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Nonhyperbolic reflection moveout for horizontal
transverse isotropy

AbdulFattah Al-Dajani∗ and Ilya Tsvankin‡

ABSTRACT

The transversely isotropic model with a horizontal axis
of symmetry (HTI) has been used extensively in studies
of shear-wave splitting to describe fractured formations
with a single system of parallel vertical penny-shaped
cracks. Here, we present an analytic description of long-
spread reflection moveout in horizontally layered HTI
media with arbitrary strength of anisotropy.

The hyperbolic moveout equation parameterized by
the exact normal-moveout (NMO) velocity is sufficiently
accurate for P-waves on conventional-length spreads
(close to the reflector depth), although the NMO ve-
locity is not, in general, usable for converting time to
depth. However, the influence of anisotropy leads to the
deviation of the moveout curve from a hyperbola with
increasing spread length, even in a single-layer model. To
account for nonhyperbolic moveout, we have derived an
exact expression for the azimuthally dependent quartic
term of the Taylor series traveltime expansion [t2(x2)]
valid for any pure mode in an HTI layer. The quar-
tic moveout coefficient and the NMO velocity are then
substituted into the nonhyperbolic moveout equation of
Tsvankin and Thomsen, originally designed for vertical
transverse isotropy (VTI). Numerical examples for me-
dia with both moderate and uncommonly strong non-

hyperbolic moveout show that this equation accurately
describes azimuthally dependent P-wave reflection trav-
eltimes in an HTI layer, even for spread lengths twice as
large as the reflector depth.

In multilayered HTI media, the NMO velocity and
the quartic moveout coefficient reflect the influence of
layering as well as azimuthal anisotropy. We show that
the conventional Dix equation for NMO velocity re-
mains entirely valid for any azimuth in HTI media if
the group-velocity vectors (rays) for data in a common-
midpoint (CMP) gather do not deviate from the vertical
incidence plane. Although this condition is not exactly
satisfied in the presence of azimuthal velocity variations,
rms averaging of the interval NMO velocities represents
a good approximation for models with moderate az-
imuthal anisotropy. Furthermore, the quartic moveout
coefficient for multilayered HTI media can also be cal-
culated with acceptable accuracy using the known aver-
aging equations for vertical transverse isotropy. This al-
lows us to extend the nonhyperbolic moveout equation
to horizontally stratified media composed of any com-
bination of isotropic, VTI, and HTI layers. In addition
to providing analytic insight into the behavior of non-
hyperbolic moveout, these results can be used in model-
ing and inversion of reflection traveltimes in azimuthally
anisotropic media.

INTRODUCTION

Recent field studies (Corrigan et al., 1996; Lynn et al.,
1996) have shown that P-wave reflection moveout and ampli-
tude variation with offset (AVO) response may be influenced
strongly by the presence of azimuthal anisotropy. However,
the current understanding of seismic signatures in general az-
imuthally anisotropic media is hardly sufficient for the inver-
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sion and processing of seismic data, even if the medium is hor-
izontally homogeneous. This work is devoted to an analytic
description of long-spread reflection moveout in the trans-
versely isotropic model with a horizontal axis of symmetry
(HTI) media—the simplest type of azimuthally anisotropic
media associated with a system of parallel, vertical, penny-
shaped cracks embedded in an isotropic matrix (Crampin,
1985; Thomsen, 1988). Weak-anisotropy approximations for
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reflection, moveout in horizontal transverse isotropy (HTI)
media are discussed by Thomsen (1988), Sena (1991), and Li
and Crampin (1993); the latter paper also treats reflection trav-
eltimes in an orthorhombic layer. Sayers and Ebrom (1997)
extend Sena’s (1991) nonhyperbolic moveout equation to an
orthorhombic or monoclinic layer with a horizontal symme-
try plane. However, since the approach of Sayers and Ebrom
(1997) is based on the expansion of group velocity into spheri-
cal harmonics, their moveout coefficients are difficult to relate
to the medium parameters. Also, the moveout equations of
Sena (1991) and Sayers and Ebrom (1997) contain the reflec-
tor depth—a quantity usually unknown in reflection surveys,
which makes their formalism more suitable for vertical seismic
profiling (VSP) applications.

An exact equation for azimuthally dependent NMO velocity
for pure modes in a single HTI layer is presented by Tsvankin
(1997). He also shows that all kinematic signatures including
NMO (as well as plane-wave polarizations) in the symme-
try plane of HTI media that contains the symmetry axis (the
symmetry-axis plane) are given by equations of the same form
as for transversely isotropic media with a vertical symmetry
axis (VTI). The analogy between HTI and VTI media allowed
Tsvankin (1997) and Rüger (1997) to introduce Thomsen’s
(1986) parameters for HTI media using exactly the same ex-
pressions as for VTI. This notation is much more convenient
in describing reflection signatures than the generic Thomsen
coefficients defined with respect to the symmetry axis. For in-
stance, the P-wave NMO velocity in HTI media depends on the
vertical velocity, the azimuth of the symmetry axis, and a single
anisotropic coefficient—the parameter δ(V) expressed through
the stiffnesses in the same way as Thomsen’s coefficient δ for
VTI media (Tsvankin, 1997).

Despite these developments, some important issues pertain-
ing to moveout analysis for HTI remained unresolved. Among
them is the analytic description of long-spread (nonhyperbolic)
moveout in HTI media and the feasibility of obtaining inter-
val NMO velocities in the presence of pronounced azimuthal
anisotropy and vertical inhomogeneity. Both problems must
be examined outside the vertical symmetry planes of HTI me-
dia because reflection moveout within the symmetry planes is
identical to that in VTI media.

Reflection moveout in anisotropic media is generally nonhy-
perbolic, unless the anisotropy is elliptical. Hake et al. (1984)
derived the quartic Taylor series term A4 of t2 − x2 reflection-
moveout curves for pure modes in VTI media. Tsvankin and
Thomsen (1994) obtained the coefficient A4 for converted P–
SV-waves and represented the quartic terms of the pure modes
in a more compact form using Thomsen’s (1986) notation. They
also developed a nonhyperbolic moveout equation for layered
VTI media, based on the exact quadratic (NMO velocity) and
quartic moveout coefficients, that converges at infinitely large
horizontal offsets as well. In VTI media, this equation remains
close to the exact P-wave moveout for spreads as large as three
times the reflector depth. The moveout expression of Tsvankin
and Thomsen (1994) will serve as a basis for our study of non-
hyperbolic reflection moveout in HTI media.

Nonhyperbolic moveout can hamper the estimation of NMO
velocity using conventional hyperbolic semblance analysis
(e.g., Gidlow and Fatti, 1990). Tsvankin (1997) gives a numeri-
cal example showing that, in a single HTI layer, the hyperbolic

moveout equation parameterized by the exact NMO velocity
remains accurate up to the spread length equal to the reflec-
tor depth. In layered media, however, the magnitude of non-
hyperbolic moveout may increase because of vertical velocity
variations and deviations of group-velocity vectors (rays) of
reflected waves from the incidence plane. Even if the analytic
NMO velocity for a stack of layers has been extracted from
finite-spread moveout, it is unclear whether interval NMO ve-
locities can be obtained from the Dix equation (Dix, 1955),
which is no longer strictly valid outside the symmetry planes
of azimuthally anisotropic media.

In this paper, we derive a concise expression for the quartic
moveout coefficient valid for all pure modes in a homogeneous
HTI layer with anisotropy of any strength. The quadratic and
quartic moveout coefficients in multilayered HTI media are
obtained by the same averaging equations as for VTI. These
results extend the nonhyperbolic equation of Tsvankin and
Thomsen (1994) to HTI. Numerical testing demonstrates high
accuracy of our nonhyperbolic moveout equation, even for me-
dia with significant depth-varying azimuthal anisotropy and
pronounced nonhyperbolic moveout.

