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Dip-moveout processing by Fourier
transform in anisotropic media

John E. Anderson™ and llya Tsvankin®

ABSTRACT

Conventional dip-moveout (DMO) processing is de-
signed for isotropic media and cannot handle angle-
dependent velocity. We show that Hale’s isotropic DMO
algorithm remains valid for elliptical anisotropy but may
lead to serious errors for nonelliptical models, even if ve-
locity anisotropy is moderate.

Here, Hale’s constant-velocity DMO method is ex-
tended to anisotropic media. The DMO operator, to
be applied to common-offset data corrected for normal
moveout (NMO), is based on the analytic expression
for dip-dependent NMO velocity given by Tsvankin.
Since DMO correction in anisotropic media requires
knowledge of the velocity field, it should be preceded by
an inversion procedure designed to obtain the normal-
moveout velocity as a function of ray parameter. For
transversely isotropic models with a vertical symmetry
axis (VTI media), P-wave NMO velocity depends on a
single anisotropic coefficient () that can be determined
from surface reflection data.

Impulse responses and synthetic examples for typical
VTI media demonstrate the accuracy and efficiency of
this DMO technique. Once the inversion step has been
completed, the NMO-DMO sequence does not take any
more computing time than the generic Hale method in
isotropic media. Our DMO operator is not limited to
vertical transverse isotropy as it can be applied in the
same fashion in symmetry planes of more complicated
anisotropic models such as orthorhombic.

INTRODUCTION

Seismic anisotropy, widely recognized as a property of many
subsurface formations of various origin (e.g., Thomsen, 1986),
may have a strong influence on all seismic processing methods,

including dip-moveout algorithms (Levin, 1990; Larner, 1993;
Tsvankin, 1995, 1996). Most constant-velocity dip-moveout
(DMO) techniques are based on the cosine-of-dip dependence
of moveout velocity on reflector dip, valid for homogeneous
isotropic media (Levin, 1971):

Vhmo (¢) = M

cos¢

€

where V,mo is normal-moveout velocity calculated in the zero-
spread limit, and ¢ is the dip angle. In isotropic media, nor-
mal moveout (NMO) velocity from equation (1) accurately
describes reflection traveltimes for any spreadlength because,
in the absence of inhomogeneity, moveout is purely hyperbolic.
For the purpose of DMO processing, moveout velocity is
usually expressed through the ray parameter (horizontal slow-
ness) p(¢) corresponding to the zero-offset reflection.
1 in
p(¢) = E:_to _Sne. )
Yo \
where to(yo) is the two-way traveltime on the zero-offset
(or stacked) section, and Yy, is the midpoint position. Using
equation (2) and taking into account that in isotropic media
Vimo(0) = V, equation (1) can be rewritten as

Vamo(p) = V”m—o(o)
A% 1- pZVanO(O)
Angular velocity variations in anisotropic media lead to er-
rors in the isotropic relationships (1) and (3). Tsvankin (1995)
(hereafter referred to as Paper I) derived an analytic equation
for NMO velocity from dipping reflectors in anisotropic media
and studied the error of conventional DMO for transversely
isotropic models. He concluded that the dip-dependence of the
P-wave moveout velocity for transverse isotropy with a verti-
cal symmetry axis (VTI media) is controlled, to a significant
degree, by the difference between the Thomsen (1986) param-
eterse and 8. If e — § > 0 (typical case), the cosine-of-dip cor-
rected moveout velocity may be larger significantly than the
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moveout velocity for a horizontal reflector. Even for moderate
values of e — § = 0.1 and € < 0.2, the error of the isotropic
equation (1) reaches 25% at 45° dip and 30%-35% at a dip of
60°. The errors in equation (3) for positive € — § turn out to be
even higher than those in equation (1) (Paper I).

Since dip-moveout removal is an important step in the con-
ventional processing flow (NMO-DMO-poststack migration),
any errors in DMO will propagate into the final seismic image
(e.g., dipping reflectors may be missed or dimmed because of
misstacking). Clearly, there is a need to develop dip-moveout
algorithms capable of handling transversely isotropic media
and, in the future, more complicated anisotropic models. Uren
et al. (1990) showed that Forel and Gardner DMO (1988) can
be updated and applied in a straightforward way to ellipti-
cally anisotropic models. However, elliptical anisotropy is no
more than aspecial case of transverse isotropy that corresponds
to e = § and cannot be considered as typical for real rocks
(Thomsen, 1986). Also, Paper | demonstrates that the P-wave
NMO velocity is highly sensitive to deviations from elliptical
anisotropy.

