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Abstract

The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for
instance, for sediments near the flanks of salt domes. This work is devoted to an
analysis of reflection moveout from horizontal and dipping reflectors in the symmetry
plane of TI media that contains the symmetry axis. While for vertical and horizontal
transverse isotropy zero-offset reflections exist for the full range of dips up to 908, this
is no longer the case for intermediate axis orientations. For typical homogeneous
models with a symmetry axis tilted towards the reflector, wavefront distortions make it
impossible to generate specular zero-offset reflected rays from steep interfaces. The
‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by
using turning waves. These unusual phenomena may have serious implications in salt
imaging.

In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence
on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the
dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO)
signature’). The DMO signature retains the same character as for vertical transverse
isotropy only for near-vertical and near-horizontal orientation of the symmetry axis.
The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away
from the vertical, with a tilt of 6208 being almost sufficient to eliminate the influence of
the anisotropy on the DMO signature. For larger tilt angles and typical positive values
of the difference between the anisotropic parameters e and d, the NMO velocity
increases with p more slowly than in homogeneous isotropic media; a dependence
usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range
of tilt angles requires application of anisotropic DMO algorithms.

The strong influence of the tilt angle on P-wave moveout can be used to constrain the
tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However,
if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be
performed without a 3D analysis of reflection traveltimes on lines with different
azimuthal directions.
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Introduction

The behaviour of reflection moveout is of primary importance to most seismic
processing steps, such as velocity analysis, normal-moveout (NMO) correction, dip-
moveout (DMO) removal and migration. In seismic exploration, recording is
conventionally carried out on common-midpoint (CMP) spreads with length
comparable to the depth of the target horizon. For these moderate offset-to-depth
ratios, P-wave reflection moveout is usually close to hyperbolic and is adequately
described by the NMO velocity calculated in the zero-spread limit (Taner and Koehler
1969; Tsvankin and Thomsen 1994).

If the medium is anisotropic, NMO velocity is generally different from the root-
mean-square (rms) vertical velocity. The influence of anisotropic parameters on NMO
velocity has attracted considerable attention in the literature, but most existing work is
restricted to a relatively simple (although common) model: transversely isotropic
media with a vertical symmetry axis (VTI media). Several authors (e.g. Lyakhovitsky
and Nevsky 1971), gave analytic expressions for NMO velocities of pure modes (P–P,
SV–SV, SH–SH) from a horizontal reflector (the qualifiers in ‘quasi-P-wave’ and
‘quasi-SV-wave’ are omitted). For P-waves, the NMO velocity in a horizontal VTI
layer depends only on the vertical velocity VP0 and the parameter d introduced by
Thomsen (1986),

Vnmo½P-waveÿ ¼ VP0

��������������

1 þ 2d
p

: ð1Þ

Hake, Helbig and Mesdag (1984) showed that NMO velocity in layered VTI media
is equal to the rms of the interval NMO velocities in the individual layers; they also
presented the corresponding equations for the quartic moveout term of pure modes.
NMO velocity in effective homogeneous VTI models formed by interbedding of thin
isotropic layers was studied numerically by Levin (1979). Banik (1984) demonstrated
on North Sea data that the deviation of the P-wave moveout velocity from the rms
vertical velocity in anisotropic media may lead to substantial errors in time-to-depth
conversion. NMO velocity for converted P–SV waves was expressed in terms of the
moveout velocities of P–P and SV–SV waves by Seriff and Sriram (1991). Tsvankin
and Thomsen (1994) gave an analytic description of long-spread (non-hyperbolic)
reflection moveout of pure and converted waves in horizontally stratified VTI media;
their treatment can be extended to symmetry planes of any anisotropic medium.

Anisotropy distorts not only the moveout in horizontally layered media, but also the
NMO velocity for dipping reflectors. In isotropic, homogeneous media, the dip
dependence of NMO velocity in the dip plane of the reflector is given by (Levin 1971)

VnmoðfÞ ¼
Vnmoð0Þ

cos f
; ð2Þ

where f is the dip angle. Deviations from the cosine-of-dip dependence are of primary
importance in DMO processing, as well as in the inversion for the anisotropic
parameters. Analytic expressions for the dip-dependent NMO velocity in elliptically
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anisotropic media were presented by Byun (1982) and Uren, Gardner and
McDonald (1990). However, elliptical models are no more than a subset of
transversely isotropic media that is not typical for subsurface formations (Thomsen
1986). Levin (1990) carried out a numerical study of the P-wave NMO velocities for
dipping reflectors beneath homogeneous TI media and showed that there is no
apparent correlation between the magnitude of velocity anisotropy and errors in the
cosine-of-dip dependence. The same conclusion was drawn by Larner (1993) in his
modelling study of the P-wave NMO velocities in VTI media with vertical-velocity
gradient.

Tsvankin (1995) presented an equation for NMO velocity from dipping reflectors
valid for pure modes in any symmetry plane in anisotropic media. He also transformed
this exact equation into a much simpler expression for weakly anisotropic VTI media
and gave an analytic explanation for the results of Levin (1990) and Larner (1993).
Deviations from the cosine-of-dip dependence (equation (2)) in VTI media turned out
to be primarily controlled by the difference between Thomsen’s (1986) anisotropy
parameters e and d. Alkhalifah and Tsvankin (1995) used the moveout equation of
Tsvankin (1995) to study NMO velocity for dipping reflectors as a function of the ray
parameter p, a quantity that is easier to obtain from reflection data than dip. They
showed that for P-waves in VTI media, normal-moveout velocity from dipping
reflectors is controlled by just two parameters: the zero-dip NMO velocity Vnmo(0)
(defined in (1)) and an anisotropic parameter h, specified as

h ;
e ¹ d

1 þ 2d
: ð3Þ

They also proved that in VTI media the parameters Vnmo (0) and h are sufficient to
perform all time-related processing steps, such as NMO correction, dip-moveout
(DMO) removal, prestack and poststack time migration. Both parameters can be
reliably recovered from P-wave surface data using NMO velocities and ray parameters
measured for two different dips. Alkhalifah and Tsvankin (1995) also generalized the
Dix (1955) NMO equation to models consisting of a stack of anisotropic horizontal
layers above a dipping reflector. A more detailed overview of the moveout analysis in
VTI media is given in Tsvankin (1996).

The papers mentioned above are focused on the behaviour of NMO velocity in
transversely isotropic media with a vertical symmetry axis. The only non-VTI
(azimuthally anisotropic) model examined by Tsvankin (1995) is the one with an in-
plane symmetry axis normal to the reflector; in this case, in agreement with the
numerical results of Levin (1990), the isotropic cosine-of-dip dependence of NMO
velocity remains entirely valid. Another type of azimuthal anisotropy discussed in the
literature is TI media with a horizontal symmetry axis (Thomsen 1988; Sena 1991).
Reflection moveout for horizontal transverse isotropy (HTI media) is described in
detail in a separate paper (Tsvankin 1997).

Here, the NMO equation of Tsvankin (1995) is used to examine moveout velocity in
homogeneous transversely isotropic media with a tilted axis of symmetry confined
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to the incidence (sagittal) plane. The tilt of the symmetry axis leads to a rotation of the
P-wave wavefront that may cause the disappearance of specular zero-offset reflections
from steep interfaces. For the symmetry axis tilted at an arbitrary angle, the NMO
velocity is studied both analytically and numerically with emphasis on implications for
DMO processing and anisotropic inversion. The analysis shows that the zero-dip
NMO velocity Vnmo(0) and the parameter h are sufficient to describe P-wave NMO
velocity in only a limited range of tilt angles that includes near-vertical and near-
horizontal orientations of the symmetry axis.

NMO velocity and anisotropic parameters for TI media

Normal-moveout velocity of pure modes in symmetry planes of any anisotropic
homogeneous medium is given by (Tsvankin 1995)

VnmoðfÞ ¼
V ðfÞ

cos f

����������������������

1 þ
V 00ðfÞ

V ðfÞ

s

1 ¹ tan f
V 0ðfÞ

V ðfÞ

; ð4Þ

where V is the phase velocity as a function of the phase angle v with the vertical and
f is the dip of the reflector. For (4) to be valid, the incidence plane should coincide
with the dip plane of the reflector. This assumption makes the problem two-
dimensional by eliminating out-of-plane components of phase- and group-velocity
vectors of the reflected waves. The familiar cosine-of-dip dependence of NMO
velocity in isotropic media (2) can be obtained from (4) by setting V(v) equal to a
constant.