DESCRIPTION OF THE HTI MODEL AND NOTATION

In this section, we describe the main features of the HTI
model and a convenient Thomsen-style notation for HTI in-
troduced by Tsvankin (1997) and Rüger (1997). Proper under-
standing of wave propagation in the two mutually orthogonal
vertical symmetry planes (Figure l) is extremely important in
the analysis of seismic signatures in HTI media. In the plane
normal to the symmetry axis (the isotropy plane), body-wave
velocities are independent of direction, and the influence of
anisotropy manifests itself only through the different veloci-
ties of the two S-waves. (The split shear waves in HTI media
are denoted as S‖ and S⊥, with the S‖-wave polarized within the
isotropy plane and the S⊥-wave polarizated in the plane formed
by the symmetry axis and the slowness vector.) In the second
vertical symmetry plane, which contains the axis of symmetry
(the symmetry-axis plane), the velocities change with propa-
gation angle, but the Christoffel equation has exactly the same

FIG. 1. Sketch of the transversely isotropic model with a hor-
izontal symmetry axis caused by a system of parallel vertical
cracks. HTI media contain two vertical planes of mirror sym-
metry defined by the crack orientation (after Rüger, 1997).



                    
1740 Al-Dajani and Tsvankin

form as in VTI. This means the phase velocity and polarization
vector are the same functions of the stiffness coefficients and
phase angle with vertical as in VTI media. Since phase velocity
determines group (ray) velocity and group angle, all kinematic
signatures in the symmetry-axis plane, including NMO veloc-
ity and long-spread (nonhyperbolic) reflection moveout, are
given by the known VTI equations.

Taking advantage of this limited equivalence, Tsvankin
(1997) and Rüger (1997) introduced the Thomsen parameters
of the “equivalent” VTI model through the same equations
as those used by Thomsen (1986) for actual VTI media. For
the HTI model with the symmetry axis in the x1-direction, the
stiffness coefficients ci j , and density ρ, these parameters are
defined as

VPvert ≡
√

c33

ρ
,

VS⊥vert ≡
√

c55

ρ
,

ε(V) ≡ c11 − c33

2c33
, (1)

δ(V) ≡ (c13 + c55)2 − (c33 − c55)2

2c33(c33 − c55)
,

and

γ (V) ≡ c66 − c44

2c44
,

where VPvert and VS⊥vert are the vertical velocities of the P- and
S⊥-wave, respectively (note that in our HTI model c55 = c66).
The vertical velocity of the (fast) shear wave S‖ is determined
as

VS‖vert ≡
√

c44

ρ
= VS⊥vert√

1 + 2γ (V)
.

This notation makes it possible to obtain the kinematic sig-
natures and polarizations in the symmetry-axis plane of HTI
media just by adapting the corresponding equations for VTI
expressed through Thomsen parameters. The convenient fea-
tures of Thomsen notation in the analytic description of seismic
wavefields in VTI media are summarized by Tsvankin (1996).
Furthermore, as discussed in more detail below, the Thomsen
coefficients of the equivalent VTI model control the moveout
outside the symmetry planes of HTI media, where the analogy
with VTI media is no longer valid.

The exact expressions for the phase velocity in HTI media
in terms of the parameters ε(V), δ(V), and γ (V) are presented
in Tsvankin (1997). For P- and S⊥-waves, the phase velocity is
given by

V2(θ)
V2

Pvert

= 1 + ε(V) cos2 θ − f (V)

2

± f (V)

2

√√√√(
1 + 2ε(V) cos2 θ

f (V)

)2

− 2
(
ε(V) − δ(V)

)
sin2 2θ

f (V)
,

(2)

where the plus sign corresponds to the P-wave and the minus
to the S⊥-wave; f (V) = 1 − (VS⊥vert/VPvert)2; and θ is the phase
angle with the horizontal symmetry axis. For P-waves, phase
velocity and all other kinematic signatures in HTI media de-
pend largely on the vertical velocity VPvert and the coefficients
ε(V) and δ(V), while the influence of the S⊥-wave vertical ve-
locity (and, therefore, f (V)) is practically negligible (Tsvankin,
1997).

Alternatively, HTI media can be characterized by the
“generic” Thomsen parameters defined with respect to the
symmetry axis. However, since the symmetry axis is horizon-
tal, these parameters (especially the coefficient δ) are not
well suited to describe reflection seismic signatures, which are
largely dependent on near-vertical velocity variations. The re-
lationships between the two sets of Thomsen parameters can
be found in Tsvankin (1997).

The values of ε(V), δ(V), and γ (V) are quite different from
those typical for actual VTI media. While the coefficients ε and
γ for VTI are usually nonnegative, in HTI media ε(V) ≤ 0 and
γ (V) ≤ 0 because of thin parallel cracks. Also, for typical ratios
of the vertical velocities (VS⊥vert/VPvert ≤ 0.707), the parameter
δ(V) ≤ 0, which is possible but not typical for such VTI forma-
tions as shales. Similar to VTI media, however, the difference
ε(V) − δ(V) that characterizes the anellipticity of the medium is
typically positive for HTI.

ANALYTIC APPROXIMATIONS OF REFLECTION MOVEOUT

Reflection moveout in common midpoint (CMP) gathers is
conventionally approximated by the hyperbolic equation

t2 = t2
0 + x2

V2
nmo

, (3)

where t is the reflection traveltime at source-receiver offset x,
t0 is the two-way zero-offset traveltime, and Vnmo is the NMO
velocity defined in the zero-spread limit.

Equation (3) is strictly valid only for a homogeneous
isotropic (or elliptically anisotropic) layer. The presence of lay-
ering and/or anisotropy leads to deviation of the traveltime
curve from hyperbola (3) with increasing offset; the finite-
spread moveout (stacking) velocity, usually obtained from hy-
perbolic semblance analysis, no longer coincides with the ana-
lytic NMO velocity. However, for VTI the hyperbolic moveout
equation for P-waves usually provides sufficient accuracy on
conventional-length spreads (i.e., spread length close to the
reflector depth; see Tsvankin and Thomsen, 1994).

Nonhyperbolic moveout on longer spreads can be described
by a three-term Taylor series expansion (Taner and Koehler,
1969):

t2 = t2
0 + A2x2 + A4x4, (4)

where A2 = 1/V2
nmo and A4 is the quartic moveout coefficient.

The parameter A4 for pure modes in horizontally layered VTI
media is given by Hake et al. (1984) and is represented in a
more compact form by Tsvankin and Thomsen (1994).

Because of the influence of the x4 term, quartic equation (4)
becomes divergent with increasing offset and can be replaced
by a more accurate nonhyperbolic moveout equation devel-
oped by Tsvankin and Thomsen (1994):

t2 = t2
0 + A2x2 + A4x4

1 + Ax2
, (5)
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where A= A4/(1/V2
hor − 1/V2

nmo) and Vhor is the horizontal ve-
locity. The denominator of the nonhyperbolic term ensures the
convergence of this approximation at infinitely large horizontal
offsets. As a result, equation (5) provides an accurate descrip-
tion of P-wave traveltimes on long CMP spreads (2–3 times as
large as the reflector depth), even for models with pronounced
nonhyperbolic moveout.

Although equation (5) was originally designed for VTI, it
could be used in arbitrary anisotropic media if appropriate
coefficients A2, A4, and A were found. Our goal is to ex-
tend this nonhyperbolic moveout approximation to single- and
multilayered HTI media. As discussed in the previous section,
for a CMP line parallel to the symmetry axis, no generalization
is necessary, since the moveout in the symmetry-axis plane can
be obtained directly from the original VTI equation (5) by sub-
stituting the Thomsen coefficients of the equivalent VTI model.
Clearly in the isotropy plane, long-spread reflection moveout
of any given mode is not influenced by the anisotropy. The
analogy with VTI media also holds for throughgoing vertical
symmetry planes of multilayered models containing VTI and
HTI layers.

For CMP lines outside the vertical symmetry planes of HTI
media, however, it is necessary to obtain the azimuthally de-
pendent parameters of equation (5). Below, we accomplish this
task for horizontally layered HTI media with arbitrary strength
of anisotropy.

MOVEOUT IN A SINGLE HTI LAYER

NMO and horizontal velocity

The exact P-wave NMO velocity on a CMP line that makes
angle α with the symmetry axis (Figure 2) is given by (Tsvankin,
1997):

V2
nmo(α) = V2

Pvert

1 + 2δ(V)

1 + 2δ(V) sin2 α
. (6)

To obtain the corresponding expressions for the shear waves,
VPvert in equation (6) should be replaced with the appropriate
vertical velocity, while δ(V) should be replaced with either γ (V)

FIG. 2. CMP reflections on a line that makes the angle α with
the symmetry plane of an HTI layer. Since the model has a
horizontal symmetry plane, the incident and reflected rays of
pure modes lie in the vertical incidence (sagittal) plane (after
Tsvankin, 1997).

