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Feasibility of nonhyperbolic moveout inversion
in transversely isotropic media

Vladimir Grechka∗ and Ilya Tsvankin∗

ABSTRACT

Inversion of reflection traveltimes in anisotropic me-
dia can provide estimates of anisotropic coefficients re-
quired for seismic processing and lithology discrimi-
nation. Nonhyperbolic P-wave moveout for transverse
isotropy with a vertical symmetry axis (VTI media) is
controlled by the parameter η (or, alternatively, by the
horizontal velocity Vhor), which is also responsible for the
influence of anisotropy on all time-processing steps, in-
cluding dip-moveout (DMO) correction and time migra-
tion. Here, we recast the nonhyperbolic moveout equa-
tion, originally developed by Tsvankin and Thomsen, as
a function of Vhor and normal-moveout (NMO) velocity
Vnmo and introduce a correction factor in the denomina-
tor that increases the accuracy at intermediate offsets.
Then we apply this equation to obtain Vhor and η from
nonhyperbolic semblance analysis on long common mid-
point (CMP) spreads and study the accuracy and stability
of the inversion procedure.

Our error analysis shows that the horizontal velocity
becomes relatively well-constrained by reflection trav-
eltimes if the spreadlength exceeds twice the reflector
depth. There is, however, a certain degree of tradeoff
between Vhor and Vnmo caused by the interplay between
the quadratic and quartic term of the moveout series.
Since the errors in Vhor and Vnmo have opposite signs,
the absolute error in the parameter η (which depends on
the ratio Vhor/Vnmo) turns out to be at least two times
bigger than the percentage error in Vhor. Therefore, the
inverted value of η is highly sensitive to small correlated

errors in reflection traveltimes, with moveout distortions
on the order of 3–4 ms leading to errors in η up to ±0.1—
even in the simplest model of a single VTI layer. Similar
conclusions apply to vertically inhomogeneous media,
in which the interval horizontal velocity can be obtained
with an accuracy often comparable to that of the NMO
velocity, while the interval values of η are distorted by
the tradeoff between Vhor and Vnmo that gets amplified
by the Dix-type differentiation procedure.

We applied nonhyperbolic semblance analysis to a
walkaway VSP data set acquired at Vacuum field, New
Mexico, and obtained a significant value of η = 0.19 in-
dicative of nonnegligible anisotropy in this area. Then
we combined moveout inversion results with the known
vertical velocity to resolve the anisotropic coefficients ε

and δ. However, in agreement with our modeling results,
η estimation was significantly compounded by the scatter
in the measured traveltimes.

Certain instability in η inversion has no influence on
the results of anisotropic poststack time migration be-
cause all kinematically equivalent models obtained from
nonhyperbolic moveout give an adequate description
of long-spread reflection traveltimes. Also, inversion of
nonhyperbolic moveout provides a relatively accurate
horizontal-velocity function that can be combined with
the vertical velocity (if it is available) to estimate the
anisotropic coefficient ε. However, η represents a valu-
able lithology indicator that can be obtained from sur-
face P-wave data. Therefore, for purposes of lithology
discrimination, it is preferable to find η by means of the
more stable DMO method of Alkhalifah and Tsvankin.

INTRODUCTION

Conventional hyperbolic moveout analysis, routinely used
for building isotropic velocity models, is insufficient for ve-
locity estimation in anisotropic media. If the medium is trans-
versely isotropic with a vertical symmetry axis (VTI), the NMO
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velocities from horizontal reflectors of all three pure modes (P,
SV, and SH)1 differ from the corresponding vertical velocities

1For brevity, the qualifiers in “quasi-P-wave” and “quasi-SV-wave”
are omitted.
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(Thomsen, 1986):

Vnmo [P-wave] = VP0
√

1 + 2δ, (1)

Vnmo [SV-wave] = VS0
√

1 + 2σ , (2)

and

Vnmo [SH-wave] = VS0

√
1 + 2γ , (3)

where VP0 and VS0 are the vertical P- and S-wave velocities,
respectively, and ε, δ, and γ are Thomsen’s (1986) anisotropy
parameters. The coefficient σ ≡ (VP0/VS0)2(ε − δ) is largely re-
sponsible for SV-wave kinematic signatures in VTI media
(Tsvankin and Thomsen, 1994). A detailed discussion of nota-
tion for transversely isotropic media can be found in Tsvankin
(1996).

From equations (1)–(3) it is clear that NMO velocities and
conventional-spread reflection moveout as a whole do not
provide enough information to recover the anisotropic coeffi-
cients, even if both P and shear data have been recorded. This
explains the importance of using nonhyperbolic (long-spread)
reflection moveout in the reconstruction of the anisotropic ve-
locity field. In the presence of transverse isotropy, moveout
becomes nonhyperbolic even in a single homogeneous VTI
layer unless the anisotropy is elliptical. Tsvankin and Thomsen
(1994) have developed a nonhyperbolic moveout equation that
reduces to the exact quartic Taylor series for the t2-x2 curve at
small source-receiver offsets and converges at infinitely large
offsets as well. This equation provides a good fit to P-wave
long-spread reflection moveout in horizontally stratified VTI
media with no restrictions on the magnitude of the velocity
variations.

Originally, Tsvankin and Thomsen (1994) formulated their
moveout equation in terms of the generic Thomsen parameters
VP0, VS0, ε, and δ. Alkhalifah and Tsvankin (1995), however,
showed that P-wave reflection moveout is largely controlled by
just two parameter combinations—the NMO velocity from a
horizontal reflector (Vnmo) responsible for short-spread move-
out [equation (1)] and the anisotropic coefficient η, which de-
termines the nonhyperbolic portion of the moveout curve:

η ≡ 1
2

(
V2

hor

V2
nmo

− 1

)
= ε − δ

1 + 2δ
, (4)

where

Vhor = Vnmo

√
1 + 2η (5)

is the horizontal velocity. Therefore, P-wave moveout data are
not sufficient to resolve the true vertical velocity, no matter
how large the maximum offset. Tsvankin and Thomsen (1995)
demonstrated that the only way to obtain the vertical velocity
and anisotropic coefficients from reflection traveltimes is to
include long-spread moveout of the SV-wave in the inversion
procedure.