If the medium is transversely isotropic (hexagonal), (4) can be applied in the
vertical plane that contains the symmetry axis and, if the symmetry axis is
horizontal, in the isotropy plane that is normal to the symmetry axis. For an
arbitrary mutual orientation of the symmetry axis and the incidence plane in TI
media, (4) can be used only under the assumption of weak azimuthal anisotropy.
Here, our goal is to study the dependence of NMO velocity on the anisotropy
parameters and reflector dip for TI media with a symmetry axis confined to the
incidence plane. In order to cover all possible mutual orientations of the reflector
normal and the symmetry axis, the tilt angle n spans the range ¹908 < n < 908, while
the dip f is restricted to positive angles 08 < f < 908. Thus, positive values of n mean
that the axis is tilted towards the reflector, while n < 0 corresponds to the axis tilted
away from the reflector. In principle, negative tilt angles can be avoided by using the
analogy between TI models with the symmetry-axis orientations differing by 908

(Tsvankin 1997). However, since application of this analogy requires replacing the
original anisotropic coefficients by the parameters of the equivalent model, it will not
be used in this work.
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The transversely isotropic model will be described by the Thomsen (1986)
parameters defined in the rotated coordinate system associated with the symmetry axis,
i.e.

VP0;

�������

cðRÞ
33

r

s

; ð5Þ

VS0;

�������

cðRÞ
44

r

s

; ð6Þ

e;
cðRÞ
11 ¹ cðRÞ

33

2cðRÞ
33

; ð7Þ

d;
ðcðRÞ

13 þ cðRÞ
44 Þ2 ¹ ðcðRÞ

33 ¹ cðRÞ
44 Þ2

2cðRÞ
33 ðcðRÞ

33 ¹ cðRÞ
44 Þ

; ð8Þ

g;
cðRÞ
66 ¹ cðRÞ

44

2cðRÞ
44

; ð9Þ

where r is the density, and the elastic constants cðRÞ
i j correspond to the rotated

coordinate frame with the x3-axis pointing in the symmetry direction. VP0 and VS0 are
the P-wave and S-wave velocities, respectively, along the (tilted) symmetry axis; the
dimensionless anisotropic coefficients e, d and g become zero in isotropic media. A
detailed description of notation for transversely isotropic media is given by Tsvankin
(1996).

P–SV propagation for vertical transverse isotropy is determined by four coefficients:
VP0, VS0, e, and d. P-wave velocities and traveltimes in VTI media depend largely on
VP0, e and d, while the influence of the shear-wave velocity VS0 is practically negligible
(Tsvankin and Thomsen 1994; Tsvankin 1996). Hence, for TI media with a tilted axis
of symmetry, P-wave NMO velocity is determined by VP0, e, d and the tilt angle n.

In the special case of a horizontal axis of symmetry, velocities and polarizations in the
plane that contains the symmetry axis can be described in terms of the stiffness
coefficients by the same equations as for vertical transverse isotropy (Tsvankin 1997).
Therefore, for HTI media it is possible to replace the generic Thomsen coefficients
introduced above by the Thomsen parameters of the ‘equivalent’ VTI model. For
arbitrary tilt angles, however, it is more convenient to use the generic Thomsen
parameters defined with respect to the symmetry axis.

Existence of dipping events in TI media

Before studying the dip dependence of NMO velocity, we have to find out whether it is
possible to record dipping events for the full range of dips in anisotropic models. The
wavefront excited by a point source in homogeneous, isotropic media is spherical with
the rays normal to the wavefront. This means that, for any dip from 0 to 908, there
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exists a section of the wavefront parallel to the reflector. This section generates the
normal-incidence (zero-offset) reflection that will be recorded at the source location;
similarly, there always exists a specular reflection for non-zero source–receiver offsets.
For a vertical reflector that extends all the way to the surface, the raypaths of the
reflected waves are horizontal, and the traveltimes in the CMP geometry are
independent of offset, which implies that the NMO velocity becomes infinite. For
any other dip in the range from 0 to 908, NMO velocity has a finite value, which is
corroborated by the cosine-of-dip dependence of NMO velocity in isotropic media
(equation (2)).

Angular velocity variations in anisotropic media distort the shape of the wavefront
and the angular distribution of the wavefront normals. Here, the dip dependence of
NMO velocity is considered in the plane that contains the symmetry axis. For the
special cases of vertical (VTI) and horizontal (HTI) orientations of the axis, we still
have no ‘gaps’ in the dip coverage of reflection data. Since the phase- and group-
velocity vectors coincide with each other in the vertical and horizontal directions, the
wavefront contains the full range of phase angles, despite all wavefront distortions at
oblique angles of incidence (possible cusps on SV-wave wavefronts are not discussed
here). Also, as for isotropic media, NMO velocity in VTI and HTI models becomes
infinite for a vertical reflector. Indeed, the denominator in (4) for NMO velocity can be
represented as

D ¼ cos f 1 ¹ tan f
V 0ðfÞ

V ðfÞ

� �

¼ cos f ¹ sin f
V 0ðfÞ

V ðfÞ
: ð10Þ

Since for both vertical and horizontal symmetry axes the derivative of phase velocity at
f ¼ 908 becomes zero, the denominator D vanishes for a vertical reflector.

The situation becomes much more complicated if the symmetry axis is tilted (within
the incidence plane) at an arbitrary angle. It is still true that the wavefront from a point
source in a homogeneous anisotropic half-space contains the full 908 range of group
(ray) angles in any quadrant, but not necessarily the full range of phase angles that
determine the direction of the wavefront normal. As a result, for some anisotropic
models there are no wavefront normals perpendicular to dipping reflectors within a
certain range of dips and, therefore, no corresponding zero-offset and small-offset
reflections. Of course, this argument is based on the geometrical-seismics approxima-
tion; even in the absence of a specular reflection, the seismogram at the source location
will contain some reflected energy that does not travel along the geometrical raypath.
However, unless the reflector is close to the source, we cannot expect this non-specular
reflection energy to be significant.

Figure 1 shows a typical P-wavefront for a symmetry axis tilted towards the reflector.
Due to the increase in the phase and group velocity from the symmetry axis towards the
horizontal, the maximum angle between the wavefront normal and the vertical in the
lower right quadrant is limited to vmax, i.e. the value corresponding to the horizontal
ray. There are no wavefront normals in the angular range vmax < v < 908 and, therefore,
no specular zero-offset reflections for dips larger than fmax ¼ vmax.
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This schematic picture is substantiated by Fig. 2, which shows the results of
anisotropic ray tracing (Rüger and Alkhalifah 1996) for a TI model with a steep
reflector. Since the reflector dip in Fig. 2 exceeds fmax, all the rays excited by the source
propagate downwards after the reflection and cannot return to the surface. As a result,
specular reflections do not exist even for non-zero offsets, and a CMP gather at the
surface will not record any specular energy. Note that the tilt of the symmetry axis in
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Figure 1. The P-wavefront for a transversely isotropic medium with a symmetry axis tilted
towards the reflector. The increase in phase and group velocity away from the symmetry axis in
this model reduces the angular range of the wavefront normals in the segment of the wavefront
propagating towards the reflector. The maximum phase (wavefront) angle in the right lower
quadrant is vmax < 908.

Figure 2. Rays (white) and wavefronts (black) of the P-wave excited by a point source at the
surface and reflected from an interface dipping at 808. The model parameters are n ¼ 208,
e ¼ 0:25, d ¼ 0:05.



Fig. 2 is relatively mild (208). The situation shown in Figs 1 and 2 may be typical for
uptilted sediments (such as shales) near the flanks of salt domes because the direction
normal to the bedding (and, hence, the expected symmetry axis of the TI medium) is
tilted towards the salt body. In this case, we can expect serious problems in imaging of
steep segments of the flanks, even if processing algorithms can handle transverse isotropy.

In order to find the maximum dip that would generate a specular reflection, let us
express the group-velocity vector in the incidence (x,z)-plane through the phase
velocity and phase angle (Berryman 1979):

Vgr ¼ ðV sin v þ V 0ðvÞ cos vÞx þ ðV cos v ¹ V 0ðvÞ sin vÞz: ð11Þ

The ray direction is horizontal if the vertical (z) component of group velocity is zero,
i.e.

cos v ¹ sin v
V 0ðvÞ

V ðvÞ
¼ 0: ð12Þ

In the absence of cusps, (12) has two solutions (differing by 61808) corresponding
to the phase angle for the horizontal ray. For typical wavefronts with a monotonic
change in the phase angle from the horizontal to the vertical ray, (12) determines the
maximum phase angles for the two lower quadrants. Thus, we can use (12) to find the
largest dip fmax for which we can record a specular reflection in the medium with the
phase-velocity function V(v) (assuming that the reflector starts at the surface).