(for the S‖-wave) or σ (V) = (VPvert/VS⊥vert)
2(ε(V)−δ(V)) (for the

S⊥-wave); for details, see Tsvankin (1997).
The azimuthal dependence of NMO velocity for any pure

mode is described by an elliptical curve in the horizontal plane.
Indeed, equation (6) can be rewritten as

V2
nmo(α) = V2

nmo(0) V2
nmo(90)

V2
nmo(0) sin2 α + V2

nmo(90) cos2 α
,

where Vnmo(0) and Vnmo(90) are the NMO velocities in the
symmetry-axis and isotropy planes, respectively. Evidently, the
axes of the NMO ellipse are aligned with the vertical symme-
try planes of the HTI model. This fact may be useful in the
detection of the dominant fracture orientation in HTI media.
As shown by Grechka and Tsvankin (1996), the azimuthal de-
pendence of NMO velocity remains elliptical even in inhomo-
geneous, arbitrary anisotropic media.

To obtain the quantity A in nonhyperbolic moveout equa-
tion (5), we must also find the azimuthally dependent hori-
zontal group velocity (Vhor), which controls reflection move-
out at offsets approaching infinity. Since the influence of small
errors in Vhor can be ignored for spread lengths feasible in
reflection surveys, we will calculate Vhor as the phase (rather
than the group) velocity evaluated in the azimuth of the CMP
line. Therefore, for the P- and S⊥-waves we find the hori-
zontal velocity by substituting θ = α into equation (2). For
S‖-waves, as we will demonstrate next, the nonhyperbolic
moveout term vanishes, and computing the horizontal velocity
is not necessary.

Quartic moveout coefficient

Application of nonhyperbolic moveout equation (5) also re-
quires knowledge of the quartic moveout coefficient, A4. An
exact expression for A4 in a single HTI layer is derived in Ap-
pendix A:

A4(α) =

−
4
V

d2V

dθ2
+ 3

(
1
V

d2V

dθ2

)2

+ 1
V

d4V

dθ4

12t2
0 V4

vert

(
1 + 1

V

d2V

dθ2

)4


θ=90◦

× cos4 α = A4(α = 0) cos4 α. (7)

As before, α is the angle between the CMP line and the sym-
metry axis. Equation (7) is valid for HTI models with arbitrary
strength of anisotropy and can be used for any pure-mode
reflection (P, S⊥, S‖). The most interesting feature of equa-
tion (7) is the simplicity of the azimuthal dependence of the
quartic moveout coefficient. The maximum absolute value of
A4 corresponds to the symmetry-axis plane (α = 0◦); while in
the isotropy plane, A4(α = 90◦) = 0, so moveout is purely hyper-
bolic. The form of the angular dependence (cos4 α) implies the
quartic coefficient rapidly decreases with azimuth away from
the symmetry-axis plane.

The term A4(α = 0) represents the quartic coefficient in the
symmetry-axis plane, where all moveout parameters are given
by the same equations as for vertical transverse isotropy. Al-
though an equivalent expression was obtained by Hake et al.
(1984), here A4(α = 0) is represented for the first time as a sim-
ple function of phase velocity and its derivatives. In addition to
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the axis orientation, the influence of anisotropy on the quartic
moveout coefficient is absorbed by just two velocity terms:

1
V

d2V

dθ2

∣∣∣∣
θ=90◦

and
1
V

d4V

dθ4

∣∣∣∣
θ=90◦

.

To find the quartic coefficient for the P-wave, we evaluate
the second and fourth derivatives of phase velocity using equa-
tion (2):

1
V

d2V

dθ2

∣∣∣∣
θ=90◦

= 2δ(V) (8)

and

1
V

d4V

dθ4

∣∣∣∣
θ=90◦

= 24
(
ε(V) − δ(V))(1 + 2δ(V)

f (V)

)

− 2δ(V)(4 + 6δ(V)). (9)

Substituting equations (8) and (9) into equation (7), we ob-
tain an explicit expression for the P-wave quartic moveout
coefficient:

A(P)
4 (α) =

[
−2

(
ε(V) − δ(V)

)(
1 + 2δ(V)

/
f (V)

)
t2
0 V4

Pvert

(
1 + 2δ(V)

)4

]
cos4 α.

(10)
As expected from the analogy between the symmetry-axis

plane of HTI media and VTI, the expression in brackets
[A4(α = 0◦)] in equation (10) is identical to the P-wave quar-
tic coefficient for VTI media given in Tsvankin and Thomsen
(1994). Alkhalifah and Tsvankin (1995) show that the contri-
bution of the shear-wave vertical velocity to the P-wave quar-
tic coefficient in VTI media can be ignored without degrad-
ing the quality of the nonhyperbolic moveout equation. Then
P-wave nonhyperbolic moveout for VTI becomes a function
of just two effective parameters: the NMO velocity Vnmo and
the anisotropic coefficient η ≡ (ε−δ)/(1+2δ). This conclusion
remains entirely valid for the P-wave quartic moveout coeffi-
cient in HTI media, with Vnmo and η calculated in the symmetry-
axis plane. Indeed, setting the shear-wave vertical velocity in
equation (10) to zero ( f (V) = 1) yields a two-parameter repre-
sentation of A(P)

4 (α):

A(P)
4 (α) ≈

[
−2η(V)

t2
0 V4

nmo

]
cos4 α, (11)

where Vnmo = Vnmo(α = 0) = VPvert

√
1 + 2δ(V) and η(V) ≡ (ε(V) −

δ(V))/(1 + 2δ(V)). Therefore, P-wave NMO velocity, quartic
moveout coefficient, and nonhyperbolic moveout as a whole
are largely controlled by the axis orientation and three param-
eters: VPvert , δ(V), and ε(V) (or, alternatively, by the two NMO
velocities in the symmetry planes and the parameter η(V)).

Similarly for the S⊥-wave, using equation (2) yields

1
V

d2V

dθ2

∣∣∣∣
θ=90◦

= 2σ (V)

and

1
V

d4V

dθ4

∣∣∣∣
θ=90◦

= −24σ (V)

(
1+ 2δ(V)

f (V)

)
−2σ (V)(4+6σ (V)).

Hence, equation (7) takes the form

A(S⊥)
4 (α) =

2σ (V)
(
1 + 2δ(V)

/
f (V)

)
t2
0 V4

S⊥vert

(
1 + 2σ (V)

)4

 cos4 α. (12)

Again, the expression in brackets in equation (12) is iden-
tical to the S⊥-wave quartic coefficient in VTI media given in
Tsvankin and Thomsen (1994), which represents a useful check
of our results.

For the shear wave S‖, the anisotropy is elliptical, so that
A(S‖)

4 (0) vanishes. According to equation (7), this means the
quartic moveout term for the S‖-wave vanishes in all other
azimuthal directions as well, and S‖-wave moveout in a single
HTI layer is purely hyperbolic.

Thus, the last two sections provide the expressions for the
NMO velocity, the quartic moveout coefficient, and the hori-
zontal velocity needed to construct the nonhyperbolic moveout
equation (5) for a single HTI layer.

MOVEOUT IN MULTILAYERED MEDIA

In multilayered anisotropic media, both the quadratic and
quartic moveout coefficients reflect the combined influence of
layering as well as anisotropy. On conventional-length spreads,
hyperbolic moveout equation (3) can provide an adequate de-
scription of moveout, but the NMO velocity should be aver-
aged over the stack of layers. For VTI, this averaging is per-
formed by means of the conventional isotropic Dix (1955)
equation (Hake et al., 1984). Furthermore, Alkhalifah and
Tsvankin (1995) show that the Dix equation remains valid in
symmetry planes of any anisotropic medium (even if the re-
flector is dipping), provided the interval NMO velocities are
evaluated at the ray-parameter value for the zero-offset ray.
In Appendix B we extend the Dix-type equation of Alkhali-
fah and Tsvankin to arbitrary CMP directions in azimuthally
anisotropic media under the assumption that the group veloc-
ity vector does not deviate from the vertical incidence plane
(the orientation of the phase-velocity vector in this case has
no influence on the results). For horizontal interfaces, the ray
parameter of the zero-offset ray is always zero, and our gener-
alized NMO equation (B-4) reduces to the conventional Dix
(rms) formula,

V2
nmo = 1

t0

N∑
i =1

V2
nmoi

1ti , (13)

where t0 is the two-way zero-offset time to reflector N, Vnmoi
is the NMO velocity for each individual layer i , and 1ti is the
two-way zero-offset time in layer i . The interval NMO velocity
Vnmoi for any wave type in HTI media was discussed earlier.