The work of Alkhalifah and Tsvankin (1995), however,
proves that it is not necessary to know the individual val-
ues of the anisotropic parameters and the vertical velocity for
P-wave time processing. All time-processing steps, including
NMO, DMO, and time migration, are fully determined by the
two parameters (Vnmo and η) responsible for reflection move-
out. Alkhalifah and Tsvankin developed an inversion proce-

dure designed to obtain Vnmo and η from moveout velocities
measured for two different reflector dips. In the most common
case, Vnmo can be found directly by conventional semblance
analysis of horizontal events, which allows one to determine
η from the NMO velocity of an additional dipping event. Al-
though this methodology provides a relatively stable way of
estimating the parameter η, it requires the presence of dipping
reflectors (such as fault planes) under the formation of interest.

Long-spread P-wave moveout from horizontal reflectors
represents an alternative source of information about η.
Alkhalifah (1997) suggested estimating Vnmo and η (or Vnmo

and Vhor) by a 2-D semblance scan based on the nonhyperbolic
moveout equation described earlier. He showed that this in-
version procedure gives reasonably accurate results for data
acquired over a horizontally homogeneous VTI layer. How-
ever, he also found that the extracted values of η are sensitive
to small errors in Vnmo, even if the spreadlength is twice as
large as the reflector depth. This tradeoff stems from the ambi-
guity in the determination of the quartic P-wave moveout term
first described by Tsvankin and Thomsen (1995). Tsvankin
and Thomsen did not use, however, a two-parameter repre-
sentation of P-wave reflection moveout (introduced later by
Alkhalifah and Tsvankin, 1995) and were dealing with a more
complicated problem of recovering three moveout coefficients
at each value of the vertical time.

Here, we introduce a correction into the nonhyperbolic
moveout equation of Tsvankin and Thomsen (1994) that makes
it even more accurate at intermediate offsets most important
for nonhyperbolic moveout analysis. The modified equation is
used to investigate the stability of the inversion of long-spread
P-wave moveout data acquired in the presence of random and
correlated noise. We start with the simplest model of a sin-
gle VTI layer and then extend our results to vertically inho-
mogeneous media using a Dix-type differentiation procedure
that involves the nonhyperbolic term of the moveout equa-
tion. The error analysis shows that the horizontal velocity is
relatively well constrained by long-spread moveout, provided
the spreadlength exceeds two reflector depths, with errors that
are not much higher than those in the NMO velocity. In con-
trast, the parameter η is influenced by the tradeoff between the
horizontal and NMO velocity and, therefore, is more sensitive
to correlated errors in the reflection traveltimes.

ANALYSIS OF LONG-SPREAD P-WAVE MOVEOUT

Our description of P-wave reflection traveltimes on long-
spread CMP gathers is based on the nonhyperbolic move-
out equation developed by Tsvankin and Thomsen (1994)
and rewritten in terms of the parameter η by Alkhalifah and
Tsvankin (1995). In a single horizontal VTI layer, this moveout
approximation has the form

t2(x) = t2
0 + x2

V2
nmo

− 2ηx4

V2
nmo

[
t2
0 V2

nmo + (1 + 2η) x2
] , (6)

where t0 is the two-way vertical traveltime and x is the source-
receiver offset; Vnmo and η are defined in equations (1) and (4).
The only difference between equation (6) and the original ex-
pression of Tsvankin and Thomsen (1994) is that the contribu-
tion of the S-wave vertical velocity VS0 to P-wave moveout is
ignored.
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Introducing the horizontal velocity [equation (5)], we
rewrite equation (6) as

t2(x) = t2
0 + x2

V2
nmo

−
(
V2

hor − V2
nmo

)
x4

V2
nmo

(
t2
0 V4

nmo + V2
hor x2

) . (7)

To obtain a quantitative picture of the influence of Vnmo and
Vhor (or η) on long-spread moveout, we perform a numerical
analysis of the nonhyperbolic moveout equation (7). Figure 1
shows the dependence of reflection moveout on variations in
Vnmo and Vhor for a model with a moderate positive value of
η = 0.16 that was observed on field data (Alkhalifah et al.,
1996). Note two interesting features of the maximum travel-
time differences 1tmax displayed in Figure 1. First, the con-
tours of 1tmax form an elongated “valley” in the coordinates
(Vnmo, Vhor), along which the traveltimes remain almost inde-
pendent of the moveout parameters. The changes in Vnmo and
Vhor within this valley of similar moveout curves are compara-
ble but have opposite signs. Since η is determined by the ratio
Vhor/Vnmo [equation (4)], the variation in η over the range of
these kinematically equivalent models is close to the sum of
the corresponding percentage changes in the horizontal and
NMO velocity. As a result, a certain relative error in Vhor can
be expected to translate into at least twice as large absolute
error in the parameter η.

Second, the center of the contours is somewhat shifted from
the correct position (Vnmo = 2.0 km/s, Vhor = 2.3 km/s) due to
small deviations of the moveout approximation (7) from the
ray-traced traveltime curve for the reference model. Also, for
the same reason the minimum value of 1tmax is not equal to
zero. The best-fit η that corresponds to the model with the
smallest time residual is equal to 0.13 instead of the actual
0.16. The error increases in VTI media with more pronounced

FIG. 1. The influence of Vnmo and Vhor on the P-wave reflection
traveltimes in a horizontal VTI layer. The contours display the
maximum difference 1tmax (in milliseconds) between the trav-
eltimes for a reference model and models with the same t0 but
different Vnmo and Vhor shown on the axes; the spreadlength
xmax = 2 km (xmax/h = 2). The model parameters are t0 = 1.0 s,
Vnmo = 2.0 km/s, and Vhor = 2.3 km/s; the corresponding η = 0.16
(Thomsen’s parameters of the model are VP0 = 2.0 km/s, ε =
0.16, and δ = 0; the reflector depth h = 1 km ). The moveout
for the reference model is calculated using ray tracing, while
the traveltimes for all other models are computed from equa-
tion (7).

nonhyperbolic moveout (larger η), and for a model with η =
0.3 the best-fit value is as low as η = 0.24. Thus, algorithms
based on equations (6) or (7), such as the one of Alkhalifah
(1997), always underestimate the value of η. This translation of
small deviations of equation (7) from the exact traveltimes into
sizable errors in η is an indication of relatively low sensitivity
of reflection moveout to this parameter (i.e., η may change
significantly within the family of equivalent models described
above).

