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3-D description of normal moveout in
anisotropic inhomogeneous media

Vladimir Grechka™ and llya Tsvankin*

ABSTRACT

We present a new equation for normal-moveout
(NMO) velocity that describes azimuthally dependent
reflection traveltimes of pure modes from both hori-
zontal and dipping reflectors in arbitrary anisotropic in-
homogeneous media. With the exception of anomalous
areas such as those where common-midpoint (CMP)
reflection time decreases with offset, the azimuthal vari-
ation of NMO velocity represents an ellipse in the hori-
zontal plane, with the orientation of the axes determined
by the properties of the medium and the direction of
the reflector normal. In general, a minimum of three az-
imuthal measurements is necessary to reconstruct the
best-fit ellipse and obtain NMO velocity in all azimuthal
directions. This result provides a simple way to correct
for the azimuthal variation in stacking velocity often ob-
served in 3-D surveys. Even more importantly, analytic
expressions for the parameters of the NMO ellipse can be
used in the inversion of moveout data for the anisotropic
coefficients of the medium.

For homogeneous transversely isotropic media with
a vertical axis of symmetry (VTI media), our equation
for azimuthally dependent NMO velocity from dipping

reflectors becomes a relatively simple function of phase
velocity and its derivatives. We show that the zero-dip
NMO velocity Vymo(0) and the anisotropic coefficient n
are sufficient to describe the P-wave NMO velocity for
any orientation of the CMP line with respect to the dip
plane of the reflector. Using our formalism, Vymo(0) and
n (the only parameters needed for time processing) can
be found from the dip-dependent NMO velocity at any
azimuth or, alternatively, from the azimuthally depen-
dent NMO for a single dipping reflector.

We also apply this theory to more complicated az-
imuthally anisotropic models with the orthorhombic
symmetry used to describe fractured reservoirs. For re-
flections from horizontal interfaces in orthorhombic me-
dia, the axes of the normal moveout ellipse are aligned
with the vertical symmetry planes. Therefore, azimuthal
P-wave moveout measurements can be inverted for
the orientation of the symmetry planes (typically deter-
mined by the fracture direction) and the NMO velocities
within them. If the vertical velocity is known, symmetry-
plane NMO velocities make it possible to estimate two
anisotropic parameters equivalent to Thomsen’s coeffi-
cient § for transversely isotropic media.

INTRODUCTION

Normal moveout (NMO) in anisotropic media is influenced
by angular velocity variations; therefore, it contains informa-
tion about the parameters of the anisotropic velocity field.
For instance, P-wave NMO velocity from horizontal reflec-
tors in transversely isotropic models with a vertical symmetry
axis (VTI media) depends on the Thomsen (1986) anisotropic
parameter §. The difference between NMO and vertical veloc-
ities in VTI media (for § # 0) leads to mis-ties in time-to-depth
conversion routinely observed in many exploration areas. If the
vertical velocity is known (e.g., from check shots or well logs),
P-wave NMO velocity can be used to obtain the coefficient §
as a function of depth (e.g., Alkhalifah et al., 1996).

The dip dependence of NMO velocity provides additional
information for seismic inversion and governs the perfor-
mance of dip-moveout (DMO) algorithms in the presence of
anisotropy. An exact equation for NMO velocity from both
horizontal and dipping reflectors valid in symmetry planes of
anisotropic media was presented by Tsvankin (1995). Applying
thisNMO expression to vertical transverse isotropy, Alkhalifah
and Tsvankin (1995) showed that the dip-dependent P-wave
NMO velocity expressed through the ray parameter p is de-
termined by the zero-dip NMO velocity from a horizontal re-
flector and a single anisotropic coefficient denoted as 5. They
also proved that these two parameters are responsible for
all P-wave time-processing steps, including NMO, DMO, and
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time migration. Both parameters can be obtained from surface
P-wave data using NMO velocities measured for two differ-
ent dips. This algorithm, however, works only for a common-
midpoint (CMP) line confined to the dip plane of the reflector.

In azimuthally anisotropic media, typically caused by verti-
cal or dipping fractures, NMO velocity depends on the azimuth
of the CMP line, even if the reflector is horizontal. Lynn et al.
(1996) and Corrigan et al. (1996) presented case studies doc-
umenting substantial azimuthal variations in NMO over frac-
tured reservoirs. Tsvankin (1997a) gave an exact expression
for NMO velocity from horizontal reflectors in transversely
isotropic media with a horizontal symmetry axis (HTI media).
P-wave NMO velocity in an HTT layer depends on only three
parameters (vertical velocity, orientation of the symmetry axis,
and anisotropic coefficient V) and varies elliptically as a func-
tion of azimuth in the horizontal plane. The elliptical depen-
dence of NMO velocity in a layer with a horizontal symmetry
plane was obtained by Sayers (1995a,b), who developed a rep-
resentation of long-spread moveout based on an expansion of
group velocity in spherical harmonics. The coefficients of the
moveout expansion derived in Sayers (1995b), however, are
difficult to relate to the medium parameters.

Here, we present anew NMO equation based on a more gen-
eral formalism than the previous results. It provides an efficient
way to obtain the exact NMO velocity for models with arbitrary
anisotropy and inhomogeneity. Azimuthally dependent NMO
velocity is represented by an elliptical curve in the horizon-
tal plane and can be reconstructed using a minimum of three
azimuthal moveout measurements. The new equation is used
to describe normal moveout of out-of-plane reflections in VTI
media and to invert P-wave NMO velocity measured on lines
with different azimuthal orientation for the key anisotropic
parameter 1. We also obtain the parameters of the NMO el-
lipse for horizontal reflectors in orthorhombic media and show
that the exact P-wave NMO velocity represents a simple func-
tion of two anisotropic coefficients (8 and §®) introduced in
Tsvankin (1997b).

3-D NMO EQUATION FOR INHOMOGENEOUS
ANISOTROPIC MEDIA

Analytic formulation

Here, we give an exact analytic representation of NMO ve-
locity in anisotropic inhomogeneous media and prove that the
azimuthal dependence of Vo typically has a simple ellipti-
cal form. We consider CMP lines with different azimuthal di-
rections over a medium with arbitrary anisotropy and inho-
mogeneity (Figure 1). Azimuthally dependent NMO velocity
Vamo (@) is defined in the conventional way through the initial
slope of the t2(x?) curve (t is the reflection traveltime; X is the
offset) on the CMP line with azimuth « [equation (A-5)].

The derivation of the NMO equation, given in Appendix A,
is based on expanding the one-way traveltime from the zero-
offset reflection point to the surface in a double Taylor series
in the horizontal coordinates [X;, X;]. As a result, we find the
following expression for the exact NMO velocity of any pure
(nonconverted) mode:

1

g = Wi cos? a + 2Wi, sin a cos o + Wh, sin® .
VIlIl’lO (a)

1

Here, o is the azimuth of the CMP line and W is a symmetric ma-
trix defined as Wi; = 7o(dp; /9X;), where p, =97t/3x (i=1,2)
are the horizontal components of the slowness vector for rays
between the zero-offset reflection point and the surface loca-
tion [Xi, 2], (X1, X2) is the one-way traveltime from the zero-
offset reflection point, and 7o = 7(0, 0) is the one-way travel-
time at the CMP location X; = X, = 0 (Figure 1). The derivatives
needed to obtain the matrix W are evaluated at the common
midpoint.

Therefore, the exact NMO velocity of any pure mode
at a given spatial location is fully controlled by just three
parameters—the components of the matrix W. Plotting the
value of NMO velocity in each azimuthal direction « yields a
certain curve in the horizontal plane. To determine the type of
this “NMO curve,” we express equation (1) through the eigen-
values A; and A, of the matrix W as

2; = A1 cos?(a — B) + Agsin®(a — B),  (2)
Vnmo (a)

where B is the rotation angle determined by one of the eigen-
vectors of W (Appendix A). Typically, the eigenvalues A; and
), are positive. Indeed, if A; <0 or A, <0, then V2, in some
azimuthal directions becomes negative as well, implying that
CMP reflection traveltime decreases with offset. For positive A
and X,, equation (2) [fully equivalent to equation (1)] describes
an ellipse with the axes rotated by the angle g with respect to
the original coordinate frame [X;, X;].