As shown in Appendix B, rms averaging of the interval ve-
locities remains valid in azimuthally anisotropic media if the
group velocity vector (ray) is confined to the incidence plane
for the whole raypath. This assumption is strictly valid in a sin-
gle HTI layer (as well as in any other homogeneous layer with
a horizontal symmetry plane). For off-symmetry azimuthal di-
rections in multilayered HTI media, both group and phase ve-
locity vectors may deviate from the incidence plane to satisfy
Snell’s law at each interface. However, incident and reflected
rays usually lie closer to the incidence plane than the corre-
sponding phase vectors because each ray must return to the
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CMP line at the receiver location. Deviation of rays from the
incidence plane is especially small in stratified models with a
similar character of azimuthal velocity variations in all layers
(e.g., in HTI media with depth-invariant azimuth of the sym-
metry axis). Tsvankin et al. (1997) extend the Dix equation to
account for arbitrary ray trajectories in azimuthally anisotropic
media, but the discussion of this more general expression is out-
side of the scope of this paper. Here, we restrict ourselves to
implementing equation (13) and studying its accuracy in mul-
tilayered HTI models.

To use nonhyperbolic moveout equation (5) in multilayered
media, we also need to incorporate the influence of layering
into the quartic moveout term. The exact coefficient A4 for
pure modes in VTI media is presented by Hake et al. (1984):

A4 =

(
N∑

i =1

V2
nmoi

1ti

)2

− t0
N∑

i =1

V4
nmoi

1ti

4

(
N∑

i =1

V2
nmoi

1ti

)4

+
t0

N∑
i =1

A4i V
8

nmoi
1t3

i(
N∑

i =1

V2
nmoi

1ti

)4 , (14)

where A4i is the quartic moveout coefficient for layer i .
The first term in the right side of equation (14) has the same

form as for isotropic media (Al-Chalabi, 1974), but it contains
the interval NMO velocities, which are different from the true
vertical velocities in the presence of anisotropy. The second
term goes to zero in isotropic or elliptically anisotropic media
and, therefore, represents a purely anisotropic contribution to
the quartic moveout coefficient. Tsvankin and Thomsen (1994)
show that nonhyperbolic moveout equation (5) with the quar-
tic term given by equation (14) accurately describes P-wave
reflection moveout in multilayered VTI media.

Outside the symmetry planes of stratified HTI media, both
phase and group velocity vectors deviate from the incidence
plane, violating the main assumptions behind VTI averaging
[equation (14)]. Nonetheless, we apply equation (14) to HTI
but with the exact expressions for the interval values Vnmoi
[equation (6)] and A4i [equation (7)], which honor the az-
imuthal dependence of the moveout coefficients. In the nu-
merical examples below, both the quadratic and quartic move-
out coefficients in layered HTI media are calculated using the
same averaging equations as for VTI media, but with the exact
interval values derived for HTI.

For layered media, the effective horizontal velocity (Vhor)
contained in quantity A of nonhyperbolic moveout equa-
tion (5) can be computed in several different ways (Tsvankin
and Thomsen, 1994; Alkhalifah, 1997). In theory, Vhor should
equal the maximum horizontal velocity of the medium above
the reflector. While this choice of horizontal velocity makes
equation (5) converge at infinite source-receiver offsets x, it
may generate somewhat inaccurate results at intermediate x
feasible for reflection surveys, especially in the presence of thin,
high-velocity layers (Alkhalifah, 1997). We have found that the
highest accuracy for HTI models with typical gradients in the

vertical velocity (e.g., 0.5–0.8 s−1) is provided by fourth-power
averaging:

V4
hor = 1

t0

N∑
i =1

V4
hori

1ti , (15)

where Vhori is the interval horizontal velocity in layer i . As dis-
cussed above, for purposes of moveout modeling the value of
Vhori in HTI media can be well approximated by the phase ve-
locity [equation (2)] evaluated at the azimuth of the CMP line.

Another possible alternative is to compute the effective hor-
izontal velocity as the rms average of the interval values of Vhor

(Tsvankin and Thomsen, 1994). Our numerical tests show that
rms averaging works well in HTI media with relatively small
gradients in vertical velocity (≤0.3 s−1) but is less suitable for
media with more pronounced vertical inhomogeneity. Also,
this choice of Vhor cannot be used to account for nonhyper-
bolic moveout in stratified isotropic or elliptically anisotropic
media. Indeed, in such media the rms-averaged NMO velocity
and horizontal velocity are equal to each other, the coefficient
A in the denominator of the nonhyperbolic moveout term goes
to infinity, and equation (5) reduces to hyperbolic equation (3).

The approximations made in this section allow us to apply the
concise averaging equations developed for VTI at the expense
of partly ignoring out-of-plane phenomena in multilayered az-
imuthally anisotropic HTI media.

NUMERICAL STUDY OF P-WAVE MOVEOUT IN HTI MEDIA

Here, we present results of a numerical study of P-wave
reflection moveout in HTI media designed to test the accu-
racy of the hyperbolic and nonhyperbolic moveout equations
introduced above. The exact traveltimes were computed us-
ing a 3-D anisotropic ray-tracing code developed by Gajewski
and Pšenčik (1987). The moveout velocity on finite spreads
was obtained by least-squares fitting of a hyperbolic moveout
equation to the calculated traveltimes, i.e.,

V2
mo =

N∑
j =1

x2
j

N∑
j =1

t2
j − Nt2

0

, (16)

where xj is the offset of the j th trace, t j is the corresponding
two-way reflection traveltime, t0 is the two-way vertical travel-
time, and N is the number of traces.

Single HTI layer

Because of the presence of two orthogonal vertical sym-
metry planes in HTI media, it is sufficient to study reflection
moveout in a single quadrant of azimuths (Figure 3). First, we
test the accuracy of the P-wave hyperbolic moveout equation
parameterized by the exact NMO velocity [equation (6)] on
two models (Table 1), using two spread lengths. Elastic coeffi-
cients for model 1 are typical for a moderately anisotropic HTI
medium caused by parallel vertical cracks (Thomsen, 1995),
while model 2 has much stronger azimuthal anisotropy that
corresponds to higher values of the crack density.

As seen in Figure 4, the moveout velocity obtained from
the exact traveltimes using equation (16) is generally close to
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FIG. 3. Orientations of the survey lines over a horizontal HTI
layer used in Figures 4 and 5.

FIG. 4. The influence of nonhyperbolic moveout on the estimation of P-wave NMO velocity in a single HTI layer. The solid curve is
the moveout velocity as a function of azimuth determined by fitting a hyperbola to the exact t2-x2 curves [equation (16)]; the dashed
curve is the NMO (zero-spread) velocity from equation (6). The curves are calculated for two different HTI models (Table 1) and
on two spread lengths X where D = 1.5 km is the reflector depth: (a) model 1, X/D = 1; (b) model 1, X/D = 2; (c) model 2, X/D = 1;
(d) model 2, X/D = 2.

the analytic NMO value [equation (6)] for conventional-length
spreads (X/D ≤ 1) (Figure 4a,c). (Model 2 is characterized by
an uncommonly high magnitude of nonhyperbolic moveout.)
Predictably, the difference between the two velocities increases
on longer spreads (Figure 4b,d) because of the anisotropy-
induced deviations of the moveout curve from a hyperbola.

Figure 4 also shows that the difference between finite-spread
and NMO velocity reaches its maximum in the symmetry-axis
plane (azimuth α = 0◦) and goes to zero in the isotropy plane
(α = 90◦). Clearly, despite the influence of out-of-plane phe-
nomena (i.e., the deviation of the phase-velocity vector from

Table 1. Parameters of two single-layer HTI models used
to generate the synthetic data in Figures 4 and 5. The layer
thickness in both models is 1.5 km. Values ε(V), δ(V), VPvert ,
and VS⊥vert are the HTI parameters of the equivalent VTI
medium, while ε, δ, VP0, and VS0 are the generic Thomsen
parameters.