The main difficulty in devising efficient DMO algorithms for
anisotropic media was the absence of closed-form expressions
for normal-moveout velocity necessary to replace the isotropic
equations (1) and (3). This gap was filled by the NMO equation
from Paper I, which can be used in the symmetry planes of any
anisotropic medium. Although this equation was derived in the
zero-spread limit, it provides an accurate description of P-wave
moveout on conventional-length spreads close to the reflector
depth. We have already used this analytic expression to devise
aFowler-type DMO algorithm for transversely isotropic media
(Anderson et al., 1996).

Here, the equation for dip-dependent NMO velocity from
Paper | is applied to extend Hale’s (1984) DMO method
to anisotropic media. We show that for vertical transverse
isotropy the anisotropic correction to Hale’s DMO operator
is dependent mostly on the difference ¢ — § and can make a
significant contribution to DMO processing results for nonel-
liptical models. In addition to NMO correction, the anisotropic
DMO removal in VTI media should be preceded by an in-
version procedure intended to obtain the effective anisotropic
coefficient (n) responsible for the dependence of NMO veloc-
ity on the ray parameter. We study the complications caused
by anisotropy in the DMO process and illustrate the perfor-
mance of our algorithm by calculating impulse responses and
processing synthetic sections for typical transversely isotropic
models.

ANALYTIC FORMULATION
Hale’s DMO method

First, we briefly review the fundamentals of Hale’s (1984)
frequency-wavenumber (F-K) DMO algorithm. For both
isotropic and anisotropic media, the original event time t on
conventional-length common-midpoint (CMP) spreads is close
to a hyperbola parameterized by NMO velocity as

4h?
Vrlsz (¢) ’

where t, is the two-way zero-offset traveltime, and h is half
the source-receiver offset. The normal-moveout equation for

t? =t + )

horizontal reflectors, applied to the data prior to DMO pro-
cessing, results in the NMO-corrected time t, given by
4h?
trf =t? - NIRRT
Van(O)

Combining equations (4) and (5) leads to the following
expression for the zero-offset time in terms of the NMO-

corrected time:
1 1
t2 =t2 + 4h? - . (6)
0 " Vn2m0 (0) Vnsz (¢)

This equation, valid both in isotropic media and for the hy-
perbolic portion of the moveout curve in anisotropic media,
is required for the coordinate transformation used in Hale’s
DMO.

In a homogeneous, isotropic medium, equations (6) and (1)
yield

©)

4h?sin? ¢
§=t+ vz (7
or, introducing the ray parameter [equations (2) and (3)],
t2 = t2 + 4h%p?. (8)

Hale’s isotropic DMO corrects for the remaining dip-depen-
dent moveout term in equations (7) and (8) (4h?p?). There-
fore, the process of generating the zero-offset section is split
into the NMO and DMO steps, with the DMO operator being
completely independent of velocity.

A convenientway to obtain the ray parameter is to transform
the data into the frequency-wavenumber domain. Then, for the
zero-offset wavefield we have

1d k
P= Sy =20 ©)
Yo 20
where Kk is the horizontal spatial wavenumber over the
common-midpoint axis, and w is the angular frequency associ-
ated with t,.

Hale’s (1984) DMO is based on the following Fourier-
transform relationships between the time-space domain and
the frequency-wavenumber domain for the zero-offset wave-
field Py:

dw dk )
Poto. 0. h) = f - f o P, ke o0, (10)

Py(w, k, h) = ,/dtn f dyh Pa(tn, Yn, h)JTei(wtnAfkyn)’

(11)
where P,(t, yn.h) denotes the data after the normal-moveout
correction, Jr is the transformation’s Jacobian, and A = ty/t,.
The relation between the zero-offset and common-offset
NMO-corrected data is defined as Py(to, Yo, h) = Pa(tn, Y, h).

The dip-dependence of normal-moveout velocity is con-
tained in the term A that relates the zero-offset and NMO-
corrected time at a given half-offset h. To emphasize the form
that is also valid for anisotropic media, we use equation (6) to
express A as a function of NMO velocity,

4h? 1 1
?{vnzmo(c» - vnzmo(p)}' 42

A= |1+
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For isotropic media, equations (3) and (9) enable us to put
Ain the form used by Hale (1984), where

4h2p2 k2h2
A= /1 = [14+ —. 13
\/ LY \/ e (13)

In Hale’s (1984) original algorithm, it is assumed that
reflection-point dispersal can be ignored, and yy = y,. Asimilar
assumption ismade in Paper I in the derivation of equation (17)
for Vamo(¢@) in anisotropic media. Therefore, the Jacobian J; of
the transformation (11) is defined as
L,

ity 1o

Two “true-amplitude” variants of Hale’s algorithm are of
interest. Both variants correct Hale’s identification y, = i,
make the corresponding modification of ty [as defined in equa-
tion (4)], and thereby honor the movement of the surface
location associated with a specular reflection point during
the transformation to zero offset. The phase factors in equa-
tion (11) used by these “true-amplitude” algorithms coincide
with Hale’s phase factor, and each differs from the original
Hale algorithm only in the value assumed for Jr. Both require
a Jacobian based on a(ty, Yo)/3(tn, Yn) rather than Hale’s more
simple Jacobian, dty/dt,. Bleistein (1990) assumes that (1) the
input data have not been corrected for spherical divergence,
(2) NMO is done by resampling without any scale factors, and
(3) the spectral density of the input wavelet is preserved. The
corresponding value for Jr in Bleistein’s algorithm is