In terms of the NMO velocity equation (4), the absence of phase angles corresponding
to a certain range of dips results in zero and negative values of the denominator and,
consequently, in infinite or non-existent NMO velocity. To understand the physical
meaning of the denominator D (equation (10)), note that it becomes identical to the
left-hand side of (12) if we substitute v ¼ f. This implies that D vanishes if the zero-
offset ray, which corresponds to the phase-velocity vector normal to the reflector, is
horizontal (as for dip fmax ¼ vmax in Fig. 1). In other words, the NMO velocity
becomes infinite if the zero-offset reflected ray (along with non-zero-offset rays) travels
along the horizontal (common-midpoint) line. For larger dips, as explained above,
specular reflections do not exist.

The magnitude of this unusual phenomenon is illustrated in Fig. 3 for a typical TI
model with an increase in phase velocity away from the symmetry axis. Even a relatively
mild tilt of 20–258 is sufficient to make it impossible to record zero-offset reflections for
dips exceeding 768. Note that the dependence of fmax on the tilt angle n is asymmetric
with respect to n ¼ 458. The dip fmax reaches its smallest value at tilt angles of 20–308

when the horizontal ray (responsible for fmax) corresponds to the most distorted
section of the wavefront, characterized by a rapid increase in phase velocity with angle.
In contrast, at tilt angles n > 508 the section of the wavefront close to the horizontal has
a shape much closer to spherical (since the parameter d, responsible for the P-wave phase
velocity near the symmetry direction, is small), and the range of ‘missing’dips is narrower.

Of course, a tilt of the symmetry axis towards the reflector does not cause the
disappearance of steep dips for all TI models. In some TI media, phase velocity as a
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function of phase angle with the symmetry axis decreases in certain angle ranges. If,
due to the tilt of the axis, the horizontal ray direction corresponds to such a range, the
wavefront moving towards the reflector contains all phase angles up to (and even
beyond) 908. For instance, this situation occurs for (less typical) models with large d

(d q e) and mild positive tilt angles.
An example of a wavefront containing the full range of phase angles in the quadrant

of interest is shown in Fig. 4. Although the wavefront in Fig. 4 has the same shape as in
Fig. 1, the symmetry axis is now tilted away from the reflector; we would have had the
same situation in Fig. 1 had the reflector been located to the left of the source. For the
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Figure 3. The dip fmax of the steepest reflector that generates a zero-offset P-wave ray for TI
models with different tilt angles n (calculated using (12)). The model is shown in Fig. 1; e ¼ 0:25,
d ¼ 0:05.

Figure 4. The wavefront for the same TI medium as in Fig. 1 but with a symmetry axis tilted
away from the reflector. The direction of the wavefront normal in the lower right quadrant not
only spans the full 0–908 range but also includes angles beyond 908. The angle n between the
symmetry axis and vertical is taken to be negative if the symmetry axis is tilted away from the
reflector.



case displayed in Fig. 4, the phase-velocity vector of the horizontal ray (fmax is a
solution of (12)) points upwards, and it is possible to record specular reflections not
only from any dip in the 0–908 range, but also for dips between 908 and fmax, if the
aperture is sufficient. We conclude that anisotropy can make it possible to record
reflections from overhang structures even in the absence of a velocity gradient.

In the above discussion we assumed a homogeneous anisotropic medium. Some of
our conclusions can be extended in a straightforward way to the so-called factorized
anisotropic media (e.g. Larner 1993) with a vertical velocity gradient. In factorized
models the ratios of the elastic constants (and Thomsen’s (1986) anisotropy
parameters) are independent of spatial position and, consequently, the shape of the
slowness surface and the relationship between the phase and group velocities remains
the same throughout the medium. As a result, for factorized TI media with the same
shape of the slowness surface as for the model in Fig. 1, the downgoing wavefield in the
lower right quadrant still cannot contain phase (wavefront) angles exceeding vmax

(Fig. 5). However, the upgoing wavefield formed due to the ray bending does include
the missing phase angles in the range vmax < v < 908, as well as phase angles beyond 908.
Therefore, in such a medium, zero-offset reflections for dips fmax < f < 908

(fmax ¼ vmax) represent turning rays that exist only for appropriate spatial positions
of the reflector with respect to the source.

NMO velocity as a function of dip angle

The behaviour of normal-moveout velocity for all three modes (P, SV, SH) is examined
here for homogeneous TI media with a tilted in-plane axis of symmetry. It should be
mentioned that, in the presence of non-elliptical anisotropy, reflection moveout is non-
hyperbolic even for a homogeneous medium above the reflector. Therefore, although
(4) can be applied for any tilt angle and any strength of the anisotropy, NMO velocity
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Figure 5. Reflections from steep interfaces in a factorized TI medium with constant e and d and
an increase in the vertical velocity with depth. The shape of the wavefront at any depth is the
same as in Fig. 1. In this case, specular zero-offset reflections from steep dips with fmax > vmax

represent turning rays.



itself describes only the hyperbolic (short-spread) portion of the moveout curve. Due
to the influence of non-hyperbolic moveout, stacking (moveout) velocity determined
on finite spreads may deviate from the ‘zero-spread’ value given by (4). Studies of non-
hyperbolic moveout for vertical transverse isotropy have shown, however, that for
conventional spreadlengths comparable to the CMP-reflector distance, the magnitude
of anisotropy-induced P-wave non-hyperbolic moveout is small and, moreover,
decreases with reflector dip (Tsvankin and Thomsen 1994; Tsvankin 1995). Figure 6
demonstrates that this conclusion remains valid in TI media with a tilted symmetry axis
as well. The finite-spread moveout (stacking) velocity in Fig. 6 was calculated by fitting a
straight line to the exact traveltimes (t2 ¹ x2 curves) over a spread equal to the distance
between the CMP and reflector. Evidently, despite the pronounced anellipticity of the TI
model used in Fig. 6 (e ¹ d ¼ 0:17), the finite-spread moveout velocity is close to the
analytic NMO value for the whole range of dips. Therefore, NMO velocity from (4)
provides a sufficiently accurate description of P-wave reflection moveout for commonly
used spreadlength-to-depth ratios. In principle, the non-hyperbolic moveout equation of
Tsvankin and Thomsen (1994) can be extended to TI models with a tilted in-plane axis of
symmetry, but analysis of non-hyperbolic moveout is outside the scope of this paper.

The results of Tsvankin (1995) indicate noticeable differences in the dependence
of NMO velocity in VTI media on dip as opposed to ray parameter. Although for the
purposes of seismic processing it is more convenient to use the ray parameter as the
argument, the dependence of NMO velocity on the dip still deserves a separate
discussion. The special case of elliptical anisotropy, which is relatively easy to treat
analytically, is considered first. Then, the NMO equation for general (non-elliptical)
transverse isotropy with the axis of symmetry rotated at an arbitrary angle is
simplified by means of the weak-anisotropy approximation. Comparison of the weak-
anisotropy and exact numerical results elucidates the dip dependence of NMO velocity for
a representative range of homogeneous TI models with a tilted symmetry axis.
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Figure 6. The influence of non-hyperbolic moveout on P-wave moveout velocity for a model
with e ¼ 0:2 and d ¼ 0:03 and two tilt angles (n ¼ 308 and n ¼ 608). The solid curve is the
effective moveout velocity calculated from the exact traveltimes (obtained by ray tracing) on the
spreadlength equal to the distance between the CMP and the reflector; the dotted curve is the
exact NMO velocity computed from (4). Both curves are normalized by Vnmoð0Þ= cos f, where
Vnmoð0Þ is the exact NMO velocity for a horizontal reflector.



Elliptical anisotropy

Transverse isotropy always means elliptical anisotropy for the SH-wave, while, for
P–SV-waves, elliptical media represent only the subset of TI models that satisfy the
condition e ¼ d. Although existing data indicate that elliptical anisotropy is not typical
for TI formations, such as shales (Thomsen 1986; Sayers 1994), it is still instructive to
examine this special case separately.
As shown in Appendix A, the NMO velocity for P-waves in elliptical media with tilted
elliptical axes is given by

VnmoðfÞ ¼
VP0

cos f

��������������

1 þ 2d
p

�������������������������������������

1 þ 2d sin2ðf ¹ nÞ
p

1 ¹ 2d
sin n sinðf ¹ nÞ

cos f

� �¹1

: ð13Þ

Equation (13) coincides with the normal-moveout equation of Uren et al. (1990)
obtained using a different approach and presented in a different notation.