Parameters Model 1 Model 2

ε(V)(ε) −0.143 (0.2) −0.143 (0.2)
δ(V)(δ) −0.184 (0.1) −0.318 (−0.2)

VPvert(VP0) km/s 2.662 (2.25) 2.958 (2.5)
VS⊥vert(VS0) km/s 1.5 (1.5) 1.5 (1.5)
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the incidence plane), the magnitude of nonhyperbolic move-
out outside the symmetry planes is smaller than in the di-
rection of the symmetry axis. This result could be expected
from the azimuthal dependence of the quartic moveout coeffi-
cient (10).

The inadequacy of the hyperbolic moveout equation (3) for
long spreads is illustrated in more detail by Figure 5a,c, showing
the time residuals after the conventional hyperbolic moveout
correction. Deviation of the hyperbolic curve from the exact
traveltimes is much more pronounced for model 2, which has
an extremely large quartic moveout term (Figure 5c). For such
uncommonly strong nonhyperbolic moveout, conventional hy-
perbolic velocity analysis does not work well even on spread
lengths close to the reflector depth. In contrast, the nonhyper-
bolic moveout equation (5), which includes the exact quadratic
and quartic moveout coefficients, provides excellent accuracy
for both HTI models and for the whole range of offsets shown in
Figure 5b,d. Application of the nonhyperbolic moveout equa-
tion reduces the residual moveout at large offsets (i.e., twice as

FIG. 5. Comparison between the exact traveltimes and moveout approximations in an HTI layer. The gray curves are the exact
reflection traveltimes as functions of the offset-to-depth ratio for survey-line azimuths α of 0◦, 30◦, 45◦, 60◦, and 90◦. (a) and
(b)—model 1 (Table 1); (c) and (d)—model 2 (Table 1). The black curves in (a) and (c) are the time residuals after conventional
hyperbolic moveout correction using equation (3), while the black curves in (b) and (d) are the residuals after the nonhyperbolic
moveout correction using equation (5). The maximum error of both approximations arises in the symmetry-axis plane (azimuth
0◦), while in the isotropy plane (azimuth 90◦) the reflection moveout is purely hyperbolic and the error is zero.

Table 2. Parameters of the three-layer HTI model (model 3) used to generate synthetic data in Figures 6 and 7. The axis of
symmetry has the same orientation in all layers.

Parameters Layer 1 Layer 2 Layer 3

ε(V)(ε) −0.143 (0.2) −0.045 (0.05) −0.143 (0.2)
δ(V)(δ) −0.184 (0.1) −0.203 (−0.15) −0.318 (−0.2)

VPvert(VP0) (km/s) 2.0 (1.69) 2.5 (2.384) 3.0 (2.535)
VS⊥vert(VS0) (km/s) 1.15 (1.15) 1.4 (1.4) 1.525 (1.525)

Depth of bottom (km) 0.5 1.0 1.5

large as the reflector depth) by a factor of ten compared with
the residuals after the hyperbolic correction.

Multilayered HTI media

As discussed above, the conventional Dix equation is no
longer strictly valid outside the symmetry planes of multilay-
ered HTI media because the group-velocity vector does not lie
in the incidence plane for the whole raypath. Still, for the three-
layer HTI model (model 3 from Table 2) in Figure 6, the ef-
fective NMO velocity calculated by rms averaging of the exact
interval values [equation (13)] is sufficiently close to the move-
out velocity determined from hyperbolic moveout analysis on
conventional-length spreads. A more detailed comparison be-
tween the generalized (exact) and conventional Dix equation
in azimuthally anisotropic media is given in Tsvankin et al.
(1997).

The maximum deviation of the NMO velocity from the finite-
spread value is observed for the CMP line in the throughgoing
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symmetry-axis plane of the medium (α = 0◦). As mentioned
above, the Dix equation (13) is entirely valid for the NMO
velocity in the symmetry-axis and isotropy planes. In both sym-
metry planes, the difference between the finite-spread and rms-
averaged moveout velocity is caused entirely by the influence
of nonhyperbolic moveout, which is much more pronounced in
the symmetry-axis plane. In the isotropy plane, nonhyperbolic
moveout is attributable to vertical velocity variation only; the
effective gradient in the vertical velocity for the model from
Figure 6 is close to a typical value of 0.67 s−1. The smaller mag-
nitude of nonhyperbolic moveout away from the symmetry-
axis plane makes NMO equation (13) even more accurate in
out-of-plane directions.

The difference between the exact traveltimes and the hyper-
bolic moveout equation (3) in model 3 is displayed in Figure 7a.
Clearly, the hyperbolic moveout equation based on the exact
interval NMO velocities averaged by formula (13) provides a
good approximation to the traveltimes on spread lengths that
do not exceed the reflector depth. This conclusion holds, al-
beit with a somewhat lower accuracy, even for model 4 (from

FIG. 6. Accuracy of the Dix rms-averaging equation for P-wave NMO velocity in layered HTI media. The solid curve is the moveout
velocity as a function of azimuth determined by fitting a hyperbola to the exact t2-x2 curves [equation (16)] on two different spread
lengths: X/D = 1 (a) and X/D = 2 (b). The dashed curve is the NMO (zero-spread) velocity from the Dix equation (13). The
velocities are calculated for the reflection from the bottom of the third layer in a three-layer model with the same orientation of
the symmetry axis in all layers (model 3, Table 2). Note that the difference between the two velocities reaches its maximum in the
symmetry axis plane (azimuth 0◦).

FIG. 7. Comparison between the exact traveltimes and the moveout approximations for a three-layer HTI model (model 3 from
Table 2). The gray curves are the exact reflection traveltimes from all three interfaces for azimuths α of 0◦, 30◦, 45◦, 60◦, and 90◦.
The black curves in (a) are the time residuals after the conventional hyperbolic moveout correction using equation (3) with the
NMO velocity from equation (13), while the black curves in (b) are the residuals after nonhyperbolic moveout correction using
equation (5) with the effective coefficients from equations (13), (14), and (15).

Table 3) with layer-varying orientation of the symmetry axis
(Figure 8a). We note, however, that the hyperbolic moveout
equation breaks down if we disregard the azimuthal depen-
dence of the interval NMO velocities described by equation (6).
Application of any single value of NMO velocity would lead
to misalignment of reflection events and poor stacking quality
in certain ranges of azimuthal angles.

As in the homogeneous model, the error of the hyperbolic
moveout equation increases with offset, this time because of
the combined influence of anisotropy and layering (Figures 6–
8). To describe long-spread moveout in layered HTI media, we
use equation (5) with the effective values of the moveout coef-
ficients given by equations (13–15). Despite the approximate
character of the averaging expressions, nonhyperbolic move-
out equation (5) provides high accuracy for both multilayered
HTI media (Figures 7b and 8b). Similar to the result for single-
layer models, the residual moveout at large offsets (twice the
reflector depth) after the nonhyperbolic moveout correction is
about one order of magnitude lower compared to the residual
after the hyperbolic correction using equation (3).
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In the previous examples, we examined reflection moveout in
models consisting only of azimuthally anisotropic layers with
the HTI symmetry. However, fractured reservoirs are often
overlain by a nearly isotropic overburden, possibly with a ver-
tical velocity gradient. Although it seems that the presence
of isotropic layers should help to mitigate out-of-plane phe-
nomena since phase and group velocity vectors in isotropic
media coincide with each other, deviation of the group ve-
locity vector from the incidence plane may even increase if
we replace some of the HTI layers in the model by isotropic
ones. Indeed, to keep the group velocity vector close to the
incidence plane, the character of azimuthal velocity variations
should be similar throughout the section. In the limit of a sin-
gle HTI layer (a completely uniform character of azimuthal
anisotropy), the group velocity vector is strictly confined to
the incidence plane. During the transmission from an HTI layer
into a purely isotropic medium, the phase velocity vector stays
in the same vertical plane and the group velocity vector has
to coincide with the phase velocity vector after the transmis-
sion. Since the azimuths of the group and phase velocity vec-
tors may be substantially different in the HTI layer, this leads
to an azimuthal rotation of the group vector at the bound-
ary and potential errors in the averaging equations (13) and
(14).