Equation (7) was designed to ensure the correct behavior of
the moveout for infinitely large offsets (x → ∞). At interme-
diate offsets (x/h ≈ 2, h is the reflector depth), however, this
moveout approximation can be somewhat improved by em-
pirically changing the denominator of the nonhyperbolic term.
We found that introducing the coefficient C = 1.2 in front of
V2

hor x2 minimizes deviations from the exact traveltimes for the
most practical range of offsets 1.5h < x < 2.5h. This modifica-
tion changes the moveout at large offsets yet keeps the correct
values of the quadratic and quartic moveout coefficients. Thus,
hereafter for the single-layer model we will use the following
version of equation (7):

t2(x) = t2
0 + x2

V2
nmo

−
(
V2

hor − V2
nmo

)
x4

V2
nmo

(
t2
0 V4

nmo + C V2
hor x2

) , (8)

with C = 1.2. Figure 2 shows contours similar to the ones in
Figure 1 but now calculated using the modified approxima-
tion (8) for three different spreadlength-to-depth ratios. The
correction in the traveltime equation has moved the center of
the contours 1tmax in Figure 2 to the correct position, corre-
sponding to Vnmo = 2.0 km/s and Vhor = 2.3 km/s, as well as
substantially reduced the traveltime residuals (1tmax) at the
center of the contours.

As expected, Figure 2 indicates that both Vhor and the cor-
responding η become better constrained with increasing maxi-
mum offset xmax. With growing xmax/h, the contours for a given
maximum time residual become tighter and tilt toward the
Vnmo-axis, thus making the variation in Vhor for a fixed 1tmax

less pronounced. The meaning of this result becomes clear if
we recall that Vhor and η are responsible for the nonhyperbolic
moveout term, which makes a significant contribution to the
traveltime only at offsets exceeding the reflector depth. There-
fore, the inversion of nonhyperbolic moveout for Vhor and η

becomes more stable with increasing spreadlength. However,
it is seldom possible to use spreads xmax > 2.5h in practice be-
cause of the limitations of the conventional acquisition design.

In addition to analyzing the maximum traveltime differ-
ences, it is instructive to examine reflection moveout on the
whole CMP spread. Figure 3 shows ray-traced traveltime
curves for the models labeled A, B, and C in Figure 2b. De-
spite a significant variation in η (from 0.09 to 0.24) among the
three models, the maximum values of the traveltime differ-
ences (1tAB and 1tC B) picked from Figure 2b are about 3 ms.
Figure 3, generated using an exact ray-tracing algorithm, con-
firms this result: the moveouts tA, tB, and tC are very close to
each other at all offsets, with the maximum deviations smaller
than 3 ms. Again, the absolute variation in η from model A to
model C is somewhat larger than the sum of the corresponding
relative changes in Vnmo and Vhor (which are close to ±2.5–3%).
Note that the maximum separation between the curves occurs
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at an intermediate offset equal to the reflector depth h rather
than at the largest offset xmax = 2h.

The conclusions drawn from Figures 2 and 3 have important
consequences for evaluating the feasibility of nonhyperbolic
moveout inversion. For spreadlength reaching twice the re-
flector depth, the horizontal velocity becomes almost as tightly
constrained by reflection traveltimes as the NMO velocity. At

FIG. 2. The same contours as in Figure 1 but calculated us-
ing equation (8). The model parameters are Vnmo = 2 km/s
and Vhor = 2.3 km/s (η = 0.16). The plots correspond to three
different spreadlengths: xmax/h = 1 (a); xmax/h = 2 (b); and
xmax/h = 3 (c).

the same time, the absolute variation in η over the family of
kinematically equivalent models is at least twice as large as
the corresponding relative change in Vhor. Hence, we can ex-
pect that even small long-period traveltime errors may result
in significant deviations of η from the correct value. Below,
we verify this conclusion by performing the actual inversion
of long-spread moveout in the presence of different kinds of
traveltime errors.

INVERSION OF NONHYPERBOLIC MOVEOUT

Nonhyperbolic semblance search

If reflection traveltimes on a certain spreadlength are known,
the parameters t0, Vnmo, and Vhor can be obtained, for instance,
by least-squares fitting of equation (8) to the moveout curve
(see the real-data example following). However, due to the
presence of noise and the need to automate data processing,
picking of reflection traveltimes on CMP data is seldom done in
practice. Instead, the best-fit moveout (stacking) velocity and
the corresponding hyperbolic moveout curve are usually found
from semblance analysis on CMP gathers, preferably with

FIG. 3. (a) Reflection moveouts (tA, tB, and tC) obtained by
ray tracing for the models marked by A (dashed), B (thin
solid), and C (dotted) in Figure 2b. (b) The traveltime differ-
ences 1tAB = tA − tB (dashed) and 1tC B = tC − tB (dotted). The
parameters are Vnmo = 1.95 km/s, Vhor = 2.37 km/s, η = 0.24
(model A); Vnmo = 2.0 km/s, Vhor = 2.3 km/s, η = 0.16 (model
B); and Vnmo = 2.05 km/s, Vhor = 2.23 km/s, η = 0.09 (model C).
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spreadlength close to reflector depth (Taner and Koehler, 1969;
Neidell and Taner, 1971). Similarly, the inversion for Vhor or η

can be accomplished by semblance analysis along nonhyper-
bolic moveout curves (Alkhalifah, 1996). For a given value of
the vertical traveltime t0, one now needs to carry out a 2-D
semblance scan over Vnmo and Vhor to find a model that yields
the maximum value of semblance. The semblance coefficient
was calculated as (Taner and Koehler, 1969)

S(t0, Vnmo, η) =

t0+T/2∑
t ′0=t0−T/2

[
xmax∑

x=xmin

F(x, t)

]2

M
t0+T/2∑

t ′0=t0−T/2

xmax∑
x=xmin

F2(x, t)

, (9)

where M is the number of traces. The summation of the amp-
litudes F(x, t) and their squares F2(x, t) in equation (9)
is performed along the nonhyperbolic moveout curves
t (t ′

0, Vnmo, Vhor, x) [described by equation (8)] originated at the
vertical traveltimes t ′

0 within a smoothing window T centered
at time t0.

In the following examples, we generated reflected arrivals
by combining ray-traced traveltimes with a wavelet that has
the same shape and amplitude at all offsets. The traces were
equally spaced with a 40-m interval; for the most typical maxi-
mum offset xmax = 2h = 2.0 km used below, that gives M = 50.
The smoothing window was T = 20 ms long, which corresponds
to five time samples. The amplitudes F(x, t) between time sam-
ples were obtained by linear interpolation.