For a vertical symmetry axis (n ¼ 0), (13) reduces to the expression discussed by
Tsvankin (1995):

VnmoðfÞ ¼
VP0

��������������

1 þ 2d
p

��������������������������

1 þ 2d sin2 f
p

cos f
: ð14Þ

Equation (14) can be rewritten as

VnmoðfÞ cos f

Vnmoð0Þ
¼

VPðfÞ

VP0
; ð15Þ

where VP is the P-wave phase velocity. Equation (15) shows that if the elliptical axes
are not tilted, the error in the cosine-of-dip dependence is determined directly by the
phase-velocity variations.

If the reflector is horizontal (f ¼ 0), (13) reduces to

Vnmoð0Þ ¼ VP0

��������������

1 þ 2d
p

�������������������������

1 þ 2d sin2 n
p ¼ VP0

����������������������������������

1 þ
2d cos2 n

1 þ 2d sin2 n

s

: ð16Þ

Let us compare the NMO velocity from (16) with the horizontal phase velocity

Vhor ¼ VP0

��������������������������

1 þ 2d cos2 n
p

: ð17Þ

Equations (16) and (17) confirm the well-known fact that for a model with a vertical
(or horizontal) elliptical axis (n ¼ 08 or n ¼ 908), the NMO velocity from a horizontal
reflector is equal to the horizontal velocity. Although this is no longer strictly true for
elliptical models with tilted axes, the difference between the two velocities is small since
they coincide in the weak-anisotropy approximation. Indeed, for weak anisotropy
(jdj p 1) we can drop the terms quadratic in d, and then

Vnmoð0Þ ¼ VP0ð1 þ d cos2 nÞ ¼ Vhor: ð18Þ

Thus, in elliptical media, the NMO velocity from a horizontal reflector remains close
to the horizontal phase velocity, whether the elliptical axes are tilted or not.
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Equation (13) for an arbitrary tilt of the symmetry axis can also be simplified under
the assumption of weak anisotropy (jdj p 1):

VnmoðfÞ ¼
VP0

cos f
1 þ d þ d sin2ðf ¹ nÞ þ 2d

sin n sinðf ¹ nÞ

cos f

� �

: ð19Þ

Figure 7 shows that the tilt has a significant impact on the dip dependence of NMO
velocity in elliptical media. In order to separate the influence of the anisotropy, the
curves in Fig. 7 are normalized by the isotropic equation (2). When one of the elliptical
axes is vertical (n ¼ 08 or n ¼ 908), deviations from the cosine-of-dip relationship are
entirely controlled by the phase-velocity variations (15). Although the difference
between the vertical and horizontal velocities for the model in Fig. 7 is significant (close
to 20%), the anisotropy-induced error in the cosine-of-dip relationship for both n ¼ 0
and n ¼ 908 is relatively small. In contrast, for the symmetry axis tilted at 458 and ¹458,
the anisotropic signature is much more pronounced. Note that at n ¼ 458 the NMO
velocity tends to infinity at dips below 908 since the section of the wavefront
propagating towards the reflector does not contain the full range of the phase angles;
this was discussed in detail in the previous section.
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Figure 7. The dip dependence of P-wave moveout velocity for elliptical anisotropy
(e ¼ d ¼ 0:02). The dotted curve is the exact NMO velocity calculated from (13); the dashed
curve is the weak-anisotropy approximation from (19). Both curves are normalized by
Vnmoð0Þ= cos f, where Vnmoð0Þ is the exact NMO velocity for a horizontal reflector.



In general (non-elliptical) VTI media with e Þ d, equations for elliptical anisotropy
are valid only for the SH-wave. Our moveout analysis for the elliptical P-wave remains
entirely valid for the SH-wave if we replace VP0 with VS0 and d with g. For instance, the
exact NMO velocity equation (13) for the SH-wave takes the form

VnmoðfÞ½SHÿ ¼
VS0

cos f

��������������

1 þ 2g
p

�������������������������������������

1 þ 2g sin2ðf ¹ nÞ

q

1 ¹ 2g
sin n sinðf ¹ nÞ

cos f

� �¹1

: ð20Þ

For SV-waves, the elliptical condition (e ¼ d) implies that the phase and group
velocities are independent of angle (however, SV-wave amplitudes can still be distorted
by the anisotropy). Therefore, the NMO velocity for the SV-wave in elliptical media is
described by the familiar isotropic cosine-of-dip dependence (2).

Weak transverse isotropy

The exact normal-moveout velocity (4) is too complex (especially when the symmetry
axis is tilted) to separate the contributions of the anisotropy parameters to the NMO
velocity. For the sake of qualitative moveout analysis, it is convenient to assume that
the anisotropic coefficients are small and apply the weak-anisotropy approximation.
The P-wave NMO velocity, linearized in the parameters e and d, is derived in
Appendix B:

VnmoðfÞ cos f ¼ VP0

�

1 þ d þ d sin2 f̄ þ 3ðe ¹ dÞ sin2 f̄ð2 ¹ sin2 f̄Þ

þ
2 sin n sin f̄

cos f
½d þ 2ðe ¹ dÞ sin2 f̄ÿ

�

; ð21Þ

where f̄ ¼ f ¹ n.
For n ¼ 0, (21) reduces to the expression given by Tsvankin (1995) for vertical

transverse isotropy:

VnmoðfÞ cos f ¼ VP0½1 þ d þ d sin2 f þ 3ðe ¹ dÞ sin2 fð2 ¹ sin2 fÞÿ: ð22Þ

The terms on the first line of (21) have the same form as the VTI equation (22) but
with the dip f replaced by the difference f ¹ n. The last term of (21) is a pure
contribution of the tilt of the symmetry axis; note that it becomes zero not only for
n ¼ 0, but also when the dipping reflector is normal to the symmetry axis (f̄ ¼ 0). In
the latter case, all anisotropic angular terms in (21) vanish and the dip dependence of
NMO velocity is described by the isotropic cosine-of-dip relationship (Levin 1990;
Tsvankin 1995).

For a horizontal reflector (f ¼ 0) and an arbitary tilt angle, the P-wave NMO
velocity is given by

Vnmoð0Þ ¼ VP0½1 þ d ¹ d sin2 n þ ðe ¹ dÞ sin2 n ð7 cos2 n ¹ 1Þÿ: ð23Þ
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Equation (23) shows that the contribution of tilt to the expression for the NMO
velocity from a horizontal reflector is mostly controlled by the difference e ¹ d. The
influence of tilt on the zero-dip NMO velocity (for models with fixed Thomsen
parameters) is quite substantial and can change in a significant way the ratio of the
NMO and vertical velocities, which is responsible for anisotropy-induced mis-ties in
time-to-depth conversion. For example, for VTI media (n ¼ 0), Vnmoð0Þ ¼ VP0ð1 þ dÞ,
whereas for HTI media (n ¼ 908), Vnmoð0Þ ¼ VP0ð1 þ d ¹ eÞ. However, the form of the
expression for NMO velocity in HTI media becomes identical to that in VTI media (in
the symmetry plane that contains the symmetry axis) if it is expressed through the
stiffness coefficients or the Thomsen parameters of the ‘equivalent’ VTI model
(Tsvankin 1997).

The ratio of the cosine-of-dip corrected NMO velocity (equation (21)) and the zero-
dip value Vnmo(0) (equation (23)) determines the error in the dip dependence of NMO
velocity caused by the anisotropy. The presence of a separate ‘tilt’ term in (21), as well
as the form of the argument (f ¹ n) in other terms, is indicative of a strong influence of
tilt on the dip dependence of the P-wave NMO velocity. Since the ‘tilt’ term depends on
e and d separately, we can no longer expect that deviations from the cosine-of-dip
dependence will be largely controlled by the difference between e and d, as was the case
in VTI media. This conclusion is supported by the numerical results below.

To study the SV-wave NMO velocity, it is convenient to introduce the parameter j

(Tsvankin and Thomsen 1994):

j ;
VP0

VS0

� �2

ðe ¹ dÞ: ð24Þ

The weak-anisotropy approximation for SV-waves can then be obtained from P-wave
equation (21) by making the following substitutions (Tsvankin 1995): VP0 → VS0, d → j,
and e → 0, giving

VnmoðfÞ cos f ¼ VS0

�

1 þ j þ j sin2 f̄ ¹ 3j sin2 f̄ð2 ¹ sin2 f̄Þ

þ 2j
sin n sin f̄ cos 2f̄

cos f

�

: ð25Þ

As discussed above, for the SH-wave anisotropy is elliptical, and the NMO velocity
is given exactly by (20).