Nevertheless, as demonstrated by Figures 9 and 10 for a
model with five isotropic layers above a layer with HTI sym-
metry, our conclusions drawn for layered HTI models remain
essentially valid in this case as well. The hyperbolic moveout
equation parameterized by the NMO velocity [equation (13)]
adequately describes the moveout on conventional spreads,

Table 3. Parameters of the three-layer HTI model (model 4) used to generate synthetic data in Figure 8. The symmetry axis in
the first and third layer has the same direction, while in the second layer it is rotated by 60◦.

Parameters Layer 1 Layer 2 Layer 3

ε(V)(ε) −0.143 (0.2) −0.045 (0.05) −0.143 (0.2)
δ(V)(δ) −0.184 (0.1) −0.203 (−0.15) −0.318 (−0.2)

VPvert(VP0) (km/s) 2.662 (2.25) 2.622 (2.5) 2.958 (2.5)
VS⊥vert(VS0) (km/s) 1.5 (1.5) 1.5 (1.5) 1.5 (1.5)

Depth of bottom (km) 0.7 1.0 1.5

FIG. 8. Comparison between the exact traveltimes and the moveout approximations for a three-layer HTI model with depth-varying
orientation of the symmetry axis (model 4, Table 3). The gray curves are the exact reflection traveltimes from all three interfaces for
azimuths α of 0◦, 30◦, 45◦, 60◦, and 90◦. The azimuthal angles are calculated with respect to the symmetry axis direction in the first
and third layer; the azimuth of the axis in the second layer is 60◦. The black curves in (a) are the time residuals after the conventional
hyperbolic moveout correction using equation (3) with the NMO velocity from equation (13), while the black curves in (b) are the
residuals after the nonhyperbolic moveout correction using equation (5) and the effective coefficients from equations (13), (14),
and (15).

while the nonhyperbolic moveout equation (5) is close to the
reflection traveltimes at large horizontal offsets. The improve-
ment in accuracy gained by using the nonhyperbolic moveout
equation is especially significant for the reflection from the
bottom of the HTI layer. The accurate result for this (deepest)
event was ensured by using the exact interval expressions (6)
and (10) for the azimuthally dependent quadratic and quartic
moveout coefficients. As before, the effective horizontal ve-
locity for the reflection from the bottom of the HTI layer was
obtained by fourth-power averaging [equation (15)]. However,
for the purely isotropic overburden with a pronounced verti-
cal velocity gradient in Figure 10, equation (5) turns out to
be somewhat more accurate, with the effective Vhor equal to
the maximum horizontal velocity of the medium above the
reflector.

DISCUSSION AND CONCLUSIONS

We have presented an analytic description of nonhyper-
bolic (long-spread) reflection moveout in layered transversely
isotropic media with horizontal symmetry axes. For a single-
layer HTI model, the hyperbolic moveout equation pa-
rameterized by the exact NMO velocity given in Tsvankin
(1997) provides a good approximation for P-wave travel-
times on conventional-length CMP spreads (close to the re-
flector depth). However, the accuracy of the hyperbolic equa-
tion rapidly decreases with offset because of the influence of
anisotropy-induced nonhyperbolic moveout.

Our treatment of long-spread moveout is based on an ex-
act expression for the azimuthally dependent quartic moveout
coefficient A4, which has been derived for any pure mode in a
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FIG. 9. Geometry of the synthetic experiment in Figure 10.

FIG. 10. Comparison between time residuals after moveout correction for a model that includes a stack of five homogeneous
isotropic layers on top of an HTI layer (Figure 9). The curves in (a) are the time residuals for azimuths α of 0◦, 30◦, 45◦, 60◦, and 90◦
after the conventional hyperbolic moveout correction for all reflections using equation (3) with the NMO velocity from equation
(13), while the curves in (b) are the residuals after the nonhyperbolic moveout correction using equation (5) and the effective Vnmo
and A4 from equations (13) and (14). The effective horizontal velocity for the isotropic layers is taken to be equal to the maximum
horizontal velocity above the reflector; for the reflection from the bottom of the HTI layer, the horizontal velocity is calculated from
equation (15). For layer 1, VP = 2.0 km/s and depth d1 = 0.2 km; for layer 2, VP = 2.5 km/s and d2 = 0.4 km; for layer 3, VP = 3.0 km/s
and d3 = 0.6 km; for layer 4, VP = 3.5 km/s and d4 = 0.8 km; for layer 5, VP = 2.5 km/s and d5 = 1.0 km; for layer 6, the parameters
are those for model 2 (Table 1), d6 = 1.5 km.

homogeneous HTI layer with arbitrary strength of anisotropy.
The expression for A4 has an extremely simple form [equa-
tion (7)], with a single trigonometric function (cos4 α, where α

is the angle with the symmetry axis) multiplied with the quartic
coefficient in the symmetry-axis plane. Therefore, the magni-
tude of nonhyperbolic moveout rapidly decreases with azimuth
away from the symmetry-axis plane, where it can be obtained
by analogy with VTI media. To account for deviations from
hyperbolic moveout on long spreads (2–3 times as large as the
reflector depth), we have substituted the exact azimuthally de-
pendent values of the NMO velocity and the quartic moveout
coefficient into the nonhyperbolic moveout equation originally
developed by Tsvankin and Thomsen (1994) for VTI media.
Numerical examples show that this equation provides excel-
lent accuracy for P-waves recorded in all azimuthal directions
over an HTI layer—even for models with significant velocity
anisotropy and pronounced nonhyperbolic moveout.

In multilayered HTI media, the moveout coefficients re-
flect the combined influence of layering, azimuthal and po-
lar anisotropy. We show that the NMO velocity in a stack of
horizontal HTI layers is given by the conventional rms-
averaging procedure if the group velocity vector (ray) is con-
fined to the incidence plane. Although the rays in vertically in-
homogeneous HTI media do diverge from the incidence plane
on off-symmetry CMP lines, the magnitude of these deviations
usually is not sufficient to cause measurable errors with use of
the Dix equation, especially for models with a similar charac-
ter of the azimuthal velocity variations in all layers (e.g., media
with uniform orientation of cracks). Note that a more general
Dix-type equation, which properly accounts for both azimuthal
anisotropy and vertical inhomogeneity, has been developed by
Tsvankin et al. (1997).

To determine the quartic moveout coefficient A4 in stratified
HTI media, we use the same averaging equations as for vertical
transverse isotropy (Hake et al., 1984; Tsvankin and Thomsen,
1994) but with the exact interval values of Vnmo and A4 in each
HTI layer. Then the NMO velocity and the quartic moveout
coefficient, averaged over the stack of layers above the reflec-
tor, are used in the same nonhyperbolic moveout equation
as in the single-layer model. Extensive numerical testing for
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stratified HTI media with both uniform and depth-varying ori-
entation of the symmetry axis (as well as for models composed
of HTI and isotropic layers) demonstrates sufficient accuracy
of our nonhyperbolic approximation in the description of long-
spread reflection moveout.

The nonhyperbolic moveout equation discussed here can
serve as a replacement for ray tracing in modeling long-spread
reflection traveltimes in stratified media containing HTI, VTI,
and isotropic layers. It can also be used in the inversion of
reflection data for HTI.

ACKNOWLEDGMENTS

We thank Ken Larner and other members of the Anisotropy
Team at the Center for Wave Phenomena (CWP) for useful dis-
cussions. We are also grateful to Tariq Alkhalifah (Stanford Ex-
ploration Project) for helpful suggestions and to Dirk Gajewski
(University of Hamburg) for providing his 3-D ray-tracing
code. This work was partially supported by the Consortium
Project on Seismic Inverse Methods for Complex Structures at
CWP and by the U.S. Department of Energy (Velocity Anal-
ysis, Parameter Estimation, and Constraints on Lithology for
Transversely Isotropic Sediments project within the framework
of the Advanced Computational Technology Initiative). A.
Al-Dajani would like to thank the Saudi Arabian Oil Com-
pany (Saudi Aramco) for the financial support; he is especially
grateful to Mahmoud Abdul-Baqi of Saudi Aramco for making
his scholarship possible.

REFERENCES

Al-Chalabi, M., 1974, An analysis of stacking, rms, average, and inter-
val velocities over a horizontally layered ground: Geophys. Prosp.,
22, 458–475.

Alkhalifah, T., 1997, Velocity analysis using nonhyperbolic moveout in
transversely isotropic media: Geophysics, 62, 1839–1854.

Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely
isotropic media: Geophysics, 60, 1550–1566.

Corrigan, D., Withers, R., Darnall, J., and Skopinski, T., 1996, Fracture
mapping from azimuthal velocity analysis using 3D surface seismic
data: Presented at the 66th Ann. Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, 1834–1837.

Crampin, S., 1985, Evidence for aligned cracks in the earth’s crust: First
Break, 3, no. 3, 12–15.

Dix, C. H., 1955, Seismic velocities from surface measurements: Geo-
physics, 20, 68–86.
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APPENDIX A

QUARTIC MOVEOUT COEFFICIENT IN HTI MEDIA

Here, the approach suggested by Tsvankin (1997) in his
derivation of the NMO velocity in HTI media is extended to
obtain the quartic coefficient A4 of the Taylor series expansion
of the squared traveltime [t2(x2)]. First, we find an expression
for A4 in terms of the one-way traveltime from the zero-offset
reflection point. Since a horizontal reflector coincides with a
symmetry plane in HTI media, the group-velocity (ray) vec-
tor of any pure reflected wave in an HTI layer represents the
mirror image of the incident ray with respect to the horizon-
tal plane (see Figures A-1 and A-2). This means there is no
reflection-point dispersal on CMP gathers above a homoge-
neous HTI layer, and we can represent the two-way traveltime
along the specular raypath as the sum of the traveltimes from
the zero-offset reflection point to the source and receiver (Fig-
ure A-1). The one-way traveltime from the reflection point to

the source or receiver can be expanded in a Taylor series in the
powers of the half-offset h, as suggested by Hale et al. (1992)
in their derivation of the NMO velocity from dipping reflec-
tors. Here, we are interested in deriving the quartic moveout
coefficient, so we will keep the quartic and lower order terms
in the Taylor series:

t(y + h) = t(y) + h
dt

dx
+ h2

2
d2t

dx2
+ h3

6
d3t

dx3
+ h4

24
d4t

dx4
· · ·

and (A-1)

t(y − h) = t(y) − h
dt

dx
+ h2

2
d2t

dx2
− h3

6
d3t

dx3
+ h4

24
d4t

dx4
· · · ,

where all derivatives are evaluated at CMP location y.
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Summing the two series expansions above, we obtain

th = t(y + h) + t(y − h) = t0 + h2 d2t

dx2
+ h4

12
d4t

dx4
,

(A-2)

where t0 is the two-way zero-offset traveltime. Note that for a
horizontal reflector beneath an HTI medium, both the phase
and group velocity (ray) vectors of the zero-offset reflection
are vertical.

Squaring both sides of equation (A-2) and ignoring terms of
higher order than h4 yields

t2
h = t2

0 +
[

2t0
d2t

dx2

]
h2 +

[(
d2t

dx2

)2

+ t0
6

d4t

dx4

]
h4. (A-3)

Comparing equation (A-3) with the Taylor series expansion
of the squared reflection traveltime [t2(x2)],

t2
h = t2

0 + A2(2h)2 + A4(2h)4, (A-4)

FIG. A-1. For a homogeneous HTI layer, the specular reflec-
tion point for any offset coincides with the zero-offset reflection
point, and there is no reflection-point dispersal on CMP gath-
ers. The value y denotes the CMP location, and h is half the
source-receiver offset.

FIG.A-2. The group and phase velocity vectors for the reflected
waves in a homogeneous HTI layer. The incident (SO) and re-
flected (OR) group velocity vectors (rays) lie in the vertical
incidence plane and are symmetric with respect to the hori-
zontal plane. The phase velocity vector (direction OD) of the
reflected ray OR is confined to the plane formed by OR and
the axis of symmetry. Triangle RCB defines a plane normal to
the symmetry axis (after Tsvankin, 1997).

we find the quadratic (A2) and quartic (A4) moveout coeffi-
cients as

A2 = lim
h→0

[
t0
2

d2t

dh2

]
(A-5)

and

A4 = 1
16

lim
h→0

[(
d2t

dh2

)2

+ t0
6

d4t

dh4

]
. (A-6)

Tsvankin (1997) uses equation (A-5) to derive the NMO
velocity (V2

nmo = 1/A2) in a single HTI layer as a function of
phase velocity and the symmetry-axis azimuth. Here, we apply
equation (A-6) to obtain the quartic moveout coefficient A4.
Equations (A-5) and (A-6) are valid for arbitrary anisotropic
media if the specular reflection point does not change with off-
set within CMP gathers. It turns out, however, that reflection-
point dispersal does not influence the value of NMO velocity
(or A2) (Hubral and Krey, 1980, Appendix D; Tsvankin, 1995),
and equation (A-5) can be used for both horizontal and dipping
reflection events in media with any symmetry. Equation (A-6)
for the quartic term is more restrictive and can be applied only
in the absence of reflection-point dispersal (which is the case
for our model).

We consider a CMP line that makes the azimuthal angle α

with the symmetry axis (Figure A-2). Since the derivative dt/dh
represents the apparent slowness within the CMP gather, it
equals the projection of the slowness vector onto the CMP
line,

ph = dt

dh
,

and the quartic moveout coefficient [equation (A-6)] can be
rewritten as

A4 = 1
16

lim
h→0

[(
dph

dh

)2
]

+ t0
96

lim
h→0

[
d3 ph

dh3

]
. (A-7)

Introducing the group angle β in the incidence plane
(Figure A-2) and taking into account that h = z0 tan β and
z0 = Vvert t0/2 (Vvert is the vertical velocity), we find

A4 = 1
4t2

0 V2
vert

lim
β→0◦

[(
dph

d tan β

)2
]

+ 1
12t2

0 V3
vert

lim
β→0◦

[
d3 ph

d(tan β)3

]
. (A-8)

It is convenient to represent β and ph as functions of the
phase angle θ with the symmetry axis (Figure A-2). Although
the rays stay within the vertical incidence plane, the influence
of azimuthal anisotropy moves the phase velocity (slowness)
vectors of the incident and reflected waves out of plane. Still,
the phase velocity vector in transversely isotropic media al-
ways lies in the plane formed by the symmetry axis and the
group velocity vector (Figure A-2). Rewriting the derivatives
in equation (A-8) in terms of θ , we obtain

dph

d tan β
= dph

dθ

dθ

d tan β
(A-9)
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and

d3 ph

d(tan β)3
= d3 ph

dθ3

(
dθ

d tan β

)3

+ 3
d2 ph

dθ2

d2θ

d(tan β)2

dθ

d tan β

+ dph

dθ

d3θ

d(tan β)3
, (A-10)

where

d2θ

d(tan β)2
= d

d tan β

(
dθ

d tan β

)
=

[
d

dθ

(
dθ

d tan β

)]
dθ

d tan β

and, similarly,

d3θ

d(tan β)3
=

[
d

dθ

(
d2θ

d(tan β)2

)]
dθ

d tan β
.

Substituting equations (A-9) and (A-10) into equation (A-8)
yields

A4 = lim
θ→90◦

[
1

4t2
0 V2

vert

(
dph

dθ

dθ

d tan β

)2

+ 1
12t2

0 V3
vert

d3 ph

dθ3

(
dθ

d tan β

)3
]

+ lim
θ→90◦

[
1

12t2
0 V3

vert

dph

dθ

d3θ

d(tan β)3

+ 1
4t2

0 V3
vert

d2 ph

dθ2

d2θ

d(tan β)2

dθ

d tan β

]
.

(A-11)

Next, it is necessary to compute the derivatives in equa-
tion (A-11). From simple trigonometry (Figure A-2), we can
relate the angle β to the group angle ψ of ray OR with respect
to the symmetry axis, as suggested in Tsvankin (1997):

sin β = cos ψ

cos α

and

tan β = 1

tan ψ

√
1 − sin2 α

sin2 ψ

.

Then we express the group angle ψ through the phase angle θ

and phase velocity V(θ) (Thomsen, 1986):

tan ψ =
tan θ + 1

V

dV

dθ

1 − tan θ

V

dV

dθ

. (A-12)

Applying the chain rule again, we have

dθ

d tan β
= dψ

d tan β

dθ

dψ
.