Jr = A12A% - 1). (15)

Black et al. (1993) assume that (1) the input data have been
corrected for spherical divergence, (2) NMO is done by resam-
pling without any scale factors, and (3) the peak amplitude of
the input wavelet is preserved. This leads to the following value
for Jr :

T (14

Jr = A3QA2 - 1). (16)

In essence, both “true-amplitude” algorithms correct a small
amplitude error on the steeper dips associated with Hale’s
Jacobian for a chosen sequence of data processing steps. The
kinematics of the DMO operator remain the same for all three
Jacobians discussed above.

In the presence of anisotropy, the specular reflection point
moves differently than in isotropic media, and we do not ac-
count for this movement in our algorithm. However, as shown
in Paper | and further illustrated by synthetic examples below,
for conventional spreads (close to the CMP-reflector distance
or smaller) this simplification does not influence the kinematic
aspects of the DMO correction.

DMO for general anisotropy

Here, we modify Hale’s (1984) DMO operator using the
anisotropic NMO equation given in Paper I. The model con-
sidered in Paper | consists of a plane dipping reflector beneath
a homogeneous anisotropic medium (Figure 1). Anisotropy
is not restricted to any specific type; however, the incidence
(sagittal) plane is supposed to be a plane of symmetry. For
transversely isotropic media (the most common anisotropic
model), the incidence plane should contain the symmetry axis.

If the medium is orthorhombic, the incidence plane is as-
sumed to represent one of the mutually orthogonal symmetry
planes.

If the symmetry assumption is satisfied, the dip-dependent
normal-moveout velocity on a CMP line perpendicular to the
strike of the reflector is given by (Paper I) as

V'(¢)
V(9) V(9)
Vnmo(¢) = 7 > (17)
cos¢ 1—tan ¢\\//((Z:))

where V is phase velocity as a function of phase angle with verti-
cal. If the medium is isotropic, the derivatives of phase velocity
vanish, and equation (17) reduces to the isotropic cosine-of-dip
dependence (1).

Relation (2) between the dip ¢ and ray parameter p on the
zero-offset section continues to hold in anisotropic media (Pa-

per I)r

_ldp  sing L
p(¢)—§d—w——v(¢) =5 (18)

The replacement of the dip angle ¢ by the ray parameter p
for aknown anisotropic model can be done in a straightforward
fashion. The phase angle and phase velocity corresponding to a
given value of p can be obtained from the Christoffel equation
and used in formula (17) (Alkhalifah and Tsvankin, 1995).

While equation (17) is valid for all wave types (except for
mode conversions), we will consider DMO processing for only
quasi-P-waves (in the following, we omit the qualifiers in
“quasi-P-wave” and “quasi-S-wave” for brevity). To general-
ize Hale’s DMO for anisotropic media, we need to separate
the term associated with dipping reflectors in the anisotropic
moveout equation. Although P-wave reflection moveout even
in homogeneous anisotropic media is generally nonhyperbolic
(Tsvankin and Thomsen, 1994), it can still be approximated by
a hyperbola on spreads with length comparable to the distance

X
CMP
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¢

Fic. 1. Common-midpoint gather over a homogeneous aniso-
tropic medium (after Paper I). Vg and V, are the group- and
phase-velocity vectors, respectively. The phase-velocity vector
corresponding to the zero-offset (“normal-incidence”) ray is
perpendicular to the reflector.
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between the CMP and the reflector (Paper I). Hence, we can
still use the conventional hyperbolic equation (4)

4h?
Vino(P)’
but with the NMO velocity given by equation (17). Expres-
sion (17) is too complicated to be separated analytically into
the zero-dip velocity and the DMO correction factor, but we

canaccomplish this separation artificially by rewriting equation
(19) in the same form as equation (6).
1
i| . (20)

V2,0 V2.,.(p)

If the medium were isotropic and homogeneous, equation
(20) would reduce to the conventional DMO formula (8).

Therefore, the zero-offset section in anisotropic media can
be produced by an NMO-DMO sequence similar to the one
used in conventional processing. The time t, is a result of
the conventional NMO procedure that eliminates the zero-dip
(NMO) term 4h?/V2 (0). The influence of anisotropy in the
normal-moveout correction is hidden in the value of Vyno(0).
The only possible complication at this stage is anisotropy-
induced deviations from hyperbolic moveout, which are small
on conventional-length CMP spreads.