/Xz

CMP
lines

finite-offset

zero-offset ray

ray

zero-offset
reflection
point

Fic. 1. CMP gathers with different azimuthal orientation
around the same CMP location. The medium can be arbitrary
anisotropic and inhomogeneous. Reflection point dispersal is
ignored because it does not influence NMO velocity (see Ap-
pendix A).
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Thus, the azimuthally dependent NMO velocity Vymo(o)
from equation (1) usually has an elliptical shape in the hor-
izontal plane. The orientation of the ellipse and the values of
its semi-major and minor axes are determined by the deriva-
tives of the ray parameter with respect to the horizontal co-
ordinates. For relatively simple models, these derivatives can
be evaluated as functions of phase velocity using the approach
suggested by Tsvankin (1995, 1997a); we apply this method
to azimuthal moveout analysis in transversely isotropic media.
For more complicated media with lower anisotropic symme-
tries and/or inhomogeneous velocity fields, it is preferable to
express the parameters of the NMO ellipse through the compo-
nents of the slowness vector following the formalism developed
by Cohen (1998).

Because we have not made any specific assumptions about
the model (see Appendix A), the NMO-velocity equation (1)
is valid for any sufficiently smooth reflectors and general
anisotropic inhomogeneous velocity fields. We have assumed,
though, that the traveltime field exists at any azimuth near the
CMP point (an assumption that breaks down in shadow zones)
and can be adequately described by a Taylor series expansion
for the squared traveltime t2(x2), where X, is the offset on the
survey line with azimuth «. While this expansion is routinely
used in seismic processing, it quickly degenerates in the pres-
ence of strong lateral velocity variation. Also, analytic approx-
imations for reflection traveltimes may break down for shear
wavesin anisotropic media (e.g., Tsvankin and Thomsen, 1994),
especially in the vicinity of triplications (cusps) on the wave-
front. For typical subsurface models, however, the Taylor series
expansion provides a good approximation for the traveltime,
and the quadratic term parameterized by the NMO velocity
(i.e., the hyperbolic moveout approximation) usually is suffi-
ciently accurate on conventional-length CMP spreads; this will
be corroborated by numerical examples below.

For NMO velocity to represent an ellipse, the eigenvalues A;
and A, of the matrix W should be positive. However, in some
anomalous cases the reflection traveltime may decrease with
offset (e.g., for turning waves, as discussed in Hale et al., 1992),
which corresponds to negative values of A; or A,. Then the
squared NMO velocity in certain azimuthal directions is also
negative and, clearly, V,n, cannot be described by an elliptical
curve. Equation (2) remains formally valid, but the hyperbolic
moveout approximation may not be accurate even on relatively
short spreads. If A; or A, equals zero, the reflection traveltime
along one of elliptical axes is constant and the NMO velocity
in this direction is infinite. For instance, NMO velocity goes to
infinity on the dip line of a vertical reflector in homogeneous
isotropic, VT, and HTI media. For TI media with a tilted sym-
metry axis, infinite Vo can be recorded (also on the dip line)
for steep dips either below or above 90°, depending on the
anisotropic parameters of the medium (Tsvankin, 1997c). For
A1 =0o0r A, =0, the NMO ellipse degenerates into two straight
lines parallel to the direction in which V;,, = oo (discussed in
more detail later). Such cases, however, cannot be considered
as common, and equation (2) should describe an ellipse for
most models of practical interest in reflection seismology.

Examples of the NMO ellipse

The simplest example of the elliptical azimuthal dependence
of NMO velocity is the well-known NMO equation given by

Levin (1971) for a dipping reflector beneath a homogeneous
isotropic medium:

V2

2 —
Vimo (@ 9) = 1—cosasin’¢’

®)

where V is the velocity, ¢ is the reflector dip, and « is the
azimuth of the CMP line with respect to the dip direction. To
demonstrate that equation (3) represents an ellipse, it can be
rewritten as

1 sin’ « cos?a

VE (@) VE T (Vicosg)

Clearly, the elliptical axes are parallel to the dip and strike
directions, with the semi-axes given by V (strike line) and
V/cos¢ (dip line). Equation (4) can be easily obtained as a
special case of the general NMO expression (1).

Another example, this time for a much more complicated
azimuthally anisotropic model, is shown in Figure 2. Here,
the medium consists of two orthorhombic layers between in-
terfaces with different dips and azimuths. For this model, the

(4)

FiG. 2. Azimuthal dependence of moveout velocity (in km/s)
for the P-wave reflected from a dipping interface beneath two
orthorhombic layers. The dots represent the moveout (stack-
ing) velocity calculated at each azimuth by least-squares fitting
of a hyperbola to the exact traveltimes on spread length equal
to the distance between the CMP and the reflector. [Travel-
times were computed using a ray-tracing code of Obolentseva
and Grechka (1989).] The dashed curve is the best-fit ellipse
that approximates the azimuthal dependence of the move-
out velocity. The parameters, given in the notation intro-
duced by Tsvankin (1997b), are discussed in the text. Upzp))er
layer:Vpg =2.0 km/s, €M =0.10, ¢® =0.15, 6§V =0.15, §® =
—0.05, 8®=0. Lower layer: Vpy=3.0 km/s, ¢ =0.12,
€@ =0.10, 6 =0.10, §® = —-0.07, & =0. Both layers have
a horizontal symmetry plane; the azimuth (shown around the
circle) is measured from the [x;, X3] symmetry plane, which
has the same orientation in both layers. The azimuth of the
dip plane of the reflector is «; = 90°, the dip ¢, =30°; for the
intermediate interface, oy = 60° and ¢; = 40°.
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orientation of the NMO ellipse is determined by both the sym-
metry of the medium and the geometry of the interfaces. The
dots in Figure 2 represent the P-wave moveout (stacking) ve-
locity computed from the exact traveltimes for spread length
equal to the reflector depth. Due to the influence of nonhy-
perbolic moveout, the finite-spread moveout velocity may be
somewhat different from the analytic zero-spread NMO ve-
locity described by equations (1) and (2). However, even in
this complex model, the measured moveout velocity is close to
the best-fit ellipse (dashed curve) for the full range of azimuths
(the maximum difference does not exceed 1.8% ). The elliptical
semi-major axis (e« = 74°) deviates from the dip plane of the
reflector because of the influence of both azimuthal anisotropy
and the orientation of the intermediate interface.

DIPPING REFLECTORS IN VTI MEDIA
Description of normal moveout

The NMO equation (1) can be used to give an analytic de-
scription of the NMO velocity from both horizontal and dip-
ping reflectors in anisotropic media with any symmetry. Here,
we obtain dip-dependent NMO velocity as a function of az-
imuth for the simplest anisotropic model: transverse isotropy
with a vertical symmetry axis. Let us consider a dipping reflec-
tor beneath a horizontally homogeneous (but maybe vertically
inhomogeneous) VTT medium. NMO velocity on the dip line
is given by Tsvankin (1995) for homogeneous models and by
Alkhalifah and Tsvankin (1995) for vertically inhomogeneous
media above the reflector. Here, we present an exact NMO
equation valid for arbitrary orientation of the CMP line with
respect to the reflector strike.

Because of the axial symmetry of the overburden, the model
under consideration has a vertical symmetry plane that coin-
cides with the dip plane of the reflector. (In the special case of
a horizontal reflector, the properties of all vertical planes are
identical, and NMO velocity is azimuthally independent.) If we
align one of the coordinate axes (x; or X;) with the dip plane,
the NMO equation (1) yields an ellipse without any rotation
because in this case Wy, = 827/3X;dX%, goes to zero. Therefore,
one of the axes of the NMO ellipse for any model with a verti-
cal symmetry plane is always aligned with the symmetry-plane
direction.

