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ABSTRACT

Despite the complexity of wave propagation in anisotropic media, reflection move-

out on conventional common-midpoint (CMP) spreads is usually well described by

the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent

work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity

around a fixed CMP location generally has an elliptical form (i.e., plotting the NMO

velocity in each azimuthal direction produces an ellipse) and is determined by the spa-

tial derivatives of the slowness vector evaluated at the CMP location. This formalism

is used here to develop exact solutions for normal-moveout velocity in anisotropic

media of arbitrary symmetry.

For the model of a single homogeneous layer above a dipping reflector, we obtain

an explicit NMO expression valid for all pure modes and any orientation of the CMP

line with respect to the reflector strike. The contribution of anisotropy to normal-

moveout velocity is contained in the slowness components of the zero-offset ray (along

with the derivatives of the vertical slowness with respect to the horizontal slownesses)

– quantities that can be found in a straightforward way from the Christoffel equation.

If the medium above a dipping reflector is horizontally stratified, the effective NMO

velocity is determined through a Dix-type average of the matrices responsible for the
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“interval” NMO ellipses in the individual layers. This generalized Dix equation pro-

vides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily

anisotropic media. For models with a throughgoing vertical symmetry plane (i.e., if

the dip plane of the reflector coincides with a symmetry plane of the overburden),

the semi-axes of the NMO ellipse are found by the more conventional rms averaging

of the interval NMO velocities in the dip and strike directions.

Modeling of normal moveout in general heterogeneous anisotropic media requires

dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for ge-

ometrical spreading along the zero-offset ray contain all the components necessary to

build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth,

multi-offset ray tracing and, therefore, can be efficiently used in traveltime inversion

and in devising fast dip-moveout (DMO) processing algorithms for anisotropic me-

dia. This technique becomes especially efficient if the model consists of homogeneous

layers or blocks separated by smooth interfaces.

The high accuracy of our NMO expressions is illustrated by comparison with

ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic

models. We also apply the generalized Dix equation to field data collected over a

fractured reservoir and show that P -wave moveout can be used to find the depth-

dependent fracture orientation and evaluate the magnitude of azimuthal anisotropy.

INTRODUCTION

Reflection moveout in inhomogeneous anisotropic media is usually calculated

by multi-offset and multi-azimuth ray tracing (e.g., Gajewski and Pšenč́ık 1987).

While the existing anisotropic ray-tracing codes are sufficiently fast for forward

modeling, their application in moveout inversion requires repeated generation of

azimuth-dependent traveltimes around many common-midpoint (CMP) locations,

which makes the inversion procedure extremely time-consuming. Moveout model-
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ing, however, can be simplified by taking advantage of the limited range of offsets

in conventional acquisition design. For spreadlength-to-depth ratios close to unity,

CMP traveltimes in media with moderate structural complexity are well described by

the normal-moveout (NMO) velocity defined in the zero-spread limit (Tsvankin and

Thomsen 1994; Grechka and Tsvankin 1998). Even if the data exhibit nonhyperbolic

moveout, NMO velocity is still responsible for the most stable, small-offset portion of

the moveout curve.

Existing methods for computing normal-moveout velocity in inhomogeneous media

are designed for isotropic models (e.g., Shah 1973; Hubral and Krey 1980). Angular

velocity variations make both analytic and computational aspects of NMO-velocity

modeling much more complicated. Here, we present a treatment of NMO velocity in

inhomogeneous anisotropic media that provides an analytic basis for moveout inver-

sion, leads to a significant increase in the efficiency of traveltime modeling methods,

and helps to develop insight into the influence of the anisotropic parameters on re-

flection traveltimes.

Explicit expressions for normal-moveout velocity are well known for the relatively

simple transversely isotropic model with a vertical symmetry axis (VTI media) (e.g.,

Thomsen 1986). Tsvankin (1995) presented an exact NMO equation for dipping re-

flectors valid in vertical symmetry planes of any homogeneous anisotropic medium

that has such a plane. Alkhalifah and Tsvankin (1995) extended this result by de-

veloping a Dix-type equation for vertically inhomogeneous anisotropic media above

a dipping reflector. They also showed that the NMO-velocity function in VTI media

depends on just two parameters – the zero-dip NMO velocity Vnmo(0) and the “anel-

lipticity” coefficient η. Still, their formalism is limited to 2-D wave propagation in

the dip plane of the reflector, which should also coincide with a symmetry plane of

the overburden.

This work is based on a general 3-D treatment of normal moveout developed by

Grechka and Tsvankin (1998), who proved that the NMO velocity for pure (non-
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converted) modes varies with azimuth as an ellipse , even if the medium is arbitrarily

anisotropic and inhomogeneous. This conclusion breaks down only for subsurface

models in which common-midpoint reflection traveltime cannot be described by a

series expansion or does not increase with offset. The orientation of the NMO ellipse

and the values of its semi-axes can be expressed through the spatial derivatives of the

slowness vector, which are determined by both the direction of the reflector normal

and the medium properties above the reflector.

Grechka and Tsvankin (1998) also presented explicit equations for the NMO ve-

locity for two special cases: a horizontal orthorhombic layer and a dipping reflector

beneath a VTI medium. A detailed analysis of the NMO ellipse for transversely

isotropic media with a horizontal symmetry axis (HTI media) is given in Tsvankin

(1997a), who also discusses the inversion of conventional-spread reflection moveout

for the parameters of HTI media. Sayers and Ebrom (1997) obtained the elliptical

dependence of NMO velocity for the model of a homogeneous anisotropic layer with

a horizontal symmetry plane using an approximation for long-spread moveout based

on group-velocity expansion in spherical harmonics.

Application of the elliptical NMO equation of Grechka and Tsvankin (1998) in

modeling and inversion for arbitrarily anisotropic models requires evaluation of the

spatial derivatives of the slowness vector in terms of the model parameters. Here,

we accomplish this task for a series of anisotropic models with increasing structural

complexity. We start by deriving an explicit expression for azimuth-dependent NMO

velocity from a dipping reflector overlaid by a homogeneous anisotropic layer. Then we

obtain a generalized Dix equation for NMO velocity in a model composed of a stack of

homogeneous, arbitrarily-anisotropic layers with horizontal interfaces above a dipping

reflector. While this equation has a form similar to the conventional Dix formula, it is

based on the averaging of the matrices that define interval NMO ellipses. For general

inhomogeneous media, we develop an efficient methodology to compute the normal-

moveout velocity using the dynamic ray-tracing of only one (zero-offset) ray. We show
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that the derivatives needed to find the geometrical spreading (e.g., Červeny, Molotkov

and Pšenč́ık 1977; Kendall and Thomson 1989) provide sufficient information to build

the NMO ellipse and, therefore, model reflection moveout without tracing a large

family of rays. Finally, we compare the hyperbolic moveout equation parameterized

by the exact NMO velocity with ray-traced reflection traveltimes and present a field-

data application of the generalized Dix differentiation.

EQUATION OF THE NMO ELLIPSE

Suppose the traveltimes of a certain reflected wave (usually called “reflection move-

out”) have been recorded on a number of common-midpoint (CMP) gathers with

different azimuthal orientation but the same midpoint location (Figure 1). If the

medium is anisotropic and inhomogeneous, the dependence of large-offset reflection

traveltimes on the azimuth α of the CMP line may become rather complicated. For

conventional spreadlengths close to the distance between the CMP and the reflector,

however, moveout in CMP geometry is usually well-approximated by a hyperbolic

equation,

t2(α) ≈ t20 +
X2

V 2
nmo (α)

. (1)

Here t0 is the zero-offset reflection time, X is the source-receiver offset, and Vnmo (α)

is the normal-moveout velocity defined as

V 2
nmo (α) = lim

X→0

d[X2]

d[t2(α)]
. (2)

According to definition (2), NMO velocity determines the inital slope of the t2 −X2

curve at zero offset. For any realistic subsurface model, the function t2(X2) deviates

from a straight line due to the influence of heterogeneity and/or anisotropy, but

equation (1) usually remains sufficiently accurate for conventional moderate offsets

limited by the distance between the CMP and reflector (Tsvankin and Thomsen 1994;

Grechka and Tsvankin 1998).
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The analysis below is based on the general result of Grechka and Tsvankin (1998),

who showed that NMO velocity is described by the following simple quadratic form:

V −2
nmo(α) = W11 cos2 α + 2W12 sinα cosα +W22 sin2 α , (3)

where W is a symmetric matrix,

Wij = τ0
∂2τ

∂xi∂xj

∣∣∣∣∣
xCMP

= τ0
∂pi
∂xj

∣∣∣∣∣
xCMP

, (i, j = 1, 2) . (4)

Here, τ(x1, x2) is the one-way traveltime from the zero-offset reflection point to the

location x {x1, x2} at the surface, τ0 is the one-way zero-offset traveltime, pi are the

components of the slowness vector corresponding to the ray emerging at the point x,

and xCMP is the CMP location. In Figure 1, the common-midpoint coincides with

the origin of the coordinate system; however, shifting the origin to any other location

does not change the derivatives in equation (4). The one-way traveltimes appear in

equation (4) because reflection-point dispersal has no influence on the NMO velocity

of pure modes, and (for the small source-receiver offsets appropriate for estimation of

Vnmo) rays can be assumed to propagate through the reflection point of the zero-offset

ray (Hubral and Krey 1980; Tsvankin 1995).

