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Tight, low-porosity reservoirs can produce significant
amounts of hydrocarbons if fracture networks provide
the necessary permeability. Characterization of naturally
fractured reservoirs using surface seismic data is an
important exploration problem that has attracted much
attention in the literature. TLE, for example, had an entire
issue (August 1996) on this subject. While the data and
modeling in existing publications demonstrate that frac-
turing causes significant azimuthal variation in recorded
seismic signatures, the problem is how to infer fracture
parameters from these data.

The goal of this paper is to complement recent exper-
imental results with an analytic and modeling study of the
amplitude-variation-with-offset (AVO) response of frac-
tured reservoirs. The question we address is: What does
P-wave reflectivity really tell us about the fractures? To
find the answer, we introduce a convenient notation for
azimuthally anisotropic models and present concise
approximations for reflection coefficients in terms of the
anisotropy parameters. Our analysis shows that P-wave
amplitudes may be sensitive even to relatively weak
anisotropy of the rock mass. We also discuss how the
azimuthally dependent AVO signature can be interpreted
and combined with normal-moveout and shear-wave-
splitting analyses to constrain the crack density and other
medium parameters. The simple relationships between
reflection amplitudes and anisotropic coefficients can be
regarded as rules of thumb to quickly evaluate the impact
of anisotropy in a particular play, plan acquisition, and
guide more advanced numerical inversion.

Reflection coefficients and AVO. It is relatively straight-
forward, albeit tedious, to compute reflection coefficients for
interfaces between anisotropic media. Inverting the reflec-
tion response for the physical properties of the medium,

Figure 1. Sketch of an HTI model. Different P-wave
reflection amplitudes in the two vertical symmetry
planes, here called the symmetry-axis plane and the
isotropy plane, lead to azimuthally-dependent AVO
response. As indicated by the arrows, shear waves
polarized parallel and normal to the isotropy plane
have different vertical velocities.

Figure 2. The reflection response from fractured reser-
voirs depends on two angles: (1) the polar (incidence)
angle i between the vertical and the slowness vector of
the incident wave and (2) the azimuthal angle ¢
defined with respect to the symmetry axis.

however, is much more involved due to the algebraic com-
plexity of the reflection coefficients and the number of rel-
evant medium parameters. To gain insight into anisotrop-
ic reflectivity, it is helpful to derive approximate scattering
coefficients by assuming that both the contrast in the elas-
tic properties across the interface and the anisotropic para-
meters are small. Shuey used the weak-contrast assumption
for isotropic media to provide simple approximations illus-
trating the dependence of the AVO gradient (the initial
slope of the reflection-coefficient curves) on the jumps in the
P- and S-wave velocities and density (see “A simplification
of the Zoeppritz equations,” GEOPHYSICS, 1985). Shuey’s
relationship is widely used for lithologic interpretation in
modern (isotropic) AVO analysis.

To understand the reflectivity of fractured reservoirs in
a similar way, we follow the approach of Stuart Crampin,
Leon Thomsen and others and initially consider the first-
order model of azimuthal anisotropy conventionally used
in shear-wave birefringence experiments. Assuming that
parallel vertical cracks are embedded in a homogeneous
isotropic matrix, we obtain the transversely isotropic
model with a horizontal axis of symmetry (HTI media),
sketched in Figure 1. As indicated by the arrows,
azimuthal anisotropy has a first-order influence on shear
waves that split into two components traveling with dif-
ferent velocities. The fractional difference between the
velocities of split shear waves at vertical incidence (Thom-
sen’s coefficient ) is close to the crack density, an impor-
tant parameter responsible for the permeability of the
fracture network. Shear-wave methods, developed exten-
sively during the last decade, are designed to obtain y from
the difference in shear-wave traveltimes and normal-inci-
dence reflection amplitudes. This technology, however,
has drawbacks (e.g., the cost and the difficulty in acquir-
ing high-quality shear data). Hence, it is extremely impor-
tant to obtain more information about fractured reser-
voirs from 3-D P-wave data. Amplitude variation with
offset (AVO) analysis is particularly well-suited for frac-
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Figure 3. P-wave propagation in the sym-
X3 metry-axis plane of HTI media. Seismic
rays are shown in black; the continuous
and dashed white curves are the
anisotropic and isotropic wavefronts, respectively.

ture characterization because it provides local information
about the anisotropy at the target horizon.