To transform the NMO-corrected data to zero offset, the
anisotropic DMO operator should compensate for the remain-
ing moveout term 4h?D(p) in equation (20), with the factor

D(p) given by

2 =t2 + (19)

t§=t§+4h2[

D(P) = 7 : (21)

nmo (0) Vnzmo ( p)

The main difference between the anisotropic DMO factor
D(p) and its isotropic counterpart p? [equation (8)] is that
D(p) hasto be obtained from equation (17) that depends on the
parameters of the anisotropic velocity field. Therefore, DMO
processing should be preceded by an inversion procedure de-
signed to reconstruct the NMO velocity as a function of ray
parameter. For transverse isotropy with a vertical symmetry
axis (VTI), P-wave surface data alone provide enough infor-
mation to build the dip-dependent NMO velocity (Alkhalifah
and Tsvankin, 1995). The method developed by Alkhalifah and
Tsvankin (1995) is used in our implementation of Hale’s DMO
in VTI media.

Assuming that the functions Voymo(p) and D(p) have been
obtained, the rest of Hale’s DMO algorithm remains essen-
tially unchanged. The DMO factor D(p) should be substituted
into the equation for A (12), yielding the expression valid for

anisotropic media:
/ 4h?
A= 1+t—2D(p). (22)
n

Equation (22) is then used in the integral transforms (11)
and (10) designed to produce the zero-offset section from
the NMO-corrected, constant-offset sections. This means that
the entire anisotropic NMO-DMO sequence takes no more
computing time than does Hale’s method for isotropic media.
The only extra step to be included because of the presence of
anisotropy is the inversion procedure mentioned above.

Our algorithm ignores anisotropy-induced nonhyperbolic
moveout, which seems to be a shortcoming compared to

isotropic DMO methods. Although isotropic constant-velocity
DMO is also based on the hyperbolic moveout equation, it
is supposed to work at large offsets because reflection move-
out in a homogeneous isotropic medium is purely hyperbolic.
However, the homogeneous isotropic model is an idealization
of realistic media, which are, at a minimum, vertically inhomo-
geneous. Any kind of inhomogeneity leads to nonhyperbolic
moveout on long spreads that cannot be handled properly by
conventional NMO and DMO algorithms.

Also, the results of Paper | and numerical examples for VTI
media discussed below suggest that for P-waves deviations
from hyperbolic moveout on conventional-length spreads are
relatively small and usually become even less pronounced with
dip. Therefore, nonhyperbolic moveout can be expected to be
more of a problem in the NMO correction for horizontal re-
flectors than in dip-moveout removal. Relatively large offsets,
at which deviations from a hyperbola may become significant,
are often muted out because of NMO stretch. If there is a need
to preserve traces at these uncommonly large offsets, DMO
processing should be performed by more accurate (but more
costly) ray-tracing techniques.

Transversely isotropic media

While NMO equation (17) can be used in symmetry planes
of any anisotropic medium, the main practical difficulty in
the implementation of our DMO algorithm in complicated
anisotropic models is the recovery of the factor D(p) from
seismic data. Therefore, in the following we concentrate on
the most common anisotropic model, transverse isotropy with
a vertical symmetry axis (VTI).

We describe VTI media by four Thomsen (1986) parame-
ters: the vertical velocities Vpy and Vg of P- and S-waves, re-
spectively, and three dimensionless anisotropic coefficients—
€, 8, and y. It should be emphasized that although the orig-
inal Thomsen (1986) paper was devoted to weak transverse
isotropy, the parameters ¢, 8, and y are convenient to use in Tl
media with arbitrary strength of velocity anisotropy (Tsvankin,
1996). In our DMO algorithm, we use the exact equations for
transverse isotropy without applying the weak-anisotropy ap-
proximation.

Although P-SV propagation depends on four Thomsen-
coefficients (Vpo, Vo, €, and §), P-wave velocities and reflec-
tion traveltimes are practically independent of the shear-wave
vertical velocity Vg, even for strong anisotropy (Tsvankin and
Thomsen, 1994; Tsvankin, 1995, 1996). Therefore, for practical
purposes of dip-moveout processing, P-wave NMO velocity
can be considered a function of just three parameters: Vpo, ¢,
and & (Paper 1).

Moreover, Alkhalifah and Tsvankin (1995) show that
P-wave NMO velocity in VTI media (expressed as a function
of the ray parameter) depends on only two combinations of
these three coefficients—the zero-dip NMO velocity Vime(0)
and an anisotropic parameter, denoted as »:

Vimo (O) = Vpov'1+ 26, (23)
. 2
L I 7T MY IR
1+25 2| V2,0
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where Vp(90) is the horizontal P-wave velocity given by

Vp(90) = Vpov/1 + 2¢ = Vamo(O)V1 + 2. (25)

The velocity-analysis technique by Alkhalifah and Tsvankin
(1995) is designed to recover the parameters Vomo(0) and n
using P-wave NMO velocities from two different dips. If one
of the reflectors is horizontal (the most common case), then
Vimo(0) is obtained directly by conventional velocity (e.g., sem-
blance) analysis. The NMO velocity for the dipping reflector
is then used to determine n and build the normal-moveout ve-
locity as a function of the ray parameter.

