis of symmetry. Triangle RCB defines a plane normal
to the symmetry axis.

Since the derivative dt/dh represents the apparent slowness
on the CMP gather, it is equal to the projection of the slowness
vector on the CMP line:

ph = dt

dh
,

and the NMO velocity [equation (B-2)] can be rewritten as

V 2
nmo = 2

t0
lim
h→0

dh

dph
, (B-3)

Equation (B-3) remains valid for the case when the rays, as well
as the slowness vectors of the incident and reflected waves, di-
verge from the incidence plane. Thus, it can be applied to much
more complicated problems than the one considered here.

Introducing the group angle β in the incidence plane
(Figure B-1) and substituting h = z0 tan β and z0 =
Vvert t0/2(Vvert is the vertical velocity) yield

V 2
nmo = Vvert lim

β→0

d tan β

dph
. (B-4)

It is convenient to represent β and ph as function of the phase
angle θ with the symmetry axis (Figure B-1). Note that the
phase-velocity vector in transversely isotropic media always
lies in the plane formed by the symmetry axis and the group-
velocity vector. Equation (B-4) then becomes

V 2
nmo = Vvert lim

θ→90◦
d tan β

dθ

(
dph
dθ

)−1

. (B-5)

Next, it is necessary to estimate both derivatives in equa-
tion (B-5). From simple trigonometry (Figure B-1),

sin β = cos ψ

cos α
,

where ψ is the group angle of ray OR with the symmetry axis.
Then

tan β = 1

tan ψ

√
1 − sin2 α

sin2 ψ

. (B-6)

The group angle ψ can be expressed through the phase angle
θ and phase velocity V (θ) (Thomsen, 1986) as

tan ψ =
tan θ + 1

V

dV

dθ

1 − tan θ

V

dV

dθ

. (B-7)

Differentiating tan ψ with respect to θ yields (Tsvankin, 1995)

d tan ψ

dθ
=

1 + 1
V

d2V

dθ2

cos2 θ

(
1 − tan θ

V

dV

dθ

)2 . (B-8)

Using equations (B-6) and (B-8), we obtain the first derivative
in equation (B-5):

d tan β

dθ

∣∣∣∣
θ=ψ=90◦

= − 1
cos α

(
1 + 1

V

d2V

dθ2

∣∣∣∣
θ=90◦

)
. (B-9)
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Now we have to find the relation between the projection of
the slowness vector on the CMP line (ph) and the phase angle
θ . The slowness vector (which is parallel to OD in Figure B-1)
can be decomposed into two vectors parallel to sides OC and
CD of triangle OCD. Taking into account that

cos(6 RCB) = tan β sin α√
1 + tan2β sin2α

= tan α

tan ψ
,

and projecting each of the two components onto the CMP line,
we get

ph = 1
V

(cos θ cos α + sin θ sin α tan α/ tan ψ), (B-10)

with tan ψ given by equation (B-7).

Evaluating the derivative of equation (B-10) with respect to
θ yields

dph
dθ

∣∣∣∣
θ=ψ=90◦

= − 1
Vvert cos α

(B-11)

×
[

1 + sin2 α

(
1
V

d2V

dθ2

∣∣∣
θ=90◦

)]
. (B-12)

Finally, we obtain NMO velocity by substituting
equations (B-9) and (B-11) into equation (B-5):

V 2
nmo = V 2

vert

1 + 1
V

d2V

dθ2

∣∣∣∣
θ=90◦

1 + sin2 α

[
1
V

d2V

dθ2

∣∣∣∣
θ=90◦

] . (B-13)

APPENDIX C

P-WAVE NMO VELOCITY ALONG THE SYMMETRY DIRECTION

Here, I derive the P-wave normal-moveout velocity on a
line parallel to the symmetry axis directly from the phase-
velocity equation for HTI media, without using the analogy
between vertical and horizontal transverse isotropy discussed
in the main text. For a CMP gather aligned with the symmetry
axis (α = 0), equation (B-13) reduces to

V 2
nmo(α = 0) = V 2

vert

(
1 + 1

V

d2V

dθ2

∣∣∣∣
θ=90◦

)
. (C-1)

Since the term (1/V )(d2V/dθ 2) should be calculated at verti-
cal incidence, equation (C-1) coincides with NMO formula (42)
of Tsvankin (1995) for the special case of horizontal reflectors.
To evaluate NMO velocity (C-1) for the P-wave, it is conve-
nient to use the exact expression for P-wave phase velocity in
Thomsen notation (Tsvankin, 1996),[

V (θ)

V (R)
P0

]2

= 1 + ε(R) sin2 θ − f (R)

2

+ f (R)

2

√√√√(
1 + 2ε(R)sin2 θ

f (R)

)2

− 8
[
ε(R) − δ(R)

]
sin2 θ cos2 θ

f (R)
.

(C-2)

Differentiating V (θ) from equation (C-2) twice with respect
to θ , leads to

d2V

dθ2

∣∣∣∣∣
θ=90◦

= − 2V (R)
P0√

1 + 2ε(R)

[
ε(R) + ε(R) − δ(R)

1 + 2ε(R)
/
f (R)

]
.

(C-3)
Substitution of equation (A-11) for the P-wave vertical ve-

locity and equation (C-3) into NMO expression (C-1) yields

Vnmo(α = 0) = V (R)
P0

√
1 − 2

[
ε(R) − δ(R)

]
1 + 2ε(R)

/
f (R)

. (C-4)


