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Anisotropic parameters and P-wave
velocity for orthorhombic media

llya Tsvankin*

ABSTRACT

Although orthorhombic (or orthotropic) symmetry is
believed to be common for fractured reservoirs, the dif-
ficulties in dealing with nine independent elastic con-
stants have precluded this model from being used in seis-
mology. A notation introduced in this work is designed
to help make seismic inversion and processing for or-
thorhombic media more practical by simplifying the de-
scription of a wide range of seismic signatures. Taking
advantage of the fact that the Christoffel equation has
the same form in the symmetry planes of orthorhombic
and transversely isotropic (T1) media, we can replace
the stiffness coefficients by two vertical (P and S) veloc-
ities and seven dimensionless parameters that represent
an extension of Thomsen’s anisotropy coefficients to or-
thorhombic models. By design, this notation provides a
uniform description of anisotropic media with both or-
thorhombic and TI symmetry.

The dimensionless anisotropic parameters introduced
here preserve all attractive features of Thomsen nota-
tion in treating wave propagation and performing 2-D

processing in the symmetry planes of orthorhombic me-
dia. The new notation has proved useful in describing
seismic signatures outside the symmetry planes as well,
especially for P-waves. Linearization of P-wave phase
velocity in the anisotropic coefficients leads to a concise
weak-anisotropy approximation that provides good ac-
curacy even for models with pronounced polar and az-
imuthal velocity variations. This approximation can be
used efficiently to build analytic solutions for various
seismic signatures.

One of the most important advantages of the new no-
tation is the reduction in the number of parameters re-
sponsible for P-wave velocities and traveltimes. All kine-
matic signatures of P-waves in orthorhombic media de-
pend on just the vertical velocity Vpo and five anisotropic
parameters, with Vpq serving as a scaling coefficient in
homogeneous media. This conclusion, which holds even
for orthorhombic models with strong velocity anisotropy,
provides an analytic basis for application of P-wave trav-
eltime inversion and data processing algorithms in or-
thorhombic media.

INTRODUCTION

The vast majority of existing studies of seismic anisotropy
are limited to transversely isotropic (T1) models with different
orientation of the symmetry axis. It has been shown in the liter-
ature (e.g., Sayers, 1994a) that T1 (or hexagonal) symmetry ad-
equately describes the elastic properties of shales, which repre-
sent the major source of anisotropy in sedimentary basins. Most
shale formations are horizontally layered, yielding an effective
transversely isotropic medium with a vertical symmetry axis
(the so-called VTI medium). In some cases, shale layers may
be dipping (e.g., near flanks of salt domes), which leads to an
azimuthally anisotropic medium with a tilted T1 symmetry axis
[for moveout analysis in such a model, see Tsvankin (1997a)].

However, the transversely isotropic model becomes much
more restrictive when applied to the description of cracked

media that contain small (compared to the predominant
wavelength) fractures or microcracks. Indeed, only the simplest
fractured model with asingle system of parallel vertical circular
(“penny-shaped”) cracks embedded in an isotropic matrix ex-
hibits transverse isotropy with a horizontal symmetry axis (HTI
media). Deviations from the circular crack shape, misalignment
of the crack planes, the addition of a second crack system, or the
presence of anisotropy or thin layering in the matrix lower the
symmetry of the effective medium to orthorhombic or less. One
of the most common reasons for orthorhombic anisotropy in
sedimentary basins is a combination of parallel vertical cracks
and vertical transverse isotropy in the background medium
(e.g., Wild and Crampin, 1991; Schoenberg and Helbig, 1997)
as illustrated by Figure 1. Orthorhombic symmetry can also
be caused by two or three mutually orthogonal crack systems
or two identical systems of cracks making an arbitrary angle
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with each other. Hence, orthorhombic anisotropy may be the
simplest realistic symmetry for many geophysical problems.

Wave propagation in orthorhombic media has been stud-
ied in a number of publications including Musgrave (1970),
Tsvankin and Chesnokov (1990a, b), Wild and Crampin (1991),
Brown etal. (1991), Sayers (1994b) and Schoenberg and Helbig
(1997). Such numerical tools as finite-difference or reflectivity
methods generalized for anisotropic media make the forward
modeling of seismic wavefields in orthorhombic models a rel-
atively straightforward (albeit a costly) procedure. However,
extending inversion and processing techniques to orthorhom-
bic media is a much more difficult endeavor.

Seismic methods of fracture detection, extensively devel-
oped since the early 1980s, are based on the analysis of the
traveltimes and reflection coefficients of split shear waves at
near-vertical incidence (Crampin, 1985; Thomsen, 1988). If
azimuthal anisotropy is caused by a single system of penny-
shaped vertical cracks, the relative time delay or the difference
inthe normal-incidence reflection amplitude between the shear
modes provides a direct estimate of the crack density, while the
polarization of the fast S-wave! determines the crack orienta-
tion. These well-known shear-wave splitting methods remain
valid in some orthorhombic models such as those in Figure 1.
However, vertically traveling shear waves can yield only a sin-
gle anisotropic parameter (the splitting coefficient), which is
not sufficient, for instance, to separate empty and fluid-filled
cracks. In more complicated orthorhombic models contain-
ing two crack systems or noncircular cracks, interpretation of
the shear-wave splitting parameter becomes ambiguous, unless
some additional data are available.

Therefore, seismic characterization of orthorhombic media
should include, if possible, analysis of azimuthally dependent
P-wave signatures and shear data at oblique incidence angles.
Recently, Lynn et al. (1996a, b) presented field-data exam-
ples showing the feasibility of detecting azimuthal anomalies of
P-wave velocities and amplitudes over typical fractured reser-
voirs. Interpretation and inversion of such anomalies is im-
possible without a good understanding of the dependence of
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Fig. 1. An orthorhombic model caused by parallel vertical
cracks embedded in a medium composed of thin horizontal

layers. Orthorhombic media have three mutually orthogonal
planes of mirror symmetry.

For brevity, the qualifiers in “quasi- P-wave” and “quasi-S-wave ” will
be omitted.

seismic signatures on the anisotropy parameters. The complex-
ity of this problem is explained by the fact that general or-
thorhombic media are described by nine independent stiffness
components.

This work is aimed at making seismic treatment of or-
thorhombic media more practical by identifying the combina-
tions of the stiffness coefficients responsible for a wide range
of seismic signatures. The notation that enables us to reach
this goal is based on the same principle as that of Thomsen
(1986), devised for VTI media. A unified description of ver-
tical transverse isotropy and orthorhombic media provides a
convenient bridge between the two models and makes it pos-
sible to take full advantage of recent developments in the ana-
lytic description of seismic signatures in VTI media (Tsvankin,
1996). This approach has already been succesfully applied by
Ruger (1997) and Tsvankin (1997b) to T1 models with a hori-
zontal symmetry axis. For instance, Tsvankin (1997b) showed
that the anisotropic parameter that governs azimuthally depen-
dent P-wave normal-moveout (NMO) velocity in HT1 media
represents the same combination of the stiffness coefficients
as does the Thomsen’s VTI parameter §. Also, Thomsen-style
parameters have been used in physical-modeling studies by
Brown et al. (1991) and Cheadle et al. (1991).

Introduction of the new notation is followed by an analytic
description of seismic signatures in the symmetry planes of
orthorhombic media based on a limited analogy with vertical
transverse isotropy. Linearization of the exact phase-velocity
equation in the dimensionless anisotropic parameters leads to
asimple weak-anisotropy approximation for P-wave phase ve-
locity outside the symmetry planes. Further analysis shows that
P-wave kinematic signatures in orthorhombic media are deter-
mined by the vertical velocity and only five anisotropic coeffi-
cients.

ORTHORHOMBIC STIFFNESS TENSOR

The stiffness tensor c;jc, for orthorhombic media can be rep-
resented in a two-index notation (e.g., Musgrave, 1970) often
called the “Voigt recipe” as

Ci1 Ci2 Ci3
Ci2 C2 Cz3
Ciz C23 Ca3
0 0 0 Ca4
0 0 0 0 Css 0
0 O 0 0 0 «cg

o O o

€

Corthor =

o O O o
o O O o

This tensor has the same null components as that for trans-
versely isotropic (TI) media with the symmetry axis aligned
with one of the coordinate directions, but the TI tensor has
only five independent coefficients. For certain subsets of or-
thorhombic models (such as orthorhombic media caused by
vertical cracks in a VTI background), not all nine stiffnesses in
the tensor (1) are independent (Schoenberg and Helbig, 1997),
but here we do not restrict ourselves to any specific type of or-
thorhombic anisotropy.

The phase velocity V and the displacement vector U of plane
waves in arbitrary homogeneous anisotropic media satisfy the
Christoffel equation (Musgrave, 1970):

[Gik — pV25i]Uk =0, @)
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where p is the density, &k is the Kroneker’s symbolic §, and G
is the symmetric Christoffel matrix,

Gik = GijkeNjng. ®3)

Here, n is the unit vector in the slowness direction; summa-
tion over repeated indices is implied. The Christoffel equa-
tion (2) describes a standard eigenvalue (o V?)-eigenvector (U)
problem for the matrix G, with the eigenvalues determined
by

det [Gix — pV28ik] = 0. )

Solving the cubic equation (4) at any specific slowness direction
n (for details, see Appendix A) yields three positive values of
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relative simplicity of the basic equations, symmetry-plane anal-
ysis provides important insights into wave propagation in or-
thorhombic media. Anticipating future applications in reflec-
tion seismology, we assume that the symmetry plane [xy, o] is
horizontal. Then information obtained from reflection seismic
experimentswill be mostly related to phase- and group-velocity
variations near the (vertical) xz-axis. If none of the symmetry
planes is horizontal, the treatment of reflected waves becomes
more complicated; however, the equations derived below for
a homogeneous orthorhombic medium remain entirely valid.