To understand the performance of the anisotropic DMO al-
gorithm, we have to examine the dependence of the factor
D(p) [equation (21)] on the parameters of the anisotropic ve-
locity field. First, we consider elliptically anisotropic models,
in which wavefronts and slowness surfaces are elliptical for
P-waves and spherical for SV-waves. Elliptical anisotropy is a
special (and uncommon) case of transverse isotropy that oc-
curs if the parameters € and § are equal to each other (and
n=0).

Alkhalifah and Tsvankin (1995) show that for elliptical
anisotropy P-wave NMO velocity represents the same func-
tion of the ray parameter and zero-dip moveout velocity as in
isotropic media (3), with no explicit dependence on the coef-
ficient ¢ = §. The difference between the isotropic and ellipti-
cally anisotropic expressions for Vomo(p) is only in the value of
the zero-dip velocity Vamo(0) [equation (23)], which is equal to
the horizontal velocity (but is different from the vertical veloc-
ity) if the medium is elliptically anisotropic. Since the isotropic
expression for Vomo(p) holds in elliptical media, conventional
constant-velocity Hale’s DMO is perfectly suitable for ellipti-
cal anisotropy. This result is not intuitively clear because the
NMO velocity as a function of dip in elliptically anisotropic
media does deviate from the cosine-of-dip dependence (Uren
et al, 1990; Paper 1).

Furthermore, the entire isotropic time-imaging sequence
(NMO-DMO-time migration) remains valid for elliptical
anisotropy (Helbig, 1983; Alkhalifah and Tsvankin, 1995). The
difference between isotropic and elliptically anisotropic media
becomes important only in time-to-depth conversion or post-
stack depth migration of the zero-offset section. Since for el-
liptical anisotropy the zero-dip NMO velocity, conventionally
used in time-to-depth conversion or migration, does not coin-
cide with the true vertical velocity, isotropic poststack depth
migration will result in the wrong reflector depth.

While the elliptical assumption leads to a considerable sim-
plification in the analysis of all aspects of wave propagation,
elliptical anisotropy is hardly typical for subsurface formations
(Thomsen, 1986). Next, we consider a general transversely
isotropic model with no fixed relation between ¢ and s.

The most convenient way to get analytic insight into the
dependence of D(p) on the anisotropic coefficients is to use
the weak-anisotropy approximation (le] < 1, |§] <« 1). The
P-wave phase velocity, linearized in the parameters € and §, is
given by (Thomsen, 1986)

Vp(0) = Vpo(L + 8sin®6 cos’ 6 + esin*6).  (26)

Substitution of equation (26) into the NMO formula (17)
and replacement of the phase angle by ray parameter yields
(Alkhalifah and Tsvankin, 1995)

Vimo(0)

Vnmo(p) = 1_ pZVano(O)

[1+ (e = 8) F(PVamo(0))],
(27)

4y?> — 9y +6
(XIS v o)

In the derivation of equation (27) it was assumed that y < 1
(e.g., the dip angle cannot be close to 90°). The weak-anisotropy
approximation (27) reduces to the exact NMO formula for
elliptically anisotropic or isotropic models [e¢ = §, equation (3)]
but, clearly, can deviate from the exact result for nonelliptical
media.

The DMO correction factor D(p) (21) for weak transverse
isotropy becomes

D(p) = p?[1 + 2(e — 8)(4y* — 9y + 6)]. (28)

Note that the anisotropic correction to the DMO operator
in the weak-anisotropy approximation contains only the dif-
ference € — §, with no separate dependence on either of the
coefficients. The predominant influence of ¢ — § on the dip-
dependence of P-wave NMO velocity was shown in Paper 1.
It should be mentioned, however, that the weak-anisotropy
NMO formula derived in Paper | as a function of the dip an-
gle did contain a separate contribution of the parameter §. As
demonstrated by equations (27) and (28), this contribution is
absorbed by the ray parameter p.

The numerical analysis by Alkhalifah and Tsvankin (1995)
shows that the structure of the factor D(p) (21) for VTI media
with arbitrary strength of velocity anisotropy is similar to thatin
equation (28), with the influence of the anisotropic coefficients
€ and § represented by the effective parameter ». Clearly, n
[equation (24)] reduces to € — § in the limit of weak anisotropy.