It is convenient to use the eigenvectors of the matrix W as auxiliary horizontal

axes and rotate the NMO equation (3) by the angle β (see Appendix A),

β = tan−1


W22 −W11 +

√
(W22 −W11)2 + 4W 2

12

2W12


 . (5)

This rotation transforms equation (3) into

V −2
nmo(α) = λ1 cos2(α− β) + λ2 sin2(α− β) , (6)

where λ1,2 are the eigenvalues of the matrix W. Grechka and Tsvankin (1998) con-

clude that for positive λ1 and λ2 the NMO velocity (3) plotted in each azimuthal

direction defines a centered ellipse. A negative eigenvalue implies a negative V 2
nmo

in certain azimuthal directions and, consequently, a decrease in the CMP traveltime
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with offset. Although such reverse moveout can exist in some cases (e.g., for turning

waves, as described by Hale et al. 1992), typically both λ1 and λ2 are positive, and the

azimuthal dependence of NMO velocity is indeed elliptical. Note that this conclusion

is valid for arbitrarily inhomogeneous anisotropic media provided the traveltime field

is sufficiently smooth to be adequately approximated by a Taylor series expansion.

HOMOGENEOUS ARBITRARILY ANISOTROPIC LAYER

General case

To obtain normal-moveout velocity for any given model from equations (3) and (4),

we need to evaluate the spatial derivatives of the slowness vector at the CMP location.

As demonstrated in Appendix B, for the model of a single homogeneous layer this

can be done by representing the horizontal ray displacement through group velocity

and using the relation between the group-velocity and slowness vectors. As a result,

we find the following explicit expressions for the matrix W and azimuth-dependent

NMO velocity [equations (B-8) and (B-9)]:

W =
p1q,1 + p2q,2 − q
q,11q,22 − q2

,12




q,22 −q,12

−q,12 q,11


 , (7)

V −2
nmo(α) ≡ V −2

nmo(α, p1, p2)

=
p1q,1 + p2q,2 − q
q,11q,22 − q2

,12

[
q,22 cos2 α− 2q,12 sinα cosα+ q,11 sin2 α

]
, (8)

where q ≡ q(p1, p2) ≡ p3 denotes the vertical slowness component, q,i ≡ ∂q/∂pi, and

q,ij ≡ ∂2q/∂pi∂pj ; the horizontal components of the slowness vector (p1 and p2) and

the derivatives in equation (8) are evaluated for the zero-offset ray.

Equation (8) is valid for pure modes reflected from horizontal or dipping interfaces

in media with arbitrary symmetry and any strength of the anisotropy (i.e., for any

magnitude of the anisotropic parameters). The normal-moveout velocity is fully de-

termined by the azimuth α of the CMP line and the slowness vector of the zero-offset
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ray. The slowness components p1, p2 and q can be found by solving the Christoffel

equation for the slowness (phase) direction normal to the reflector. (The slowness vec-

tor of the zero-offset ray is normal to the reflecting interface at the reflection point.)

Since this equation is cubic with respect to the squared phase velocity, it yields an

explicit expression for the slowness vector.

The derivatives of the vertical slowness q can be found directly from the Christof-

fel equation as well. The slowness components satisfy the equation F (q, p1, p2) = 0,

where F is (in general) a sixth-order polynomial with respect to q. Note that for

anisotropic models with a horizontal symmetry plane (e.g., the medium can be trans-

versely isotropic, orthorhombic or even monoclinic), F becomes a cubic polynomial

with respect to q2. Hence, the derivatives q,i and q,ij can be obtained as

q,i = −Fpi
Fq

and

q,ij = −Fpipj + Fpiqq,j + Fpjqq,i + Fqqq,iq,j

Fq
, (9)

where Fpi ≡ ∂F/∂pi, Fq ≡ ∂F/∂q, Fpipj ≡ ∂2F/∂pi∂pj , Fpiq ≡ ∂2F/∂pi∂q, and

Fqq ≡ ∂2F/∂q2. Therefore, all terms in equation (8) can be obtained explicitly from

the Christoffel equation.

Equation (8) can also be used to develop weak-anisotropy approximations for

NMO velocity by linearizing q and its derivatives in dimensionless anisotropic param-

eters or in perturbations in the stiffness coefficients. These analytic approximations

provide valuable insight into the influence of the anisotropic parameters on normal

moveout (e.g., Tsvankin 1995; Cohen 1998). There is hardly any need, however,

to substitute weak-anisotropy approximations for the exact equations in numerical

modeling.

Thus, equation (8) gives a simple and numerically efficient recipe to obtain

azimuth-dependent reflection moveout in an arbitrarily anisotropic layer. The ex-

ample in Figure 2, generated for an orthorhombic layer above a dipping reflector,
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illustrates the high accuracy of the hyperbolic moveout equation parameterized by

the analytic NMO velocity (8) in describing conventional-spread reflection traveltimes.

Despite the presence of anisotropy-induced nonhyperbolic moveout, the P -wave NMO

velocity is close to the moveout (stacking) velocity calculated from the exact travel-

times on six CMP lines with different orientation. The maximum difference between

Vnmo (solid line) and the finite-spread moveout velocity (dots) is just 1.4%, which

is even less than the corresponding value (2.7%) for the same model, but with a

horizontal reflector (see Grechka and Tsvankin 1998). Therefore, the magnitude of

nonhyperbolic moveout for this model decreases with reflector dip; the same observa-

tion was made by Tsvankin (1995) for vertical transverse isotropy. Note that although

the azimuth of the dip plane of the reflector is equal to 30◦, the semi-major axis of

the Vnmo(α) ellipse has an azimuth of 24.3◦ due to the influence of the azimuthal

anisotropy above the reflector.

Special cases

Model with a vertical symmetry plane.—Next, let us consider a special case – a

model in which the dip plane of the reflector coincides with a vertical symmetry plane

of the layer. The medium can be, for instance, transversely isotropic, orthorhombic

or monoclinic. The mirror symmetry with respect to the dip plane implies that one of

the axes of the NMO ellipse points in the dip direction. Below, we provide a formal

proof of this fact, as well as concise expressions for the azimuth-dependent NMO

velocity in this model.

It is convenient to align the x1-axis with the azimuth of the dip plane, while

the x2-axis will point in the strike direction. Evidently, the zero-offset ray should

lie in the vertical symmetry plane x2 = 0, and its slowness component p2 goes to

zero. As another consequence of the mirror symmetry with respect to the dip plane,

∂p2/∂x1 = 0 (i.e, rays corresponding to x2 = 0 stay in the dip plane and cannot have
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a non-zero p2), so the cross-term q,12 in equation (8) vanishes, and the NMO velocity

simplifies to

V −2
nmo(α, p1) =

p1q,1 − q
q,11q,22

[
q,22 cos2 α + q,11 sin2 α

]
. (10)

Equation (10) describes an ellipse with the semi-axes in the dip (α = 0) and strike

(α = π/2) directions:

V 2
nmo(α = 0, p1) =

q,11

p1q,1 − q
, (11)

V 2
nmo(α =

π

2
, p1) =

q,22

p1q,1 − q
. (12)

The dip-line NMO velocity (11) was originally obtained via the in-plane phase

velocity V by Tsvankin (1995):

Vnmo(0, φ) =
V (φ)

cosφ

√
1 + 1

V (φ)
d2V
dθ2 |θ=φ

1− tan φ
V (φ)

dV
dθ
|θ=φ

, (13)

where θ is the phase angle with vertical in the dip plane, and φ is the reflector dip.

In the form (11) V 2
nmo(0, p1) was first given by Cohen (1998). Equation (12) provides

a similar representation for the NMO velocity in the strike direction.

Equations (11) and (12) are always valid for transversely isotropic media with a

vertical symmetry axis because of the mirror symmetry with respect to any vertical

plane in this model. The vertical slowness in VTI media can be represented as

q(p1, p2) ≡ q
(√

p2
1 + p2

2

)
and, for p2 = 0, q,22 = q,1/p1. Then equation (12) for the

strike-line NMO velocity reduces to the expression obtained previously by Grechka

and Tsvankin (1998),

V 2
nmo(α =

π

2
, p1) =

q,1
p1(p1q,1 − q)

. (14)

Grechka and Tsvankin (1998) also gave an equivalent form of equation (14) in

terms of the phase-velocity function and the weak-anisotropy approximation for

V 2
nmo(α = π

2
, p1). Due to the axial symmetry of the VTI model, both the dip-line
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[equation (11)] and strike-line [equation (14)] NMO velocities depend on the deriva-

tives of q with respect to the single horizontal (in-plane) slowness component (p1).