Clearly, for the VTImedium considered here, the second axis
of the ellipse should be parallel to the strike line of the reflector.
We will measure the azimuth o from the dip plane and denote
the semi-axes of the NMO ellipse as Vymo(a = 0, ¢) (dip line)
and Vymo (e = 7/2, ¢) (strike line). Then the NMO equation (1)
becomes

V2 (a,¢) = V.2 (0, ¢) cos’ a + Vnm0<2 , ¢>) sin® a.
)

Equation (5) is a remarkably simple result that allows us to
obtain the exact azimuthally dependent NMO velocity from a
dipping reflector overlain by a vertically inhomogeneous VTI
medium.

We now restrict ourselves to a single homogeneous VTTlayer
above the reflector; vertically inhomogeneous models will be
discussed in a sequel paper. The dip-line NMO velocity of any

pure mode is derived by Tsvankin (1995) as the following func-
tion of phase velocity V in the dip plane and reflector dip ¢:

1 d*v
V(¢)\/ V(g) do?|,_, ©
cos ¢ tan¢ dV ’
V(¢) do 9=o

where 6 is the angle between the phase-velocity (or slowness)
vector and vertical. Equation (6) is valid not only for vertical
transverse isotropy but also in vertical symmetry planes of any
other homogeneous anisotropic models.

To construct the NMO ellipse [equation (5)], we also need
the NMO velocity on the line parallel to the strike of the reflec-
tor. Using the approach suggested by Tsvankin (1995, 1997a),
we derived the following analytic expression for the strike-line
NMO velocity (Appendix B):

1 dv
Vo (3.4 v<¢>\/1+ v@mgdl,

Since the rays recorded on the strike line deviate from the
vertical incidence plane, the derivation of equation (7) was
based on the specific form of the phase-velocity function in
the axially symmetric VTT model. Therefore, in contrast to the
more general dip-plane NMO formula (6), equation (7) is lim-
ited to vertical transverse isotropy. Equations (5)—(7) are suffi-
cient to obtain NMO velocity in homogeneous VTI media for
all three pure modes (P, SV, SH).

If the medium is isotropic, the derivatives of phase velocity
vanish, and the NMO velocities in dip and strike directions
[equations (6) and (7)] reduce to the expressions given in Levin
(1971) [equation (4)]

an (0 ¢)

Vamo (0, ¢) =

V(@) VvV
Cos ¢ cosqb

and
VnmoG, ¢) —V(p)=V

Elliptical and weak anisotropy

To gain insight into the dependence of NMO velocity on the
anisotropic parameters, we examine the special cases of ellip-
tical and weak anisotropy. The VTT model will be described by
the vertical velocities of P- and S-waves (Vpy and Vg, respec-
tively) and Thomsen’s (1986) anisotropy parameters €, §, and
y. (For a detailed overview of notation, see Tsvankin, 1996.) In
elliptically anisotropic media (¢ = 3§), the P-wave slowness sur-
face and wavefront have an elliptical shape, while SV-wave
velocity is fully independent of propagation angle (i.e., the
slowness surface is spherical). For SH-waves in transversely
isotropic media, anisotropy is always elliptical, with the mag-
nitude of velocity variations determined by the parameter y.

The dip-line NMO velocity in elliptical media, first derived
by Byun (1982), can be written as (Tsvankin, 1995)

Vamo(0) V(9) ®)
cosp Vy '

where Vimo(0) = Vimo(«, 0) is the azimuthally independent (for
this model) NMO velocity from a horizontal reflector and Vy

Vnmo (07 ¢) =
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is the vertical velocity. Hence, deviations from the isotropic
cosine-of-dip dependence of NMO velocity [equation (4)] in
elliptical media are tied directly to the angular phase-velocity
variations.

Substitution of the phase-velocity function for elliptical
anisotropy (e.g., Thomsen, 1986) into the strike-line NMO
equation (7) yields

b4
Vamo (5, ¢) = Vimo(0) = const 9)
for any dip ¢. Therefore, NMO velocity in the strike direction
is equal to the zero-dip NMO velocity, as in isotropic media,
but does not coincide with the true vertical velocity. In VTI
media, equations (8) and (9) are always valid for the SH-wave
only; for P- and SV-waves, elliptical anisotropy is regarded as
rather atypical (Thomsen, 1986).

For general (nonelliptical) VTT media, a convenient way
to study the dependence of NMO velocity on the anisotropy
parameters is to use the weak anisotropy approximation
(le, 8, y| < 1).For P-waves, the dip-line NMO velocity [equa-
tion (6)], linearized in the anisotropic parameters, is given by
Tsvankin (1995):

Vimo (0
Vnmo(()’ ¢) = J

Cos ¢
+3(e — 8)sin ¢(2 — sin® ¢)].  (10)

Analysis of the trigonometric factors in equation (10) shows
that Vimo (0, ¢) is mostly governed by the difference between
parameters € and §. This conclusion turns out to be even more
accurate for the NMO velocity measured in the strike direction.
In weakly anisotropic VTI media, Vymo(7/2, ¢) [equation (7)]
for P-waves contains parameters € and § only in the form of
the difference € — §:

T
Vo (5 #) = VamoO)1 + (€ = 8)sin’ (2 = sin’ )]

(11)
For vertical transverse isotropy with typical positive values
of € — §, P-wave NMO velocity on the dip line grows with ¢
more rapidly than the isotropic cosine-of-dip dependence [see
equation (10) and Tsvankin, 1995]. Likewise, the strike-line
NMO velocity increases with dip if € — & > 0 [equation (11)],
rather than being constant as in isotropic (and any elliptically
anisotropic) media. However, since the term that contains € —§
is three times smaller in the strike-line expression, the NMO
velocity in the strike direction is less sensitive to the anisotropy.
Concise weak anisotropy approximations represent just one
of the advantages of Thomsen notation (Tsvankin, 1996). We
will use Thomsen parameters to describe VTI media with ar-

bitrary strength of the anisotropy.

[1+ 8sin® ¢

P-wave NMO velocity as a function of ray parameter

For reflection data processing, NMO velocity should be rep-
resented as a function of the ray parameter p (horizontal slow-
ness) corresponding to the zero-offset reflection. While it is
impossible to find the reflector dip ¢ without knowledge of the
velocity field, the ray parameter is directly the slope of reflec-
tions on zero-offset (or stacked) sections. In general, all kine-
matic signatures of P-waves in VT media depend on three pa-
rameters: the vertical P-wave velocity Vp, and the coefficients
€ and §, with the influence of the vertical shear-wave velocity

Vg being practically negligible (Tsvankin and Thomsen, 1994;
Tsvankin, 1996). Furthermore, Alkhalifah and Tsvankin (1995)
prove that the dip-line P-wave NMO velocity given by equa-
tion (6), expressed as a function of p, is determined by just two
parameters: the zero-dip NMO velocity,

Vamo(0) = Vpov/1 + 2, (12)
and the anellipticity coefficient n,

€—9§
= . 13
T=1%2 (13)

For elliptically anisotropic media, n =0 (¢ =4§) and the de-
pendence of the dip-line NMO velocity on the ray parameter
has exactly the same form as in isotropic media:

VIlIl’lO (O)
A% 1- pzvnzmo(o)
Our numerical analysis of equation (7) shows that the strike-

line NMO velocity is controlled by Vymo(0) and n as well
(Figure 3). This conclusion is also suggested by the form of the

Vnmo (0» p) = (14)

a) 12 ........................................ :
G | |
O .................... ™ R
E1.15 ‘ :
C
= ‘ :
8 -11 .................... F
.N ‘ ;
E
51.050
Z
1 ‘ i
0 0.5 1
b
) 1.2

—h
o
o1

1.05

Normalized Vnmo(p)

FiG. 3. The strike-line P-wave NMO velocity Vimo(7/2, p)
from equation (7) (normalized by the zero-dip NMO veloc-
ity) as a function of the ray parameter p for dips ranging from
0° to 90°. (a) Different models with the same n=0.2: € =0.1,
8= —0.071 (solid); e =0.2, § = 0.0 (dashed); e =0.3, § = 0.071
(dotted). (b) Models with different : n=0.1 (solid); n=0.2
(dashed); n =0.3 (dotted).
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weak anisotropy approximation [equation (11)]. In elliptical
media (n =0), the NMO velocity on the strike line is indepen-
dent of dip and equal to Vymo(0) [equation (9)]. Because the
NMO ellipse is fully governed by the NMO velocities in the
strike and dip directions, parameters Viymo(0) and n are suffi-
cient to determine the P-wave NMO velocity Vymo(a, p) for
any mutual orientation of the CMP line and reflector strike.