Analysis of numerical results

The results of the nonhyperbolic semblance search for a
single-layer VTI model are displayed in Figure 4. The coordi-
nates of the semblance maximum are close to the actual param-
eters Vnmo and Vhor; therefore, we obtain a sufficiently accurate
estimate ofη as well. [Note that application of the original equa-
tion (7) leads to errors in all three parameters, particularly in η.]
The shape of the semblance contours in Figures 4b and 4c and
the contours of the maximum traveltime difference in Figure 2b
look quite similar. This can be expected because the semblance
values for models with close traveltime curves cannot differ
much from each other. Again, Vnmo and Vhor can vary simulta-
neously along the diagonal “ridge” in the semblance contours
without producing significant changes in the values of sem-
blance (Figure 4). Confirming our conclusion based on travel-
time analysis, Figure 4 shows that within this family of models
with close semblances, higher values of Vnmo are compensated
by lower values of Vhor and absolute variations in η are at least
twice as large as the corresponding percentage changes in Vhor.

The influence of spreadlength on the sensitivity of reflec-
tion moveout (this time measured by the value of semblance)
to Vnmo and Vhor is illustrated by Figure 5. For the relatively
short (in the context of nonhyperbolic moveout inversion)
spreadlength of 1.5h in Figure 5a, the contours are tilted to-
ward the Vhor-axis and the horizontal velocity is constrained
much less tightly than is Vnmo. However, for a longer (but still
feasible) spread equal to twice the reflector depth (Figure 5b),
the range of variation in Vhor within the family of kinemati-
cally equivalent models becomes closer to that of Vnmo. For less
common spreadlengths close to or exceeding 2.5h (Figures 5c

and 5d), the horizontal velocity has even more influence on
the semblance values than does the NMO velocity. Asymptot-
ically, for infinitely large offsets the effective moveout velocity
approaches Vhor and the reflection moveout is controlled by the
horizontal velocity.

FIG. 4. (a) Synthetic seismogram of the P-wave reflected from
the bottom of a VTI layer with the same parameters as in
Figures 1 and 2: t0 = 1 s, Vnmo = 2 km/s, and Vhor = 2.3 km/s
(η = 0.16). The spreadlength is equal to two reflector depths;
the source pulse is a Ricker wavelet with the central frequency
40 Hz. (b) Semblance contours in the coordinates Vnmo and Vhor
calculated using equation (8) for t0 = 1 s. (c) Same as (b), but
expressed through Vnmo and η.
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Influence of traveltime errors on Vhor and η

Here, we continue with a more detailed analysis of the sta-
bility of the inversion procedure. To study the influence of real-
istic traveltime distortions, we added an error function τ (x) to
the reflection traveltimes t(x) from Figure 4 (without changing
the trace amplitudes) and performed 2-D semblance analysis
of the modified seismograms. Although the magnitude of the
traveltime error was small (several ms), it could be expected
to cause substantial errors in η (Figure 4).

The function τ (x) in Figure 6a was chosen to coincide with
the time resudual for model A (Figures 2b and 3b). The max-
imum of τ (x) in this case is less than one time sample (4 ms)
in conventional processing, and its predominant period is be-
tween 1.5xmax and 2xmax, where xmax is the spreadlength. Such
a class of time distortions may result from contamination of
reflection times by coherent noise (errors in the statics correc-
tion, ambient noise, etc.) or by the influence of small high- or
low-velocity lenses.

In accordance with the form of the error function, the pair
(Vnmo = 1.96 km/s, Vhor = 2.36 km/s) that provides the maximum
semblance in Figure 6a practically coincides with the param-
eters of model A [a small difference is due to the slight in-
accuracy of equation (8)]. Note that the semblance maximum
moves along the diagonal ridge in Figure 4b, with the increase
in Vhor compensated by the smaller value of Vnmo. While Vnmo

and Vhor are off by only −2% and +2.6%, respectively, the op-
posite sign of these errors yields the best-fit value of η = 0.23
instead of the correct η = 0.16.

FIG. 5. Semblance contours at different spreadlengths plotted in coordinates (Vnmo, Vhor). (a) xmax/h = 1.5; (b) xmax/h = 2;
(c) xmax/h = 2.5; (d) xmax/h = 3. The model parameters are the same as those in Figure 4.

Figure 6b shows the result of the semblance analysis with the
error function equal to the time residual for model C from Fig-
ures 2b and 3b. As expected, the coordinates of the semblance
maximum in this case are close to the parameters of model C
(Vnmo = 2.05 km/s, Vhor = 2.25 km/s, η = 0.1), with the error in
η equal to (−0.06). Thus, a low-frequency noise function with
a magnitude of up to ±3 ms leads to the variation in η between
0.1 and 0.23.

In Figure 6c, we reproduced Figure 6a with the addition of
random noise on top of the traveltime residual for model A.
The values of semblance became substantially smaller, and the
semblance maximum moved a little bit further from the actual
solution. The best-fit η in this case is equal to 0.25, which is
0.09 higher than the actual value. In general, the shape of the
semblance objective function is not sensitive to purely random
errors in the traveltimes.

Similar results were obtained for other slowly varying error
functions with a small magnitude. For instance, Figure 6d was
generated for a linear error function equal to 4 ms at zero
offset and (−4 ms) at the end of spread. Such an error mitigates
the increase in traveltime with offset, and the effective NMO
velocity becomes higher. To provide a good fit at large offsets,
the horizontal velocity must be smaller than the actual value,
and the semblance analysis yields Vnmo = 2.07 km/s and Vhor =
2.24 km/s. The corresponding η is as low as 0.085, which is about
one-half of the actual value.

The results of semblance analysis in Figure 6 confirm the
conclusion drawn from the study of reflection traveltimes
(Figures 2 and 3): the horizontal velocity is almost as tightly
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controlled by reflection moveout as Vnmo, provided the spread-
length is no smaller than two reflector depths. In contrast, long-
period traveltime errors that can be considered as insignificant
in the practice of data processing may cause errors in inverted
value of η reaching ±0.1. These errors are entirely due to the
tradeoff between Vnmo and Vhor on long-spread gathers (i.e., if
we knew the correct value of Vnmo, we could determine Vhor

and η with high accuracy).

NONHYPERBOLIC VELOCITY ANALYSIS
FOR LAYERED MEDIA

The discussion above was limited to moveout inversion in
the simplest single-layer model. Tsvankin and Thomsen (1994)
have shown that their nonhyperbolic equation remains valid in
horizontally layered media as well, provided the moveout co-
efficients are replaced by effective values that include the influ-
ence of the vertical inhomogeneity above the reflector. They
also have developed a Dix-type differentiation procedure to
estimate the interval values of the quartic moveout coefficient.
Here, we apply their expressions in a somewhat modified form
by introducing the interval and effective values of the param-
eter η and ignoring the contribution of the shear-wave vertical
velocity VS0 [see Appendix A and Alkhalifah (1997)].