The cubic equation for q2(p1) in VTI media is particularly easy to solve because

it splits into a quadratic equation for P − SV waves and a linear equation for the

SH-wave.

Finally, in isotropic media the vertical slowness can be directly expressed through

the reflector dip φ:

q =
√
V −2 − p2

1 =
cosφ

V
,

and equations (13) and (14) yield the well-known relationships presented by Levin

(1971):

Vnmo(α = 0) =
V

cosφ
, (15)

Vnmo(α =
π

2
) = V . (16)

Horizontal reflector.—For a horizontal reflector (p1 = p2 = 0), equation (8)

reduces to

V −2
nmo(α, 0, 0) = − q

q,11q,22 − q2
,12

[
q,22 cos2 α− 2q,12 sinα cosα + q,11 sin2 α

]
, (17)

where q and q,ij should be evaluated at the vertical slowness direction.

Further simplification can be achieved for a medium with a vertical symmetry

plane. Aligning the x1-axis with the symmetry-plane direction and substituting p1 = 0

into equation (10) [or q,12 = 0 into equation (17)] yields

V −2
nmo(α) = − q

q,11q,22

[
q,22 cos2 α + q,11 sin2 α

]
. (18)

As shown by Grechka and Tsvankin (1998), for an orthorhombic layer (that has two

mutually orthogonal symmetry planes) P -wave NMO velocity from equation (18)

becomes a simple function of the vertical P -wave velocity VP0 and the anisotropic

coefficients δ(1) and δ(2) defined by Tsvankin (1997b):
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V 2
nmo(α) = V 2

P0

(1 + 2δ(1)) (1 + 2δ(2))

1 + 2δ(2) sin2 α + 2δ(1) cos2 α
. (19)

Note that the linearized δ coefficients introduced by Mensch and Rasolofosaon (1997)

and Gajewski and Pšenč́ık (1996) within the framework of the weak-anisotropy ap-

proximation are not appropriate for the exact equation (19). Normal-moveout ve-

locities for vertical and horizontal transverse isotropy can be easily found as special

cases of equation (19) (Grechka and Tsvankin 1998). Equation (18) can also be used

to derive similar expressions for the split shear waves in orthorhombic media.

HORIZONTALLY LAYERED MEDIUM ABOVE A DIPPING REFLECTOR

Generalized Dix equation

Here, we show that the NMO ellipse for vertically inhomogeneous arbitrarily

anisotropic media above a dipping reflector (Figure 3) can be obtained by Dix-type

averaging of the matrices W responsible for the interval NMO ellipses. In our deriva-

tion we essentially follow the approach employed by Alkhalifah and Tsvankin (1995)

to obtain a “2-D” Dix-type NMO equation for rays confined to the incidence (verti-

cal) plane that cointains the CMP line. Their equation is valid only in the dip plane

of the reflector, which should also coincide with a symmetry plane of the medium. In

contrast, we make no assumptions about the mutual orientation of the CMP line and

reflector strike, and take full account of the out-of-plane phenomena associated with

both model geometry and depth-varying anisotropy.

To construct the effective NMO ellipse, we need to obtain the matrix W defined

in equation (4):

Wij(L) = τ(L)
∂pi

∂xj(L)
, (i, j = 1, 2) , (20)

where τ(L) is the total zero-offset traveltime and xi(L) is the horizontal ray displace-

ment between the zero-offset reflection point located at the L-th (generally dipping)
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interface and the surface (Figure 3). Due to the continuity of the ray, both τ(L) and

xi(L) are equal to the sum of the respective interval values:

τ(L) =
L∑

`=1

τ` , (21)

xi(L) =
L∑

`=1

xi,` , (i = 1, 2). (22)

(Note that here and below in the section on layered media, the comma in the sub-

scripts separates the layer index and does not denote differentiation.)

It is convenient to introduce an auxiliary matrix

Yij(L) ≡ ∂xi(L)

∂pj
, (i, j = 1, 2) (23)

with derivatives evaluated for the ray parameters p1 and p2 of the zero-offset ray.

Then

W ≡W(L) = τ(L) Y−1(L) . (24)

In a model composed of homogeneous layers with horizontal interfaces above the

reflector, the horizontal components p1 and p2 of the slowness vector remain con-

stant along any given ray between the reflection point and the surface. Therefore,

substituting equation (22) into equation (23), we find

Yij(L) ≡ ∂xi(L)

∂pj
=

L∑

`=1

∂xi,`
∂pj

≡
L∑

`=1

Yij,` . (25)

Equation (25) explains the reason for introducing the effective matrix Y(L): unlike

the matrix W, it can be decomposed into the sum of the matrices Y` for the individual

layers. Since all intermediate boundaries are horizontal, the ray displacements xi,`

in any layer coincide with the values that should be used in computing the matrix

W and the interval NMO velocity for this particular layer. Hence, we can apply

equation (24) to layer `:

W` = τ` Y
−1
` (26)
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and, therefore,

Y` = τ` W
−1
` . (27)

Substituting equations (27) and (25) into equation (24) leads to the final result:

W−1(L) =
1

τ(L)

L∑

`=1

τ` W
−1
` . (28)

Interval matrices W` in terms of the components of the slowness vector are given

by equation (7), while the traveltimes τ` should be obtained from the kinematic

ray tracing (i.e., by computing group velocity) of the zero-offset ray. Note that,

since the eigenvalues of the matrices W` and W(L) usually are positive (under the

assumptions discussed in Grechka and Tsvankin 1998), these matrices are nonsingular

and, therefore, can be inverted.

Equation (28) performs Dix-type averaging of the interval matrices W` to obtain

the effective matrix W(L) and the effective normal-moveout velocity Vnmo(α, L). It

should be emphasized that the interval NMO velocities Vnmo,`(α) (or the interval

matrices W`) in equation (28) are computed for the horizontal components of the

slowness vector of the zero-offset ray. Note that the slowness vector of the zero-offset

ray is normal to the reflector at the reflection point. This means that the interval

matrices W` in equation (28) correspond to the generally non-existent reflectors that

are orthogonal to the slowness vector of the zero-offset ray in each layer.

Rewriting equation (28) in the “Dix differentiation” form gives

W−1
` =

τ(`)W−1(`)− τ(`− 1)W−1(`− 1)

τ(`)− τ(`− 1)
. (29)

Equations (28) and (29) generalize the Dix (1955) formula for horizontally-layered

arbitrarily anisotropic media above a dipping reflector. Formally, this extention looks

relatively straighforward: the squared NMO velocities in the Dix formula are simply

replaced by the inverse matrices W−1. Also, the generalized Dix differentiation is

subject to the same limitation as its conventional counterpart: the thickness of the
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layer of interest (in vertical time) should not be too much smaller than the layer’s

depth.

In contrast to the conventional Dix equation, however, the effective matrix

W−1(` − 1) in equation (29) cannot be obtained from seismic data directly since

the corresponding reflector usually does not exist in the subsurface. Therefore, layer-

stripping by means of equation (29) involves recalculating each interval matrix W`

from one value of the slowness vector (corresponding to a certain real reflector in a

given layer) to another – that of the zero-offset ray. This procedure was discussed for

the 2-D case by Alkhakifah and Tsvankin (1995) and further developed for P -waves

in VTI media by Alkhalifah (1997); the latter paper also contains an application of

this algorithm to field data.

Only in the simplest special case of a horizontal reflector, does the slowness vector

of the zero-offset ray keep its direction (stays vertical) all the way to the surface, and

the interval matrices W` correspond to the NMO velocities from horizontal interfaces

that can be measured from reflection data. Note that although such a model is

horizontally-homogeneous, the zero-offset ray is not necessarily vertical (if the medium

does not have a horizontal symmetry plane), and the zero-offset reflection point may

be shifted in the horizontal direction from the CMP location.

Model with a vertical symmetry plane

Next, we consider the same special case as for the single-layer model – a medium

in which all layers have a common vertical symmetry plane that coincides with the

dip plane of the reflector (e.g., the symmetry is VTI). For such a model the matrices

W` in the individual layers are diagonal (see the previous section), and

W12,` = 0 . (30)

Consequently, the off-diagonal elements of the matrix W(L) [equation (28)] vanish

as well:
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W12(L) = 0 . (31)

If the matrix W is diagonal, its two components directly determine the semi-axes of

the NMO ellipse [see equation (3) and Appendix A]:

Wkk,` = [V
(k)

nmo,`]
−2 (32)

and

Wkk(L) = [V (k)
nmo(L)]−2 , (k = 1, 2) , (33)

where [V (1)
nmo ≡ Vnmo(α = 0)] and [V (2)

nmo ≡ Vnmo(α = π/2)] are the NMO velocities

measured in the dip and strike directions, respectively.