While the coefficient 7 is responsible for anisotropy-induced
distortions of the NMO ellipse in all azimuthal directions, the
influence of n decreases away from the dip plane. For instance,
comparison of Figure 3 with the results of Alkhalifah and
Tsvankin (1995) shows that the sensitivity of NMO velocity
to n is considerably higher on the dip line than on the strike
line.

Inversion of azimuthally varying P-wave NMO velocity

Although the NMO velocity was derived in the zero-spread
limit, it accurately describes P-wave moveout for conventional
spread lengths equal to (or even somewhat larger than) the
distance between the CMP and the reflector. The example in
Figure 4 shows that the “zero-spread” NMO velocity in VTI
media is practically indistinguishable from the moveout veloc-
ity calculated on a typical finite spread. (Also note the high
accuracy of the weak anisotropy approximation for the model
from Figure 4 that has moderate values of ¢, §, and n.) Hence,
Vimo (e, P) can be found via commonly used hyperbolic sem-
blance velocity analysis and inverted for the parameter n. The
importance of this inversion cannot be overestimated because,

902

60
1.6

AN
N\
sty

‘\ )4

240

FIG.4. Azimuthally varying P-wave moveout velocity ina VTI
model with V,;,0(0) =0.926 km/s and n=0.2 (Vpo=1.0 km/s,
€=0.1,8§ = —0.071) for the reflector dip ¢ = 45°. The azimuthal
angle « is measured with respect to the dip plane of the re-
flector. The dots represent the moveout (stacking) velocity
obtained by fitting a hyperbola to the exact traveltimes com-
puted on spread length equal to the CMP-reflector distance;
the solid curve is the ellipse calculated using the exact NMO
equations (5)—(7); the dashed curve is the NMO ellipse in the
weak anisotropy approximation [equations (10) and (11)].

180

270

in combination with V,;,,(0), 1 is sufficient to perform all time-
processing steps (NMO, DMO, time migration) in VTI media.

Alkhalifah and Tsvankin (1995) suggest obtaining Vim(0)
and n from equation (6) using NMO velocities measured for
two different dips (e.g., a horizontal and a dipping reflector)
in the dip plane of the reflector(s). Equation (5) can be used
to extend this algorithm to arbitrary azimuthal direction of the
CMP line; alternatively, Vimo(0) and 7 can be found from the
azimuthal dependence of NMO velocity for a single dipping
reflector.

Estimation of 17 on a single CMP line.—Let us discuss the in-
version for n using the NMO velocity measured on a CMP line
with arbitrary azimuthal orientation. The results of the previ-
ous sections [i.e., equation (5) and the analysis of the dip- and
strike-line NMO velocities] imply that the P-wave NMO ve-
locity from a dipping reflector is a function of four parameters:

VIlIl’lO = f(“’ p7 Vnm0(0)7 77)' (15)

Suppose the angle o between the CMP line and the dip plane
of a certain reflector is known. Then we can find the ray pa-
rameter (horizontal slowness) p of the zero-offset reflection
ray by using zero-offset reflection traveltimes along this line.
Since the zero-offset reflection slope is equal to the projection
of the ray parameter on the CMP line, p can be obtained as

1 di(y)
~ 2cosa dy

: (16)

where tj is the two-way zero-offset traveltime on the line with
azimuth « and y is the CMP coordinate. If the zero-dip value
Vimo(0) has been determined using a horizontal event, NMO
velocity from a single dipping reflector is sufficient to obtain
the parameter 5, which remains the only argument in the NMO
function (15).

To carry out the inversion for n, we must be able to calcu-
late the azimuthally dependent NMO velocity as a function of
the ray parameter p. The semi-axes of the NMO ellipse [equa-
tions (6) and (7)], however, are expressed through the reflector
dip ¢. Therefore, as the first step in our NMO-velocity com-
putation, we obtain the dip ¢ as a function of the ray param-
eter p using phase-velocity equations for transverse isotropy
(Alkhalifah and Tsvankin, 1995) and substitute ¢ into equa-
tions (6) and (7). Alternatively, the semi-axes of the NMO
ellipse can be computed directly through the slowness com-
ponents using the results of Cohen (1998) and equation (B-18)
(see Appendix B). Then the NMO velocity as a function
of p can be found for arbitrary azimuthal direction from
equation (5).

The inversion procedure based on the traveltime measure-
ments in a single azimuthal direction is illustrated by the syn-
thetic example in Figure 5. The exact NMO equation (5) was
inverted for # using «, p, Vamo(0), and Voo (o, p) as the input
parameters. Because the P-wave phase velocity (or slowness),
needed to calculate NMO velocity, is formally a function of four
parameters [we used Vimo(0), n, Vs, and 8], it is strictly neces-
sary to specify two more parameters—Vg, and §—for compu-
tation purposes. However, in agreement with our earlier con-
clusion that NMO velocity depends only on V;,,(0) and n, use
of intentionally incorrect values of Vg and § in the inversion
did not prevent our algorithm from recovering the exact value
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of n (for error-free input parameters). The main purpose of
the example in Figure 5 was to study the stability of n estima-
tion by introducing errors in the three parameters [p, Vimo(0),
and Viomo(a, p)] that should be obtained from reflection travel-
times. In Figure 5a, we held Vimo(, p) at the correct value and
examined the influence of errors in p and Vyo(0), while in Fig-
ure 5b the ray parameter p was assumed to be exact. Figure 5
that indicates the accuracy of the inversion for 7 in the pres-
ence of realistic errors in p, Vimo(0), and Vimo(a, p) is quite
sufficient. For instance, if the error in V,;,,(0) does not exceed
+2.5% (a reasonable value for semblance velocity analysis)
and the other parameters are exact, the maximum error in 7 is
just £0.03. (Given that n < 1, we cannot expect small relative
errors in this parameter.)

Our results, obtained on the line at azimuth 30° from the dip
direction, are similar to the error estimates made by Alkhalifah
and Tsvankin (1995) for the dip plane of the reflector. The
stability of the inversion procedure decreases, however, as the
CMP line nears the strike direction because the NMO velocity
becomes less sensitive to 7.

o o5 o
e S
0.2;

< 0.15
0.1

0 . L N s
1.9 1.95 2 2.05 2.1
Vnmo(0)

Fic. 5. Stability of n estimation using the P-wave NMO
velocity measured on the CMP line that deviates by
a=30° from the dip direction. The actual parameters are
Vimo(0) =2.0 km/s, n=0.15 (Voo =1.2 km/s, § =0.0), p=0.35
s/km, Vimo(a, p) =3.24 km/s. For the inversion, we inten-
tionally used the incorrect values Vg =0.8 km/s and § =0.2.
(a) Vamo(a, p) =3.24 km/s (correct value) and p=0.33 s/km
(dotted line), p=0.35 s/km (solid), p=0.37 s/km (dashed).
(b) p=0.35 s/km (correct value) and Vynmo(a, p) =3.08 s’/km
(dotted), Vamo (e, p) =3.24 s/km (solid), Vimo (¢, p) =3.40 s/km
(dashed).

Inversion using multiple azimuths.—In general, when the
orientation of the CMP line with respect to the dip plane is un-
known, we need lines with three different azimuthal directions
to reconstruct the NMO ellipse from moveout measurements.
However, the minimum number of azimuths can be reduced
from three to two by using, in addition to NMO, zero-offset re-
flection traveltimes. Indeed, it is clear from equation (16) that
the zero-offset reflection slopes for two different azimuths can
be used to find the ray parameter p and the dip direction of the
reflector (i.e., the azimuth of one of the elliptical axes). With
the orientation of the NMO ellipse obtained from zero-offset
reflection traveltimes, the NMO velocities on the same two
lines are sufficient to uniquely determine the elliptical semi-
axes. Then the dip-line and strike-line NMO velocities for a
single dipping event can be inverted for key parameters Vino(0)
and n using equations (6) and (7). If Vo (0) has already been
found using horizontal events, independent estimates of 7 can
be obtained from the NMO velocities in both dip and strike
directions, which provides useful redundancy in the inversion.