P-waves in HTI media. The influence of azimuthal
anisotropy on P-wave propagation is not as dramatic as
for shear waves, but it can be substantial. Let us discuss
P-wave reflectivity for the HTI model introduced above.
Waves confined to the plane normal to the symmetry axis
(the “isotropy plane”) do not experience any angular
velocity variation. For all other vertical planes, the veloc-
ity does change with incidence angle; it also varies with
azimuth (Figure 2), significantly complicating interpreta-
tion of reflection data.

Figure 3 illustrates P-wave propagation in the vertical
plane containing the symmetry axis (the symmetry-axis
plane). The continuous white line marks the points of
equal P-wave traveltime on the seismic rays (wavefront),
while the dashed white circle represents the reference
isotropic wavefront. Conventionally, anisotropic media are
described by the elements of the elastic stiffness tensor (a
maximum of 21). While helpful in numerical modeling, this
tensor notation is not optimal for analyzing and inverting
seismic signatures. For example, it would benefit surface
seismic applications to define a coefficient responsible for
P-wave near-vertical velocity variations. We found that
AVO and normal moveout in HTI are best described by
adapting Thomsen’s notation for transverse isotropy with
a vertical symmetry axis (VII media). Instead of using the
generic Thomsen'’s coefficients specified with respect to the
horizontal symmetry axis, however, we introduce these
parameters with respect to the vertical by taking advantage
of the equivalence between the symmetry-axis plane of
HTI media and VTI media. Thus, five elastic coefficients
can be replaced with the vertical velocities of the P-wave
(o) and the fast S-wave (), the shear-wave splitting para-
meter Y, and two more Thomsen-style anisotropic coeffi-
cients, e and 8"). The superscript “V” emphasizes that the
coefficients are computed with respect to the vertical and
correspond to the “equivalent” VT model that describes
wave propagation in the symmetry-axis plane.

For the particular example in Figure 3, the continuous
white wavefront falls behind the corresponding isotrop-
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ic (dashed) wavefront as the ray deviates from vertical,
indicating that the P-wave velocity near vertical decreas-
es with angle (i.e., §"<0). Similarly, the isotropic wave-
front travels faster than the anisotropic in the horizontal
direction. This implies that the fractional difference
between horizontal and vertical P-wave speeds (close to
€M) is negative as well. Small negative values of 8" and
€™ are typical for fractured reservoirs.

Analysis of P-wave reflectivity. Analytic expressions for
the reflection coefficients at HTI/HTI interfaces with the
same orientation of the symmetry axis above and below
the interface can be obtained using a perturbation tech-
nique similar to that applied by Thomsen to (azimuthally
isotropic) VTI media. Linearized in the small relative dif-
ferences in elastic parameters (essentially Shuey’s approx-
imation) and small anisotropy coefficients, the P-wave
plane-wave reflection coefficient has the following form:
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where i is the incidence (polar) phase angle, ¢ is the
azimuthal phase angle with the symmetry axis, Z = pa. is
the vertical P-wave impedance and G = pp?is the vertical
shear modulus. The elastic parameters are expressed
through their average values and relative differences
across the interface. The vertical P-wave velocities in the
upper and lower layers, for example, can be written as
functions of the average velocity 6.=1/2 (0, + 0,) and the
difference Ao= (o, - o,):

o= E(l—lATaJ; o= &(1 +l ig)
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Corresponding expressions are defined for the shear mod-
ulus, the density and the P-wave impedance.

The simplicity of approximation (1), which is valid for
incidence angles not too close to the critical angle, is
striking, especially because no angular terms have been
neglected; the azimuthally dependent contribution of
anisotropy is described by simple trigonometrical func-
tions. For azimuth ¢ = 90°, equation (1) yields the reflec-
tion coefficient in the isotropy plane, which is identical to
Shuey’s approximation for isotropic media. While P-
waves incident in the symmetry-axis plane excite S* waves
with the vertical velocity B P-waves in the isotropy plane
are coupled with the faster S" shear wave. The difference
in the vertical shear-wave velocities can be described by
the shear-wave splitting parameter, i.e., B*: B(1 - v). That
is why the parameter yinfluences the gradient (sin? i) AVO
term in the symmetry-axis plane (¢ = 0°) and elsewhere
outside the isotropy plane. Since 8" describes the near-
vertical P-wave velocity in the symmetry-axis plane, it is
not surprising that it also enters the gradient term at all
azimuths except for the isotropy plane. Likewise, the
definition of €™ implies that it should contribute to the
reflection coefficient at higher angles i (see the sin% tan*
term).

P-wave AVO inversion. Equation (1) provides a compre-
hensive insight into the AVO inversion. Rewriting it as
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reveals that a maximum of six coefficients can be extract-
ed from the dependence of Rp on the azimuthal and inci-
dence angles. Since it is often difficult to extract reliable
estimates of the high-angle reflectivity term sin% tan?, we
concentrate on the AVO gradient that determines the low-
angle reflection response.