Substitution of equations (30) – (33) into equations (28) and (29) yields more

conventional Dix-type averaging and differentiation formulas for the dip- and strike-

components of the normal-moveout velocity:

[V (k)
nmo(L)]2 =

1

τ(L)

L∑

`=1

τ` [V
(k)

nmo,`]
2 (34)

and

[V
(k)

nmo,`]
2 =

τ(`)[V (k)
nmo(`)]2 − τ(`− 1)[V (k)

nmo(`− 1)]2

τ(`)− τ(`− 1)
, (k = 1, 2) . (35)

Equations (34) and (35) for the dip component (k = 1) of the NMO velocity were

derived by Alkhalifah and Tsvankin (1995) who considered 2-D wave propagation in

the dip plane of the reflector. Our derivation shows that the same Dix-type equa-

tions can be applied to the strike-component (k = 2) of the NMO velocity, which

determines the second semi-axis of the NMO ellipse. Despite the close resemblance

of expressions (34) and (35) to the conventional Dix equation, the interval NMO

velocities in equations (34) and (35), as in the more general Dix equation discussed

above, correspond to the non-existent reflectors normal to the slowness vector of the

zero-offset ray in each layer.
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Accuracy of the rms averaging of NMO velocities

Although the generalized Dix equation (28) operates with the matrices W−1
` , we

proved that Dix-type averaging can be applied to the dip- and strike-components of

the normal-moveout velocity in a model that has a common (throughgoing) vertical

symmetry plane aligned with the dip plane of the reflector. It is also clear from the

results of the previous section that the rms averaging of the interval NMO velocities

is valid in any azimuthal direction, if all interval NMO ellipses degenerate into cir-

cles. Hence, the error of this more conventional averaging procedure depends on the

elongation of the interval ellipses, a quantity controlled by both azimuthal anisotropy

and reflector dip. In Appendix C we show that this error increases rather slowly as

the interval ellipses pull away from a circle because the rms averaging of the interval

velocities [equation (C-3)] provides a linear approximation to the exact NMO velocity,

if both are expanded in the “elongation” coefficient.

To quantify this conclusion, we consider two numerical examples. Figure 4 shows

the azimuth-dependent P -wave NMO velocity in an orthorhombic medium consisting

of three horizontal layers with strong azimuthal anisotropy. While the exact NMO

ellipse (solid line) happens to be close to a circle, the approximate, rms-averaged

normal-moveout velocity (dashed line) has an oval nonelliptical shape because the

interval NMO ellipses differ significantly from circles. The maximum error of the

rms averaging is about 6.3%, which will lead to much higher errors in the interval

velocities after application of the Dix differentiation (35). Evidently, for this model it

is necessary to use the exact NMO equation, which properly accounts for the influence

of azimuthal anisotropy on normal moveout.

For models with moderate azimuthal anisotropy and a horizontal reflector (i.e.,

with the interval NMO-velocity variation limited by 10-20%), the accuracy of the rms

averaging of NMO velocites is much higher. This implies that for such media it is

possible to obtain the interval NMO velocity by the conventional Dix differentiation
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at a given azimuth. In the special case of horizontally layered HTI media (transverse

isotropy with a horizontal axis of symmetry), the same conclusion was made by Al-

Dajani and Tsvankin (1996).

It should be emphasized, however, that for dipping reflectors the Dix differentia-

tion cannot be applied in the standard fashion (even if the rms-averaging equation

provides sufficient accuracy) because the interval NMO velocities are still calculated

for non-existent reflectors and cannot be found directly from the data. In the pres-

ence of anisotropy, interval parameter estimation using dipping events is impossible

without a layer-stripping procedure that requires reconstruction of the NMO ellipses

in the overburden and, therefore, cannot be carried out for a single azimuth.

On the whole, we would recommend to use the generalized Dix equation for any

azimuthally anisotropic model, provided the azimuthal coverage of the data is suffi-

cient to obtain the dependence Vnmo(α). Since our algorithm operates with the NMO

ellipses rather than individual azimuthal moveout measurements, it has the addi-

tional advantage of smoothing the azimuthal variation of NMO velocity, which helps

to eliminate “outliers” and stabilize the interval parameter estimation. A field-data

application of the generalized Dix equation is discussed below.

Another example, in which the interval NMO ellipses differ from circles due to the

influence of reflector dip in a purely isotropic layered model, is shown in Figure 5.

Obviously, in this model the dip plane of the reflector always represents a symmetry

plane, and one of the axes of all interval NMO ellipses is parallel to the dip direction.

As shown in the previous section, in this case the rms averaging of the interval NMO

velocities [equations (34) or (35)] becomes exact for the dip (azimuth α = 0◦) and

strike CMP lines (azimuth α = 90◦), where the interval NMO values are well known

(Levin 1971). Figure 5 corroborates this conclusion: for azimuths α = 0◦ and α = 90◦

the rms-averaged NMO velocity Ṽnmo is equal to the exact value Vnmo. In all other

azimuths, equation (C-3) gives only an approximation to the exact NMO velocity.

However, Figure 5 indicates that this approximation is quite accurate for small and
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moderate reflector dips. The maximum error of equation (C-3), for example, is only

0.22% for reflector dip φ = 40◦ and 1.85% for dip φ = 60◦. Clearly, the error increases

with dip because the interval NMO ellipses become more elongated and diverge more

from a circle.

Again, since the reflector is dipping, the interval NMO velocities in Figure 5 are

calculated for the nonzero horizontal components of the slowness vector determined

by the reflector dip. These interval velocities correspond to non-existent reflectors

and need to be recalculated from the NMO velocities of the horizontal events (which

is, however, straightforward for isotropic media).

INHOMOGENEOUS ANISOTROPIC MEDIA

The results of Grechka and Tsvankin (1998), briefly reviewed above, show that

there is no need to perform a full-scale multi-azimuth ray tracing to compute reflection

traveltimes on conventional CMP spreads. It is clear from equation (3) that the NMO

ellipse (6) and conventional-spread moveout as a whole are fully defined by only three

quantities – W11, W12, and W22. Thus, three well-separated azimuthal measurements

of Vnmo(α) [which usually can be obtained using hyperbolic semblance analysis based

on equation (1)] are sufficient to reconstruct the NMO ellipse and find the NMO

velocity for any azimuth α. In practice, the values of Vnmo(α) determined on finite

CMP spreads may be distorted by the influence of nonhyperbolic moveout. However,

reflection moveout (especially that of P -waves) for spreadlengths close to the distance

of the CMP from the reflector is typically close to hyperbolic; this has been shown

in a number of publications (Tsvankin and Thomsen 1994; Tsvankin 1995; Grechka

and Tsvankin 1998) and is further illustrated by numerical examples in this work.

Although calculation of Wij from Vnmo(α) obtained in three azimuths is much

more efficient than multi-azimuth ray tracing, it still requires a considerable amount

of computation and does not take advantage of the explicit expressions for the pa-
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rameters of the NMO-velocity ellipse discussed above. It is much more attractive to

build the NMO ellipse directly from equations (3) and (4), which requires obtaining

the spatial derivatives of the ray parameter ∂pi/∂xj at the CMP location (i.e., for the

zero-offset ray). Here, we outline an efficient method of calculating these derivatives

based on the dynamic ray-tracing equations for the zero-offset ray.

Let us consider the zero-offset ray in the ray coordinates (γ1, γ2, τ). The parameter

τ has the meaning of the traveltime along the ray, while γ1 and γ2 are supposed to

uniquely determine the raypath and can be chosen, for instance, as the horizontal

components of the slowness vector (p1 and p2). Here, we use another option suggested

by Kashtan (1982) and Kendall and Thomson (1989), and define γ1 and γ2 as the

polar and azimuthal angles of the slowness (wave-normal) vector.