Clearly, it is preferable to include as many different azimuths
as possible to enhance stability in reconstructing the NMO el-
lipse. The inversion of four azimuthal moveout measurements
from a single dipping reflector in the VTI model of Dog Creek
Shale is shown in Figure 6. We have found the azimuth of the
larger semi-axis of the NMO ellipse (g = 19°; the actual value
is 20°) and the semi-axes themselves by fitting an ellipse to the
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FIG. 6. Reconstruction of the P-wave NMO ellipse from the
exact reflection traveltimes (obtained by anisotropic ray trac-
ing) in the VTI model of Dog Creek Shale. The azimuth of
the dip plane of the reflector is oy =20°, and dip ¢ =50°. The
dots represent the moveout (stacking) velocity calculated at
four azimuths (0°, 45°, 90°, 135°) by least-squares fitting of a
hyperbola to the exact traveltimes on spead length equal to the
CMP-reflector distance. The dashed curve is the best-fit ellipse
that approximates the four values of moveout velocity; the solid
curve is the theoretical NMO ellipse for this model. The model

arameters are V;,(0)=2.054 km/s and n=0.104 (Vpo=

.875 km/s, € =0.225, § =0.100). The semi-axes of the best-fit
ellipse are 4.280 km/s (the theoretical value is 4.259 km/s) and
2.243 km/s (the theoretical value is 2.238 km/s).
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moveout velocities obtained from the exact traveltimes. Then
the inversion of dip-line and strike-line NMO velocities [equa-
tions (6) and (7)] using the simplex method yielded the values
Vamo(0) = 2.065 km/s (instead of the actual value 2.054 km/s)
and n=0.100 (instead of 0.104). The small errors in both pa-
rameters result from the influence of nonhyperbolic moveout
on the input values of finite-spread moveout velocity.

Inversion for steep dips.—The inversion method of
Alkhalifah and Tsvankin (1995) is limited to the dip plane of
the reflector, so it experiences difficulties in handling steeply
dipping reflectors (e.g., flanks of salt domes) because of the
small magnitude of their reflection moveout in the dip plane.
Although the dip-line velocity Vimo(0, ¢) for steep dips remains
sensitive to 7, the determination of the NMO velocity itself
from the reflection traveltimes becomes less stable. Our 3-D
algorithm can overcome this problem by using the NMO ve-
locity in the direction parallel to the reflector strike. Indeed,
for a vertical reflector in a homogeneous VTI medium, the
dip-line NMO velocity [equation (6)] is infinite and the NMO
equation (5) reduces to

Tow
Vnmo<_a _>
b4 2°2
Vl'lITlO s~ = 17
(oz 2) sin « (17)

According to equation (17), the NMO ellipse degenerates into
two straight lines parallel to the dip plane of the reflector. The
strike-line NMO velocity (7) for a vertical reflector becomes
equal to the horizontal velocity:

vnmo(%, %) - v(%) (18)

For the P-wave,

v,,mo(%, %) = Vpoy/T + 2€ = Vamo(0)y/1 + 2. (19)
Therefore, the strike-line NMO velocity Voo (7/2, 7/2) from a
vertical reflector makes it possible to obtain n, provided Vo (0)
has been determined from horizontal events. In general, equa-
tion (17) allows us to find Ve (77/2, 7/2) and n from the NMO
velocity measured at any known azimuth (except for the dip
line), but the accuracy of the moveout-velocity estimation de-
creases away from the strike direction.

HORIZONTAL REFLECTORS IN ORTHORHOMBIC MEDIA
Description of the orthorhombic model

Vertical transverse isotropy, considered in the previous sec-
tion, is an azimuthally isotropic model in which the orientation
of the NMO ellipse is determined fully by the geometry of the
reflector. In contrast, seismic velocities in orthorhombic media
are azimuthally dependent, and the symmetry of the medium
has a direct influence on the direction of the elliptical axes.

The orthorhombic (orthotropic) symmetry system describes
several models typical for fractured reservoirs, including those
containing a system of parallel vertical cracks in a VTI back-
ground (Figure 7), as well as two orthogonal crack systems.
Media with orthorhombic symmetry have three mutually or-
thogonal planes of mirror symmetry; for the model with a
single crack system shown in Figure 7, the vertical symme-
try planes are defined by the directions parallel and normal

to the cracks. The simplest azimuthally anisotropic model—
transverse isotropy with a horizontal axis of symmetry—can
be considered a special type of orthorhombic media.

The velocities and polarizations in the symmetry planes of
orthorhombic media are given by the same equations as for ver-
tical transverse isotropy. (Body-wave amplitudes in the sym-
metry planes, however, are influenced by the azimuthal ve-
locity variations and require a special treatment.) Tsvankin
(1997b) takes advantage of the limited equivalence between
orthorhombic and VTI media to introduce dimensionless
anisotropic parameters similar to the well-known Thomsen’s
(1986) coefficients €, 8, and y for vertical transverse isotropy.
He shows that all kinematic signatures of P-waves in or-
thorhombic models, both within and outside of the symmetry
planes, are determined by the vertical velocity (a scaling co-
efficient in homogeneous media) and five new anisotropy pa-
rameters, as compared to nine stiffnesses in the conventional
notation. The parameters responsible for P-wave kinematics
(here, we concentrate on P-waves) are represented through the
stiffness components ¢;j and density p in the following way:

1) Vpo—the vertical velocity of the P-wave:

VA (20)
0

2) €®—the VTI parameter € in the symmetry plane [X;, Xs]
normal to the x, axis (close to the fractional difference
between the P-wave velocities in the X; and x; directions):

Ci1 —C33
e® = BT (21)

3) 8®—the VTI parameter 8 in the [x;, X3] plane (responsi-
ble for near-vertical P-wave velocity variations, also in-
fluences SV-wave velocity anisotropy):

5@ — (C13 + Css)* — (C33 — Cs5)?
2c33(C33 — Cs5)

(22)

'
Xq Symmetry plane
: [x,,
X2 Y S =
X3 Q\'A“\
X2 7

//

FiG. 7. Orthorhombic media have three mutually orthogo-
nal planes of mirror symmetry. One reason for orthorhombic
anisotropy is a combination of parallel vertical cracks and ver-
tical transverse isotropy (e.g., due to thin horizontal layering)
in the background medium.
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4) e(—the VTI parameter e in the [X,, X;] plane:
Cp —C
6(1) — 22 33 ]

23
on (23)
5) 80)—the VTI parameter & in the [X,, X3] plane:
50 — (Co3 + Caq)? — (C33 — Cya)? (24)

2¢33(C33 — Cas)

6) 8®—the VTI parameter § in the [x;, X;] plane (x; plays
the role of the symmetry axis):

s = (Gt Go6)” — (C11 — Ce6)?
2¢11(C11 — Co6) '

(25)

Tsvankin’s notation can be conveniently used to describe
seismic velocities and polarizations in the symmetry planes
of orthorhombic media by known VTI equations expressed
through Thomsen parameters. Here, we consider a homoge-
neous orthorhombic layer with a horizontal symmetry plane
[X1, X2]. The exact P-wave NMO velocity from a horizontal re-
flector in the [X;, X3] symmetry plane (on the CMP line parallel
to the x;-axis) can be found by analogy with VTI media as
(Tsvankin, 1997b)

V@ = Vpov/1+28@, (26)

Likewise, the P-wave NMO velocity on the line parallel to the
Xz-axis is given by

V= Vpoy/1 + 280, (27)

NMO velocity outside the symmetry planes, however, is in-
fluenced by azimuthal velocity variations and should be studied
using the general formalism developed here.