Numerical results for general TI media

Figures 8 and 9 show the comparison between the exact P-wave NMO velocity (4) and
the weak-anisotropy approximation (21) at different tilt angles for two media with
small and moderate values of the anisotropic parameters e and d. For both models, as
expected, the accuracy of the weak-anisotropy approximation is satisfactory at all tilt
angles.
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Clearly, the tilt of the symmetry axis has a strong influence on the behaviour of
NMO velocity. It is interesting that for the model parameters used in Fig. 9, the NMO
velocity is identical for n ¼ 6458, and also for n ¼ 0 and n ¼ 908. This is explained by
the vanishing parameter e for this model: if e ¼ 0, the P and SV phase velocities are
symmetric with respect to the 458 angle with the symmetry axis. In this case the phase
velocity and, consequently, the NMO velocity do not change when we rotate the
symmetry axis by 908.

Figures 8 and 9 also demonstrate that the character of the NMO-velocity curves is
strongly dependent on the sign of e ¹ d. For vertical transverse isotropy, the difference
e ¹ d is believed to be predominantly positive, at least on the scale of seismic
experiments (Thomsen 1986; Sayers 1994). The same is usually true for TI media
where the anisotropy is due to a system of parallel cracks (Thomsen 1995). Note that
e ¹ d > 0 for transverse isotropy caused by the interbedding of thin parallel isotropic
layers (Berryman 1979). Therefore, whether the tilt of the axis is caused by dipping TI
formations (e.g. shales) or a system of oblique parallel cracks, typically e ¹ d > 0.

Figure 10 illustrates the influence of tilt on the P-wave NMO velocity for three models
with a positive e ¹ d ¼ 0:2. As predicted by the weak-anisotropy approximation, the tilt
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Figure 8. P-wave normal-moveout velocity for e ¼ 0:2 and d ¼ 0:1. The dotted curve is the exact
NMO velocity calculated from (4); the dashed curve is the weak-anisotropy approximation from
(21). Both curves are normalized by Vnmo(0)/f, where Vnmo(0) is the exact NMO velocity for a
horizontal reflector.



causes profound changes in the character of the NMO curves. If the symmetry axis
is tilted towards the reflector (n > 0), the cosine-of-dip corrected NMO velocity
remains almost flat in the range 0 < f < n and then increases for steep dips. A
‘negative’ tilt n < 0, which corresponds to the symmetry axis tilted away from the
reflector, reverses the NMO curve and makes the cosine-of-dip corrected NMO
velocity decrease with dip. For a vertical symmetry axis, this type of behaviour arises
for a negative value of e ¹ d. Also, when the symmetry axis is tilted, the dip
dependence of the P-wave NMO velocity is no longer tightly controlled by the
difference e ¹ d; the influence of the individual values of e and d is especially significant
for a tilt of 458.

Deviations of the P-wave NMO curves from those for vertical transverse
isotropy become pronounced at relatively mild tilts (Fig. 11). Only for tilt angles
up to 6ð10 ¹ 15Þ8 is the dip dependence of NMO velocity close to that for VTI
media. A tilt of 6208 is sufficient to cause substantial changes in the NMO curves,
with negative n leading to a decrease in Vnmo with angle at steep dips. For n ¼ 208,
the NMO velocity increases sharply at f > 508 as the dip approaches the maximum
phase angle fmax contained in the wavefront for this model (see the discussion
above).
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Figure 9. Normalized P-wave NMO velocity for e ¼ 0 and d ¼ 0:1. The dotted curve is the exact
NMO velocity calculated from (4); the dashed curve is the weak-anisotropy approximation
from (21).



NMO velocity as a function of ray parameter

Since reflection data do not carry explicit information about the dip angle, for
application in seismic processing (4) should be rewritten as a function of the ray
parameter p(f) given by the slope of reflections on zero-offset (or CMP-stacked)
seismic sections, i.e.

pðfÞ ¼
1
2

dt0
dx0

¼
sin f

V ðfÞ
; ð26Þ

where t0(x0) is the two-way traveltime on the zero-offset (or stacked)section, and x0 is
the midpoint position. The dependence of NMO velocity (equation (4)) on the ray
parameter is easy to find parametrically by using the dip f as the argument.

First, consider Vnmo ( p) for the simplest model wherein the anisotropy is elliptical. In
the previous section it was demonstrated that the tilt of the elliptical axes has a
significant influence on the dip dependence of NMO velocity. However, if represented
through the ray parameter, the NMO velocity for elliptical anisotropy takes exactly the
same form as in isotropic media (Appendix A):

VnmoðpÞ ¼
Vnmoð0Þ

�����������������������������

1 ¹ p2V 2
nmoð0Þ

p : ð27Þ
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Figure 10. The exact normalized P-wave NMO velocity for models with e ¹ d ¼ 0:2: e ¼ 0:1,
d ¼ ¹0:1 (solid black); e ¼ 0:2, d ¼ 0 (gray); e ¼ 0:3, d ¼ 0:1 (dashed).



Given the complexity of Vnmo(f) in elliptically anisotropic models (13), it is
somewhat surprising that the dependence of NMO velocity on the ray parameter
remains ‘isotropic’ irrespective of the tilt of the elliptical axes. The contribution of
anisotropy (including the tilt) in (27) is hidden in the values of the zero-dip NMO
velocity Vnmo(0) (equation (16)) and the ray parameter p. Since the moveout for
elliptical anisotropy with any orientation of the axes is purely hyperbolic (Uren et al.
1990), all isotropic time-related processing methods (NMO, DMO, time migration)
are entirely valid in elliptical media. Note that this result has been proved by Helbig
(1983) for the special case of the symmetry axis normal to the upper boundary of
the layer of interest. The above conclusions (and (27)) are also fully applicable to the
SH-wave in any TI media.

Equation (27) also implies that deviations from the isotropic Vnmo( p) dependence
for any tilt should be strongly dependent on the difference e ¹ d which quantifies the
degree of ‘anellipticity’ of TI media. It is clear, for instance, that the anisotropic term in
the weak-anisotropy approximation for Vnmo( p) should contain e and d only in the
combination e ¹ d. Otherwise, this term would not vanish for elliptical anisotropy
which corresponds to e ¼ d.

Before analysing numerical results, it is important to consider the parameters which
control the dependence of the P-wave NMO velocity on p. The P-wave phase velocity
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Figure 11. The exact normalized P-wave NMO velocity for mild tilt angles. The models are the same
as in Fig. 10: e ¼ 0:1, d ¼ ¹0:1 (solid black); e ¼ 0:2, d ¼ 0 (gray); e ¼ 0:3, d ¼ 0:1 (dashed).



can be represented as a product of the velocity in the symmetry direction (VP0) and
an anisotropic term dependent on the tilt n and the anisotropic parameters e and d

(the contribution of VS0 can be ignored). Then, according to (26), the angle f can be
written as

f ¼ f ðpVP0; e; d; nÞ;

which allows us to find the parameters of Vnmo from (4):

Vnmo ¼ VP0 f1ðf; e; d; nÞ ¼ VP0 f2ðpVP0; e; d; nÞ:

Therefore, the NMO velocity divided by the zero-dip value can be represented by

VnmoðpÞ

Vnmoð0Þ
¼ f3ðpVP0; e; d; nÞ ¼ f4ðpVnmoð0Þ; e; d; nÞ: ð28Þ

The functions f1, f2, f3, f4 can be found explicitly by substituting the phase-velocity
function into (4); however, here implicit definitions are sufficient for our purposes.
Equation (28) shows that the contributions of the ray parameter and the zero-dip
NMO velocity are absorbed by the term pVnmo(0). Essentially, changes in Vnmo(0) (for
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Figure 12. The influence of VS0 (the shear-wave velocity in the symmetry direction) on the
P-wave NMO velocity. NMO velocity is computed from (4) and is normalized by (27). The
curves correspond to models with VP0/VS0 ¼ 1.5 (black) and VP0/VS0 ¼ 2.5 (gray); for both
models, e ¼ 0:3, d ¼ 0:1. The dips range from 0 to 708.



fixed anisotropic coefficients and tilt) just stretch or squeeze the NMO velocity curve
expressed through the ray parameter. Therefore, in the calculations below pVnmo(0) is
used as the argument and the influence of the parameters e, d and n on the NMO
velocity is studied.

Since the function Vnmo( p) is of primary importance in dip-moveout (DMO)
processing, in the following the dependence of the P-wave NMO velocity on the ray
parameter will be called ‘the DMO signature.’ Hereafter, the NMO velocity is
calculated from (4) as a function of pVnmo(0) (for dips ranging from 0 to 708) and is
normalized by the isotropic expression (27) to demonstrate the distortions in the DMO
signature caused by the anisotropy.