Following Appendix A, P-wave traveltimes for reflections
from the i th (i = 1, . . . , N) interface in vertically stratified
VTI media can be described by an expression that has the same

FIG. 6. Results of semblance analysis for the model from Figure 4 after the addition of traveltime errors with small magnitude.
(a) The traveltime error is equal to the residual for model A from Figure 2b (see Figure 3b); (b) the error is equal to the residual
for model C from Figure 2b (see Figure 3b); (c) same as (a) plus random noise with a magnitude of 3 ms; (d) linear error function
with τ (0) = 4 ms and τ (xmax) = −4 ms.

form as the single-layer equation (8):

t2(x) = t2
0 (i ) + x2

V2
nmo(i )

−
[
V2

hor(i ) − V2
nmo(i )

]
x4

V2
nmo(i )

[
t2
0 (i ) V4

nmo(i ) + C V2
hor(i ) x2

] . (10)

The value of the coefficient C is discussed below.
The NMO velocity Vnmo(i ) is computed through the interval

values using the conventional Dix (1955) equation,

V2
nmo(i ) = 1

t0(i )

N∑
i =1

V2
nmo,i t0,i , (11)

while the effective horizontal velocity for layered media is de-
fined as

Vhor(i ) = Vnmo(i )
√

1 + 2η(i ) , (12)

with the effective η(i ) given by

η(i ) = 1
8

{
1

V4
nmo(i ) t0(i )

×
[

N∑
i =1

V2
nmo,i

[
4V2

hor,i − 3V2
nmo,i

]
t0,i

]
− 1

}
. (13)

Vnmo,i , Vhor,i , and t0,i are the interval values in layer i .
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Equations (10)–(13) provide a basis for a layer-stripping ap-
proach that can be summarized as follows (for more details,
see Appendix A).

1) Using long-spread P-wave moveout for the i th (i =
1, . . . , N) interface, find t0(i ), Vnmo(i ), and Vhor(i ) from
semblance analysis along nonhyperbolic moveout curves
described by equation (10). [Clearly, for the bottom of
shallowest layer (i = 1), the effective and interval values
are equal to one another.]

2) Compute the interval NMO velocity in any layer i =
2, . . . , N from the Dix equation

V2
nmo,i = V2

nmo(i ) t0(i ) − V2
nmo(i − 1) t0(i − 1)

t0(i ) − t0(i − 1)
.

(14)
3) Using equations (12) and (13), compute an auxiliary ef-

fective parameter

f (i ) ≡ V2
nmo(i )

[
4V2

hor(i ) − 3V2
nmo(i )

]
= 1

t0(i )

N∑
i = 1

V2
nmo,i

[
4V2

hor,i − 3V2
nmo,i

]
t0,i

(15)
for the reflections from the top and bottom of the layer
of interest.

4) Carry out the Dix differentiation of f (i ) [equation (15)]
to obtain the interval values of the horizontal velocity
and η:

Vhor,i = Vnmo,i

×
√

1
4V4

nmo,i

f (i ) t0(i ) − f (i − 1) t0(i − 1)
t0(i ) − t0(i − 1)

+ 3
4

(16)

and

ηi = 1
8V4

nmo,i

×
[

f (i ) t0(i ) − f (i − 1) t0(i − 1)
t0(i ) − t0(i − 1)

− V4
nmo,i

]
.

(17)

First, it is necessary to show that equation (10) [with the
effective parameters from equations (11)–(13)] gives an ade-
quate description of P-wave moveout in stratified media. For
the single-layer model, we were able to increase the accuracy
of our moveout equation on intermediate spreads by choosing
C = 1.2 in equation (8) [equivalent to equation (10)] instead
of C = 1 originally used by Alkhalifah and Tsvankin (1995). In
the presence of vertical variations in the elastic properties, we
do not always find the value C = 1.2 to be optimal. Numerical
tests performed for various stratified VTI models showed that
for a vertical velocity gradient of 0.5-0.6 s−1 and relatively small
effective η values up to 0.1–0.15 it is preferable to use C = 1 or
even C < 1 (although the accuracy provided by C = 1.2 is not
much inferior). As was the case for a single layer, the value
C = 1.2 usually gives an advantage for larger η ≥ 0.2.

It should be mentioned that the traveltimes calculated using
C = 1 and C = 1.2 for the spreadlength-to-depth ratio xmax/h =

2 are close to each other (in most cases, the difference is less
than 0.3–0.5% of t0). Still, varying C from 1 to 1.2 does have
some influence on the inverted value of the effective η because,
as shown above, VTI media with substantially different η may
have similar traveltimes for spreads xmax/h ≈ 2. In principle,
after obtaining a model from nonhyperbolic moveout inversion
(using, for instance, C = 1.2), it is possible to find the best-fit C
by comparison of equation (10) with ray tracing and use this
updated value to produce the final inversion result.

Table 1 summarizes the results of a numerical test performed
for a model consisting of four homogeneous VTI layers with
a typical increase in VP0 with depth (the average gradient is
close to 0.6 s−1) and values of η ranging from zero in the near-
surface layer to a maximum of 0.2 in the third layer. The ef-
fective moveout coefficients Vnmo(i ) and η(i ) obtained from
ray-traced seismograms (Figure 7) for all four interfaces using
equation (10) are sufficiently close to the analytic values com-
puted from equations (11)–(13). [We did not try to optimize
the value of C in equation (10) and used the same C = 1.2 as
in the single-layer model.] Despite the approximate character
of the moveout equation (10) and some amplification of errors
during layer stripping, the interval values of Vnmo and Vhor have
been also recovered with acceptable accuracy. Note, however,
that the small errors in Vnmo and Vhor for the two deepest layers
have opposite signs (as was the case in the single-layer model),
and the errors in interval η in these layers reach 0.06.

Since moveout in stratified media is well described by the
same equation that we studied in detail for the homogeneous
VTI model, our analysis of the accuracy in the estimation of
Vnmo, Vhor, and η must remain valid for the effective values
of all three parameters. As an example, Figure 8 displays the
semblance contours for the reflection from the bottom of the
layered model discussed above (Table 1). Again, the contours
make up an elongated ridge along which the effective Vnmo(i )

FIG. 7. Synthetic seismograms of P-wave reflections generated
by ray tracing for the model from Table 1. The traces were
muted to maintain the spreadlength-to-depth ratio of two for
all four events.
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and Vhor(i ) can be varied without producing tangible differ-
ences in the value of semblance (compare with Figure 4).