P-wave NMO velocity from horizontal reflectors

As shown above for the VTI model with a dipping reflec-
tor, one of the axes of the NMO ellipse for any medium with
a vertical symmetry plane is parallel to the symmetry-plane
direction. Therefore, in a horizontal orthorhombic layer both
elliptical axes lie in the vertical symmetry planes, and the NMO
ellipse takes the form [see equation (5)]

V2 (a,0)=V.2 (a)= [Vn(rzn)o]_2 cos o + [V ] “sin’a,

(28)
where o is the azimuthal angle of the CMP line with respect
to the X;-axis. Since the velocities V,,(.Ro and Vn(,%.)o can be ob-
tained easily by analogy with vertical transverse isotropy [i.e.,
for P-waves from equations (26) and (27)], equation (28) pro-
vides a concise analytic description of azimuthally dependent
normal moveout of all three pure (nonconverted) modes in
orthorhombic media.

By fitting an ellipse to azimuthal measurements of moveout
velocity for any pure wave, we can determine the orientation
of the symmetry planes and the NMO velocities within them.
After reconstructing the NMO ellipse, we also can obtain the
NMO velocity in arbitrary azimuthal direction. For most com-
mon orthorhombic models with a single system of fractures em-
bedded in a VTI background or with two orthogonal fracture
systems, the vertical symmetry planes are parallel and normal

to the fractures. Therefore, azimuthal moveout analysis can be
used to supplement or even replace shear-wave splitting in de-
tecting the predominant fracture orientation(s) in the subsur-
face. Also, for orthorhombic media with a single crack system,
the ratio of the P-wave NMO velocities in the symmetry planes
is related to the crack density.

Further inversion of the symmetry-plane NMO velocities
(semi-axes of the ellipse) for medium parameters depends on
the recorded wave types. In the following, we focus on move-
out analysis of P-waves; shear-wave NMO velocities and joint
inversion of P and Sdata will be described in forthcoming pub-
lications. If the vertical P-wave velocity is known (e.g., from
check shots or well logs), the symmetry-plane NMO velocities
of P-waves [equations (26) and (27)] can be used to obtain
the anisotropic coefficients §1-2). These coefficients, responsi-
ble for P-wave velocity variations near vertical, are of primary
importance in the analysis of amplitude variation with offset
(AVO) in orthorhombic media (Riiger, 1996).

Substitution of equations (26) and (27) into equation (28) al-
lows us to rewrite P-wave NMO velocity as an explicit function
of the anisotropic parameters:

V2 _\ve (1+28W)(1 +25?@)
nmo(a) — YPO 2) i 1 2 "
14 28@ sin” o + 281 cos? o

(29)

Clearly, only two anisotropic coefficients (6" and §®) influ-
ence P-wave NMO velocity from horizontal reflectors. The
other three anisotropic parameters (¢, ¢®, and §®), how-
ever, contribute to the quartic (nonhyperbolic) moveout term
(Tsvankin, 1997b) and, therefore, to the moveout velocity de-
termined on finite-length spreads.

NMO velocities for vertical and horizontal transverse
isotropy can be obtained as special cases of equation (29). For
instance, if the medium is transversely isotropic with a horizon-
tal symmetry axis pointing in the X; direction, [%,, X3] represents
the isotropy plane (in which all velocities are independent of
propagation direction) and §(!) = 0. In this case, equation (29)
becomes

@

Vo) = Vi (30)

1+26@sin” o
which is equivalent to the NMO expression for HTI media pre-
sented by Tsvankin (1997a), who denotes the § coefficient in
the vertical plane that contains the symmetry axis (“symmetry-
axis plane”) by §). (Any orthorhombic medium with §()) = 0
or 8® = 0 is fully equivalent to horizontal transverse isotropy
in terms of the azimuthally dependent P-wave NMO veloc-
ity from horizontal reflectors.) Since the NMO velocity in the
isotropy plane coincides with the true vertical velocity, P-
wave normal moveout in this case is sufficient to find both
Vpo and 8@, provided we can distinguish between the isotropy
and symmetry-axis planes using moveout data. Usually, the
isotropy plane can be identified by the higher value of the
NMO velocity because the coefficient §@ (V) is predomi-
nantly negative (Tsvankin, 1997a).

In the weak-anisotropy approximation (|60, §®| « 1), we
can drop the quadratic terms in the anisotropic coefficients in
equation (29) to obtain

Vamo(@) = V(1 + 8@ cos?  + 6Wsin*).  (31)
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This expression also can be derived from the symmetry-
plane NMO equation (6) by substituting ¢ = 0 and using the
linearized weak-anisotropy approximation for phase velocity
given by Tsvankin (1997b); for weak anisotropy, out-of-plane
phenomena can be ignored, and any vertical plane for reflec-
tions from horizontal interfaces can be regarded as a plane of
symmetry.

NMO velocity in horizontally layered orthorhombic media
with throughgoing vertical symmetry planes (i.e., the symmetry
planes in all layers have the same azimuthal directions) can
be found from the elliptical equation (283 introduced for a
single layer. In this case, the values of Viho and Vi2, should
be determined by Dix’s (1955) rms averaging of the interval
NMO velocities in the symmetry planes (Tsvankin, 1997b).

Reflection moveout for both transversely isotropic and or-
thorhombic media is generally nonhyperbolic, and the analytic
NMO velocity may differ from the moveout (stacking) velocity
measured on finite CMP spreads. For typical VTI media, how-
ever, the hyperbolic moveout equation parameterized by the
NMO velocity adequately describes P-wave reflection move-
out on conventional-length spreads, which are comparable to
the reflector depth (see Figure 4 and examples in Tsvankin,
1995). Because of the analogy with vertical transverse isotropy,
this conclusion is entirely valid in the symmetry planes of or-
thorhombic media.

The numerical example in Figure 8 illustrates azimuthally
dependent distortions in P-wave moveout velocity caused by

180

270

FIG. 8. Accuracy of the hyperbolic moveout equation param-
eterized by the NMO velocity in the description of P-wave
traveltimes for a homogeneous orthorhombic layer. The dots
represent the moveout velocity on spread length equal to the
reflector depth; the solid curve is the NMO ellipse calculated
using equations (26), (27), and (28). The medium para-
meters are Vpp=2.0 km/s, €1 =0.110, §® =-0.035,
€@ =0.225, §®=0.100, 8 =0. The vertical symmetry
plane at zero azimuth has the properties of the VT model of
Dog Creek Shale, while the second vertical symmetry plane is
equivalent to the VTT model of Taylor Sandstone.

nonhyperbolic moveout on a typical spread length equal to the
reflector depth. We have computed the difference between the
analytic NMO velocity and the moveout velocity obtained from
the exact traveltimes for an orthorhombic medium whose ver-
tical symmetry planes have the properties of two typical VTI
models: Dog Creek Shale and Taylor Sandstone (Thomsen,
1986). As expected from the limited equivalence with vertical
transverse isotropy, the error in moveout velocity caused by
nonhyperbolic moveout in the symmetry planes is the same
as that found in Tsvankin and Thomsen (1994) for the corre-
sponding VTI models (0.8% for Dog Creek Shale and 2.7% for
Taylor Sandstone). More importantly, the error changes mono-
tonically with azimuth between the symmetry planes, and the
finite-spread moveout velocity remains close to the theoretical
NMO ellipse for any orientation of the CMP line. The same
observation is made in Tsvankin (1997a) for P-waves in HTI
media.

We conclude that the analytic expression for NMO veloc-
ity provides sufficient accuracy in describing P-wave reflection
moveout on conventional-length spreads in typical orthorhom-
bic media. For models with unusually pronounced deviations
from hyperbolic moveout, NMO velocity can be obtained by
nonhyperbolic semblance analysis using, for instance, the equa-
tion developed by Tsvankin and Thomsen (1994).

DISCUSSION AND CONCLUSIONS

We have presented a general equation for NMO velocity
that provides a new framework for traveltime modeling and
inversion in anisotropic media. The azimuthal dependence of
NMO velocity for pure (nonconverted) modes from horizon-
tal and dipping reflectors in arbitrary anisotropic inhomoge-
neous media is described by just three parameters and typ-
ically represents an ellipse in the horizontal plane. Three or
more moveout measurements in different azimuthal directions
(one exception is described below) are needed to reconstruct
the NMO ellipse and find the NMO velocity in arbitrary direc-
tion. The coefficients of the NMO ellipse (e.g., its orientation
and semi-axes) are determined by the spatial derivatives of
the ray parameter at the CMP location and can be obtained
analytically for a range of practically important anisotropic
models.