For a wave propagating in the [x;, Xs] plane, the projection
of the slowness vector onto the x,-axis vanishes (n, = 0), the
Christoffel matrix G [equations (5)-(10)] simplifies, and equa-
tion (2) takes the following form:

C11n? + Cssni — pV2 0 (C13 + Cs5)Ning U;
0 Cﬁeni + C44|”I% — ,OV2 0 U, | =0. (11)
(C13 + Cs5)N1Ng 0 CssNZ + Cg3n3 — pV2 | | Us

the squared phase velocity V2, which correspond to the P-wave
and two S-waves (strictly, the “quasi-P-wave” and “quasi-S-
waves”). For certain orientations of the vector n, the velocities
of the split S-waves coincide with each other, which leads to
the shear-wave singularities. After the eigenvalues have been
determined, the associated displacement (polarization) vectors
U for each mode can be found from equation (2). Since the
Christoffel matrix G is symmetric, the polarization vectors of
the three modes are always orthogonal to each other, but none
of them is necessarily parallel or perpendicular to n.

Using equations (1) and (3) and the Voigt recipe for the two-
index notation yields the Christoffel matrix for orthorhombic
media:

Gi1 = C11N? + CegN 4 Cs5N3, (%)
Ga2 = CooN + Co2N3 + Caa3, O]
Gas = CssNj + CaqN3 + Ca3N3, O]
G12 = (C12 + Ces)M1N2, ©)
G13 = (C13 + Cs5)N1 N3, )

C115IN% 60 + Cs5COS2 6 — pV/?2
(C13 + Cs5) SinH cos O

and
Ga3 = (Ca3 + Caa)NzN3. (10)
WAVE PROPAGATION IN THE SYMMETRY PLANES

Orthorhombic models have three mutually orthogonal
planes of mirror symmetry that coincide with the coordinate
planes [Xy, X2], [X1, X3], and [Xz, X3] (Figure 1). Because of the

Equation (11) reduces to the corresponding Christoffel
equation for the transversely isotropic model with the sym-
metry axis in the xs-direction (VTI medium), if ¢;4 = Cs5. (In
the orthorhombic model, however, the stiffness components
C44 and css are not equal to each other, which leads to shear-
wave splitting at vertical incidence.) This analogy with VT me-
dia has already been mentioned in the literature (Musgrave,
1970; Cheadle et al., 1991; Schoenberg and Helbig, 1997);
here, however, it is used in a systematic fashion to describe
wave propagation in the symmetry planes and to introduce
new dimensionless anisotropy parameters for orthorhombic
media.

The Christoffel equation (11) also reduces to that of an HTI
medium with the symmetry axis pointing in the x;-direction.
The properties of the HTI model and a limited equivalence
between vertical and horizontal transverse isotropy were stud-
ied in detail by Tsvankin (1997b) and Ruger (1997).

Exactly as in VTI media, equation (11) splits into two inde-
pendent equations for the in-plane (“P-SV”) motion (U, = 0)
and the pure transverse (“SH”) motion (U; = U; = 0). Ex-
pressing the slowness components in equation (11) in terms
of the phase angle 6 with the vertical (x3) axis (n; = sin#;
nz = cos ) yields for the in-plane polarized waves

C siné cos o U
(_ 123 + Cs5) 1l _o 12)
Cs5SiN“ 6 + Cz3 €020 — pV? | | Us

Equation (12) is identical to the well-known Christoffel
equation for the P-SV waves in VTI media that has been thor-
oughly discussed in the literature (e.g., Payton, 1983). Hence,
the phase velocities of the P-wave and the in-plane polarized
shear wave (SV-wave) in the [x;, X3] plane of orthorhombic
media represent the same functions of the stiffness coefficients
¢; and the phase angle with vertical as do the P-SV phase
velocities in VTI media. As in VTI media, the P-wave phase
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(and group) velocity in the vertical (x3) and horizontal (x;)
directions is determined as /Cs3/p and ./Ci1/p, respectively,
while the vertical and horizontal SV-wave velocity is equal to
/Css/p-

The phase-velocity function of each wave in the [x;, X3] sym-
metry plane is sufficient to obtain the corresponding group
(ray) velocity and group angle and, consequently, all other
kinematic signatures, such as normal-moveout (NMO) veloc-
ity. This means that the kinematics of wave propagation in
the [x1, X3] plane of orthorhombic media is described fully by
known VT equations. The only exception to thisanalogy is cus-
poidal S-wave group-velocity surfaces (wavefronts) formed in
the symmetry planes of orthorhombic media near shear-wave
point singularities. Some in-plane branches of the cusps may
be caused by slowness vectors that lie outside of the symme-
try planes (Grechka and Obolentseva, 1993); clearly, cuspoidal
features of this nature cannot exist in VT1 media.

Since the displacement (polarization) vectors U of the in-
plane polarized plane waves are determined from the same
equation (12), they are also given by the corresponding expres-
sions for VTI media. Furthermore, analysis of the boundary
conditions shows that the equivalence with vertical transverse
isotropy holds for plane-wave reflection coefficients as well
(provided the symmetry planes have the same orientation
above and below the boundary).

However, body-wave amplitudes in general do not comply
with this “equivalence” principle because they depend on the 3-
D shape of the slowness surface, not just in the symmetry plane
itself, but also in its vicinity. Out-of-plane velocity variations
lead to focusing and defocusing of energy and may have a sig-
nificant influence on the distribution of energy along the wave-
front within the symmetry planes (Tsvankin and Chesnokov,
1990a).

Equation (11) also has a solution corresponding to the
shear wave polarized orthogonally to the [x;, x3] plane
(Ul =U;=0,U, 75 O)

Cos SINZ 6 + Caq COS2 0 — pV2 = 0. (13)

Equation (13) describes a “pure” shear mode with an ellip-
tical slowness curve and an elliptical wavefront in the [X;, Xs]
plane and is identical to the phase-velocity equation for the SH-
wave in VTI media. However, since in orthorhombic media Cy4
is not equal to css, the vertical velocities of the shear waves
are different. In fact, the two shear waves in the [x;, X3] plane
of an orthorhombic medium are fully decoupled because they
depend on different sets of elastic constants [compare equa-
tions (12) and (13)].

Similar conclusions can be drawn for wave propagation in the
[X2, X3] symmetry plane. Substituting n; = 0into the Christoffel
matrix [equations (5)-(10)] and introducing the in-plane phase
angle with vertical (n, = sin6; ng = cos#) yields for P-SV-
waves:

C225IN% 0 + C44 COS2 O — pV/2
(Cp3 + C44) SINO COS O

Equation (14) becomes identical to the corresponding
Christoffel equation (12) for the [x;, x3] plane of orthorhom-
bic media if we replace U, with U; and interchange the indices
1 and 2 in the appropriate components of the stiffness tensor
Cijke, 1.€.,

Cp — C11; Cas — Cs5; Gz — Ci3. (15)

Therefore, to obtain the phase velocity of both in-plane po-
larized modes in the [x;, X3] plane as a function of the phase
angle with vertical, it is sufficient to make the above substitu-
tions of the elastic constants in the known phase-velocity equa-
tions for VTI media (or for the [x;, x3] plane of orthorhombic
media).

It can be demonstrated exactly in the same fashion that the
Christoffel equation in the third ([x;, Xz]) symmetry plane be-
comes identical to the VTI equations with the appropriate sub-
stitution of elastic constants, but the point has already been
made.

ANISOTROPIC PARAMETERS FOR
ORTHORHOMBIC MEDIA

To take full advantage of the analogy with VTI media,
the stiffness coefficients ¢; can be replaced with a set of
anisotropic parameters (combinations of stiffnesses) that con-
cisely characterize a wide range of seismic signatures for or-
thorhombic anisotropy. Indeed, since seismic signatures for
transversely isotropic media are especially convenient to de-
scribe in terms of dimensionless Thomsen (1986) parameters
(Tsvankin, 1996), it is natural to extend that notation to the
symmetry planes of orthorhombic media. As we will see be-
low, these parameters turn out to be helpful in studying wave
propagation outside the symmetry planes as well.

Another, similar version of Thomsen-style notation de-
signed for arbitrary anisotropic media was proposed simul-
taneously (during the 7th Workshop on Seismic Anisotropy
in Miami, 1996) by Gajewski and P3encik (1996) and Mensch
and Rasolofosaon (1997). Their approach, however, is based
on the weak-anisotropy approximation for phase velocity and
leads to a different (linearized in ¢;;) definition of the § coeffi-
cients. One of the main points substantiated below is that the
notation introduced here is advantageous for media with any
strength of the anisotropy.