One of the most important messages of our approxi-
mation is that the contrasts in anisotropy parameters 8"
and v have a non-negligible, first-order influence on the
AVO gradient (see the term B™). For example, for azimuth
¢=0and a typical /0. = 1/2, the contrast in the shear-wave
splitting parameter (Ay=y,—y;) at the boundary has a
weighting factor twice as large as that of the P-wave veloc-
ity contrast 4¢. Hence, B™ introduces a measurable
azimuthal variation in the AVO response.

The AVO gradient term B = B* + B™ cos? ¢ in equa-
tions (1) and (2) is composed of the azimuthally invariant
part B* and the anisotropic contribution B" dependent on
the azimuthal angle ¢ with the symmetry axis. If the sym-
metry-axis orientation is unknown, ¢ can be expressed as
the difference between the azimuthal direction ¢; of the j"
observed azimuth and the direction of the symmetry-axis
plane ¢m. The AVO gradient measured at azimuth ¢; can
then be written as

B(q)]-) = B 4 g™ cosz(q)]- = Osym ) ©)

This equation is nonlinear with three unknowns (B,
B™, and @ym), so @a minimum of three azimuthal measure-
ments of the AVO gradient is needed to find the orienta-
tion of the symmetry planes and reconstruct the low-angle
reflection coefficient at all azimuths. If the direction of the
symmetry axis is known (for example from S-wave split-
ting analysis), the equation becomes linear and two inde-
pendent measurements are sufficient to recover B and
B™. Plotting B as a function of ¢;, we find that the extrema
correspond to the symmetry-plane azimuths, even though
more information is needed to distinguish between the
symmetry-axis and the isotropy plane. The difference
between the symmetry-plane AVO gradients yields the
value B that contains information about anisotropy in the
form of a combination of the coefficients 8 and y. In gen-
eral, 8 and vy are independent; however, for a tight for-
mation with no equant porosity and thin fluid-filled
cracks, 8" = -y. In this case, the azimuthal variation in the
P-wave AVO gradient can be inverted directly for y and
the crack density.

Combination of AVO and moveout data. A complication
in the AVO inversion is the anisotropic parameter 3 in
the gradient term B™ that prevents (except for the special
case discussed above) obtaining the shear-wave splitting
parameter and estimating the crack density using the P-
wave AVO response. However, 8" can be found from
azimuthally dependent P-wave moveout data. The P-
wave normal moveout (short-spread) velocity in a hori-
zontal HTI layer is given by
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where ¢ is the azimuth of the CMP line with respect to the
symmetry axis. Equation (4) describes an ellipse in the
horizontal plane and is valid for HTI models with any
strength of the anisotropy. Since the NMO velocity con-

2 _ .2
Vﬂmu_a

OcTOBER 1997

Model1

Model2 | Model3

Figure 4. Three models used to study the differences
in the AVO response for fluid-filled and dry cracks.
Table 1 lists the model parameters.

Table 1. Parameters of the reflecting layers used to
investigate the azimuthally varying AVO response.
Model 1 is isotropic; Models 2 (wet cracks) and 3 (dry
cracks) have the same host rock, but also contain
vertical cracks with different contents.

isotropic wet cracks dry cracks
o 4,500 4.498 4.388
B 2530 2530 2.530
p 2.800 2.800 2.800
v 0.000 0.085 0.085
e 0.000 -0.003 -0.150
v 0.000 -0.088 -0.155

Table 2. Percentage changes in the elastic parameters
for reflection from the top of the target layer. The
parameters of the isotropic overburden are o = 3.67
km/s, B = 2.0 km/s, p = 2.41 g/lcm®.

isotropic wet cracks dry cracks
& 0.203 0.203 0.180
4z 0.350 0.350 0.328
a6 0.601 0.601 0.601

tains just three unknowns, three measurements of V., at
different azimuthal angles can be inverted for the vertical
velocity, the axis orientation, and the parameter 8" (pro-
vided the fractured interval is not too thin). Hence, P-
wave moveout data can identify the crack orientation and
recover the parameter 8 that is required for the AVO
inversion. Then two azimuthal measurements of the AVO
gradient are sufficient to obtain the AVO gradient in the
symmetry planes and estimate the shear-splitting para-
meter .