For typical anisotropic media, the hyperbolic moveout equa-
tion parameterized by the analytic NMO (zero-spread) ve-
locity given here is sufficiently accurate in the description of
P-wave reflection traveltimes on conventional-length CMP
spreads. As demonstrated on synthetic examples for trans-
versely isotropic and orthorhombic media, the influence of
nonhyperbolic moveout becomes significant only at rela-
tively large offsets exceeding reflector depth. In principle,
the nonhyperbolic portion of the moveout curve can be in-
cluded in the inversion procedure, but a more detailed dis-
cussion of long-spread moveout is outside the scope of this
work.

The azimuthal variation of normal moveout from horizontal
reflectors is usually ignored in 3-D surveys, with semblance ve-
locity analysis performed simultaneously for source-receiver
pairs with different azimuthal orientation. In the presence of
azimuthal anisotropy, the conventional approach produces an
“average” stacking velocity, which may be smaller or larger
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than the actual value for any given azimuth (Lynn et al., 1996).
Our result suggests a simple way to avoid this distortion by
building the NMO ellipse and picking the correct stacking ve-
locity for azimuthally binned data.

Application of the new equation to dipping reflectors in
transversely isotropic media with a vertical symmetry axis (VTI
media) and horizontal reflectors in orthorhombic media yields
concise analytic expressions for the azimuthally dependent
NMO velocity. In both cases, the orientation of the NMO el-
lipse is defined by the symmetry of the model, which has at
least one vertical plane of mirror symmetry.

For VTI media, the elliptical axes are always parallel to the
dip and strike directions of the reflector. We obtained the NMO
velocity on the strike line and combined it with the dip-line
equation of Tsvankin (1995) to find the NMO ellipse as a simple
function of phase velocity and its derivatives. The azimuthally
dependent P-wave NMO velocity, expressed through the ray
parameter of the zero-offset reflection, is fully described by
the zero-dip NMO velocity Vomo(0) and the anisotropic coef-
ficient »—the same two parameters that control P-wave time
processing as a whole. This allows us to extend the 2-D inver-
sion algorithm of Alkhalifah and Tsvankin (1995), designed to
obtain 7 from the NMO velocity in the dip plane, to CMP lines
with arbitrary orientation. The problems experienced by the
dip-line inversion in handling near-vertical reflectors can be
overcome by using CMP azimuths close to the strike direction.
We also demonstrated that the NMO ellipse for VTT media
can be found using just two differently oriented lines since the
direction of the dip plane (and that of the NMO ellipse) can be
recovered from the slopes of zero-offset reflections measured
for two azimuths.

Azimuthal moveout analysis of horizontal events in or-
thorhombic media gives the directions of the symmetry planes
(usually associated with the predominant fracture orientation)
and the NMO velocities within them. If only P-wave data are
available, symmetry-plane NMO velocities from horizontal re-
flectors can be used to determine two anisotropic coefficients,
8M and 8@, provided the vertical velocity is known. The pa-
rameters 8) and §® also influence the P-wave reflection co-
efficients in orthorhombic media and play an important role in
the AVO inversion (Riiger, 1996).

For more complex symmetries and/or horizontally inhomo-
geneous media, the properties of the NMO ellipse have a less
transparent physical meaning but can still be obtained as func-
tions of the medium parameters (Tsvankin et al., 1997).

ACKNOWLEDGMENTS

‘We would like to thank Jack Cohen, Ken Larner, and other
members of the A(nisotropy)-Team of the Center for Wave

Phenomena (CWP), Colorado School of Mines, for helpful
discussions. We are also grateful to Ken Larner and Kurt
Marfurt (Amoco) for their reviews of the paper. The support
for this work was provided by the members of the Consortium
Project on Seismic Inverse Methods for Complex Structures at
CWP and by the U.S. Department of Energy (Velocity Analysis,
Parameter Estimation, and Constraints on Lithology for Trans-
versely Isotropic Sediments Project, within the framework of
the Advanced Computational Technology Initiative).

REFERENCES

Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis in transversely
isotropic media: Geophysics, 60, 1550-1566.

Alkhalifah, T., Tsvankin, I., Larner, K., and Toldi, J., 1996, Velocity
analysis and imaging in transversely isotropic media: Methodology
and a case study: The Leading Edge, 15, no. 5, 371-378.

Byun, B., 1982, Seismic parameters for media with elliptical velocity
dependencies: Geophysics, 47, 1621-1626.

Cohen, J. K., 1998, A convenient an expression for the NMO velocity
function in terms of ray parameter: Geophysics, 63, 275-278.

Corrigan, D., Withers, R., Darnall, J., Skopinski, T., 1996, Fracture map-
ping from azimuthal velocity analysis using 3D surface seismic data:
66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
1834-1837.

Dix, C. H., 1955, Seismic velocities from surface measurements: Geo-
physics, 20, 68-86.

Hale, D., Hill, N. R., and Stefani, J., 1992, Imaging salt with turning
seismic waves: Geophysics, 57, 1453-1462.

Hubral, P, and Krey, T., 1980, Interval velocities from seismic reflection
measurements: Soc. Expl. Geophys.

Levin, F. K., 1971, Apparent velocity from dipping interface reflections:
Geophysics, 36, 510-516.

Lynn, H., Simon, K., Bates, C.,, Van Doc, R., 1996, Azimuthal
anisotropy in P-wave 3-D (multiazimuth) data: The Leading Edge,
15, No. 8, 923-928.

Obolentseva, 1. R., and Grechka, V. Y., 1989, Ray-tracing method in
anisotropic media (algorithms and Fortran software): Institute of
Geology and Geophysics, Novossibirsk (in Russian).

Riiger, A., 1996, Variation of P-wave reflectivity with offset and az-
imuth in anisotropic media: 66th Ann. Internat. Mtg., Soc. Expl.
Geophys., Expanded Abstracts, 1810-1813.

Sayers, C., 1995a, Anisotropic velocity analysis: Geophys. Prosp., 43,
541-568.

1995b, Reflection moveout in azimuthally anisotropic media:
65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
340-343.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954—
1966.

Tsvankin, I., 1995, Normal moveout from dipping reflectors in
anisotropic media: Geophysics, 60, 268-284.

1996, P-wave signatures and notation for transversely isotropic

media: An overview: Geophysics, 61, 467-483.

1997a, Reflection moveout and parameter estimation for hori-

zontal transverse isotropy: Geophysics, 62, 614-629.

1997b, Anisotropic parameters and P-wave velocity for or-

thorhombic media: Geophysics, 62, 1292-1309.

1997¢, Moveout analysis in transversely isotropic media with a
tilted symmetry axis: Geophys. Prosp., 45, 479-512.

Tsvankin, I., Grechka, V., and Cohen, J. K., 1997, Generalized Dix
equation and modeling of normal moveout in inhomogeneous
anisotropic media: 67th Ann. Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, 1250-1253.

Tsvankin, I., and Thomsen, L., 1994, Nonhyperbolic reflection move-
out in anisotropic media: Geophysics, 59, 1290-1304.

APPENDIX A
DERIVATION OF THE 3-D NMO EQUATION

In this appendix, we show that the azimuthal dependence
of NMO velocity for any inhomogeneous anisotropic medium
can be represented as a second-order curve in the horizontal
plane with the coefficients determined by the derivatives of
the ray parameter with respect to the horizontal coordinates.
Since reflection point dispersal (i.e., the movement of the re-

flection point with offset) has no influence on the NMO velocity
(Hubral and Krey, 1980), we ignore the difference between the
true (specular) reflection point and the zero-offset reflection
point R (Figure A-1). This allows us to obtain reflection move-
out of any pure (nonconverted) reflected mode through the
one-way traveltime 7(x;, X;) between the zero-offset reflection
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point and the surface location [X;, X;]. Extending the approach
first suggested by Hale et al. (1992) for the 2-D problem, we
express T(X;, X;) as a double Taylor series in the vicinity of the
CMP:

Ty = ‘L’(:I:Xl, :|:X2)
iarxiaszrazrxf 3%t o x
= T —_— —_— -~y _—
0 0%q ! 0Xo 2 aX]Z 2 0X10%a 172
0%t X22
24, A-1
Ix3 2 (A1)

Here, 7, =t(+X, +%), 7 =t(—X1, —%2), To is the one-way
zero-offset traveltime, (+X;, £X,) are the coordinates of source
AT and receiver A~, and the derivatives are evaluated at CMP
location O (Figure A-1). The one-way traveltime t(X, X;) is
assumed to be a function differentiable at least twice at the
CMP point (X; = %, =0).