Definitions of the parameters

First, following Thomsen'’s recipe, we define two vertical ve-
locities (for P- and S-waves) of the reference isotropic model.
For orthorhombic media, we can choose either of the two ve-
locities of split shear waves at vertical incidence. Here, the
preference is given to the S-wave polarized in the x;-direction
to make the new notation for the “P-SV”-waves in the [x;, X3]
plane identical to Thomsen’s notation in the VTI case. Thus,
the two “isotropic” velocities are defined by

[ Ca4) SIN 6O COS O U
(_ 223 + Cu4) , 2| _ 0. (14)
C42 SIN“ 6 + C33COS% 0 — pV Us
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C
Veo= [, (16)
P
Vo= |22 (17)
0

Since the Christoffel equation (12) for the waves polarized
in the [x;, X3] plane is identical to the corresponding equation
for vertical transverse isotropy, we introduce the dimensionless
coefficients ¢ and §@ [the superscript (2) refers to the x,-axis
direction, which defines the orientation of the [x;, X3] symmetry
plane] through the same equations as those used in Thomsen
(1986) for VTI media:

@ = C11 — Cs3

18
2033 ( )

5@ — (Ci13 + Cs5)% — (Caz — Css)?
2C33(Ca3 — Cs5) '

Note that in the definition of § for VTI media, the coefficient
C44 rather than its equal (css) has often been used. Since these
two parameters differ for orthorhombic media, we should al-
ways use Css in equation (19).

As in VTI media, the coefficient §@ from equation (19)
provides the exact second derivative of P-wave phase veloc-
ity at vertical incidence in the [x;, 3] plane: (d?V/d6?)|y—o =
2Vpod®@. Since this derivative is needed to obtain the NMO ve-
locity (Tsvankin, 1995) and small-angle reflection coefficient,
our definition of §® is particularly suitable for describing re-
flection seismic signatures.

The analogy with vertical transverse isotropy implies that
we can obtain kinematic signatures and polarizations of the
P-SV-waves in the [x;, X3] plane of orthorhombic media just
by substituting Vpo, Ve, €@, and §@ into the known equations
for VTI media expressed in terms of Thomsen parameters Vpy,
Vg, €, and 8. For instance, using the exact phase-velocity equa-
tion for VTI media expressed through Thomsen parameters
(Tsvankin, 1996) and replacing € and & with ¢® and §®, re-
spectively, we find the phase velocities of the P-SV-waves in
the [x, X3] plane as

(19)

v? f
& =1+e@sin?9 — —
VE, 2
2 .
Py N 2¢@sin*6\" 2(e? - 5@) sin 29’
2 f f
(20)
f=1-Vg/Vé. (21)

The plus sign in front of the radical corresponds to the P-wave,
while the minus sign corresponds to the SV-wave. In the weak-
anisotropy approximation, the P-wave phase velocity in the
[x1, Xs] plane can be linearized in the small parameters ¢ and
5@ to obtain the well-known expression (Thomsen, 1986)

Vp(0) = Vpo(1 + 8@ sin? 6 cos? 0 + €@ sin*0).  (22)

Phase-velocity equations (20) and (22) demonstrate how we
can use the new anisotropic parameters to take advantage of
the analogy between the symmetry planes of orthorhombic
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media and vertical transverse isotropy (for a more detailed
discussion, see the next section).

Next, using the equivalence between equation (13) and the
corresponding expression for the SH-wave in VTI media, we
introduce the parameter

@ _ Ce6 — Caa

23
o (23)

14
Here, y @ isidentical to Thomsen’s coefficient y for VTI media:
itisresponsible for the velocity variations of the S H-wave in the
[X1, Xs] plane. The coefficients €@, §@, and y@ coincide with
the parameters ¢, 5, and y ) (respectively) introduced in
Tsvankin (1997b) and Ruger (1997) for transversely isotropic
media with the symmetry axis along the x;-direction.

In principle, it would be convenient to specify the parame-
ters e, 8, and y in the same fashion for the other two symmetry
planes as well. However, if we did so, some of the anisotropy
coefficients would not be independent, and the new notation
would suffer from redundancy. In defining the anisotropic pa-
rameters, we put emphasis on simplifying seismic signatures in
the two vertical planes of symmetry. To describe P-SV-waves
in the [x;, X3] symmetry plane (the plane normal to the x; -axis),
we introduce the parameters ¢ and §® defined analogously
to €@ and §®. Using the recipe in equation (15) yields

Co2 — C33
e =22 ™

) 24
T (24)

2 _ )2
sO = (C23 + C44)” — (Ca3 — Caa) ’ (25)

2C33(C33 — Ca4)
@ _— Ces — Cs5

yW=—— 26
T (26)

Now, for instance, we can obtain the phase velocities of P-
SV-waves in the [x;, X3] plane from equation (20) by substitut-
ing €® for ¢® and §® for §?; also, f should be replaced by
fi =1—VZ/V3, where

Ve = v/Cus/p 27)

is the vertical velocity of the S-wave polarized in the Xx,-
direction.

The two vertical velocities and six anisotropy parameters
introduced above can be used instead of eight original stiff-
ness coefficients: €1, Cy, Ca3, Cas, Css, Ces, Co3, @and Cy3. The only
remaining stiffness c;, can be replaced with a dimensionless
anisotropic parameter analogous to the § coefficients in the
vertical planes of symmetry

5@ = (12 + Ce)? — (C11 — Ceg)?
2C11(C11 — Cep) ’

The coefficient §® plays the role of Thomsen’s § in TI
equations written for the [x;, X;] symmetry plane, with the
x;-direction substituted for the symmetry axis. Note that the
quantities €® and y® would be redundant.

Having introduced the new parameters,it is convenient to
list all of them, along with their brief descriptions:

(28)

Vpo—the vertical velocity of the P-wave;
Vg —the vertical velocity of the S-wave polarized in the x;-
direction;
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€@ _—the VTI parameter ¢ in the symmetry plane [xy, Xs]
normal to the x;-axis (close to the fractional differ-
ence between the P-wave velocities in the x;- and X3-
directions);

5@ —the VTI parameter § in the [xy, X3] plane (responsi-
ble for near-vertical P-wave velocity variations, also
influences SV-wave velocity anisotropy);

y@—the VTI parameter y in the [x, 3] plane (close to the
fractional difference between the SH-wave velocities
in the x;- and x3-directions);

€M —the VTI parameter e in the [x,, x3] plane;

8W —the VTI parameter § in the [x,, X;] plane;

y®—the VTI parameter y in the [x,, x3] plane;

5® —the VTI parameter § in the [x;, X] plane (x; is used as
the symmetry axis).

While the new parameters are determined uniquely by the
nine independent stiffness coefficients of orthorhombic me-
dia, the inverse transition is unique only for the coefficients
associated with the velocities along the coordinate axes (cy1,
C22, C33, Cus, Cs5, @Nd Cgg). TO Obtain the other three coefficients
(€12, C13, Cp3) from the corresponding § values, it is necessary
to specify the sign of the sums (c;3 + Css) [equation (19)],
(C23+C4q) [equation (25)], and (ci2+Cse) [equation (28)]. As dis-
cussed in Tsvankin (1996), exactly the same problem arises with
Thomsen parameters in transversely isotropic media. How-
ever, since the stability condition (Musgrave, 1970) requires
the coefficients css, Cq4, and cgq to be always positive, the sums
under consideration can be negative only for uncommon large
negative values of c3, Cy3, Or C;,. Therefore, for practical pur-
poses of seismic processing and interpretation, we can assume
that (C13 + Cs5), (C23 + Caq), and (C12 + Cg6) are positive. That
would correspond to one of the conditions of so-called “mild
anisotropy” as specified in Schoenberg and Helbig (1997) and
ensures the absence of anomalous body-wave polarizations in
the symmetry planes (Helbig and Schoenberg, 1987). Note that
the term “mild anisotropy” does not mean that the magnitude
of velocity variations is small.

Although the nine parameters introduced above are suffi-
cient to characterize general orthorhombic media, one may
need to use different combinations of these coefficients in spe-
cific applications. For instance, shear-wave splitting at vertical
incidence is described conventionally by the fractional differ-
ence between the parameters ¢4 and Css as

y® = Cas — G5 _ y® —y@ ~ Va1 — Vg
- 2Css 1+ 2)/(2) Vs '

(29)

The parameter y® represents a direct measure of the time
delay between two split shear waves at vertical incidence and is
identical to the generic Thomsen'’s coefficient y for transversely
isotropic media with a horizontal symmetry axis that coincides
with the x;-direction.

Special cases: VTI and HTI media

Both vertical and horizontal transverse isotropy can be con-
sidered as degenerate special cases of orthorhombic media. An
orthorhombic medium reduces to the VTI model if the proper-
ties in all vertical planes are identical, and the velocity of each
mode in the [Xy, x;] plane (the so-called “isotropy plane”) is

constant (although the velocities of the two S-waves generally
differ from one another). Hence, the VTI constraints, which
reduce the number of independent parameters from nine to
five, can be rewritten in terms of the new parameters as

D — @ — ¢
sO = 5@ — 5,
y(l) — y(Z) =y,

and
8@ =0,

where €, 8, and y are Thomsen’s VTI anisotropy coefficients.