The stability of the stripping algorithm is illustrated by the
test in Figures 8b and 8c. We introduced errors up to about
±3% in the effective parameters Vnmo(i ) and Vhor(i ) for the
fourth interface, simulating the movement of the semblance
maximum along the ridge in the semblance contours under the
influence of long-period traveltime errors with small magni-
tude (on the order of several milliseconds). As expected, layer
stripping magnifies errors in both velocities, but the accuracy of
the interval values of Vnmo and Vhor is comparable. Obviously,
errors will increase as the layer gets thinner; still, this and other
tests we performed show that layer stripping of the nonhyper-
bolic moveout term for Vhor does not introduce much higher er-
rors than conventional Dix differentiation for the NMO veloc-
ity. Therefore, nonhyperbolic moveout inversion can be used to
reconstruct the “low-frequency” component of the horizontal
velocity as a function of vertical time.

The errors in the interval values of the NMO and horizontal
velocity in Figure 8b again have opposite signs. Since interval
Vnmo and Vhor are more distorted than in the single-layer model,
the error in interval η easily becomes comparable to η itself
(Figure 8c).

FIELD DATA EXAMPLE

We demonstrate the performance of nonhyperbolic moveout
inversion and illustrate our error study on a walkaway VSP
data set acquired in 1995 by the Reservoir Characterization
project of the Colorado School of Mines at Vacuum field in
Lea County, New Mexico. The objective of the project was to
use both surface seismic and VSP to monitor changes in the
properties of a carbonate reservoir caused by CO2 injection.

We used the data recorded by a downhole receiver placed
above the reservoir at a depth of 1005 m. The wavefield was
excited at 616 surface source locations with offsets of 60 to

Table 1. Accuracy of the nonhyperbolic moveout approximation for P-wave reflection traveltimes in layered VTI media. The
effective parameters Vnmo(i), Vhor(i), and η(i) (“found”) were obtained from semblance velocity analysis [using equation (10) with
C = 1.2] of synthetic seismograms computed by ray tracing (Figure 7); the spreadlength-to-depth ratio for all events equals 2. The
analytic values were calculated from equations (11)–(13). The lower table shows the results of the layer-stripping of the recovered
effective parameters [using equations (14)–(17)] versus the actual interval values. The model consists of four homogeneous VTI
layers with the following parameters: Layer 1—h (depth of the bottom) = 0.7 km, VP0 = 2.0 km/s, ε = 0.05, δ = 0.05; Layer 2—h = 1
km, VP0 = 2.42 km/s, ε = 0.15, δ = 0.0417; Layer 3—h = 1.5 km, VP0 = 2.6 km/s, ε = 0.3, δ = 0.0714; Layer 4 —h = 1.7 km, VP0 = 2.9
km/s, ε = 0.2, δ = 0.0469. The corresponding values of Vnmo, Vhor, and η are given in the table.

Effective values
Vnmo (km/s) Vhor (km/s) η

Layer Error Error Error
number Analytic Found (%) Analytic Found (%) Analytic Found (abs)

1 2.098 2.100 0.1 2.098 2.100 0.1 0.000 0.000 0.000
2 2.216 2.225 0.4 2.318 2.340 0.9 0.047 0.053 0.006
3 2.392 2.390 −0.1 2.698 2.760 2.3 0.136 0.167 0.031
4 2.459 2.450 −0.4 2.792 2.860 2.4 0.144 0.181 0.037

Interval values
Vnmo (km/s) Vhor (km/s) η

Layer Error Error Error
number Actual Found (%) Actual Found (%) Actual Found (abs)

1 2.098 2.100 0.1 2.098 2.100 0.1 0.000 0.000 0.000
2 2.519 2.546 1.1 2.759 2.811 1.9 0.100 0.109 0.009
3 2.779 2.755 −0.9 3.288 3.399 3.4 0.200 0.261 0.061
4 3.033 2.962 −2.3 3.431 3.521 2.6 0.140 0.206 0.066

1370 m from the receiver borehole. We picked the traveltimes
of the first P-wave arrivals and used them as substitutes for the
reflection traveltime from an interface at the receiver depth
(Figure 9). The data points plotted in squared coordinates
(t2 − x2) in Figure 9a cluster around a curved line, indicat-
ing the presence of substantial nonhyperbolic moveout. Using
equation (8), we found a set of moveout parameters that gives
the best fit (in the least-squares sense) to the observed travel-
times and plotted the corresponding moveout as a solid line in
Figure 9a. Note that the largest offset-to-depth ratio was over
2.7 (the offset should be doubled for comparison with reflec-
tion data), which is quite favorable for nonhyperbolic moveout
analysis. The inverted values of the NMO and horizontal veloc-
ities are Vnmo = 3536 m/s and Vhor = 4145 m/s, yielding η = 0.19.

The rms time residuals for different pairs of Vnmo and Vhor

in Figure 9b look very similar to the contours of the maximum
traveltime difference in Figures 1 and 2. The center of the con-
tours corresponds to an rms residual of 6.7 ms; if Vnmo and Vhor

lie on the nearest contour line, the rms residual is equal to
8 ms, a difference of only 1.3 ms. The existence of this family of
kinematically equivalent models is in agreement with our mod-
eling results, while the large magnitude of the time residuals
is caused by a sizeable scatter in the traveltime measurements.
To estimate the error bars on η, we picked the extreme values
of η corresponding to the 8-ms contour line (8 ms is close to
the minimum rms residual plus one time sample) and obtained
0.09 < η < 0.32.

Since the receiver depth in this case is known, we cal-
culated the average vertical velocity VP0 = 3457 m/s from
the zero-offset traveltime and, using equation (1), found
δ = 0.02. Finally, combining the obtained values of η and δ, we
determined ε = 0.22 (of course, the error bars on ε depend on
the uncertainty in η). Unfortunately, since only one receiver
was deployed, we could not test our layer-stripping algorithm
and study the vertical variation in the anisotropic parameters.
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Therefore, the inverted anisotropic coefficients should be re-
garded as effective values that could be distorted by vertical
inhomogeneity above the receiver. Still, our results are indica-
tive of nonnegligible anisotropy in the predominantly carbon-
ate section above the reservoir at Vacuum field.

FIG. 8. (a) Semblance contours for the reflection from
the bottom of the model (interface 4) described in Ta-
ble 1. The semblance analysis was carried out using equa-
tion (10) on ray-traced synthetic data (Figure 7) for the
spreadlength-to-depth ratio of two. (b) Percentage errors in
the interval Vnmo (solid) and Vhor (dashed) in the fourth layer.
The interval velocities were calculated from the effective val-
ues picked along the ridge in the semblance contours marked
by dots (the horizontal axis shows the effective NMO velocity).
(c) The interval η found from Vnmo and Vhor (the actual interval
η = 0.14).