Fluid-filled vs. dry cracks: a modeling example. Figure
4 shows three models with a different target layer and the
same isotropic overburden. The first target layer is isotrop-
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Figure 5. The exact reflection
coefficient (solid line) and the
approximation (dashed) for the
unfractured target layer. Model
parameters are given in the left
column of Tables 1 and 2.
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Figure 6. Same as Figure 5, but the
reflecting layer contains water-filled
cracks (the central column in Tables 1
and 2). The reflection coefficients are
shown for azimuths of 0°, 30°, 60°, and
90° measured from the symmetry axis,
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Figure 7. Same as Figures 5 and 6,
but the reflecting layer contains
dry cracks (the right column in
Tables 1 and 2) .

with decreasing line thickness (i.e., the
thickest line corresponds to 0°).

ic with the elastic parameters given in the first column of
Table 1; the other two layers have the same host rock, but
also contain vertical aligned cracks (causing HTI symme-
try) with an aspect ratio of 0.001 and a crack density of 7%.
The second column is computed for water-filled cracks,
the third for dry cracks.

Before evaluating the reflection response for the three
models, let us discuss the difference between the model
parameters and use equation (1) to predict the behavior of
the three AVO responses. All three models have the same
density and the same fast vertical shear-wave velocity
(the shear wave polarized within the isotropy plane is not
influenced by the fracturing). Also, the fractures are too
thin and their density is too small to influence the bulk
density of the host rock. As a result, the vertical P-wave
velocity is almost the same for the unfractured rock and
the medium with water-filled cracks, and is only slightly
smaller (by about 2.5 %) for the medium with dry cracks.
The anisotropy parameters, however, are substantially
influenced by the presence and contents of the cracks. For
water-filled cracks, the coefficient € is negligibly small,
while the shear-wave-splitting parameter yand coefficient
8™ have almost the same magnitude but opposite sign. If
the cracks are dry, both €V and &) are negative and e =
3V, the absolute value of €™ and 8" is approximately
twice as large as the shear-wave splitting parameter .

These differences in the anisotropy parameters lead to
a different azimuthal variation in the reflection response
for each of the models. Taking into account the percent-
age changes in the elastic parameters (see Table 2), equa-
tion (1) predicts that the initial slope of the reflection
coefficient (AVO gradient) for the isotropic Model 1 is
identical to the AVO gradient in the isotropy plane of
Model 2, and is slightly less negative than the isotropy-
plane AVO gradient in Model 3. For water-filled cracks,
equation (1) predicts a substantial azimuthal difference in
the AVO gradients, with a more negative value in the
isotropy plane [recall that the difference in the symmetry
plane gradients is approximated by (8% + 2y)]. In con-
trast, for dry cracks the combination 8" + 2y = 0, and we
cannot expect a measurable azimuthal variation in the

AVO gradient. In this case, reflection coefficients com-
puted at different azimuths start to diverge only at large
angles of incidence.

Figures 5-7 show the exact and approximate reflection
coefficients for the three models (Tables 1 and 2). To facil-
itate the comparison, the vertical scale is the same on all
three plots. Approximation (1) is sufficiently close to the
exact reflection coefficients for all three models; specifi-
cally, it predicts the different azimuthal variation in the
small- and large-angle reflection response for the dry and
water-filled cracks.

Hence, this study confirms the physical insight pro-
vided by equation (1) and shows that P-wave AVO has the
potential of discriminating between gas- and fluid-filled
crack systems. Also, if the AVO response at different
azimuths diverges substantially only at large angles of
incidence, it is a strong indication of a large value of the
parameter €V). In this case, the less negative AVO gradi-
ent corresponds to the isotropy-plane reflection because
AeMis negative for the interface between an isotropic layer
and a fractured medium with the HTI symmetry.

Another important message is that the azimuthal dif-
ference in AVO gradients cannot be related directly to the
crack density (it may even be close to zero for dry cracks),
and that knowledge of the anisotropy parameter 6 is cru-
cial to any meaningful azimuthal AVO analysis. As men-
tioned above, 8" can be obtained from P-wave NMO
velocity; alternatively, if y is available from S-wave data,
this study suggests combining the shear-wave-splitting
and azimuthal-AVO analysis to obtain 8 for study of the
contents of the cracks.