Another special case is transverse isotropy with a horizontal
axis of symmetry. If the symmetry axis is oriented along the
x;-direction, then the axes x, and x; form the isotropy plane,
and

eW =0,
sM =0,
y® =0.

The parameters €¢®, §@, and y@ in this case coincide with
the coefficients €™, s, and y) (respectively) introduced
in Tsvankin (1997b) and Ruger (1997). Wave propagation in
HTI media is described fully by these three dimensionless
anisotropic coefficients and two vertical velocities Vpy and Vg.
(The last anisotropic parameter, §®, in this model is not inde-
pendent.)

APPLICATION OF THE NEW NOTATION IN THE
SYMMETRY PLANES

By design, the new parameters provide a simple way of
describing seismic signatures in the symmetry planes of or-
thorhombic media using the known equations for VTI me-
dia expressed through Thomsen parameters (Thomsen, 1986;
Tsvankin, 1996). The coefficients e, §®, and y © conveniently
quantify the magnitude of velocity anisotropy in orthorhom-
bic media, both within and outside the symmetry planes. The
parameters ¢® and €@ are close to the fractional difference
between vertical and horizontal P-wave velocities in the planes
[x1, Xs] and [x, X3] (respectively) and, therefore, yield an over-
all measure of the “P-wave anisotropy” in these planes. Sim-
ilarly, the coefficients y®@ and y® govern the magnitude of
the velocity variation of the elliptical SH-wave in the vertical
symmetry planes.

One of the most important advantages of Thomsen notation
is the reduction in the number of parameters responsible for
P-wave kinematic signatures. The exact P-wave phase-velocity
equation for VTI media [analogous to equation (20)] contains
four independent parameters (Vpo, Vs, €, and §), but the in-
fluence of the shear-wave vertical velocity Vg is practically
negligible, even for strong anisotropy (Tsvankin and Thomsen,
1994). As discussed in Tsvankin (1996), the stiffness coefficient
that determines the shear-wave vertical velocity (C4s = Cs5 in
VTI media) does make a contribution to the P-wave velocity
equations, but only through the parameter §. The analogy with
VTI media implies that P-wave kinematic signatures in each



1298

symmetry plane are determined by just three independent coef-
ficients. In the vertical symmetry planes the needed parameters
are the vertical P-wave velocity Vp, (the scaling factor) and a
pair of the anisotropic coefficients introduced above: ¢? and
8@ ([x1, x3] plane) or e® and 6® ([x,, x3] plane). As in VTI
media, the coefficients ¢® and §® are responsible for phase and
group velocity in different ranges of phase angles, which is ex-
tremely convenient for purposes of seismic processing and in-
version. Specifically, the coefficients §® (plane [x;, xs]) and 6
(plane [x;, X3]) determine near-vertical P-wave velocity vari-
ations [see equation (22)], as well as the anisotropic term in
the expression for normal-moveout velocity from horizontal
reflectors (discussed in more detail below). Also, the new no-
tation simplifies the elliptical condition in both vertical symme-
try planes: for example, the P-wave anisotropy in the [x, X3]
plane is elliptical if ¢® = §@ (the SV-wave velocity in this case
is constant).

To obtain any kinematic signature (e.g., phase and group
velocity, moveout from horizontal reflectors, etc.), polariza-
tion vector, and reflection coefficients of the P- and SV-waves
in the [x;, x3] plane of orthorhombic media, it is sufficient to
substitute Vpg, Vg, €@, and §@ into VTI equations expressed
through Vpy, Vg, €, and 8, respectively. The same analogy with
vertical transverse isotropy holds for P-SV-wavesin the [x;, X3]
plane, if we use VTI equations with the coefficients Vpg, Vs,
€M, and §®. Adaptation of VTI signatures to the symmetry
planes of orthorhombic media using the new anisotropic pa-
rameters is discussed briefly below. The reflection coefficients
in the symmetry planes of orthorhombic media are described
in Ruger (1996).

Phase and group velocity

The exact phase velocity of the P-SV-waves in the [X;, X3]
plane and the weak-anisotropy approximation for the P-wave
phase velocity were expressed through the new parameters
in equations (20) and (22), respectively (analogous expres-
sions hold in the [x;, x3] plane). In a similar way, we can
adapt Thomsen’s (1986) weak-anisotropy approximation for
the phase velocity of the SV-wave in VTI media. The SV-wave
phase velocity in the [x;, x3] plane, linearized in the anisotropic
parameters, takes the form

Vsv(0){[x1, Xs] plane} = Vgo(1+0®@ sin*6 cos?6), (30)

where ¢ @ was introduced in Tsvankin and Thomsen (1994) as

v 2
daz<_@)(ga_5®) (31)

Vg

The parameter @ largely determines the kinematic signa-
tures of the SV-wave in the [x;, X3] symmetry plane, although
the influence of the individual values of the Vpy/Vg ratio,
€@, and 8 on SV propagation becomes more pronounced
with increasing values of anisotropic coefficients. Although the
weak-anisotropy approximations for phase velocity become
less accurate with increasing velocity anisotropy, they provide
a valuable analytic insight into a wide range of seismic signa-
tures (Tsvankin, 1996). It is also possible to improve the accu-
racy of equations (22) and (30) by adding terms quadratic in
the anisotropic parameters. For instance, Tsvankin (1996) pre-
sented the quadratic weak-anisotropy approximation for the
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P-wave velocity in VTI media that can be directly applied in
the symmetry planes of orthorhombic media.

Using the analogy with the SH-wave in VTl media
(Thomsen, 1986), we can obtain the exact S H-wave phase ve-
locity in the vertical symmetry planes in the following form:

Vsn(0){[x1, Xs] plane} = Va1,/1+ 2y @ sin?6
1+2)/(1) .2
= Vg, ———=/14+2y@sin° 9;
o Try@V T

(32)

Vsh(0){[X2, Xs] plane} = Vgyy/1 4+ 2yDsin?6.  (33)

The group velocity vy in the symmetry planes of orthorhom-
bic media represents the same function of phase velocity as in
VTI media (e.g., Berryman, 1979):

1dV\?
vgr = V,/1+ <V@) , (34)

where 6 is the phase angle with one of the coordinate axes.
[Equation (34), however, will not describe cuspoidal branches
of S-wave group-velocity surfaces caused by out-of-plane slow-
ness vectors.] Hence, to compute the group velocity in any of
the symmetry planes, we just have to substitute the appropri-
ate phase-velocity function into equation (34) (e.g., from equa-
tion (20) for the P-SV-waves in the [x, x3] plane). As is the
case for T1 media, in the linearized weak-anisotropy approxi-
mation the group velocity expressed through the phase angle
coincides with the phase velocity. However, the group velocity
corresponds to the energy propagating at the group angle v
given in VTI media by (Berryman, 1979)

tany = —Vde. (35)

Again, equation (35) can be used to calculate the group angle
¥ with vertical in the symmetry planes of orthorhombic me-
dia by substituting the corresponding phase-velocity functions.
[The phase angle 6 in equation (35) should be computed with
respect to the vertical (x3) axis]. Also, the weak-anisotropy ap-
proximations for the group angles can be adapted easily from
the corresponding VTI expressions (Thomsen, 1986). For in-
stance, the P-wave’s group angle with vertical in the [x;, Xs]
plane can be represented as

tany = tan o1+ 256@ 4 4(e@ — @) sin*0].  (36)

Note that the difference between the group and phase angles
does contain terms linear in the anisotropic coefficients. An ob-
vious modification of equation (36) provides a similar expres-
sioninthe [X;, x3] symmetry plane. For wave propagation along
the coordinate axes of orthorhombic media the derivative of
phase velocity vanishes, and the group- and phase-velocity vec-
tors for any wave type coincide with each other.
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Polarization vector

For a given slowness direction, the polarization vectors of
the three plane waves (the eigenvectors of the Christoffel
equation) are always mutually orthogonal. This orthogonal-
ity does not hold, however, for nonplanar wavefronts excited
by point sources because the three body waves recorded at
any fixed point in space correspond to different slowness di-
rections. Also, the polarization vector of the plane P-wave is
not necessarily aligned with either phase (slowness) or group
(ray) vector. Likewise, in general the split shear waves are not
polarized orthogonally to the phase- or group-velocity vector
(this explains the qualifier “quasi” usually added to the names
of body waves in anisotropic media). In some directions, how-
ever, the polarization vector of the P-wave is parallel to the
slowness vector; Helbig (1993) described such directions as
“longitudinal.” In the symmetry planes of orthorhombic me-
dia the longitudinal directions include (but are not limited to)
the coordinate axes (Schoenberg and Helbig, 1997).

Using the known expression for the polarization vector in
transversely isotropic media (e.g., Helbig and Schoenberg,
1987; Tsvankin, 1996), we can write the polarization angle of
the plane P-wave in the [x;, X3] plane of orthorhombic media
as

U sin cos H(C13 + Css)
Us  pV2—cyysin®6 — Cs5C05260

(37

where V is the phase velocity of the P-wave. Equation (37) is
valid for any strength of the anisotropy and determines the SV-
wave polarization angle as well (the polarization vectors of the
P- and SV-waves are orthogonal). The second shear wave in
the [Xy, x3] plane represents a pure shear (SH) mode polarized
in the x,-direction.