Although it might be dangerous to use the weak-anisotropy
approximation for quantitative estimates, it is clear from equa-
tion (28) that the anisotropy makes a significant contribution
to the DMO factor. For instance, for y = 0.25, which roughly
corresponds to a dip of 30°, the anisotropic term 2(e — 9§)
(4y?—9y+6) reduces to 8(e — ), which means that the isotropic
and anisotropic parts of the DMO factor are comparable even
for relatively small (¢ —§). This conclusion is in good agreement
with the exact numerical results of Paper I.

It is also important that the influence of the anisotropy can-
not be ignored even at mild dips (small y); in fact, the rela-
tive magnitude of the anisotropic term decreases with dip. Of
course, the contribution of the dip term as a whole at mild
dips is relatively small. Our analysis also shows that, although
the anisotropic DMO operator does depend on the zero-dip
NMO velocity through y = p?V2 . (0), the influence of errors
in Vomo (0) becomes pronounced only for large p corresponding
to steep events.

It should be mentioned that most measurements made at
seismic frequencies indicate thate > § (Thomsen, 1986; Sayers,
1994) and, therefore, n > 0. For positive n [and a positive
anisotropic term in equation (28)], normal-moveout velocity
increases with p faster than in isotropic media (Paper I). As a
result, conventional isotropic DMO algorithms usually under-
state NMO velocity for dipping events in VTI media, which
was illustrated on synthetic and field data in Alkhalifah and
Tsvankin (1995).
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NUMERICAL IMPLEMENTATION

The DMO technique for VTI media discussed above has
been implemented using a variant of the conventional Hale
F-K DMO algorithm. First, Vimo(¢) and p = sing/V (¢) are
tabulated from 0 to 89° in constant increments of ¢ using equa-
tion (17). The input parameters to be determined beforehand
are the NMO velocity for a horizontal reflector V,mo(0) and
the coefficient n [equation (24)]. We use the exact equations
for NMO and phase velocity in VTI media, so there are no
restrictions requiring weak anisotropy in the generation of this
table. The table is then interpolated back to a new table in
constant increments in p. Alternatively, the function Vyme(p)
can be built directly using phase-velocity equations for trans-
verse isotropy. Based upon this table, Vi,mo(p) and D(p) can be
readily obtained.

Input NMO-corrected common-offset data are Fourier-
transformed over the midpoint axis providing complex-valued
traces as a function of wavenumber. The time integral over t,
is computed numerically, yielding the zero-offset section in the
F-K (@ — k) domain [equation (11)].

P()(C(), k, h) = /dtnweiwtn/\’ (29)

A
where p = k/2w, and [see equation (22)]
4h?
n

4n? 1 1
= |1+ | T v2 :
5 | Vimo(0) Vo (P)

Finally, we apply a 2-D inverse Fourier transform to produce
the output DMO-corrected, common-offset gather in the t — x
domain.

The direct numerical integration over t, [equation (29)], cur-
rently implemented in our code, is the most time-consuming
part of the algorithm. In the future, we plan to study the possi-
bility of reducing the integral (29) to a Fourier transform by the
log-stretch method (Notfors and Godfrey, 1987; Liner, 1990),
which is used widely to speed up application of Hale DMO in
isotropic media. The log-stretch temporal relationships, which
are exact for homogeneous isotropic media, become only ap-
proximate in the presence of transverse isotropy.

SYNTHETIC EXAMPLES

Figures 2-7 demonstrate basic aspects of our Hale-type
DMO operator devised for vertical transverse isotropy. As
expected, the VTI DMO algorithm produces results identi-
cal to conventional Hale DMO if the medium is isotropic
(Figure 2a,b). As discussed above, our DMO code is based
currently on the original Hale’s Jacobian. Bleistein’s “true-
amplitude” impulse response (Figure 2c) has the same shape
as Hale’s response but shows slightly higher amplitudes on the
steeper dips.

In agreement with the analytic results discussed above, the
VTI operator reduces to the conventional Hale’s operator not
only for isotropic but also for elliptically anisotropic media
(e = 8, Figure 3). Although velocity anisotropy for the model in
Figure 3 is quite pronounced (e = § = 0.2), it has no influence
on the kinematics of the DMO process. The only difference

between the two DMO operators is that in the Hale algo-
rithm the NMO velocity is calculated analytically while the
VTI DMO response is generated using the values of Vo from
table lookup.

However, even relatively small deviations from elliptical
anisotropy have strong influence on the DMO operator. As
mentioned above, it is believed that transversely isotropic sub-
surface formations, such as shales, typically have positive values
of € — §. Figure 4 demonstrates the broadening of the DMO
ellipse that occurs for a transversely isotropic model with a
large positive € — §. Evidently, the DMO impulse response
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Midpoint (km)
-0.2 0 0.2 0.4

0.05+

0.104

Time (s)

0.15+

0.20+

b)
Midpoint (km)
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] 1

Midpoint (km)
'0,'2 0 0;2 0.4

i

FiG.2. DMO impulse responses on acommon-offset gather for
ahomogeneousisotropic medium. Here, and in Figures 3-7, the
offset equals 400 m and the trace spacing is 25 m. (a) Conven-
tional Hale operator: (b) Tsvankin (VTI) operator (the VTI
DMO response is identical to the Hale response for isotropic
models); (c) Bleistein operator (the Bleistein “true-amplitude”
DMO response has the same kinematics but stronger ampli-
tudes at larger dips).
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in anisotropic media is not limited necessarily to the source-
receiver interval.