DISCUSSION AND CONCLUSIONS

Long-spread P-wave moveout from horizontal reflectors in
VTI media depends on the vertical traveltime, NMO veloc-
ity Vnmo, and the “anellipticity” parameter η; the latter can
be replaced by the horizontal velocity Vhor. While Vnmo con-
trols hyperbolic moveout on conventional-length spreads, η or
Vhor is responsible for the nonhyperbolic portion of the move-
out curve at offsets that exceed the reflector depth. The im-
portance of obtaining η or Vhor from surface data cannot be
overestimated because either of these parameters (in combi-
nation with Vnmo) is sufficient to perform all time-processing
steps for P-waves in VTI media, including NMO correction,
dip-moveout (DMO) removal, and time migration (Alkhalifah
and Tsvankin, 1995). Also, η represents a potentially powerful
lithology indicator that can be used, for instance, to discrimi-
nate between shales and sands (Alkhalifah et al., 1996).

Here, we have studied the possibility of recovering η and
Vhor using the nonhyperbolic moveout equation suggested by
Tsvankin and Thomsen (1994) and later rewritten in terms of
Vnmo and η by Alkhalifah and Tsvankin (1995). We recast this
equation as a function of Vnmo and Vhor and improved its ac-
curacy on intermediate spreads by introducing an additional
coefficient in the denominator. Without this correction, the
best-fit parameters Vnmo, Vhor, and η, obtained from nonhyper-
bolic moveout inversion, deviate from the actual values with
increasing η (e.g., for a single layer with η = 0.3, the inverted
value is 0.24).

The high accuracy of this approximation, however, does not
guarantee reliable determination of all parameters from P-
wave long-spread moveout, even in the simplest model of a
single VTI layer. Our study reveals a family of kinematically
equivalent VTI models that have close reflection traveltimes
even on long-spread gathers. For spreadlength equal to two
reflector depths, variations in Vnmo and Vhor within the family
of equivalent models have a comparable magnitude but the
opposite sign. As a result, the corresponding absolute change
in the parameter η is at least as large as the sum of the relative
changes in Vnmo and Vhor. In one of the examples, we reduced
the value of η from 0.16 to 0.09 and increased the NMO velocity
by 2.5% without changing the traveltimes by more than 3 ms
at any offset up to two reflector depths.

To confirm this observation, we carried out actual inversion
of P-wave reflection travetimes in a horizontal VTI layer by
applying nonhyperbolic semblance analysis based on our modi-
fied moveout equation. For noise-free data, the maximum sem-
blance corresponds to the correct values of the parameters,
although the difference in semblance within the family of kine-
matically equivalent models is very small. Addition of random
traveltime errors reduces the value of semblance but does not
noticeably move the semblance maximum from the correct po-
sition. However, long-period traveltime errors do change the
inversion results, even if the magnitude of these distortions is
small. The corresponding errors in Vnmo and Vhor are very mod-
erate (several percent) and comparable (for spreadlength-to-
depth ratio of at least 2), but they have opposite signs. Hence,
in agreement with the results of traveltime analysis, the abso-
lute error in η typically is twice as large as the relative error in
Vhor. For instance, a linear error function with the magnitude
varying from 4 ms at zero offset to −4 ms at the end of the
spread reduced the inverted value of η = 0.16 in half. Long-
period errors of such a small magnitude can be caused by a
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variety of reasons, including ambient noise, errors in the statics
correction, or minor low- or high-velocity lenses.

Alkhalifah (1997) notes that semblance velocity analysis is
less sensitive to errors in reflection traveltimes than are purely
kinematic (e.g., least-squares) inversion algorithms. However,
since semblance is calculated along moveout curves, it can-
not overcome the intrinsic ambiguity of the kinematic inverse
problem.

Nonhyperbolic moveout in vertically inhomogeneous VTI
media is caused not only by anisotropy but also by the ver-
tical variations in the elastic coefficients. The interval values
of Vhor and η may be obtained by a Dix-type differentiation
procedure that involves both quadratic and quartic moveout
terms. In essence, the above conclusions about the accuracy in
the estimation of Vhor and η remain valid for stratified media as
well. The interval horizontal velocity for spreadlengths close
to twice the reflector depth can be recovered with an accuracy
comparable to that for NMO velocity (the error, of course, be-
comes higher in thin layers). The tradeoff between Vnmo and
Vhor, however, is amplified by the layer-stripping process, caus-
ing large errors in the interval η values.

FIG. 9. Nonhyperbolic moveout inversion of the traveltimes
recorded by a downhole receiver at Vacuum field. (a) Trav-
eltimes for different source positions (dots) and the best-fit
nonhyperbolic moveout curve from equation (8). (b) The rms
time residuals calculated for different pairs (Vnmo, Vhor) using
equation (8). The offsets and traveltimes were doubled to sim-
ulate reflection experiment. The residual for the best-fit model
at the center of the contours is equal to 6.7 ms.

We have verified some of our conclusions by processing a
walkaway VSP data set acquired at Vacuum field, New Mexico,
by CSM’s Reservoir Characterization Project. The traveltimes
used in the moveout inversion were recorded by a single bore-
hole receiver for a wide range of source-receiver offsets. The
moveout parameters, obtained by least-squares fitting of our
nonhyperbolic moveout equation to the observed traveltimes,
yielded the value of η close to 0.2. However, due to the trade-
off between Vnmo and Vhor in the presence of a substantial scat-
ter in the traveltime measurements, we estimate that η may
lie within the interval 0.09 < η < 0.32 (models within this in-
terval produce rms time residuals different by no more than
±1.5 ms). In any case, these results are indicative of nonnegli-
gible anisotropy that should be taken into account in seismic
processing and reservoir characterization in this area.

An important practical issue is whether it is possible to use
the parameters obtained from nonhyperbolic moveout inver-
sion for seismic processing. Since all kinematically equivalent
models provide a good approximation for long-spread move-
out (despite having substantially different values of η), they
are suitable for poststack time migration. However, models
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with the same nonhyperbolic moveout curves from horizon-
tal reflectors do not necessarily yield the same DMO impulse
responses, which may cause problems in anisotropic DMO pro-
cessing.