Adapting the results of Rommel (1994) and Tsvankin (1996)
obtained for TI media, we find the following weak-anisotropy
approximation for equation (37)

tanv = tan0{1 + B[28@ + 4(¢@ — §@)sin? 0]},

(38)
1 1

B _
2f = 201 V3/V)

With the appropriate substitutions of the elastic constants
[see relations (15)] or anisotropic coefficients, equations (37)
and (38) can be used to obtain the polarization angles for P-SV
waves in the [X;, X3] plane.

As discussed in Tsvankin (1996), comparison of the weak-
anisotropy approximations for the group angle (36) and the
polarization angle (38) shows that for weak and moderate
anisotropy, the P-wave polarization vector lies closer to the
corresponding ray (group) vector than to the phase vector.
To obtain body-wave polarizations in the far-field of a point
source, it is necessary to find the phase angle 6 corresponding
to a given group (source-receiver) direction and substitute it
into equations (37) or (38). Near-field polarizations, however,
depend on the relative amplitudes of several terms of the ray
series expansion and, therefore, can be influenced by azimuthal
velocity variations in orthorhombic media.

Moveout from horizontal reflectors

Suppose a common-midpoint (CMP) line is parallel to the
x;-axis of a horizontal orthorhombic layer. Then the phase-
and group-velocity vectors of the waves reflected from the
bottom of the layer stay in the [X;, x3] symmetry plane, and
the short-spread normal-moveout (NMO) velocity can be ob-
tained from the known VTI equations (e.g., Thomsen, 1986;
Tsvankin, 1996). The substitutions described above yield

V@ [P-wave] = Vpov/1 + 25®, (39)

V@ [SV-wave] = Vgv/ 1 + 20@, (40)

V2 [SH-wave] = Vg,/1 4 2y @, (41)

where o® was defined in equation (31).
Similarly, the P-wave NMO velocity on a line parallel to the
Xp-axis is given by

v [P-wave] = Vpom . (42)

Moveout velocity is one of the most important parameters
in reflection data processing, and the simplicity of the above
expressions is a good illustration of the advantages of the no-
tation introduced here. Note that equations (39)-(42) remain
valid for any strength of velocity anisotropy. Evidently, if the
symmetry-plane directions and the vertical velocity is known,
short-spread P-wave moveout in the vertical symmetry planes
makes it possible to obtain both § coefficients.

To find normal-moveout velocity in symmetry planes of mul-
tilayered laterally homogeneous orthorhombic models, it is suf-
ficient just to apply the conventional Dix equation. This conclu-
sion follows from the general NMO formula for any symmetry
plane in anisotropic media given in Alkhalifah and Tsvankin
(1995). Of course, for a stack of orthorhombic layers to have
a throughgoing vertical symmetry plane, the horizonal coordi-
nate axes in all layers have to be aligned.

For relatively large spreadlengths (exceeding the reflector
depth) in anisotropic media, reflection moveout becomes non-
hyperbolic and can be described by the following expression
developed by Tsvankin and Thomsen (1994) for vertically in-
homogeneous VTI media:

Asx?

t2(x) = t2 + Ayx® ,
) =t+A +1+AX2

(43)
where tg is the zero-offset reflection traveltime, A, = 1/Vnzm0,
A, is the quartic moveout coefficient, and

where Vpg is the horizontal velocity. The normalization of the
guartic moveout term makes equation (43) numerically accu-
rate for P-wave reflection moveout on long spreads (2-3 times,
and more, the reflector depth), even in VTI models with pro-
nounced velocity anisotropy (Tsvankin and Thomsen, 1994).
The analogy with vertical transverse isotropy implies that the
nonhyperbolic moveout equation (43) can be used without any
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modification on CMP lines parallel to one of the horizontal co-
ordinate axes of an orthorhombic layer (or in the symmetry
planes of a layered orthorhombic medium). For instance, for a
line coinciding with the x;-axis we have to make the following
substitutions in equation (43) (for the P-wave)

1
V3, (1+25@)°

Vpgo = VpoV 1+ 26@),

2 — 5@) 14250 /
Ve (1+25@)"

with f given by equation (21). While equation (43) as a whole
is an approximation for long-spread moveout, the above ex-
pression for the quartic coefficient A, is exact for any strength
of the anisotropy.

Obvious modifications of the above equations provide sim-
ilar expressions for the [x,, X3] symmetry plane. The behavior
of the exact normal-moveout velocity outside the symmetry
planes is discussed in Grechka and Tsvankin (1996).

Ay =

and

A= —

Dipping reflectors and 2-D processing

The equivalence between orthorhombic media and vertical
transverse isotropy breaks down if the phase- or group-velocity
vectors of seismic waves deviate from the vertical symmetry
planes. Evidently, 3-D seismic processing in orthorhombic me-
dia cannot be carried out by just adapting the known VTI al-
gorithms. However, if the subsurface can be approximated by
a 2-D structure with the strike parallel to one of the horizontal
coordinate axis of an orthorhombic model, the incident and
reflected rays on the dip line (normal to the strike) will be
confined to one of the vertical symmetry planes. (For more
complicated 3-D models it may be possible to suppress out-of-
plane events.) Normal-moveout velocity of in-plane dipping
events can be described by the following equation valid for
pure modes in any symmetry plane of arbitrary anisotropic
media (Tsvankin, 1995):

1 + idz_V
V(o) V(g) do? |,_
cos ¢ 1 tang dV

V(@) 6 |,_,

where 0 is the phase angle with vertical, and ¢ is the dip of
the reflector. Equation (44) can be considerably simplified by
using the weak-anisotropy approximation. Adapting the result
obtained by Tsvankin (1995) for vertical transverse isotropy in
the limit of small € and §, we get the following expression for
the P-wave NMO velocity in the [x;, X3] plane of orthorhombic
media (|e®| « 1, |69 « 1):

Viiao () cos ¢
V& (0)

¢

Vnmo (¢) = ’ (44)

=1+45Psin’¢

+3(c — 50 sinl g2 - sin’ ). (45)

In reflection data processing, NMO velocity is usually treated
as a function of the ray parameter p(¢) that can be determined
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from the slope of reflections recorded on zero-offset (or CMP-
stacked) seismic sections. For vertical transverse isotropy, P-
wave NMO velocity from dipping reflectors [equation (44)]
expressed as a function of p is determined by just two param-
eters: the NMO velocity from a horizontal reflector [Vimo(0)]
and an anisotropic coefficient defined as n = (¢ — 8)/(1 + 26)
(Alkhalifah and Tsvankin, 1995). The parameter n can be
considered as a measure of “anellipticity” of a particular TI
medium. Alkhalifah and Tsvankin (1995) have shown that
Vimo (0) and n control not just the dip-dependent NMO veloc-
ity, but also all time-related P-wave processing steps (NMO,
DMO, prestack and poststack time migration) in homogeneous
or vertically inhomogenous VTI media.

This conclusion remains entirely valid for P-wave reflections
confined to one of the vertical symmetry planes of orthorhom-
bic media. For instance, the kinematics of 2-D time processing
in the [x;, X3] symmetry plane is governed by the correspond-
ing P-wave NMO velocity from a horizontal reflector [equa-
tion (39)] and a parameter @ given by

= ——. 46
1+25@ (46)
As an example, the nonhyperbolic moveout equation (43) in
the [x;, X3] plane can be rewritten as a function of just these two
effective parameters and the vertical time t, (the contribution
of Vg to the quartic term A, can be ignored):

t?(x) =t + e
Vi@ ()]
27](2)X4
VO [V + [+ 20@]x2)
(47)

If @ = 0, the P-wave anisotropy in the [x;, 3] plane is ellip-
tical and the reflection moveout is purely hyperbolic.

Alkhalifah and Tsvankin (1995) show that both parameters
needed for P-wave time processing in VTI media can be ob-
tained from surface P-wave data using NMO velocities from
two reflectors with different dips. This algorithm holds for pa-
rameter estimation using in-plane dipping events in the vertical
symmetry planes of orthorhombic media. For instance, if the
strike of the structure is parallel to the x,-axis, NMO velocities
of reflections from horizontal and dipping interfaces recorded
on the dip line (parallel to the x;-axis) can be used to recover
the zero-dip NMO velocity and the parameter »® from equa-
tion (44). In principle, the coefficient @ can be estimated using
the long-spread (nonhyperbolic) P-wave moveout from hori-
zontal reflectors [see equation (47)], although with lower ac-
curacy (Tsvankin and Thomsen, 1995). Once the two effective
parameters have been determined, 2-D time processing in the
[x1, X3] symmetry plane can be carried out using the methodol-
ogy developed for vertical transverse isotropy. To perform 2-D
depth processing in either of the vertical symmetry planes, it is
also necessary to know the P-wave vertical velocity.