The derivatives ∂pi/∂xj , needed to calculate Vnmo(α), can be formally written as

∂pi
∂xj

=
∂pi
∂γ1

∂γ1

∂xj
+
∂pi
∂γ2

∂γ2

∂xj
+
∂pi
∂τ

∂τ

∂xj
. (36)

Using the matrix notation

P =

[
∂p

∂γ1
,
∂p

∂γ2
,
∂p

∂τ

]
, X =

[
∂x

∂γ1
,
∂x

∂γ2
,
∂x

∂τ

]
(37)

and the fact that the inverse matrix X−1 contains the rows

X−1 =




∂γ1/∂x

∂γ2/∂x

∂τ/∂x



,

we represent equation (36) in the form

∂pi
∂xj

= P X−1 . (38)

Hence, if the matrices (37) have been calculated for the zero-offset ray at the CMP

(surface) location, the derivatives ∂pi/∂xj , (i, j = 1, 2) can be determined as the

upper-left 2× 2 submatrix of the 3× 3 matrix (38). Note that the values of ∂pi/∂xj

used in the NMO-velocity calculation correspond to one-way propagation from the
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zero-offset reflection point to the surface (Grechka and Tsvankin, 1998). In other

words, both p and x should be computed for rays emanating from an imaginary

source located at the reflection point of the zero-offset ray.

The third column of the matrices P and X [i.e. the derivatives ∂p/∂τ and ∂x/∂τ ]

can be obtained directly from the equations of kinematic ray-tracing. To find the

first and second columns [i.e., the derivatives ∂p/∂γn and ∂x/∂γn, (n = 1, 2)], we

need to integrate so-called dynamic ray-tracing equations (e.g., Červeny, Molotkov

and Pšenč́ık 1977; Kendall and Thomson 1989). The derivatives needed to obtain

the normal-moveout velocity are exactly the same as those required to compute the

geometrical spreading along the zero-offset ray. This result is not entirely surprising

because NMO velocity is related to the wavefront curvature (Shah 1973), which, in

turn, determines geometrical spreading.

Thus, the azimuth-dependent NMO velocity in inhomogeneous arbitrarily

anisotropic media can be computed by integrating the dynamic ray-tracing equa-

tions for the one-way zero-offset ray and substituting the results into equations (38),

(4) and (3). The zero-offset traveltime τ0 required in equation (4) can be found using

kinematic ray tracing (e.g., Červeny 1972; Kendall and Thomson 1989). Since this

approach requires dynamic tracing of only one zero-offset ray, it is orders of magni-

tude less time consuming than is the tracing of hundreds of reflected rays for different

azimuths and source-receiver offsets as would otherwise be needed.

In the special case of a medium composed of arbitrarily anisotropic homogeneous

layers (or blocks) separated by smooth interfaces, the ray trajectory becomes piecewise

linear, and the integration of the kinematic ray-tracing equations reduces to summa-

tion along straight ray segments. Integration of the dynamic ray-tracing equations

becomes relatively straightforward as well, because it only requires the continuation

of the derivatives ∂x/∂γn and ∂p/∂γn across homogeneous layers and (smooth) in-

terfaces (Kashtan 1982). For plane interfaces, Kashtan’s results become especially

simple and include only quantities which are obtained during the kinematic ray-
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tracing anyway (e.g., the group velocity and traveltime). Therefore, the additional

cost of computing the derivatives ∂x/∂γn and ∂p/∂γn in this case is minimal.

SYNTHETIC EXAMPLES

The accuracy of our single-layer NMO equation has been discussed above (see

Figure 2). Here, we carry out synthetic tests to compare the hyperbolic moveout

equation parameterized by the exact NMO velocity with ray-traced traveltimes for

inhomogeneous anisotropic models.

Figure 7 illustrates the performance of the Dix equation (28) for a model that

includes three anisotropic layers with different symmetry above a dipping reflector

(Figure 6). We used ray tracing to calculate P -wave reflection traveltimes along six

azimuths with increment 30◦ and obtained moveout velocities (dots in Figure 7a) by

fitting a hyperbola to the exact moveout. Despite the complexity of the model, the

best-fit ellipse found from the finite-spread moveout velocities (dashed) are sufficiently

close to the theoretical NMO ellipse (solid) computed from equations (28) and (3). A

small difference between the ellipses is caused by nonhyperbolic moveout associated

with both anisotropy and vertical inhomogeneity. It is clear from Figure 7b that

the influence of nonhyperbolic moveout becomes substantial only at source-receiver

offsets that exceed the distance between the CMP and the reflector.

A similar example, but this time for a laterally inhomogeneous medium above

the reflector is shown in Figure 8. The model contains three transversely isotropic

layers with dipping lower boundaries and differently oriented symmetry axes. The

NMO ellipse (solid) provides an excellent approximation to the effective moveout

velocity (dots) for all four azimuths used in the computation, with a maximum error

of just about 1.4%. In addition to verifying the accuracy of our algorithm based on

the evaluation of the derivatives ∂x/∂γn and ∂p/∂γn, this test demonstrates again

that the analytic (zero-spread) normal-moveout velocity adequately describes P -wave
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reflection traveltimes on conventional-length spreads.

FIELD-DATA EXAMPLE

The main purpose of the field-data example discussed here is to show how the

generalized Dix formula can be applied to the extraction of interval NMO ellipses from

reflection data. We used a 3-D P -wave data set acquired by ARCO (with funding

from the Gas Research Institute) in the Powder River Basin, Wyoming, USA. A

detailed description of this survey and preliminary processing results can be found in

Corrigan et al. (1996) and Withers and Corrigan (1997). The goal of the experiment

was to employ the azimuthal dependence of P -wave signatures in characterization

of a fractured reservoir. Hence, the acquisition was carefully designed to provide a

good offset coverage in a wide range of source-receiver azimuths. To enhance the

signal-to-noise ratio, the data were collected into a number of “superbins,” each with

an almost random distribution of azimuths and offsets (Figure 9). Preprocessing

included statics corrections and was designed to preserve the azimuthal dependence

of reflection traveltimes (Corrigan et al. 1996; Withers and Corrigan 1997).

Figure 10 displays the composite CMP gather for one of the superbins in an

azimuthal sector 20◦ wide (i.e., the sector includes all source-receiver traces with

azimuths different by less than 20◦); two prominent reflection events used in the

analysis below are marked by arrows. According to Withers and Corrigan (1997),

the reflection at a two-way vertical time of 2.14 s corresponds to the bottom of the

Frontier/Niobrara formations, and the event at 2.58 s is the basement reflection. The

traces are fairly noisy, which is typical for land acquisition, but the data quality was

sufficient for azimuthal velocity analysis.

Below we show the results of our velocity analysis for a typical superbin from the

survey area. One possible way to obtain the NMO ellipse for a given reflection is

to divide the data into a number of azimuthal sectors (bins), determine the best-fit
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stacking (moveout) velocity for each sector and approximate the angular stacking-

velocity dependence with an elliptical function. We found, however, that the results

of this analysis are often influenced by the number and size of the azimuthal sectors.

A more stable way to reconstruct the NMO-velocity function is to perform semblance

analysis for the whole superbin at each zero-offset time. Our approach is based on

a 3-D semblance scan over the components of the matrix W [see equation (3)] using

the hyperbolic moveout equation (1). (Since the maximum offset was a little smaller

than the depth of the basement, the moveout for both events was close to hyperbolic.)

To make this search less time consuming, we first obtain the best-fit “isotropic” (i.e.,

azimuth-independent) velocity Vnmo and then scan over two relatively small quantities

responsible for the deviation of the NMO ellipse from the already obtained average

“NMO circle.” Application of efficient minimization algoritms makes the second stage

relatively fast and allows us to avoid a full-scale 3-D scanning.

As illustrated by Figure 11, accounting for the azimuthal variation of stacking

(moveout) velocity has no visible influence on the semblance peaks for the reflection

at 2.14 s and a weaker event at about 2.32 s, which means that the NMO velocity

for these reflections is practically independent of azimuth. In contrast, the azimuthal

velocity analysis does increase the value of semblance for the deeper (basement) re-

flection by about 10%. Since for the two shallow events application of the elliptical

NMO equation failed to produce any noticeable change in the semblance value, the

10% increase for the deepest event stands out enough to be diagnostic of a non-

negligible (although, definitely, not large) azimuthal variation of stacking velocity.

This example shows that mixing up all source-receiver azimuths in stacking-velocity

analysis (as is conventionally done in 3-D processing) may impair the quality of stack

in the presence of azimuthal anisotropy.

Thus, Figure 11 indicates that the azimuthal dependence of stacking velocity

for this particular superbin is non-negligible only for the reflection at t0 = 2.58s.

This observation is confirmed by the shape of the effective NMO ellipses for both
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events obtained from semblance analysis (Figure 12a). The stacking velocity of the

basement reflection along the semi-major axis of the ellipse is almost 4% higher than

in the orthogonal direction; the corresponding number for the reflection at 2.14 s

is just 0.6%. Clearly, even for the basement event the azimuthal variation of NMO

velocity in the study area is relatively weak, which complicates reliable reconstruction

of NMO ellipses from reflection moveout. Note, however, that the generalized Dix

equation applied here remains valid irrespective of how elongated the ellipses are.