Figure 12 shows that the influence of the shear-wave velocity VS0 on P-wave normal
moveout, ignored in (28), is indeed small. Some difference between the NMO
velocities for the two models that span a wide range of VP0/VS0 ratios is noticeable only
for a horizontal symmetry axis (n ¼ 908). However, this separation between the curves
is caused mostly by a small influence of VS0 on the zero-dip NMO velocity Vnmo(0).
The difference in Vnmo(0) leads to a small horizontal shift between the curves
which gets amplified when the NMO velocity is divided by the isotropic equation (27)
(the normalization mitigates the increase in the NMO velocity at steep dips).
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Figure 13. Normalized P-wave NMO velocity as a function of the ray parameter. The models
correspond to e ¹ d ¼ 0:2 (as in Fig. 10): e ¼ 0:1, d ¼ ¹0:1 (solid black); e ¼ 0:2, d ¼ 0 (gray);
e ¼ 0:3, d ¼ 0:1 (dashed). The dips range from 0 to 708.



The normalization by (27), equivalent to the replacement of the true dip with an
‘apparent’ dip angle (Larner 1993; Tsvankin 1995), leads to substantial changes in the
character of the NMO curve. Note that the influence of the anisotropy on the P-wave
NMO velocity becomes almost the same for vertical (n ¼ 0) and horizontal (n ¼ 908)
orientations of the symmetry axis, if the ray parameter is used as the argument
(Fig. 13).

Comparison of Fig. 13 with Fig. 10 shows that the changes are especially
pronounced for positive n, which correspond to the symmetry axis tilted towards the
reflector. For instance, at a tilt of 458 and 458 dip, the value of pVnmo(0), which
represents the sine of the apparent dip angle, is close to 0.9, which is far different from
sin f < 0.71. With a further increase in dip, pVnmo(0) approaches unity (both for
n ¼ 458 and n ¼ ¹458), and the isotropic expression (27) tends to infinity at dips well
below 908 (and below fmax for n ¼ 458), leading to the sharp decrease in the
normalized NMO velocity at n ¼ 6458 (Fig. 13).

Parameter h for tilted axis of symmetry

For vertical transverse isotropy, the dependence of the P-wave NMO velocity on
the ray parameter is controlled by a combination of the anisotropic coefficients
that Alkhalifah and Tsvankin (1995) denoted as h (equation (3)). This result
makes it possible to reduce the number of parameters in DMO correction and time-
related P-wave processing to just two (Vnmo(0) and h), which greatly facilitates
the practical implementation of processing and inversion algorithms in VTI media.
A similar result is valid for the symmetry plane of HTI media that contains the
symmetry axis: in this case, the NMO velocity is governed by the parameter h of the
‘equivalent’ VTI medium, which is close to the generic value of h used here
(Tsvankin 1997).

If the symmetry axis is tilted, the function Vnmo( p) (for the P-wave) depends on
pVnmo(0), e, d and the tilt n (equaton (28)). The question to be addressed next is
whether the influence of e and d on the NMO velocity is still absorbed by the
parameter h. Note that for small d the parameter h is close to the difference e ¹ d, so
the plots for constant e ¹ d given in the previous section contain a partial answer to
this question. For instance, in Fig. 13 we do see some separation between the curves
with the same e ¹ d, but the general behaviour of the NMO velocity for fixed e ¹ d is
similar. Figure 14 reproduces the result from Fig. 13, but this time the values of d

were adjusted to make h ¼ 0:2 for all three models. Evidently, the curves moved
much closer to each other, although a perfect coincidence of the NMO velocities for
the full range of dips was achieved only for VTI media (n ¼ 0). Since a detailed
discussion of the signature for horizontal transverse isotropy is given in a separate
paper (Tsvankin 1997), the following discussion focuses on intermediate tilt angles.

Figure 15 shows the normal-moveout velocity at the same tilt angles as in Fig. 14 but
for differing values of h. While for vertical and horizontal orientations of the symmetry
axis h has a pronounced influence on the NMO-velocity curves, at intermediate tilt
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angles the resolution in h is considerably lower. For n ¼ 6458, the difference between
the curves corresponding to h ¼ 0:2 and h ¼ 0:3 is relatively small (Fig. 15).

As discussed above, for weak anisotropy, deviations of the P-wave NMO velocity
from the isotropic dependence (27) are proportional to the difference e ¹ d, which is
close to h for small values of d. This is illustrated by Fig. 16, which shows that even at
intermediate tilts the normalized NMO velocity still is almost linearly dependent on
h < e ¹ d for small and moderate values of this parameter, e and d. However, with
increasing h, this is no longer the case, and the curves for h > 0:15 are relatively close to
each other (Figs 15 and 16).

Apparently, at n ¼ 6458 the influence of the terms quadratic in the anisotropic
coefficients leads to a more complicated relationship between the NMO velocity and
the parameters e and d than that in VTI media. A detailed analysis shows that the NMO
velocity remains sensitive to d as h reaches the 15–20% range, but does not change
much with increasing e. As a result, for h ¼ 0:15–0.2 and higher, the DMO signature at
intermediate angles depends on the individual values of e and d and is not fully
controlled by h. While, for small and moderate values of h, e and d, the inversion of the
NMO velocity for h < e ¹ d and the dip-moveout processing can be performed in the
same fashion as in VTI media (provided the tilt is known), the approach developed for
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Figure 14. Normalized P-wave NMO velocity for models with the same h ¼ 0:2: e ¼ 0:1,
d ¼ ¹0:071 (solid black); e ¼ 0:2, d ¼ 0 (gray); e ¼ 0:3, d ¼ 0:071 (dashed). The dips range
from 0 to 708.



vertical transverse isotropy cannot be used for values of h of the order of 0.15 and
higher.

For completeness, Fig. 17 shows the P-wave NMO velocity at different tilt angles for
(less typical) models with negative h. (If h ¼ 0, the model is elliptical and VnmoðpÞ is
described by the isotropic dependence (27).) Note that at all tilts the signature for h < 0
is reversed compared to that for positive values of h. None the less, there is also a
similarity between models with positive and negative h: in both cases, h controls the
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Figure 15. Normalized P-wave NMO velocity for models with different h: h ¼ 0:1 (solid black);
h ¼ 0:2 (gray); h ¼ 0:3 (dashed). For all models, d ¼ 0 and e ¼ h. The dips range from 0 to 708.

Figure 16. Sensitivity of P-wave NMO velocity to h at intermediate tilt angles. The curves
correspond to h ¼ 0:05 (solid black); h ¼ 0:1 (dotted); h ¼ 0:15 (gray); h ¼ 0:2 (dashed). For all
models, d ¼ 0 and e ¼ h. The dips range from 0 to 708.



dependence Vnmo( p) more tightly for near-vertical and near-horizontal orientations of
the symmetry axis than at intermediate tilt angles.

The profound differences between the dip dependence of NMO velocities for vertical
transverse isotropy and TI media with a tilted axis of symmetry make it necessary to
study the transition between the two signatures at mild tilt angles. Even a tilt of 6208 is
sufficient to eliminate a sharp increase in the normalized NMO velocity typical for
vertical transverse isotropy and to make the DMO signature almost isotropic for a wide
range of reflector dips (Figs 18 and 19). For the character of the normalized P-wave
NMO velocity to be close to that in VTI media, the tilt should not exceed 10–158. For
small tilt angles within this range, the NMO velocity grows with p much faster than
in isotropic media, and this increase is governed largely by h. However, it should
be mentioned that even for n ¼ 6108 the anisotropic signature is less pronounced than
for VTI media and the h control over the DMO signature is less tight. At tilt angles of
about 6308, the signature is reversed, and the normalized NMO velocity decreases with p.

Discussion

Transverse isotropy with a tilted axis of symmetry may be typical, for instance,
for sedimentary formations near the flanks of salt domes. Here, the behaviour of
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Figure 17. Normalized P-wave NMO velocity for models with h ¼ ¹0:1: e ¼ 0, d ¼ 0:125
(solid black); e ¼ 0:1, d ¼ 0:25 (gray); e ¼ 0:2, d ¼ 0:375 (dashed). The dips range from 0 to 708.



normal-moveout velocity was studied in the symmetry plane of TI media that contains
the symmetry axis. In addition to distorting the values of NMO velocities, the influence
of tilt leads to profound changes in the structure of the reflected wavefield. For
homogeneous TI models with a symmetry axis tilted towards the reflector and typical
values of the anisotropic parameters, it is impossible to generate specular zero-offset
reflections for a certain range of steep dips that depends on the shape of the wavefront.
If the medium is factorized with vertical velocity gradient, the ‘missing’ dips can be
imaged only using turning rays, although the corresponding reflectors are sub-vertical.
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Figure 18. Normalized P-wave NMO velocity for mild tilt angles and h ¼ 0:2: e ¼ 0:1,
d ¼ ¹0:071 (solid black); e ¼ 0:2, d ¼ 0 (gray); e ¼ 0:3, d ¼ 0:071 (dashed). The dips range
from 0 to 708.