Therefore,

dθ

d tan β
= −

sin2 ψ

(
1 − sin2 α

sin2 ψ

) 3
2

cos2 α

×


1 +

(
1

V(θ)
dV(θ)

dθ

)2

1 + 1
V(θ)

d2V(θ)
dθ2

 . (A-13)

By representing tan β as a function of ψ and θ , we are able
to evaluate both dθ/d tan β and the higher order derivatives
in equation (A-11). Evaluating the derivatives at θ = ψ = 90◦,
we obtain

dθ

d tan β

∣∣∣∣
θ=ψ=90◦

= −cos α

 1

1 +
(

1
V

d2V

dθ2

)∣∣∣∣
θ=90◦


(A-14)

and

d3θ

d(tan β)3

∣∣∣∣
θ=ψ=90◦

=

cos α (2 + sin2 α)

1 + 1
V

d2V

dθ2

−
cos3 α

(
1
V

d2V

dθ2

)2(
3 + 2

V

d2V

dθ2

)
(

1 + 1
V

d2V

dθ2

)4


θ=90◦

+

 cos3 α
1
V

d4V

dθ4(
1 + 1

V

d2V

dθ2

)4


θ=90◦

. (A-15)

The derivative (dθ 2/d(tan β)2)|θ=ψ=90◦ turns out to be un-
necessary in equation (A-11) because (dp2

h/dθ 2)|θ=ψ=90◦ = 0.
To evaluate A4, we also need to find the derivatives of the

projection of the slowness vector on the CMP line (ph) with
respect to the phase angle θ . Following Tsvankin (1997), we
decompose the slowness vector (which is parallel to OD in
Figure A-2) into two vectors parallel to sides OC and CD of
triangle OCD. Then we find the horizontal projection of the
slowness component parallel to CD using

cos(6 RCB) = tan β sin α√
1 + tan2 β sin2 α

= tan α

tan ψ
.

Summing up the projections of both components onto the CMP
line yields

ph = 1
V

(cos θ cos α + sin θ sin α tan α/ tan ψ),

(A-16)
with tan ψ determined by equation (A-12).
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The derivatives of equation (A-16) with respect to θ , evalu-
ated at θ = ψ = 90◦, are given by

dph

dθ

∣∣∣∣
θ=ψ=90◦

= − 1
Vvert cos α

− 1
Vvert cos α

[
sin2 α

(
1
V

d2V

dθ2

)∣∣∣∣
θ=90◦

]
,

(A-17)
dp2

h

dθ2

∣∣∣∣
θ=ψ=90◦

= 0, (A-18)

and

dp3
h

dθ3

∣∣∣∣
θ=ψ=90◦

= cos α

Vvert

(
1 + 3

V

d2V

dθ2

∣∣∣∣
θ=90◦

)

+ sin2 α

Vvert cos α

(
1 − 1

V

d4V

dθ4

∣∣∣∣
θ=90◦

)
. (A-19)

Substitution of equations (A-14), (A-15), (A-17), (A-18),
and (A-19) into equation (A-11) leads, after algebraic trans-
formations, to a concise final result:

A4 =

−
4
V

d2V

dθ2
+ 3

(
1
V

d2V

dθ2

)2

+ 1
V

d4V

dθ4

12t2
0 V4

vert

(
1 + 1

V

d2V

dθ2

)4


θ=90◦

cos4 α.

(A-20)

Note that the first and third derivatives of the phase velocity
in the vertical direction (θ = 90◦) go to zero. Equation (A-20)
is valid for any pure mode (P, S⊥, S‖) in HTI media with arbi-
trary strength of anisotropy.

APPENDIX B

DIX EQUATION FOR LAYERED AZIMUTHALLY ANISOTROPIC MEDIA

In their derivation of the generalized Dix equation for
anisotropic media, Alkhalifah and Tsvankin (1995) assume
that the phase and group velocity vectors of incident and re-
flected waves are confined to the sagittal (incidence) plane. This
implies the incidence plane (i.e., the vertical plane that contains
the CMP line) should be a symmetry plane of the medium as
well as the dip plane of the reflector. Here, we show that the
generalized Dix equation retains the same form outside the
symmetry planes of azimuthally anisotropic media if the group
velocity vector does not deviate from the incidence plane for
the whole raypath. Although this assumption cannot be satis-
fied exactly for multilayered azimuthally anisotropic models,
it is helpful in gaining insight into the influence of azimuthal
anisotropy on the accuracy of the Dix equation.

We consider CMP reflections from either a horizontal or a
dipping interface overlain by a horizontally layered arbitrary
anisotropic medium (Figure B-1). NMO velocity in the CMP
geometry can be represented the following function of the one-
way traveltime t from the zero-offset reflection point [equa-
tion (A-5)]:

V2
nmo = 2

t0
lim
h→0

d

dh

(
dt

dh

)−1

= 2
t0

lim
h→0

dh

dph
, (B-1)

where h is half the source-receiver offset (h is positive in the
down-dip direction), t0 is the two-way zero-offset traveltime,
and ph is the projection of the slowness vector on the CMP line.

The ray parameter p (horizontal slowness), as well as
ph, remain constant along any ray above the reflector since
the overburden is horizontally homogeneous. In the case
considered by Alkhalifah and Tsvankin (1995), the slowness
vector did not deviate from the incidence plane, and ph

was equal to p. However, as shown by the following, any
difference between ph and p has no influence on the form
of the generalized Dix equation, provided the group velocity
vector (ray) stays within the incidence plane.

FIG. B-1. Reflection from a dipping interface overlain by a se-
quence of horizontal, homogeneous, azimuthally anisotropic
layers. We assume the rays (group velocity vectors) from the
zero-offset reflection point are confined to the incidence plane
but do not put any restrictions on the orientation of the corre-
sponding slowness (phase velocity) vectors. This implies that
the normal to the reflector may deviate from the incidence
plane.
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Since we assume the whole raypath is confined to the inci-
dence plane, the half-offset h can be written as

h =
(

n∑
i =1

x(i ) − x0

)
,

where x(i ) is the horizontal distance traveled by the ray in layer
i (horizontal displacement) and x0 is the total horizontal dis-
placement of the zero-offset ray between the reflection point
and the surface (Figure B-1). Substituting h into equation (B-1)
yields

V2
nmo = 2

t0
lim
h→0

n∑
i =1

d
(
x(i )

)
dph

. (B-2)

To identify the interval values of NMO velocity in equa-
tion (B-2), let us draw an imaginary reflector through the in-
tersection of the zero-offset ray with the bottom of layer i . The
normal to the reflector is chosen to coincide with the slowness
(phase) vector that corresponds to the segment of the zero-
offset ray in this layer. Note that since the slowness vector as-
sociated with the zero-offset ray is allowed to be out of plane,
the dip plane of the imaginary reflector is generally different
from the incidence plane. Next, we imagine that the intersec-
tion of the zero-offset ray with the top of layer i represents
a CMP location of a gather parallel to the actual CMP line.
Then the segment of the zero-offset ray in layer i will coincide
with the raypath of the zero-offset CMP reflection from the
imaginary interface. In accordance with equation (B-1), NMO

velocity from the imaginary reflector at this CMP location will
be given by

[
V (i )

nmo

(Es(i ))]2 = 2

t (i )
0

lim
x(i )→x

(i )
0

d
(
x(i )

)
dph

, (B-3)

where t (i )
0 is the two-way traveltime along the zero-offset ray

in layer i , x(i )
0 is the horizontal displacement of the zero-offset

ray in layer i , and Es (i ) is the slowness vector associated with the
zero-offset ray. It follows that the summation in equation (B-2)
is carried out over the NMO velocities from reflectors normal
to the zero-offset slowness vectors in each layer. Substituting
equation (B-3) into equation (B-2) yields

V2
nmo = 1

t0

n∑
i =1

t (i )
0

[
V (i )

nmo

(Es(i ))]2
. (B-4)

Although this expression looks identical to the conventional
Dix equation, interval NMO velocities in equation (B-4) corre-
spond to reflectors with different dips determined by the orien-
tation of the slowness vector associated with the zero-offset ray
in each of the layers. In contrast with the symmetry-plane Dix
equation obtained by Alkhalifah and Tsvankin (1995), equa-
tion (B-4) is influenced by the 3-D character of wave propa-
gation since the normals to these reflectors (and the slowness
vectors of the corresponding zero-offset rays) are not neces-
sarily confined to the incidence plane (Figure B-1).