Since the dips in the survey area are extremely small (Corrigan et al. 1996),

the azimuthal dependence of stacking velocity can be attributed to the influence of

azimuthal anisotropy associated with vertical fractures (the presence of fractures in

this area was established by using borehole and shear-wave methods). To study the

interval properties for vertical times between 2.14 and 2.58 s, we applied the gener-

alized Dix equation (29) to the effective NMO ellipses. The pronounced azimuthal

variation in the interval NMO velocity (12.3%, Figure 12b) can be explained by the

intense fracturing in the layer immediately above the basement. The direction of

the semi-major axis of the interval NMO ellipse is in general agreement with the

predominant fracture orientation in the deeper part of the section determined from

borehole data and shear-wave splitting analysis (Withers and Corrigan 1997). Com-

plete processing/inversion results for the survey area will be reported in forthcoming

publications.

DISCUSSION AND CONCLUSIONS

Azimuth-dependent normal-moveout velocity around a certain CMP location is

described by a simple quadratic form and usually defines an elliptical curve if plot-

ted in each azimuthal direction. The orientation and semi-axes of the ellipse are

determined by the properties of the medium and the direction of the reflector normal

at the zero-offset reflection point. Using this general result obtained by Grechka and
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Tsvankin (1998), we have presented a series of solutions for the exact normal-moveout

velocity of pure modes in anisotropic models of various complexity.

For a homogeneous anisotropic layer above a dipping reflector, NMO velocity

was found explicitly as a function of the slowness vector corresponding to the zero-

offset ray. This single-layer equation is valid for arbitrary anisotropic symmetry and

any orientation of the CMP line. The vertical component of the slowness vector

and its derivatives with respect to the horizontal slownesses, needed to compute the

NMO velocity, can be obtained in an explicit form using the Christoffel equation. In

addition to simplifying moveout modeling, our NMO equation can be effectively used

in moveout inversion, as well as in developing weak-anisotropy approximations for

different symmetries.

If the model contains a stack of homogeneous arbitrarily anisotropic layers above

a dipping reflector, the NMO ellipse should be obtained by a Dix-type averaging of

the single-layer expressions described above. Instead of the squared NMO velocities

in the conventional Dix formula, our generalized equation operates with the interval

matrices W` that describe the NMO ellipses corresponding to the individual layers.

To find azimuth-dependent normal-moveout velocity, it is sufficient to compute the

zero-offset traveltime and the interval NMO ellipses for the slowness vector of the

zero-offset ray. The generalized Dix equation can be used to perform moveout-based

interval parameter estimation in vertically inhomogeneous anisotropic models of any

symmetry. It should be emphasized, however, that application of the generalized Dix

differentiation to dipping events entails full-scale layer-stripping because the corre-

sponding NMO ellipses in the individual layers cannot be directly measured from the

data.

One important special case considered in detail is a model with the same (through-

going) vertical symmetry plane in all layers that also coincides with the dip plane of

the reflector (e.g., the medium above the reflector is TI with a vertical symmetry

axis). Because of the mirror symmetry with respect to the dip plane, the axes of

26



the NMO ellipse are aligned with the dip and strike directions of the reflector. The

generalized Dix equation in such a model reduces to the rms averaging of the dip-line

and strike-line NMO velocities in the individual layers (these averages determine the

semi-axes of the NMO ellipse). This result represents a 3-D extension of the Dix-type

equation developed by Alkhalifah and Tsvankin (1995) for normal moveout in the dip

plane of the reflector.

Except for this special case, the effective NMO velocity computed by the Dix

rms averaging generally takes an oval anelliptic form that thus deviates from the

exact NMO ellipse. Still, this deviation is not significant if the interval NMO ellipses

are close to being circles, which implies the absence of large dips and of significant

azimuthal anisotropy. In any case, it is preferable to apply the generalized Dix equa-

tion (as opposed to the conventional Dix differentiation at a given azimuth) for any

azimuthally anisotropic model because in addition to being more accurate it also pro-

vides the important advantage of smoothing the effective moveout velocities using the

correct (elliptical) functional form and thus reducing the instability in interval pa-

rameter estimation. Application of the generalized Dix equation to moveout inversion

in azimuthally anisotropic media using horizontal and dipping events is discussed in

Grechka and Tsvankin (1997).

We complete the analysis by considering general inhomogeneous media and pre-

senting an algorithm that leads to a significant reduction in the amount of compu-

tations needed to obtain the NMO velocity and conventional-spread reflection move-

out. All information required to construct the NMO ellipse is contained in the results

of the dynamic ray tracing (i.e., computation of geometrical spreading) of a single

(zero-offset) ray. Although evaluation of geometrical spreading requires solving an

additional system of differential equations together with the kinematic ray-tracing

equations, this algorithm is orders of magnitude more efficient than multi-offset,

multi-azimuth ray tracing. Furthermore, if the model consists of homogeneous layers

or blocks separated by plane dipping interfaces, all quantities needed to find the NMO
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ellipse can be computed during the kinematic tracing of the zero-offset ray.

The normal-moveout velocity discussed here is defined in the zero-spread limit and

cannot account for nonhyperbolic moveout caused by anisotropy and inhomogene-

ity on finite-spread CMP gathers. Nevertheless, our numerical examples for various

anisotropic models demonstrate that the hyperbolic moveout equation parameterized

by NMO velocity provides good accuracy in the description of reflection moveout

(especially that of P -waves) on conventional spreads close to the distance between

the CMP and the reflector. Even if the hyperbolic moveout approximation becomes

inadequate, NMO velocity can be obtained by means of nonhyperbolic moveout anal-

ysis (Tsvankin and Thomsen 1994; Sayers and Ebrom 1997). Hence, the results of

this work can be efficiently used in traveltime inversion and dip-moveout processing

for arbitrarily anisotropic media.

To show the feasibility of applying the generalized Dix equation in fracture detec-

tion, we processed wide-azimuth 3-D P -wave data acquired over a fractured reservoir

in the Powder River Basin, Wyoming, USA. Azimuthal moveout analysis followed by

the Dix differentiation allowed us to estimate the fracture orientation and magnitude

of azimuthal anisotropy (measured by P -wave moveout velocity) in several intervals

of interest. The direction of the semi-major axis of the interval NMO ellipse in the

strongly anisotropic layer above the basement is in agreement with the known fracture

trend in this part of the section.
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APPENDIX A–RELATION BETWEEN THE MATRIX W AND THE

NMO-VELOCITY ELLIPSE

Azimuth-dependent normal-moveout velocity is described by equation (3) of the

main text as a general second-order curve in the horizontal plane. The expression for

Vnmo(α) can be simplified further by aligning the horizontal coordinate axes with the

eigenvectors of the symmetric matrix W (Grechka and Tsvankin 1998). This rotation

reduces equation (3) to

V −2
nmo(α) = λ1 cos2(α− β) + λ2 sin2(α− β) , (A-1)

where λ1 and λ2 are the eigenvalues of the matrix W, and β is the angle between the

eigenvector corresponding to λ1 and the x1-axis.

To verify the equivalence between equations (A-1) and (3), we expand

cos2(α− β) = cos2 α cos2 β + 2 sinα sin β cosα cos β + sin2 α sin2 β

and

sin2(α− β) = cos2 α sin2 β − 2 sinα sin β cosα cos β + sin2 α cos2 β .

Equations (A-1) and (3) are identical if

W11 = λ1 cos2 β + λ2 sin2 β , (A-2)

W12 =
1

2
(λ1 − λ2) sin 2β , (A-3)

and

W22 = λ1 sin2 β + λ2 cos2 β . (A-4)

Inverting equations (A-2) – (A-4) for λ1,2 and β yields

λ1,2 =
1

2

[
W11 +W22 ±

√
(W11 −W22)2 + 4W 2

12

]
(A-5)

32



and

tanβ =
W22 −W11 +

√
(W22 −W11)2 + 4W 2

12

2W12
, (W12 6= 0) . (A-6)

Equations (A-5) and (A-6) show that λ1,2 are indeed the eigenvalues of W and tanβ is

equal to the ratio of the components “2” and “1” of the eigenvector corresponding to

λ1. If W12 = 0, the matrix W is diagonal, and equation (3) reduces to equation (A-1)

without any rotation.

As follows from equation (A-1), Vnmo(α) represents an ellipse in the horizontal

plane if the eigenvalues λ1,2 are positive (Grechka and Tsvankin 1998). The “princi-

pal” values of the azimuth-dependent NMO velocity (the semi-axes of the ellipse) are

given by

V (i)
nmo =

1√
λi
, (i = 1, 2) . (A-7)
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APPENDIX B–NMO VELOCITY IN A SINGLE LAYER

Here, we obtain the exact expression for the NMO velocity from a dipping reflector

beneath a homogeneous arbitrarily anisotropic layer. The derivation is based on the

general equations (3) and (4) describing the NMO ellipse and follows the approach

suggested for the 2-D case by Cohen (1998).