In general, all 2-D data-processing steps (NMO, DMO, time
and depth migration) in the vertical symmetry planes of or-
thorhombic media can be performed by VT algorithms. Body-
wave amplitudes, however, will be influenced by azimuthal ve-
locity variations, which may cause distortions in the so-called
“true-amplitude” DMO and migration methods.
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P-WAVE KINEMATICS OUTSIDE THE SYMMETRY PLANES

While the new notation has obvious advantages in describ-
ing symmetry-plane seismic signatures, an open question is
whether it can be useful in treating wave propagation outside
the symmetry planes. The focus here will be on phase velocity—
the most fundamental function that determines all other kine-
matic signatures for a particular mode. Since Thomsen notation
does not provide any tangible simplification of the exact phase-
velocity equations for transversely isotropic media (Tsvankin,
1996), our notation can hardly be expected to accomplish this
task for orthorhombic models. Indeed, the exact phase veloc-
ity in terms of the new coefficients still has to be computed
numerically (see Appendix A).

However, as demonstrated by the symmetry-plane analy-
sis in the previous section, the new notation may be helpful in
developing concise weak-anisotropy approximations for phase
and group velocity, reducing the number of parameters respon-
sible for P-wave kinematics for any strength of the anisotropy,
and simplifying the exact analytic expressions for reflection
seismic signatures (such as NMO velocity). Hence, our next
step here is to transform the phase-velocity equations in the
limit of weak anisotropy.

Weak-anisotropy approximation for phase velocity

Since the dimensionless anisotropic parameters introduced
above should be small in weakly anisotropic media, the new no-
tation is particularly suitable for developing weak-anisotropy
approximations by expanding seismic signatures in powers of
e®, 6O and y® (usually only the linear terms are retained).
For the planes of symmetry it is sufficient just to adapt the
known expressions for weak transverse isotropy (see the pre-
vious sections). Approximate P-wave phase velocity outside
the symmetry planes is obtained in Appendix B by linearizing
the exact equations (A-8) and (A-9) in the anisotropic coeffi-
cients:

VE = V& [1+2ne@ + 2nJe® + 2nZnds@
+2m3n38W + 2n2n3 (2@ + §@)]. (48)

Itis convenient to replace the directional cosines of the slow-
ness (or phase-velocity) vector by the polar (6) and azimuthal
(¢) phase angles,

Ny =siné cos g,

n, =sinésing, N3 = COS .

Then, taking the square-root of equation (48), we obtain the
phase velocity exactly in the same form as in VTI media
[equation (22)], but with azimuthally dependent coefficients ¢
and §:

Vp(0, $) = Vpo[1l+8(¢)sin? 6 cos? 0 +e(p) sin*6];  (49)

8(¢) = 8Wsin ¢ 4 5D cos? ¢,

e(p) =eWsin* ¢+ €@ cos ¢ + (2¢@ +5D) sin ¢ cos? ¢.

In both vertical symmetry planes, equation (49) reduces to
Thomsen’s (1986) weak-anisotropy approximation for T1 me-
dia.

The structure of equation (49) is similar to the expansion of
P-wave phase velocity in a series of spherical harmonics devel-
oped by Sayers (1994b). Here, however, instead of describing
the medium by perturbations of the stiffness coefficients (as
was done by Sayers), we have obtained a concise approxima-
tion in terms of the dimensionless anisotropic parameters €
and M. Since Sayers (also see Jech and P3encik, 1989; Mensch
and Rasolofosaon, 1997) neglects terms of order (Ac; /cij)?,
whereas we neglect terms of order §2 (etc.), this linearization
is slightly different. Because of the structure of the Christoffel
equation (2) for orthorhombic media, it is convenient to use
nonlinear combinations of elastic moduli (§07) to characterize
the anisotropy. As mentioned above, the § coefficients defined
here yield the exact second derivative of P-wave phase velocity
at vertical incidence that is needed to describe such reflection
seismic signatures as NMO velocity and small-angle reflection
coefficient.

Parameters responsible for P-wave velocity

It should be emphasized that equation (49) does not con-
tain any of the three parameters (Vg, y@®, y®) that describe
the shear-wave velocities in the directions of the coordinate
axes. Evidently, kinematic signatures of P-waves in weakly
anisotropic orthorhombic media depend on just five anisotropic
coefficients (9, 8®, @, 5@ and §®) and the vertical velocity.
Similar conclusions for weakly anisotropic models of various
symmetries were drawn by Chapman and Pratt (1992), Sayers
(1994b), and Mensch and Rasolofosaon (1997).

The equivalence between the symmetry planes of or-
thorhombic media and transverse isotropy, discussed in de-
tail above, implies that these six parameters are sufficient to
describe P-wave phase velocity in all three symmetry planes,
even for strong velocity anisotropy. An important question, to
be addressed next, is whether or not P-wave phase velocity de-
pends only on the same six parameters outside the symmetry
planes and in the presence of significant velocity variations.

In the numerical examples below, we examine the influence
of the parameters Vg and y® on the exact phase velocity of
P-wave for orthorhombic models with moderate and strong
velocity anisotropy. Itis sufficient to consider the velocity func-
tion in a single octant, for instance, the one corresponding to
0 <6 <90°0 < ¢ < 90°. Figure 2 shows the dependence of
P-wave phase-velocity variations in four vertical planes on the
shear-wave vertical velocity Vg (or the Vpo/ Vg ratio), with all
other model parameters being fixed. Clearly, the influence of
Vg within a wide range of the Vpq/ Vg ratios is negligible not
only in the [x;, x3] symmetry plane (¢ = 0), as was expected
(Tsvankin, 1996), but outside the symmetry planes as well.
This conclusion holds for two models with more pronounced
phase-velocity variations shown in Figure 3. Note that even
for a medium with uncommonly strong velocity anisotropy
(Figure 3b) the difference between the phase-velocity curves
corresponding to the two extreme values of the Vpy/ Vg ratio
remains barely visible. The contribution of Vg to the P-wave
phase velocity becomes somewhat more noticeable only for
uncommon models with close values of the P- and shear-wave
velocities in one of the coordinate directions.

It should be emphasized that if the conventional notation is
used, the influence of the stiffness coefficients C44, Cs5, and Css ON
P-wave velocity cannot be ignored. For instance, ¢cs5s does make
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a contribution to the value of §@ [equation (19)]. As in VTI
media, our notation makes it possible to reduce the number
of parameters that govern P-wave velocity by combining the
stiffness coefficients css and ¢y in the single parameter §@; the
same holds for the stiffnesses ¢4 and cg as well.

The P-wave phase velocity at two extreme values of the pa-
rameter y® is shown in Figure 4. Since none of the elastic
constants governing P-wave propagation in the [x;, x3] plane
depends on y® (with Vg, being fixed), the plot starts at an az-
imuth of 20°. Although the influence of y® increases slightly
in the vicinity of the [x;, X3] plane (¢ = 90°), the contribution
of this parameter can be safely ignored at all azimuthal angles.
Similarly, P-wave velocity is independent of the coefficient y @,
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Thus, P-wave phase-velocity variations in orthorhombic me-
dia are governed by just five anisotropic parameters (¢®, §®,
€@, 8@ and §®), with the vertical P-wave phase velocity
serving as a scaling coefficient (in homogeneous media). The
3-D phase-velocity (or slowness) function fully determines the
group-velocity (ray) vector and, therefore, all other kinematic
signatures (e.g., reflection traveltime). This means that the five
anisotropic parameters listed above and the vertical velocity
are sufficient to describe all kinematic properties of P-waves
in orthorhombic media.

Furthermore, P-wave reflection traveltimes from mildly dip-
ping reflectors in orthorhombic models with a horizontal
symmetry plane should be determined largely by the four
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FiG. 2. Influence of the vertical shear-wave velocity Vg, on the exact P-wave phase velocity. The velocity is calculated as a function
of the phase angle with vertical at the four azimuthal phase angles shown on top of the plots. The solid curve corresponds to
Vpo/Vs = 1.5 (Vpo = 3 km/s, Vg = 2 km/s), the dotted curve to Vpy/ Vg = 2.5 (Vpy = 3 km/s, Vg = 1.2 km/s). The other model
parameters are: ¢ = 0.25, ¢® = 0.15, §) = 0.05, 6@ = —0.1, §® = 0.15, y®D = 0.28, y@ = 0.15.
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FiGc.3. P-wave phase velocity for different Vpy/ Vg ratios in mediawith stronger anisotropy than in Figure 2. The velocity is calculated
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(Vpo = 3 km/s, Vg = 2 km/s), the dotted curve—to Vpy/ Vg = 2.5 (Vpo = 3 km/s, Vg = 1.2 km/s). The other model parameters are:
(@) e® =0.25, €@ =045, 50 = —0.1, 6@ = 0.2, 6® = —0.15, y® = 0.28, y@ = 0.15; (b) €® = 0.45, €@ = 0.6, §® = —0.15,

5@ = —0.1,6® = 0.2, yW = 0.7, y@ = 0.3.
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anisotropic parameters defined in the vertical planes of sym-
metry [e®, 8D, @ and §®] and the symmetry-plane azimuths.
Indeed, the influence of the fifth coefficient [§®] is mostly lim-
ited to near-horizontal velocity variations outside the vertical
symmetry planes [see equation (49)].

Accuracy of the weak-anisotropy approximation

Now that we have shown that the weak-anisotropy approx-
imation (49) contains all parameters responsible for P-wave
velocity in orthorhombic media, we can study the dependence
of the error of equation (49) on these anisotropic coefficients.
As illustrated by Figure 5, equation (49) provides a good
approximation (especially near vertical) for the exact phase ve-
locity in media with moderate velocity anisotropy, both within
and outside the symmetry planes. The model in Figure 5, taken
from Schoenberg and Helbig (1997), corresponds to an effec-
tive orthorhombic medium formed by parallel vertical cracks
embedded in a VTI background medium.