Keeping only the quadratic and lower-order terms in the
Taylor series expansion (A-1), we can represent the squared

zero-offset
ray

zero-offset
reflection point

FIG. A-1. In the derivation of NMO velocity, the CMP re-
flection raypath from A* to A~ (not shown on the plot) can
be replaced with a nonspecular raypath going through the
zero-offset reflection point.

two-way CMP traveltime as

tz(Xl, X2) = (‘L’+ + ‘LL)Z = tg +4(W11X12 + 2Wio X1 %
+Way X3), (A-2)
where t, = 27 is the two-way zero-offset traveltime and W is
a symmetric matrix given by W; = 7(3%7 /3% 3X; ).
The coordinates X; and x, can be expressed through the az-

imuth « of the CMP line (Figure A-1) and source-receiver half-
offset, h:

X1 = hcosa
and (A-3)

X, = hsina.

The squared two-way CMP traveltime from equation (A-2)
now becomes

t*(h, @) = t§ +4(W; cos® @ +2Wyp sina cos

+ W, sin o) h?. (A-4)
Using the definition of the NMO velocity Vymo,
4h?
2 o) =2+ ———— + -, (A-5)
Vimo(@)

we obtain from equation (A-4)

Vn2m0 (@) = [W11 cos® a + 2Wi, sin & cos o + Wh, sin® a]_l

2[a d 0
= —[ﬂ cos’a + <ﬂ + %) sin a cos o

-1
+ gﬂ sin? oc] , (A-6)

where pj = dt/9%;, (i =1,2) are the horizontal components
of the slowness vector p of rays emanating from the zero-offset
reflection point; p; and p, are measured at the surface.

To simplify equation (A-6), let us align the coordinate axes
with the eigenvectors of the matrix W. The required rotation
angle 8 is given by (assuming Wy, # 0; if Wy, = 0, no rotation
is needed)

W — Wi + \/(sz — Wip)? + 4W2,

= tan~!
B an Wiy

(A7)

Introducing the eigenvalues A; , of the matrix W,

Ao = 5[Wir + W, & \/(Wll — W) +4Wp ],

(A-8)
we represent equation (A-6) after the rotation as

V2 (@) = A cos’(a — B) + Apsin®(a — B).  (A-9)
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APPENDIX B
STRIKE-LINE NMO VELOCITY IN VII MEDIA

Let us consider a dipping reflector beneath a homogeneous
transversely isotropic medium with a vertical symmetry axis
(Figure B-1). The NMO velocity on the CMP line in the dip
plane of the reflector is obtained by Tsvankin (1995) as a spe-
cial case of his general symmetry-plane NMO equation. Here,
we derive the NMO velocity in the strike direction needed to
construct the NMO ellipse for this model.

The NMO velocity of any pure mode on the strike line is
given by [see equation (A-6)]

Vﬁmo(gs(ﬁ) = tz (;j—h

0 OUPn
where ty = 27 is the two-way zero-offset traveltime, h is half
the source-receiver offset, and py, is the projection of the ray
parameter (horizontal slowness) on the CMP (strike) line. As
discussed in the main text, we can ignore reflection-point dis-
persal, which has no influence on NMO velocity. Following the
approach suggested in Tsvankin (1995, 1997a), we evaluate the
derivative in equation (B-1) by representing h and p; as func-

tions of the phase angle 6 corresponding to rays that emanate
from the zero-offset reflection point:

2 dh /dpy\ !
V2 E 2 2=
w(30) =0 (&)

where ¢ is the dip of the reflector and 6 is measured from the
(vertical) symmetry axis (Figure B-1).

(B-1)

h=0

, (B-2)
o=¢

FiG. B-1. Geometry of the group- and phase-velocity vectors
of reflected waves on the CMP (strike) line perpendicular to
the dip plane of the reflector. The specular reflection point is
assumed to coincide with the zero-offset reflection point O. In
VTI media, the reflected ray OR (with the group angle y) and
the corresponding slowness vector OD (with the phase angle )
lie in the same vertical plane. The group angle of the zero-offset
ray is ¥y, and z, is the depth of the zero-offset reflection point.

To relate the half-offset h to the phase angle, it is conve-
nient to introduce the group angle  measured from vertical
(Figure B-1). Then h can be represented through the depth of
the zero-offset reflection point z, as

h = zyy/tan? ¢ — tan? v, (B-3)

where v is the group (ray) angle of the zero-offset ray.
Differentiating equation (B-3) yields

@ _ Zytan i dtany
dé  /tan?y —tan?y, dO

For vertical transverse isotropy, the slowness vector (par-
allel to the phase-velocity vector) always lies in the vertical
plane that contains the group-velocity vector. Therefore, the
projection of the slowness vector on the CMP line is given by
(Figure B-1)

(B-4)

_sinf y/tan? ¢ — tan® ¥
Pn = \% tan ¢
and

dp,  (cos6 sinf dV') y/tan?y — tan’ ¢
d Vv V2 do tan yr

sin 6 tan® ¥ dtany

V' tan? y/tan? ¢ — tanvy, d¢
(B-5)

Substituting equations (B-4) and (B-5) into equation (B-2)
and taking into account that the derivatives should be evalu-
ated at ¢ = v, we find

, (T _ 27y tan ]
Vnmo(E’(P) - tO sin¢ V(¢) (B 6)

Expressing t, through the group velocity vg of the zero-offset
ray [ty = 27y/(vg(¥o) cos ¥)] reduces equation (B-6) to

\%
Vr12mo <% ) ¢> - Slfl¢¢) vg(‘ﬁo) sin 1//O~ (B-7)

The product vg() sin ¥ represents the horizontal compo-
nent of the group-velocity vector given by (e.g., Thomsen, 1986)

cos ¢. (B-8)

dv
vg(Yo) sin o = Vsing + —
do |o_y

Substitution of equation (B-8) into equation (B-7) leads to
the final result:

b4 1 dv
Vnmo<§, ¢> = V(¢)\/1 + V(g)tang do

Since in the inversion procedure we operate with the ray pa-
rameter (horizontal slowness), it is convenient to express the
strike-line NMO velocity [equation (B-9)] through the compo-
nents of the slowness vector. The dip-line NMO velocity as a

(B-9)

0=¢
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function of the ray parameter is given by Cohen (1998) as

q//
V(0. p) = . B-10
amo(0: P) oq —q (B-10)
where q is the vertical component of the slowness vector,
cos 6
= = _—— B-11
a=alp) =y (B-11)
and
/ d " d2
q = —q; q = —q
dp dp?

Here, we obtain a similar expression for the strike-line NMO
velocity. The derivative dV/d6 from equation (B-9) can be
rewritten through the ray parameter p in the following way:

dv dvdp
_— = B-12
do dp do ( )
and
sin 0
p= V@) (B-13)

Differentiating the identity

V=2 =p*+% (B-14)

we obtain

dav

- _V3 oy

dp (p+9q)
From equation (B-13) we find the derivative dp/d6é needed in
equation (B-12):

(B-15)

\%
dp =V~ (V cosf — dv sin 0) . (B-16)

do do
Substituting equations (B-15) and (B-16) into equation (B-12)
and using equations (B-13) and (B-11) yields

d_V_qu/+ p
do Py —q

. (B-17)

Finally, we substitute equations (B-14) and (B-17) into equa-
tion (B-9) and, taking into account that when 6 = ¢, tan¢ =
p/q, obtain

T q
Van A = . N
(2 p) \ p(pa —q)

All quantities in equation (B-18) should be evaluated for the
zero-offset ray.

(B-18)