To evaluate the derivatives ∂xi/∂pj, we have to relate the horizontal ray dis-

placements (x1, x2) between the zero-offset reflection point and the surface to the

horizontal components of the slowness vector (p1, p2). We start by introducing the

group-velocity vector g,

xi = giτ , (i = 1, 2, 3) , (B-1)

where τ is the one-way traveltime. Using the fact that the projection of the group-

velocity vector on the slowness direction is equal to phase velocity, we can write

p · g = p1g1 + p2g2 + p3g3 = 1 . (B-2)

Differentiating equation (B-2) with respect to pi (i = 1, 2) and taking into account

that the vertical slowness component p3 can be considered as a function of p1 and p2

yields

gi = −∂p3

∂pi
g3 − p · ∂g

∂pi
, (i = 1, 2) .

Since the slowness vector p is normal to the group-velocity surface (wavefront)

g(p1, p2), while the vectors ∂g/∂pi are tangent to this surface, p · ∂g
∂pi

= 0. Hence,

gi = −q,ig3 , (i = 1, 2) , (B-3)

where q ≡ q(p1, p2) ≡ p3 denotes the vertical slowness, and q,i ≡ ∂q/∂pi. Substitution

of equations (B-3) into equation (B-2) gives a representation of the vertical group-

velocity component that will be needed later in the derivation:
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g3 =
1

q − p1q,1 − p2q,2
. (B-4)

Using equations (B-3), we rewrite the horizontal ray displacements xi (i = 1, 2)

from equations (B-1) as

xi = −q,ig3τ , (i = 1, 2) . (B-5)

Note that g3τ is the depth of the zero-offset reflection point, which is independent

of the slowness components (p1, p2). Therefore, differentiating equations (B-5) yields

Yij ≡
∂xi
∂pj

= −q,ijg3τ , (B-6)

where q,ij ≡ ∂2q/∂pi∂pj is a symmetric matrix of the second derivatives of the vertical

slowness.

The NMO ellipse is determined by the matrix W [equation (4)],

W = τ0Y
−1 , (B-7)

where the inverse matrix Y−1 should be evaluated for the horizontal slowness com-

ponents of the zero-offset ray.

Substituting Yij from equation (B-6) into equation (B-7) and using expression (B-

4) for g3, we obtain

W = τ0Y
−1 =

p1q,1 + p2q,2 − q
q,11q,22 − q2

,12




q,22 −q,12

−q,12 q,11


 . (B-8)

With the matrix W from equation (B-8), equation (3) of the NMO ellipse in a

homogeneous arbitrarily anisotropic layer takes the following form:

V −2
nmo(α) ≡ V −2

nmo(α, p1, p2)

=
p1q,1 + p2q,2 − q
q,11q,22 − q2

,12

[
q,22 cos2 α− 2q,12 sinα cosα + q,11 sin2 α

]
. (B-9)
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APPENDIX C–RELATION BETWEEN THE EXACT AND

RMS-AVERAGED NMO VELOCITY

Here, we examine the accuracy of the rms averaging of the interval NMO velocities

for a model that consists of a stack of horizontal arbitrarily anisotropic layers above a

dipping reflector. The interval NMO velocity in the `-th layer is given by equation (3):

V −2
nmo,`(α) = W11,` cos2 α + 2W12,` sinα cosα +W22,` sin2 α . (C-1)

The symmetric matrix W` is expressed through its eigenvalues λ1,` and λ2,` in equa-

tions (A-2) – (A-4). Here, we assume that λ1,` > λ2,`:

λ2,` ≡ λ` ,

λ1,` ≡ λ`(1 + µ`) , (C-2)

where

µ` > 0 ,

for all `.

An approximate NMO velocity is obtained by rms averaging of the interval values

at the azimuth α [equation (C-1)] as

Ṽ 2
nmo(L, α) =

1

τ(L)

L∑

`=1

τ`
[
W11,` cos2 α+ 2W12,` sinα cosα+W22,` sin2 α

]−1
(C-3)

In general, Ṽnmo(L, α) from equation (C-3) may be thought of as an approximation

of the exact normal-moveout velocity Vnmo(L, α) from equation (3),

V 2
nmo(L, α) =

[
W11(L) cos2 α + 2W12(L) sinα cosα +W22(L) sin2 α

]−1

=
[
W−1

11 (L)W−1
22 (L)− (W−1

12 (L))2
]

×
[
W−1

22 (L) cos2 α− 2W−1
12 (L) sinα cosα +W−1

11 (L) sin2 α
]−1

, (C-4)
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where W−1
ij (L) are the elements of the inverse matrix W−1(L) given by the Dix-type

equation (28):

W−1(L) =
1

τ(L)

L∑

`=1

τ` W
−1
` . (C-5)

Clearly, the direct rms averaging of NMO velocities in equation (C-3) is different

from the more complicated averaging of the inverse matrices W−1
` [equation (C-5)]

used to obtain the exact NMO velocity in equation (C-4). Nevertheless, we will

show that the two representations of the NMO velocity become identical in the linear

approximation with respect to µ`, i.e.,

Ṽnmo(L, α) = Vnmo(L, α) +O(µ2
`) . (C-6)

In the following derivation, we keep only terms independent of or linear in µ`.

Combining equations (C-2) and (A-2) – (A-4) allows us to express the interval ma-

trices W` through the eigenvalue λ` and µ`,

W11,` = λ` (1 + µ` cos2 β`) ,

W12,` = λ` µ` sin β` cos β` , (C-7)

W22,` = λ` (1 + µ` sin2 β`) ,

where β` are the rotation angles of the interval NMO ellipses introduced in Appendix

A.

Substituting equation (C-7) into equation (C-3), we find the following linearized

(in µ`) expression for the rms-averaged NMO velocity:

Ṽ 2
nmo(L, α) =

1

τ(L)

L∑

`=1

τ`
λ`

[
1− µ` cos2(α− β`)

]
. (C-8)

Next, we need to evaluate the effective NMO ellipse [equation (C-4)] in the same

approximation. Using equation (C-7) and dropping terms quadratic in µ`, we repre-

sent the inverse matrices W−1
` as
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W−1
` =

1

λ`




1− µ` cos2 β` −µ` sin β` cos β`

−µ` sin β` cos β` 1− µ` sin2 β`


 . (C-9)

After averaging the matrices (C-9) in accordance with equation (C-5) and substi-

tuting the result into equation (C-4), we obtain

V 2
nmo(L, α) =

1

τ(L)

L∑

`=1

τ`
λ`

[
1− µ` cos2(α− β`)

]
. (C-10)

Since equations (C-8) and (C-10) are identical, the rms-averaged velocity Ṽnmo is

indeed equal to the exact NMO velocity in the linear approximation with respect to

µ` [equation (C-6)]. Therefore, Ṽnmo should represent a good approximation in models

with small and moderate values of µ`, for which terms quadratic in µ` can be ignored.
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FIGURES

FIG. 1. Normal-moveout velocity is calculated on CMP lines with different azimuths

and a fixed midpoint location.

FIG. 2. Comparison of the P -wave NMO velocity from equation (8) (solid line) and

the moveout (stacking) velocity (dots) obtained by least-squares fitting of a hyperbola

to the exact traveltimes computed for speadlength equal to the distance between the

CMP and the reflector. The model contains a homogeneous orthorhombic layer (with

the vertical symmetry planes at azimuths 0◦ and 90◦) above a plane dipping reflector;

the dip and azimuth of the reflector are equal to 30◦ (azimuthal angles are shown along

the perimeter of the plot). The relevant medium parameters [in Tsvankin’s (1997b)

notation] are VP0 = 2.0 km/s, ε(1) = 0.110, δ(1) = −0.035, ε(2) = 0.225, δ(2) = 0.100,

δ(3) = 0. The vertical symmetry plane at zero azimuth has the properties of the VTI

model of Dog Creek shale, while the second vertical symmetry plane is equivalent to

Taylor sandstone; both models are described in Thomsen (1986).

FIG. 3. A dipping reflector beneath a horizontally layered overburden. Normal-

moveout velocity in this model can be obtained from the generalized Dix equation

derived here.

FIG. 4. Comparison of the exact P -wave NMO ellipse (solid line) and an approxi-

mate NMO velocity obtained by the Dix-type averaging [equation (C-3), dashed line].