Even in the model with uncommonly strong velocity
anisotropy shown in Figure 6, equation (49) deviates from the
exact solution by no more than 10%. Also, note that for this
example the weak-anisotropy approximation does not deteri-
orate outside the symmetry planes; in fact, itis in the symmetry
planes where we observe the maximum error for some models.

Although the accuracy of the weak-anisotropy approxima-
tion becomes lower with increasing anisotropic coefficients,
the error remains relatively small for polar angles 6 up to
about 70°. Higher errors of equation (49) near horizontal
are not surprising since our notation is designed to provide
a better approximation for near-vertical velocity variations.
To increase the accuracy of the weak-anisotropy approxima-
tion at near-horizontal directions (which may be important in
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cross-borehole studies), the “isotropic” parameter can be cho-
sen as one of the horizontal velocities.

Equation (49) can be used to build analytic weak-anisotropy
solutions for such signatures as group velocity, polarization
angle, point-source radiation pattern, etc. However, since these
solutions require multiple additional linearizations and involve
the derivatives of phase velocity, their accuracy may be much
lower than that of the phase-velocity expression itself.

DISCUSSION AND CONCLUSIONS

Analytic description of wave propagation in orthorhombic
media can be significantly simplified by replacing the stiff-
ness coefficients with two “isotropic” vertical velocities and
a set of anisotropy parameters similar to the coefficients e,
8, and y suggested by Thomsen (1986) for vertical transverse
isotropy. The definitions of the anisotropy parameters intro-
duced here are based on the analogous form of the Christoffel
equation in the symmetry planes of orthorhombic and trans-
versely isotropic media. This analogy implies that all kinematic
signatures of body waves, plane-wave polarizations, and reflec-
tion coefficients in the symmetry planes of orthorhombic media
are given by the same equations (with the appropriate substi-
tutions of c;;’s) as for vertical transverse isotropy. (The only
exception is cuspoidal branches of shear-wave group-velocity
surfaces formed in symmetry planes of orthorhombic media by
out-of-plane slowness vectors.) Since Thomsen’s notation pro-
vides particularly concise expressions for seismic signatures in
VTI media (Tsvankin, 1996), the new parameters can be con-
veniently used to obtain phase, group, and normal-moveout
velocity, nonhyperbolic (long-spread) reflection moveout, and
plane-wave polarization angle in the symmetry planes of or-
thorhombic media by adapting the known VTI results. The
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FiG. 4. Influence of the parameter y® on the P-wave phase velocity. The solid curve corresponds to y® = —0.1, the dotted curve
to y® = 0.65. The other model parameters are: Vpo = 3 km/s, Vg = 1.5 km/s, e® = 0.25, ¢® = 0.45, §® = —0.1, §® = 0.2,

§® = —0.15, y@ = 0.15.
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equivalence with VTI media can even be used to get analytic
expressions for reflection moveout in throughgoing symmetry
planes of layered orthorhombic media.

All 2-D seismic processing steps in the vertical symmetry
planes can be carried out using the algortihms developed for
vertical transverse isotropy, although the amplitude treatment
in orthorhombic media should be different. To perform 2-D P-
wave time processing (NMO, DMO, time migration) in either
symmetry plane, it is necessary to obtain the corresponding
zero-dip NMO velocity and the anisotropy coefficient  intro-
duced in Alkhalifah and Tsvankin (1995).

It should be mentioned, however, that the kinematic equiv-
alence between the symmetry planes of orthorhombic media
and vertical transverse isotropy does not apply to body-wave
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amplitudes in general. In particular, point-source radiation
patterns in the symmetry planes still depend on azimuthal
velocity variations and, therefore, should be studied using
analytic and numerical methods developed for azimuthally
anisotropic media (Tsvankin and Chesnokov, 1990a; Gajewski,
1993). The influence of out-of-plane velocity variations on
body-wave amplitudes also means that near-field polariza-
tions in the symmetry planes of orthorhombic media may be
different from those in VTI media. Indeed, polarization in
the “nongeometrical” region close to the source is generally
nonlinear and depends on the relative amplitudes of at least
the first two terms of the ray-series expansion (Tsvankin and
Chesnokov, 1990a). In contrast, far-field polarizations are ad-
equately described by the geometrical-seismics (plane-wave)
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FiG. 5. Comparison between the exact P-wave phase velocity (solid curve) and the weak-anisotropy approximation from equa-
tion (49) (dashed curve) for the “standard” orthorhombic model taken from Schoenberg and Helbig (1997). The velocities are cal-
culated at the six azimuthal phase angles shown on top of the plots. The parameters are Vpy = 2.437 km/s,e® =0.329, ¢® =0.258,
W = 0.083, 6@ = —0.078, §& = —0.106 (the other coefficients that do not influence P-wave velocity are Vg = 1.265 km/s,

y® =0.182, y@ = 0.0455).
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approximation, which can be obtained by analogy with vertical
transverse isotropy.

The dimensionless anisotropic coefficients conveniently
characterize the magnitude of anisotropy and represent a
natural tool for developing weak-anisotropy approximations
outside the symmetry planes of orthorhombic media. The
linearized weak-anisotropy approximation for P-wave phase
velocity in terms of the new parameters has the same form as
for vertical transverse isotropy, but with azimuthally depen-
dent coefficients ¢ and 8. This expression provides sufficient
accuracy even in models with pronounced velocity anisotropy
and can be used to develop weak-anisotropy solutions for the
group (ray) angle, polarization vector, etc.

The phase-velocity approximation also shows that the kine-
matics of P-waves in weakly anisotropic orthorhombic models
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is independent of the three parameters responsible for shear-
wave velocities along the coordinate axes (the influence of ¢y,
Css, and cgg isabsorbed by the § coefficients). Although the error
of the weak-anisotropy approximation grows with increasing
anisotropy, the exact phase velocity is still governed by only
five anisotropic parameters (9, §®, @, §® and §®) and
the vertical P-wave velocity. This means that all kinematic sig-
natures of P-waves in orthorhombic media depend on six pa-
rameters (rather than nine in the conventional notation), one
of which—the vertical P-wave velocity—represents just a scal-
ing coefficient in homogeneous media. Furthermore, reflection
traveltimes from mildly dipping interfaces in orthorhombic
media with a horizontal symmetry plane are expected to be
only weakly dependent on the coefficient §®. In each symme-
try plane, the kinematics of P-waves is determined by three
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Fic. 6. Comparison between the exact P-wave phase velocity (solid curve) and the weak-anisotropy approximation from equa-
tion (49) (dashed curve). The model parameters are Vpo =3 km/s, e =0.2, ¢? =0.6, 6 =0.15, §@ = —0.15, §& = —0.2.
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parameters—a pair of the corresponding coefficients € and §
and the P-wave velocity along one of the in-plane coordinate
axes. Clearly, the new parameters capture the combinations of
the stiffness coefficients responsible for P-wave kinematic sig-
natures in orthorhombic media. Hence, P-wave inversion algo-
rithms for orthorhombic media should target these anisotropic
coefficients instead of the stiffness components.

It is important to emphasize that the notation introduced
here is convenient to use in orthorhombic media with any
strength of the anisotropy. The most important advantages of
the new anisotropic coefficients, such as the reduction in the
number of parameters responsible for P-wave velocity and
the simple expressions for seismic signatures in the symme-
try planes, remain valid even in strongly anisotropic models. As
shown by Grechka and Tsvankin (1996), the exact NMO veloc-
ity outside the symmetry planes of a horizontal orthorhombic
layer is a simple function of the two & coefficients defined in the
vertical symmetry planes. Hence, concise weak-anisotropy ap-
proximations can be regarded as just another advantage of this
notation, as is the case with Thomsen notation in VTI media
(Tsvankin, 1996).

The parameters introduced here are defined with respect to
the coordinate system associated with the symmetry planes. In
seismic experiments, the orientation of the symmetry planes
may be unknown and should generally be determined from
the data. The number of unknown coefficients in this case in-
creases from nine to twelve. In many typical fractured reser-
voirs, however, one of the symmetry planes is horizontal and
the only additional (tenth) parameter is the azimuth of one of
the vertical symmetry planes.

While the new notation is clearly superior to the stiffness
coefficients in the inversion and processing of seismic data,
the generic parameter set described above may require some
modification for specific acquisition geometries. For example,
in the inversion of cross-borehole data it may be convenient to
replace §® and §® by similar parameters that govern phase-
velocity variations near horizontal.