Discussion. This analysis was limited to interpretation
and inversion of the reflection coefficients. In practice, we
record the amplitude-versus-offset signature at the surface
rather than the reflection coefficients at the target horizon.
Various methods to correct for the propagation phenom-
ena have been discussed in the literature, but most are
approximate even for isotropic media. The situation
becomes more complex if the reflected wave propagates
through an anisotropic overburden, which may happen, for
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instance, if the cracks are not confined to the reservoir
layer. The presence of anisotropy above the reflector leads
to the so-called wavefront focusing phenomena, or dis-
tortions in the amplitude distribution along the wave-
fronts of the incident and reflected waves. This can be seen
in Figure 3, where focusing and defocusing of seismic rays
mark areas of high and low energy, respectively.
Azimuthal variation in the transmission coefficients in
the anisotropic overburden may also contribute to the
overall amplitude response at the surface. If not correct-
ed, these distortions can propagate into the AVO signature
and distort the inversion results.

Another complication is the difference between group
(ray) and phase angles in anisotropic media. Analyzing the
extracted reflection coefficient as a function of the source-
receiver offset (rather than as a function of the incident
phase angle) can lead to a misleading interpretation of the
azimuthal AVO variation. In HTI media, the group and
phase angles coincide for waves propagating in the
isotropy plane, but may differ significantly in the sym-
metry-axis plane. In other words, the rays connecting
sources and receivers at any fixed offset have an
azimuthally dependent incidence phase angle at the reflec-
tor. To correctly interpret the AVO signatures in anisotrop-
ic media using the analytic reflection coefficients given
here, it is essential to represent them as a function of
phase angle. Unfortunately, in practice the anisotropic
parameters of the overburden may not be known with suf-
ficient accuracy to account for various propagation phe-
nomena.

Conclusions. Linearized approximations can provide
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valuable insight into the otherwise incomprehensibly
complex reflection coefficients in anisotropic media. The
main assumptions used in this study — small jumps in
the elastic parameters across the reflecting interface, sub-
critical incidence, and weak anisotropy — are geologically
and geophysically reasonable and have proved useful in
many exploration contexts. We showed that the azimuthal
variation in the P-wave AVO gradient is controlled by two
anisotropic parameters — the shear-wave splitting coef-
ficient y and the “moveout” parameter 8. Both analytic
and modeling results indicate that P-wave reflectivity
can detect fracture orientation, estimate crack density,
and discriminate between fluid-filled and dry cracks.
However, unambiguous interpretation of P-wave AVO
results in terms of the medium parameters requires com-
bination with moveout data or shear-wave splitting
analysis. A big challenge in the implementation of
anisotropic AVO is reliable recovery of reflection coeffi-
cients from surface data by amplitude-preserving
anisotropic processing.

Certainly, the simple HTI model discussed here may
be inadequate for realistic models of fractured reservoirs,
and it is important to study whether the reflection
response in media of lower symmetry (e.g., orthorhombic)
differs significantly from the HTI case. However, it has
already been shown that although wave propagation in
orthorhombic media is significantly more complex, the
reflection coefficients in the symmetry planes have essen-
tially the same form as in HTI models and vary smoothly
with azimuth.

Suggestions for further reading. Papers of Stuart
Crampin (“Evidence for aligned cracks in the Earth’s
crust”, First Break, 1985, and many others) and Leon
Thomsen (“Reflection seismology over azimuthally
anisotropic media”, GEOPHYSICS, 1988) give a good expo-
sition of the implications of azimuthal anisotropy in seis-
mology. Thomsen’s work (“Weak elastic anisotropy,”
GEOPHYSICS, 1986; “Weak anisotropic reflections” in Off-
set Dependent Reflectivity, SEG, 1993) provided a basis for
defining anisotropy parameters and deriving linearized
scattering coefficients. The models shown in this paper
are computed using Hudson’s fracture theory (“A high-
er order approximation to the wave propagation con-
stants for a cracked solid,” Geophysical Journal of the Royal
Astronomical Society, 1986). Derivations of the AVO equa-
tions and extensions to P- and S-wave AVO in orth-
orhombic media are given in Riiger’s articles “Variation
of P-wave reflectivity with offset and azimuth in
anisotropic media” (GEOPHYSICS, accepted for publica-
tion) and “Analytic insight into shear-wave AVO for frac-
tured reservoirs” (to appear in Proceedings of 71WSA,
special SEG volume on seismic anisotropy, Miami, 1996).
Reflection from the bottom of a fractured layer was stud-
ied by Sayers and Rickett in “Azimuthal variation in
AVO response for fractured gas sands” (Geophysical
Prospecting, 1997). The anisotropic energy-focusing phe-
nomena and normal-moveout velocity in HTI media
were described by Tsvankin in “Body-wave radiation
patterns and AVO in transversely isotropic media” (GEO-
PHYSICS, 1995) and “Reflection moveout and parameter
estimation for horizontal transverse isotropy” (GEO-
PHYSICS, 1997). IE
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