For small negative values of ¢ — §, the DMO response be-
comes more narrow as shown in Figure 5. With increasing ab-
solute value of ¢ — § (for e — § < 0), the DMO response curves

Midpoint (km)
-0.2 0 0.2 0.4
0 Il Il i

0.05 # {
& 0.10+ '
€
i= 0.15-

0.20+

FIG.3. VTI DMO impulse-response curves on acommonoffset
gather for an elliptically anisotropic medium with § = ¢ = 0.2
(n = 0). The DMO operator for elliptical anisotropy is kine-
matically identical to the isotropic DMO operator for any
strength of the anisotropy.

Midpoint (km)
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0 | ]
0.05+ I %
0.10- T . }
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0.20+

Fic. 4. VTI DMO impulse responses on a common-offset
gather for ¢ = 0.4 and § = 0.0 (n = 0.4). The anisotropic
DMO operator for positive values of n is more broad than the
isotropic one and may have triplications.

Midpoint (km)
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0 |

0.05-
©0.10-
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0.20+

Fic. 5. VTI DMO impulse responses on a common-offset
gather for e = 0.0 and § = 0.1 (n = —0.08). The operator
becomes more narrow for small negative values of 5.

downward with a shape reminiscent of the isotropic inverse
DMO operator (Figure 6).

The accuracy of the weak-anisotropy approximation (28) in
generating the DMO operator isillustrated by Figure 7. For this
model with moderate values of ¢ and §, the DMO responses
are similar, whether or not the weak-anisotropy equation is
used. However, the weak-anisotropy approximation becomes
less accurate for larger values of € — §, and we use the exact
VTI operator in our routine numerical work.
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FiG. 6. VTI DMO impulse responses on a common-offset
gather for e = 0.0 and § = 0.2 (n = —0.14). For larger nega-
tive values of n, the operator can curve downward rather than
upward.
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Fic. 7. VTI DMO impulse responses on a common-offset
gatherfore = 0.2and§ = 0.1 (n = 0.083). (a) the response cal-
culated using the exact NMO equation (17); (b) the response
based on the weak-anisotropy approximation (28).
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The next example shows the performance of the VTI DMO
algorithm in a homogeneous VVTI “fan” model with four reflec-
tors and dips ranging from 0 to 75° (Figure 8). The Alkhalifah
and Tsvankin model parameters are Vymo(0) = 3.15 km/s and
n = 0.14; the Thomsen parameters are Vpy = 3 km/s, ¢ = 0.2,
and § = 0.05. Synthetic common-offset data for offsets from 0
to 3km inincrements of 0.1 km were generated by a ray-tracing
code (Alkhalifah, 1995). The zero-offset section that may be
considered as the ideal output for NMO followed by DMO
is shown in Figure 9. The vertical line at midpoint location
2.75 km marks the CMP location selected for the comparison
of isotropic and VTI DMO. Figure 9 helps to identify the key
model events on the CMP gathers with the same events on the
zero-offset section.

The NMO-corrected common-offset data were processed
first by the conventional isotropic Hale DMO method
Figure 10), and then by our new VTl DMO algorithm
(Figure 11). Evidently, VTI DMO aligns the events out to
a fairly large offset, irrespective of dip, allowing CMP stack
to sum without distortion. In contrast, after application of
isotropic DMO in Figure 10, all dipping events remain mis-
aligned. It should be emphasized that the synthetic data were
generated by a ray-tracing algorithm that is not related to the
analytic formula used in our anisotropic DMO correction.

Distance (km)
0 2 4 6

VPO= 3.0 km/s
=0.20

€
0 =0.05
N =0.14

w

FiGc. 8. The model used for generating synthetic data. The re-
flectors are embedded in a homogeneous transversely isotropic
medium with a vertical symmetry axis.

Midpaint (km)

FIG.9. Zero-offset synthetic data generated by ray tracing. The
vertical line at 2.75 km marks the common-midpoint location
used for comparing isotropic and VTI DMO corrections in
Figures 10 and 11.