In a different situation, typical for the symmetry axis tilted away from the reflector,
anisotropy can produce specular zero-offset reflections from overhang structures in the
absence of a velocity gradient. These phenomena may cause serious complications in
the imaging of such steep structures as salt domes or volcanic intrusions.

The dependence of normal-moveout velocity on the tilt angle was studied using the
equation of Tsvankin (1995) valid for any strength of the anisotropy. For typical values of
the anisotropic coefficients, NMO velocity provides an accurate description of reflection
moveout on conventional-length spreads close to the distance between the CMP and the

Moveout analysis 505

q 1997 European Association of Geoscientists & Engineers, Geophysical Prospecting, 45, 479–512

Figure 19. Normalized P-wave NMO velocity for mild tilt angles and h ¼ 0:1: e ¼ 0:1, d ¼ 0
(solid black); e ¼ 0:2, d ¼ 0:083 (gray); e ¼ 0:3, d ¼ 0:167 (dashed). The dips range from 0 to
708.



reflector. For larger spreadlengths, the hyperbolic moveout equation parametrized by
NMO velocity becomes inaccurate and should be replaced by more elaborate moveout
approximations, such as the one suggested by Tsvankin and Thomsen (1994).

A concise approximation for NMO velocity, obtained from the exact equation in the
limit of weak anisotropy, helps in understanding the influence of the tilt and anisotropic
parameters on reflection moveout for all wave types. While the tilt term in the
expression for the NMO velocity from horizontal reflectors is mostly determined by
the difference between the Thomsen parameters e and d, the influence of tilt on the dip
dependence of NMO velocity has a more complicated character.

For purposes of seismic inversion and processing, NMO velocity from dipping
reflectors should be studied as a function of the ray parameter p (the dependence
Vnmo( p) is called here the ‘dip-moveout (DMO) signature’). If the medium is
elliptically anisotropic (e ¼ d) with tilted elliptical axes, the dependence Vnmo( p) is
shown to be described by the same equation as in isotropic media. Since the reflection
moveout in elliptical media is purely hyperbolic, all isotropic time-related processing
methods (NMO, DMO, time migration) are entirely valid for elliptical anisotropy with
any orientation of the elliptical axes. Time-to-depth conversion, however, requires
knowledge of the vertical velocity, which cannot be found from moveout data alone. It
should be mentioned that the NMO velocity from horizontal reflectors in elliptical
models remains close to the horizontal phase velocity.

For vertical transverse isotropy, the P-wave DMO signature is tightly controlled by
just two effective parameters: the zero-dip NMO velocity Vnmo(0) and the anellipticity
coefficient h. The same two parameters determine the time-migration impulse
response and, therefore, are sufficient for all time-related processing methods in VTI
media (Alkhalifah and Tsvankin 1995). The numerical results for TI media with a
tilted symmetry axis show that for relatively small values of e and d, the P-wave DMO
signature depends only on h and the tilt angle. However, due to the influence of the
higher-order anisotropic terms at intermediate tilt angles, this conclusion does not hold
if the coefficients e, d or h exceed 10–15%.

On the whole, the dependence of the NMO velocity on the ray parameter has the same
character as for vertical transverse isotropy only for a narrow range of tilt angles
corresponding to near-vertical and near-horizontal orientations of the symmetry axis.
For horizontal transverse isotropy, the NMO velocity is controlled by the parameter h of
the ‘equivalent’ VTI medium, which is relatively close to the generic value of h (Tsvankin
1997). For mild tilts away from the vertical, the behaviour of the P-wave NMO velocity is
similar to that in VTI media: for typical h > 0, Vnmo increases with p much faster than in
isotropic (or elliptically anisotropic) media and is tightly controlled by h (at a fixed tilt n).
However, the comfortable limit for applying the approaches developed for VTI media is
only about n ¼ 6108. A tilt of 6208 is sufficient to eliminate the anisotropic DMO
signature almost entirely and to make the NMO velocity much less dependent on h. At
larger tilts of 6(30–55)8, the signature is reversed, with Vnmo( p) increasing more slowly
than in isotropic media and being controlled by h only for small and moderate values of
this parameter (jhj # 0:15 ¹ 0:2), e and d.
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Provided that the tilt angle is known, the dependence Vnmo( p) can be reliably inverted for
h only when the symmetry axis is close either to the vertical or to the horizontal. Also, h can
be obtained in the 6 (30–55)8 tilt range, but only for small values of the anisotropic par-
ameters. An interesting implication of the above results is the possibility of using the DMO
signature in the inversion for the orientation of the symmetry axis. In general, this inversion
would require a 3D azimuthal analysis of reflection traveltimes on survey lines with different
directions. However, if the plane containing the symmetry axis has been identified, the
strong dependence of the P-wave NMO velocity on the tilt angle can sometimes be used to
constrain the tilt. For instance, if the formation has a known value of h (say, a typical positive
value for shales), the disappearance of the anisotropic DMO signature is indicative of a tilt of
about 6208. If the signature is reversed (i.e. the normalized NMO velocity decreaseswithp),
we can conclude that the tilt should be of the order of 6308 or more. Note, however, that the
influenceof theanisotropyon theP-wave function Vnmo( p)can alsobereducedbyapositive
vertical-velocity gradient (Larner 1993; Tsvankin 1995). Hence, the estimation of the tilt
angle would be impossible without properly accounting for vertical inhomogeneity.

The substantial magnitude of deviations of the P-wave DMO signature from the
isotropic one in several ranges of tilt angles means that conventional isotropic DMO
cannot be applied to many typical transversely isotropic models. Some existing
anisotropic dip-moveout algorithms based on the exact NMO velocity equation (4)
(e.g. the Hale-type DMO method of Anderson and Tsvankin 1994) can be directly
used in the symmetry plane of TI media with a tilted symmetry axis. The main problem
in the application of anisotropic DMO to TI media with a tilted axis of symmetry is the
estimation of the anisotropic parameters. Although the DMO signature is not fully
controlled by h and the tilt may not be exactly known, it may still be possible to find an
‘effective’ transversely isotropic model with the correct dependence Vnmo( p) for the
available dipping events. The anisotropic parameters and the tilt angle provide extra
degrees of freedom in the NMO equation, thus making this approach feasible.
However, the parameters recovered from the fitting procedure would represent just one
possible anisotropic model, which would be suitable for DMO processing but not
necessarily for poststack migration or estimation of the actual anisotropic coefficients.

Although the above analysis was performed for a single transversely isotropic layer,
the results can be extended to vertically inhomogeneous media by using the generalized
Dix equation of Alkhalifah and Tsvankin (1995). This equation is valid in symmetry
planes of any anisotropic model that consists of a dipping reflector beneath a vertically
stratified overburden. Each layer, for instance, can be transversely isotropic with an in-
plane symmetry axis tilted at an arbitrary angle. The NMO velocity for such a model is
represented by an rms average of the single-layer NMO velocities that were discussed
in this paper.