Also, the need for imaging arises only in the presence of
structure (i.e., dipping interfaces), and it is more natural to
use imaging targets themselves for anisotropic parameter es-
timation. A more stable inversion method designed to obtain
η from P-wave NMO velocity for dipping reflectors was de-
veloped by Alkhalifah and Tsvankin (1995). That approach,
however, may experience difficulties in using steep events (e.g.,
from flanks of salt domes) with their small magnitude of reflec-
tion moveout. Since the horizontal velocity, primarily needed
to image such steep dips, is much better constrained than is η

by long-spread moveout, the results of nonhyperbolic move-
out inversion in this case may be used to build a starting model
for anisotropic migration. Another alternative, suggested by
Grechka and Tsvankin (1996), is to obtain the horizontal ve-
locity (or η) from the NMO velocity on a line parallel to the
strike of a steep reflector.

Nonhyperbolic moveout inversion may be more difficult to
use in lithology discrimination. In the absence of pronounced
vertical inhomogeneity, the value of η obtained from nonhy-
perbolic moveout can be considered as a crude measure of
anisotropy above the reflector, and, therefore, as a lithology
indicator. However, the potentially large errors in interval η

values may complicate a more detailed lithology analysis based
on nonhyperbolic moveout inversion. Unfortunately, the hori-
zontal velocity is much less suitable for lithology discrimination
than η.

A more practical application of nonhyperbolic moveout in-
version is estimation of Thomsen’s parameter ε from reflection
data in the case when the vertical velocity is known (e.g., from
check shots or well logs). Errors in the coefficient η stem from
the interplay between the horizontal and NMO velocity, while
the vertical velocity is obtained independently. Therefore, it
can be combined with the horizontal velocity recovered from
long-spread moveout to provide an estimate of ε that will not
be influenced by the error in Vnmo.
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APPENDIX A

DIX-TYPE INVERSION OF NONHYPERBOLIC MOVEOUT IN LAYERED MEDIA

P-wave reflection traveltime in vertically inhomogeneous
VTI media is well-approximated by the following equation
(Tsvankin and Thomsen, 1994):

t2(x, i ) = t2
0 (i ) + A2(i )x2 + A4(i )x4

1 + A(i )x2
, (A-1)

where t0 is the vertical traveltime and x is the source-receiver
offset.

The quadratic moveout coefficient A2(i ) is reciprocal to the
squared NMO velocity

A2(i ) = 1
V2

nmo(i )
, (A-2)

while the parameter A(i ) is related to A2(i ), the quartic

moveout coefficient A4(i ), and the horizontal velocity Vhor(i ):

A(i ) = A4(i )

V−2
hor(i ) − A2(i )

. (A-3)

Equations (A1)–(A3) are identical in form to the corre-
sponding expressions for a homogeneous VTI medium; the pa-
rameters A2(i ), A4(i ), and A(i ), however, should be calculated
for the stack of layers above the i th interface. NMO velocity
Vnmo(i ) in a layered VTI medium is given by the conventional
Dix (1955) equation, while A4(i ) can be obtained from an exact
averaging formula that takes into account both anisotropy and
vertical inhomogeneity (Hake et al., 1984). It is convenient to
express A4(i ) through η and NMO velocity in the same way as
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in a single VTI layer (Alkhalifah, 1997):

A4(i ) = − 2η(i )
t2
0 (i )V4

nmo(i )
, (A-4)

where η(i ) now represents an effective parameter that ab-
sorbs the influence of anisotropy and layering. An explicit
expression for η(i ) can be obtained from the equation for
A4(i ) given in Hake et al. (1984) and Tsvankin and Thomsen
(1994) (assuming VS0,i = 0):

η(i ) = 1
8

{
1

V4
nmo(i ) t0(i )

[
N∑

i =1

V4
nmo,i (1 + 8ηi ) t0,i

]
− 1

}
,

(A-5)
where Vnmo,i , ηi , and t0,i are the interval values in layer i .

Since the meaning of the horizontal velocity in stratified me-
dia is not strictly defined, we assume (following Alkhalifah,
1997) that we can simply use equation (5), valid for homoge-
neous media:

Vhor(i ) = Vnmo(i )
√

1 + 2η(i ) , (A-6)

where Vnmo(i ) and η(i ) are the effective quantities defined
above. Hence, A4(i ) and A(i ) are now related to Vnmo(i ) and
η(i ) by the same expressions as in a single VTI layer, and equa-
tion (A-1) takes the form of equation (6):

t2(x, i ) = t2
0 (i ) + x2

V2
nmo(i )

− 2η(i ) x4

V2
nmo(i )

{
t2
0 (i ) V2

nmo(i ) + [1 + 2η(i )] x2
} .

(A-7)

Rewriting this expression in terms of the effective horizontal
velocity, we obtain an analog of the single-layer equation (7),

t2(x, i ) = t2
0 (i ) + x2

V2
nmo(i )

−
[
V2

hor(i ) − V2
nmo(i )

]
x4

V2
nmo(i )

[
t2
0 (i ) V4

nmo(i ) + V2
hor(i ) x2

] . (A-8)

In the main text, we introduce the coefficient C in front of the
term V2

hor x2 and discuss the accuracy of this moveout approxi-
mation.

The moveout coefficients in equation (A-8) can be obtained
from semblance analysis and used in a layer-stripping proce-
dure. The interval NMO velocity can be recovered from the
effective Vnmo(i ) by the conventional Dix differentiation. To
determine the interval values of the horizontal velocity and
the parameter η, we use the Dix-type formulation of Tsvankin
and Thomsen (1994) based on the quantity f defined as

f (i ) ≡ V4
nmo(i )

[
1 − 4A4(i )t2

0 (i )V4
nmo(i )

]
.

In our notation,

f (i ) = V4
nmo(i ) [1 + 8η(i )]

= V2
nmo(i )

[
4V2

hor(i ) − 3V2
nmo(i )

]
. (A-9)

From equations (A-5) and (A-9) it follows that

f (i ) = 1
t0(i )

N∑
i =1

V4
nmo,i (1 + 8ηi ) t0,i

= 1
t0(i )

N∑
i =1

V2
nmo,i

[
4V2

hor,i − 3V2
nmo,i

]
t0,i .

(A-10)

Hence, Dix-type differentiation of equation (A-10) allows
us to find the interval values ηi and Vhor,i :

Vhor,i = Vnmo,i

×
√

1
4V4

nmo,i

f (i ) t0(i ) − f (i − 1) t0(i − 1)
t0(i ) − t0(i − 1)

+ 3
4

(A-11)

and

ηi = 1
8V4

nmo,i

[
f (i )t0(i ) − f (i − 1)t0(i − 1)

t0(i ) − t0(i − 1)
− V4

nmo,i

]
.

(A-12)