Figure 11 shows that the horizontal events still have signif-
icant nonhyperbolic moveout and will require muting on the
longer offsets prior to the stack. It should be noted, however,
that this example exaggerates the influence of nonhyperbolic
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FiG. 10. CMP gather after NMO and isotropic DMO.
Offset (km)

AL
oo B b
00 deg DRI

75 deg

Time (s)

FiG. 11. CMP gather after NMO and VTI DMO.
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moveout because standard processing rarely includes offsets
out to 3 km at times less than 1.5 s. The dipping events also
exhibit nonhyperbolic moveout, but to a far lesser degree than
the horizontal events. It is clear from Figure 11 that our DMO
operator, based on the hyperbolic moveout equation, still pro-
vides a sufficiently accurate description of moveout from dip-
ping reflectors on relatively long spreads (twice as large as the
reflector depth). If it is necessary to include even larger offsets
in the stack, an NMO/DMO sequence based on anisotropic
ray tracing may be necessary to correct for nonhyperbolic
moveout.

POSSIBLE EXTENSIONS OF THE ALGORITHM

Application of the table lookup makes our algorithm no
slower than the generic Hale DMO method in isotropic
media. However, direct numerical integration over the NMO-
corrected time employed in our code makes the DMO op-
eration relatively time-consuming. The conventional way to
speed up Hale’s isotropic DMO algorithm is to use the log-
stretch method (Notfors and Godfrey, 1987; Liner, 1990), but
generalization of this method to anisotropic media is not
straightforward as only the kinematics of the small-offset near-
elliptical portion of the DMO impulse response can be pre-
served. The variations of amplitude and triplications seen along
the anisotropic DMO response cannot be duplicated fully by
straightforward stretching and squeezing in the log-stretch do-
main. In the future, we will explore the possibility of applying
the log-stretch method in VTI media to increase the computa-
tional efficiency of this new DMO technique while simultane-
ously attempting to estimate the magnitude of the associated
errors.

The algorithm can be upgraded to perform V(z) DMO in
transversely isotropic media by replacing the single-layer NMO
formula with a more general equation for layered media de-
veloped by Alkhalifah and Tsvankin (1995). However, since
our “homogeneous” VTI DMO operator has the degree of
freedom provided by the parameter 5, in many cases it can be
adapted for V (z) media by applying an effective value of n that
absorbs the influence of both the anisotropy and inhomogene-
ity.

Also, our anisotropic DMO method can be used in symme-
try planes of more complicated models such as orthorhombic.
The main problem in DMO processing for anisotropic models
with a large number of independent parameters is the recon-
struction of the dip-dependence of NMO velocity from seismic
data.

CONCLUSIONS

Hale’s DMO method has been extended to anisotropic me-
dia using the analytic expression for normal-moveout veloc-
ity given in Tsvankin (1995). The NMO-DMO processing
sequence (including Hale’s integral transforms) remains un-
changed in the presence of anisotropy, but the transformation’s
Jacobian has been modified to account for the anisotropic be-
havior of the dip dependence of NMO velocity.

For elliptically anisotropic media the isotropic DMO method
remains entirely valid, although isotropic poststack depth mi-
gration based on the zero-dip moveout velocity may result in
depth errors. However, elliptical anisotropy is just a special
kind of transverse isotropy that cannot be considered as typical

for subsurface formations, and even relatively small deviations
from the elliptical model may result in significant DMO errors.

We have implemented the F-K DMO algorithm for the most
common anisotropic model—transverse isotropy with a verti-
cal symmetry axis (VTI media). The anisotropic correction to
the DMO operator for VTI media is determined by two ef-
fective parameters: the NMO velocity for reflections from a
horizontal interface (obtained by conventional velocity anal-
ysis) and the anisotropic coefficient » that can be recovered
from the P-wave NMO velocity for a single dipping reflector
(Alkhalifah and Tsvankin, 1995). After the inversion step has
been completed, the analytic NMO equation is used to tabulate
the normal-moveout velocity as a function of the ray parame-
ter and obtain Hale’s Jacobian for VTI media. Then the trans-
formation of NMO-corrected constant-offset sections to zero
offset is carried out using the formalism developed by Hale for
isotropic media. Except for the inversion procedure, the entire
anisotropic NMO-DMO sequence takes no more computing
time than the conventional NMO and DMO corrections. Note
that knowledge of n and Vimo(0) is sufficient not only for DMO
processing, but also for poststack time migration of the zero-
offset section.

Tests on synthetic data for typical VTI media show that our
VTl DMO operator efficiently flattens P-wave moveout on
conventional-length spreads for any dip, while the isotropic
Hale’s algorithm fails to align dipping events in the presence
of nonelliptical anisotropy. Two interesting points are clarified
by the examples. First, reflections from steep interfaces are
less influenced by nonhyperbolic moveout and appear more
flat after DMO than are those from horizontal reflectors. This
conclusion is in good agreement with the results reported in
Tsvankin (1995). Therefore, we expect nonhyperbolic moveout
(ignored in our algorithm) to be more of a problem in normal-
moveout correction than in DMO. Second, the DMO response
in strongly anisotropic media is not restricted to the region
between the source and the receiver.
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