The new parameters make up a unified framework for an
analytic description of seismic signatures in orthorhombic,
VTI, and HTI models. Both vertical and horizontal transverse
isotropy can be characterized by specific subsets of the di-
mensionless anisotropic parameters defined here for the more
complicated orthorhombic model. For instance, the parame-
ters €, s, and y ™ introduced for HTI media by Tsvankin
(1997b) and Ruger (1997) are equivalent to the set of the
anisotropic coefficients in one of the vertical symmetry planes
(depending on the orientation of the symmetry axis). This uni-
formity of notation simplifies comparative analysis of seismic
signatures and transition between different anisotropic models
in seismic inversion. On the whole, the new parameters pro-
vide an analytic basis for extending inversion and processing
algorithms to media with orthorhombic symmetry, which is be-
lieved to be typical for realistic fractured reservoirs.
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APPENDIX A
EXACT PHASE VELOCITY FOR ORTHORHOMBIC MEDIA

The goal of this Appendix is to review the known phase-
velocity equations for orthorhombic media used to derive the
weak-anisotropy approximation for P-wave phase velocity in
Appendix B. It is also shown how the exact phase velocities of
all three waves can be computed using the anisotropic param-
eters defined in the main text.

Equation (4) of the main text leads to the following cubic
equation for the phase velocity valid for any homogeneous
anisotropic medium (e.g., Schoenberg and Helbig, 1997):

x> +ax? +bx+c=0, (A-1)
where x = pV? and

a=—(G11 + G2 + G33), (A-2)

b = G11Gp+G11G33+GpGa3— G2, —G3,—G3;, (A-3)

¢ = G11G5; + G G2, + G G2,

—G11G2G33 — 2G12G13G2s. (A-4)

Through a change of variables (x = y — a/3), we can elimi-
nate the quadratic term in equation (A-1) and reduce it to the
following form (e.g., Korn and Korn, 1968):

Y +dy+q=0, (A-5)
with the coefficients
2
d=-3+b, (A-6)
3
a ab
q= 2(5) — ? + C. (A-?)

Using the fact that the matrix G is symmetric, it can be shown
that the coefficient d is negative (Schoenberg and Helbig,
1997). For roots of equation (A-5) to be real, the following
combination of d and g should be nonpositive:

o= (3) +(3) =2

Then the three solutions of equation (A-5) can be repre-
sented as (Korn and Korn, 1968)

[—d v 2
Y1.2.3 3 COS<3 + 3 ),

(A-8)

wherek =0, 1, 2, and

q

W arTos k(—d/3)3; O<v=

The phase velocity is found from

COSv = —

pV? =y —a/3. (A-9)

The largest root (k = 0) of equation (A-8) yields the phase
velocity of the P-wave, while the other two roots (k = 1, 2) cor-
respond to the split shear waves. For equation (A-5) to have
three distinct roots, Q should be negative; if Q = 0, two of the
roots are identical. In the case of the Christoffel equation, the
two smaller roots may coincide with each other, which leads to
shear-wave singularities in certain slowness directions. In prin-
ciple, the two bigger roots may also become identical (then it
no longer makes sense to talk about P- and S-waves), but this
is an unusual occurrence that requires a large magnitude of
velocity anisotropy.

Equation (A-8) is valid for an arbitrary anisotropic medium
provided the appropriate Christoffel matrix is substituted into
equations (A-2)—-(A-4). Here, we are interested in evaluating
the phase velocity in orthorhombic media as a function of the
new anisotropic parameters defined in the main text. It can be
accomplished by calculating the stiffness coefficients through
the new parameters and substituting them into equations (5)—
(10) for the components of the Christoffel matrix. Alterna-
tively, we can express the Christoffel matrix explicitly as a
function of the anisotropic parameters introduced above. Rep-
resenting the stiffness coefficients through the new parameters
[using equations (16-19), (23), (24-28)] and substituting the re-
sults into the expressions for the components of the Christoffel
matrix [equations (5)-(10)], we find

G
= = VR (1 2¢) +niVE (L + 2y D) + iV,

(A-10)

% — M2V (14 2y®) + nVEy(1 + 2¢D)

14 2,®
+n2vz =ty (A-11)

0142y’

G 1+2y®
B v 4 ngvgoﬁzi(z) + V2, (A2)
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G
% = V(1 +2¢@)D, /1 +25@) /D;
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VZ 1+ 2y

E=1- 272"
V2, 1+2y®@

b1 Yol+2/® (A9
B szo 142c@° In equations (A-13)-(A-15) it is assumed that c;, + Css > 0,
C13 + Css > 0, and c,3 + €44 > 0, which corresponds to the con-
Gis 2 ditions of “mild” anisotropy (Schoenberg and Helbig, 1997)
_— = &) - . ; . i
0 MN3Vpo fy/1 423 /f’ (A-14) discussed above. After computing the Christoffel matrix at a
given slowness direction, we can calculate the coefficients of
Gas 2 the cubic equation (A-1) and obtain the phase velocity [equa-
_— = M /E:; - . . . ; !
0 N2NsVpo By 1+ 26 /E’ (A-15) tion (A-9)] using the trigonometric solution (A-8).
APPENDIX B

THE WEAK-ANISOTROPY APPROXIMATION FOR P-WAVE PHASE VELOCITY

The exact P-wave phase velocity in orthorhombic media can
be obtained from equations (A-8) (with k = 0) and (A-9) of

Appendix A:
/—d ) a

q
— O<v=m;
2,/(—d/3)*
d and q are defined in equations (A-6) and (A-7), ais given by
equation (A-2).

Our goal is to obtain the linearized weak-anisotropy approx-
imation for V2 by expanding p, v, and a in the anisotropic pa-
rameters ¢, 0 and y® and dropping quadratic and higher-
order terms. The cosine function in equation (B-1) can be rep-
resented as

cos v ~1 v2+1v4
3) 77 187" 481 '

Straightforward algebraic transformations show that in the ab-
sence of anisotropy v = 0. This implies that v, after being
expanded in the anisotropic parameters, is composed of linear
and higher-order anisotropic terms with no pure “isotropic”
contribution. Therefore, v? contains only quadratic or higher-
order terms in the anisotropic coefficients, and in the linearized
weak-anisotropy approximation cos(v/3) can be replaced with
unity. Then the phase-velocity equation (B-1) reduces to

—d a
Vipr 2,/ — — =, B-2
pVep \/3 3 (B-2)

The next step is to obtain the weak-anisotropy approxi-
mation for the term /—d/3. Using equations (A-2), (A-3),
and (A-6), we can express d in the following way through the
components of the Christoffel matrix:

where

COoOSvy = —

d = —3(G%, + G, + G%; + 3G2, + 3G%, + 3G%,
—G11G2 — G11G33 — G22Gas). (B-3)

Substituting the expressions for Gjx given in the main text
[equations (A-10)—(A-15)] into equation (B-3) and retaining
the terms linear in the anisotropic coefficients, we find
—3d = nT Ay +n3 Ay + N3 Az +Nn2n3 Ay +nin3 As +n2n3 Ag,

(B-4)

where
A= Vi (14 4€@) + Vg (1 + 2y W)

—2V3, V& (1 +26® + ), (B-5)

Ay = Vio(1+4eW) + V(1 +2y® +2y®)

—2VAVE(1+2e® + 9y +y®) (B-6)
As = Vi + V4 (L +2y9) —2V3vE (L + D), (B-7)

Ar = —Vio(1+2e® +2e@) — V{1 -2y + 8y ™)

F2VEVE (L4 €D 4@ — O 1 4y®)

2 2VE
+3Vp, f2 :1 + 5 [zéz) - —VZSO y® 5O |1
PO
(B-8)
As = —Vpo(1+2e@) — Vg (1 -2y —2y®)

L2VEVE (L4 @ - O, m)

25@
+3Va, f2 1+ — | (B-9)
A = =V (1 +2e@) — V4 (1 + 8y — 2y ™)

+2V3 V(L + €D + 4y — @) 4 3V4, 12

2| 2v2
1+ =22y 40| 1
{ f[ Va,"

Here, y® is the shear-wave splitting parameter defined in
equation (29).

It is convenient to transform equation (B-4) by separating
the isotropic and anisotropic components:

(B-10)

—3d = (V& — V&)’ + AN(V3, — V),  (B-11)
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where AN is an anisotropic term given by Taking the square root of equation (B-11) and linearizing in
the anisotropic coefficients yields
AN = n}B; + n3 B, + n3B; + N3 By + n2n3Bs + n3n3Bs. ISOHrop! ! );I L
(B-12) v =3d = V5, — Vg + 5AN. (B-13)
The coefficients B; are obtained from equations (B-5)—(B-10)

The weak-anisotropy approximation fora = —(Gy; + G, +
Ggs3) [equation (A-2)] can be found from equations (A-10)-
(A-15),

as
By = 4V2,e® —2vZy®,
a= Vg +2V5 + 20 (V3oe® + VG v )
+2n3[VEge® + V4 (D +yD)]
By = —2V&y®, +2n3Vv3y®. (B-14)

Bz = 4Vhoe™ — 2V (D + ¢ D),

Substituting equations (B-13), (B-12), and (B-14) into the
phase-velocity expression (B-2), we obtain the following weak-
anisotropy approximation for P-wave phase velocity:

By = 2V3y (5@ — e® +35®) —2VvE (y© + 2y @),

_ 2 (_ @ @y _ 2 (.,(9) @
Bo = 2Veo(— € +387) — 2V (™ 4+ ). VZ = V2 [14 2n%e® 4 2n8e® 4 2n2n2s®

Bs = 2V3(— €@ +35W) —2vZ (2y© + y ™). +2n3n38® + 2nin3(2¢@ + 6@)].  (B-15)