Conclusions

The results listed below were obtained for the vertical symmetry plane containing the
symmetry axis of the transversely isotropic model and the reflector normal.
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1. For typical homogeneous TI models, tilt of the symmetry axis towards the reflector
leads to the disappearance of specular reflections from steep interfaces.
2. In the presence of vertical velocity gradient, the ‘missing’ sub-vertical dipping
planes do generate specular reflections, which in this case represent turning rays. These
phenomena can cause serious problems in salt imaging, even if the processing
algorithms take the influence of transverse isotropy into account.
3. On conventional-length spreadsclose to thedistance between the CMPand the reflector,
P-wave moveout is sufficiently close to a hyperbola parametrized by NMO velocity.
4. For elliptically anisotropic media with any tilt of the symmetry axis, the dependence
of the NMO velocity on the ray parameter Vnmo( p) (‘the DMO signature’) is exactly
the same as in isotropic media. All isotropic time-related processing methods (NMO,
DMO, time migration) are entirely valid in elliptical media.
5. In non-elliptical TI media, the function Vnmo( p) for P-waves is similar to the one for
vertical transverse isotropy only for near-vertical and near-horizontal orientations of
the symmetry axis. A tilt of about 208 is sufficient to eliminate the influence of
anisotropy on the DMO signature (but not on the zero-dip NMO velocity Vnmo(0)). At
larger tilt angles, Vnmo( p) normalized by the corresponding isotropic function is
reversed compared to the NMO curve for vertical transverse isotropy.
6. The P-wave DMO signature is controlled by the tilt of the symmetry axis and the
anisotropic parameters e and d, with the difference e ¹ d responsible for the character of
deviations from the isotropic dependence Vnmo( p). However, in contrast to VTI
media, the influence of e and d at intermediate tilt angles is not fully absorbed by the
parameter h ¼ ðe ¹ dÞ=ð1 þ 2dÞ, unless anisotropy is weak.
7. Conventional isotropic DMO correction is not suitable for a wide range of tilt angles
and should be replaced with algorithms honouring the influence of transverse isotropy
on NMO velocity.
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Andreas Rüger (all of CWP) for use of their anisotropic ray-tracing codes. The
support for this work was provided by the members of the Consortium Project on
Seismic Inverse Methods for Complex Structures at CWP, and by the United States
Department of Energy (project ‘‘Velocity Analysis, Parameter Estimation, and
Constraints on Lithology for Transversely Isotropic Sediments’’ within the framework
of the Advanced Computational Technology Initiative).

Appendix A

NMO velocity for elliptically anisotropic media

Here, normal-moveout velocity for elliptically anisotropic media with tilted in-plane
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elliptical axes is obtained from (4). To satisfy the assumptions behind (4), we also
assume the incidence plane to be the dip plane of the reflector.

For elliptical anisotropy, P-waves are described by a single anisotropic parameter d

(e ¼ d). If the symmetry axis makes an angle n with the vertical, the P-wave phase-
velocity function is given by

VPðvÞ ¼ VP0

�������������������������

1 þ 2d sin2 v̄
p

; ðA1Þ

where v̄ ¼ v ¹ n, VP0 is the P-wave phase and group velocity along the symmetry axis.
Note that both v and n may be either positive or negative; we will assume that the
positive direction is counterclockwise from the vertical axis that points downwards.

The derivatives of the phase velocity needed to evaluate the NMO velocity (4) are
obtained from (A1) as

V 0
PðvÞ ¼

VP0d sin 2v̄

ð1 þ 2d sin2 v̄Þ1=2
; ðA2Þ

V 00
PðvÞ ¼ 2VP0d

cos 2v̄ ¹ 2d sin4 v̄

ð1 þ 2d sin2 v̄Þ3=2
: ðA3Þ

Substituting (A1)–(A3) into (4) yields

VnmoðfÞ ¼
VP0

cos f

��������������

1 þ 2d
p

�������������������������������������

1 þ 2d sin2ðf ¹ nÞ
p

1 ¹ 2d
sin n sinðf ¹ nÞ

cos f

� �¹1

: ðA4Þ

Next, let us express the NMO velocity as a function of the ray parameter p. The
function Vnmo( p) for elliptical anisotropy with a vertical symmetry axis has the same
form as in isotropic media (Tsvankin 1995; Alkhalifah and Tsvankin 1995):

VnmoðpÞ ¼
Vnmoð0Þ

�����������������������������

1 ¹ p2V 2
nmoð0Þ

p ; ðA5Þ

with

Vnmoð0Þ ¼ VP0

��������������

1 þ 2d
p

:

Here, we will prove that the isotropic relationship (A5) holds in elliptically
anisotropic media irrespective of the tilt of the elliptical axes. It is easier to carry out this
proof by transforming (A5) into (A4) rather than the other way around.

Using (A1), we represent the ray parameter as

p ¼
sin f

V ðfÞ
¼

sin f

VP0

�������������������������������������

1 þ 2d sin2ðf ¹ vÞ
p : ðA6Þ

The zero-dip NMO velocity Vnmo(0) for arbitrary tilt of the symmetry axis can be
found from (A4):

Vnmoð0Þ ¼
VP0

��������������

1 þ 2d
p

�������������������������

1 þ 2d sin2 n
p : ðA7Þ
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Substituting (A6) and (A7) into the isotropic equation (A5) for Vnmo( p), we get

VnmoðfÞ ¼
VP0

��������������

1 þ 2d
p

�������������������������������������

1 þ 2d sin2ðf ¹ nÞ
p

d
; ðA8Þ

where d ¼ f1 þ 2d½sin2 n þ sin2ðf ¹ nÞÿ þ 4d2 sin2 n sin2ðf ¹ nÞ ¹ ð1 þ 2dÞ sin2 fg1=2.
The denominator d can be simplified further to

d ¼ cos f ¹ 2d sin n sinðf ¹ nÞ;

and (A8) reduces to (A4).

Appendix B

Weak-anisotropy approximation for NMO velocity

For weak transverse isotropy (jej p 1; jdj p 1; jgj p 1), the NMO equation (4) can be
significantly simplified by retaining only the terms linear in the anisotropic coefficients
e, d (for the P- and SV-waves), and g (for the SH-wave). First, we expand (4) in the
anisotropic terms ½V 00ðfÞ=V ðfÞÿ and ½tan fV 0ðfÞ=V ðfÞÿ, which turn to zero in isotropic
media. Dropping the quadratic and higher-order terms in this expansion, we get

VnmoðfÞ ¼
V ðfÞ

cos f
1 þ

V 00ðfÞ

2V ðfÞ
þ tan f

V 0ðfÞ

V ðfÞ

� �

: ðB1Þ

For P-waves, the phase-velocity function, fully linearized in the anisotropic
coefficients e and d, was given by Thomsen (1986). In the case of the symmetry axis
tilted at an angle n from the vertical, the weak-anisotropy approximation for the phase
velocity becomes

VPðvÞ ¼ VP0ð1 þ d sin2 v̄ cos2 v̄ þ e sin4 v̄Þ; ðB2Þ

where v̄ ¼ v ¹ n.
The derivatives of VP (B2) to be used in (4) are

V 0ðvÞ ¼ VP0sin 2v̄ðd cos 2v̄ þ 2e sin2 v̄Þ; ðB3Þ

V 00ðvÞ ¼ 2VP0½d cos 4v̄ þ 2e sin2 v̄ð1 þ 2 cos 2v̄Þÿ: ðB4Þ

Since the phase velocity and its derivatives (B2)–(B4) should be evaluated at the angle
v ¼ f, they become functions of the variable f̄ ¼ f ¹ n. It is convenient to rewrite (B1) as

VnmoðfÞ cos f ¼ V ðf̄Þ 1 þ
V 00ðf̄Þ

2V ðf̄Þ
þ tan f̄

V 0ðf̄Þ

V ðf̄Þ
þ ðtan f ¹ tan f̄Þ

V 0ðf̄Þ

V ðf̄Þ

� �

: ðB5Þ

The term

Cðf̄Þ ¼ V ðf̄Þ 1 þ
V 00ðf̄Þ

2V ðf̄Þ
þ tan f̄

V 0ðf̄Þ

V ðf̄Þ

� �

ðB6Þ

has exactly the same form as ½VnmoðfÞ cosðfÞÿ for a vertical axis of symmetry
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ðn ¼ 0; f̄ ¼ fÞ. The weak-anisotropy approximation for VTI media was obtained by
Tsvankin (1995):

VnmoðfÞ cos f ¼ VP0½1 þ d þ d sin2 f þ 3ðe ¹ dÞ sin2 fð2 ¹ sin2 fÞÿ: ðB7Þ

Replacing f with f̄ in (B7) allows us to represent Cðf̄Þ from (B6) as

Cðf̄Þ ¼ VP0½1 þ d þ d sin2 f̄ þ 3ðe ¹ dÞ sin2 f̄ð2 ¹ sin2 f̄Þÿ: ðB8Þ

Using (B2) and (B3), we find the weak-anisotropy approximation for the remaining
term in (B5):

ðtan f ¹ tan f̄Þ
V 0ðf̄Þ

V ðf̄Þ
¼

2 sin n sin f̄

cos f
½d þ 2ðe ¹ dÞ sin2 f̄ÿ: ðB9Þ

Substituting (B8) and (B9) into (B5) yields

VnmoðfÞ cos f ¼ VP0

�

1 þ d þ d sin2 f̄ þ 3ðe ¹ dÞ sin2 f̄ð2 ¹ sin2 f̄Þ

þ
2 sin n sin f̄

cos f
½d þ 2ðe ¹ dÞ sin2 f̄ÿ

�

: ðB10Þ

Equation (B10) is the weak-anisotropy approximation for the P-wave NMO velocity
fully linearized in the anisotropic parameters e and d.
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