The model contains three horizontal orthorhombic layers with a horizontal ([x1, x2])

symmetry plane. The azimuth of the [x1, x3] symmetry plane (also, the direction of

one of the axes of the interval NMO ellipse) in the first (subsurface) layer is β1 = 0◦,

in the second layer – β2 = 45◦, and in the third layer – β3 = 60◦. The vertical

P -wave velocities are VP0,1 = 2.0 km/s, VP0,2 = 3.0 km/s, and VP0,3 = 3.5 km/s;

the interval zero-offset traveltimes are equal to each other (τ1 = τ2 = τ3 = 1.0 s).
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The relevant anisotropic parameters [in Tsvankin’s (1997b) notation] are (subscripts

denote the layer number): Layer 1 – δ
(1)
1 = 0.25, δ

(2)
1 = −0.15, Layer 2 – δ

(1)
2 = −0.20,

δ
(2)
2 = 0.20, Layer 3 – δ

(1)
3 = 0.25, and δ

(2)
3 = −0.15.

FIG. 5. The rms-averaged NMO velocity Ṽnmo [equation (C-3)] normalized by the

exact value in isotropic media; the azimuth is measured with respect to the dip plane

of the reflector. The model contains three layers above the reflector with the interval

velocities V1 = 2.0 km/s, V2 = 3.0 km/s, and V2 = 3.5 km/s and the interval zero-

offset traveltimes τ1 = τ2 = τ3 = 1.0 s. The reflector dips are φ = 40◦ (dotted line),

φ = 60◦ (dashed-dotted), φ = 70◦ (dashed), and φ = 80◦ (solid).

FIG. 6. The model used in Figure 7 to check the accuracy of the generalized Dix

equation. Layer 1 is transversely isotropic with a vertical symmetry axis (VTI) and

relevant parameters VP0,1 = 2.5 km/s, ε1 = 0.2, δ1 = 0.1. Layer 2 is TI with a

horizontal symmetry axis (azimuth β2 = 30◦) and VP0,2 = 3.0 km/s, ε
(V)
2 = −0.2,

δ
(V)
2 = −0.15 (for HTI notation, see Tsvankin 1997a). Layer 3 is orthorhombic with

VP0,3 = 3.5 km/s, ε
(1)
3 = 0.2, δ

(1)
3 = 0.15, ε

(2)
3 = −0.3, δ

(2)
3 = −0.2, δ

(3)
3 = 0.05; the

azimuth of the [x1, x3] symmetry plane β3 = 60◦. The interface depths are z1 = 1.0

km, z2 = 2.0 km, z3 = 3.0 km. The reflector dip is 20◦, the azimuth of the dip plane

is 0◦.

FIG. 7. (a) Comparison between the theoretical P -wave NMO ellipse calculated

from the generalized Dix equation (solid) and moveout velocities obtained from ray-

traced traveltimes for spreadlength equal to the distance between the CMP and the

reflector (dots). The model is shown in Figure 6; the dashed line marks the best-fit

ellipse found from the finite-spread moveout velocities. (b) Hyperbolic moveout curve

parameterized by the exact NMO velocity (solid) vs. computed traveltimes (dots) at

azimuths 60◦ and 150◦; D is the CMP-reflector distance.
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FIG. 8. Comparison of the theoretical P -wave NMO ellipse (solid) and finite-spread

moveout velocity (dots; the spreadlength is equal to the CMP-reflector distance) in

an azimuthally-anisotropic model with dipping layers. The NMO ellipse is computed

from equations (3) and (4), with the spatial derivatives of the ray parameter evalu-

ated using equation (38). The model consists of three dipping transversely layers with

different orientation of the symmetry axis. The first layer is VTI with VP0,1 = 2.0

km/s, ε1 = 0.2, and δ1 = 0.1. The second layer is HTI with the azimuth of the

symmetry axis of 30◦ and VP0,2 = 2.4 km/s, ε2 = 0.15, δ2 = 0. The third layer is TI

with a tilted symmetry axis (the azimuth is 60◦, the tilt is 30◦) and VP0,3 = 3 km/s,

ε3 = 0.25, δ3 = 0.08 [for all layers we used the generic Thomsen’s (1986) parameters].

The azimuth ψ and dip φ of the bottom of the first layer are ψ1 = 70◦ and φ1 = 10◦;

for the bottom of the second layer ψ2 = 20◦ and φ2 = 15◦; for the reflector ψ3 = 50◦

and φ3 = 35◦. The distances between the CMP and the interfaces are 1 km, 2 km,

and 3 km.

FIG. 9. Plan view of the sourse and receiver positions for a typical superbin with

a radius of 2 km. The maximum source-receiver offset is close to the depth of the

basement; the basement reflection is recorded at about 2.58 s (see Figure 10).

FIG. 10. Common-midpoint gather composed of traces with source-receiver azimuths

within a 20◦ azimuthal sector centered at N30E. Arrows mark the reflection events

used in our analysis.

FIG. 11. Semblance curves obtained by conventional velocity analysis that ignores

the azimuthal dependence of stacking velocity (dashed) and by our azimuthal velocity

analysis (solid).
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FIG. 12. (a) The effective NMO ellipses for the reflection events at 2.14 s (dashed)

and 2.58 s (solid) reconstructed from the data. N4E is the azimuth of the semi-major

axis of the NMO ellipse for the deeper event. (b) The corresponding interval NMO

ellipse computed from the generalized Dix equation; the azimuth of the semi-major

axis is N2E.
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FIG. 1. Normal-moveout velocity is calculated on CMP lines with different azimuths

and a fixed midpoint location.
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FIG. 2. Comparison of the P -wave NMO velocity from equation (8) (solid line) and

the moveout (stacking) velocity (dots) obtained by least-squares fitting of a hyperbola to

the exact traveltimes computed for speadlength equal to the distance between the CMP

and the reflector. The model contains a homogeneous orthorhombic layer (with the vertical

symmetry planes at azimuths 0◦ and 90◦) above a plane dipping reflector; the dip and

azimuth of the reflector are equal to 30◦ (azimuthal angles are shown along the perimeter of

the plot). The relevant medium parameters [in Tsvankin’s (1997b) notation] are VP0 = 2.0

km/s, ε(1) = 0.110, δ(1) = −0.035, ε(2) = 0.225, δ(2) = 0.100, δ(3) = 0. The vertical

symmetry plane at zero azimuth has the properties of the VTI model of Dog Creek shale,

while the second vertical symmetry plane is equivalent to Taylor sandstone; both models

are described in Thomsen (1986).
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FIG. 3. A dipping reflector beneath a horizontally layered overburden. Normal-moveout

velocity in this model can be obtained from the generalized Dix equation derived here.
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FIG. 4. Comparison of the exact P -wave NMO ellipse (solid line) and an approximate

NMO velocity obtained by the Dix-type averaging [equation (C-3), dashed line]. The model

contains three horizontal orthorhombic layers with a horizontal ([x1, x2]) symmetry plane.

The azimuth of the [x1, x3] symmetry plane (also, the direction of one of the axes of the

interval NMO ellipse) in the first (subsurface) layer is β1 = 0◦, in the second layer – β2 = 45◦,

and in the third layer – β3 = 60◦. The vertical P -wave velocities are VP0,1 = 2.0 km/s,

VP0,2 = 3.0 km/s, and VP0,3 = 3.5 km/s; the interval zero-offset traveltimes are equal to each

other (τ1 = τ2 = τ3 = 1.0 s). The relevant anisotropic parameters [in Tsvankin’s (1997b)

notation] are (subscripts denote the layer number): Layer 1 – δ
(1)
1 = 0.25, δ

(2)
1 = −0.15,

Layer 2 – δ
(1)
2 = −0.20, δ

(2)
2 = 0.20, Layer 3 – δ

(1)
3 = 0.25, and δ

(2)
3 = −0.15.
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FIG. 5. The rms-averaged NMO velocity Ṽnmo [equation (C-3)] normalized by the exact

value in isotropic media; the azimuth is measured with respect to the dip plane of the

reflector. The model contains three layers above the reflector with the interval velocities

V1 = 2.0 km/s, V2 = 3.0 km/s, and V2 = 3.5 km/s and the interval zero-offset traveltimes

τ1 = τ2 = τ3 = 1.0 s. The reflector dips are φ = 40◦ (dotted line), φ = 60◦ (dashed-dotted),

φ = 70◦ (dashed), and φ = 80◦ (solid).
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FIG. 6. The model used in Figure 7 to check the accuracy of the generalized Dix equa-

tion. Layer 1 is transversely isotropic with a vertical symmetry axis (VTI) and relevant

parameters VP0,1 = 2.5 km/s, ε1 = 0.2, δ1 = 0.1. Layer 2 is TI with a horizontal symmetry

axis (azimuth β2 = 30◦) and VP0,2 = 3.0 km/s, ε
(V)
2 = −0.2, δ

(V)
2 = −0.15 (for HTI notation,

see Tsvankin 1997a). Layer 3 is orthorhombic with VP0,3 = 3.5 km/s, ε
(1)
3 = 0.2, δ

(1)
3 = 0.15,

ε
(2)
3 = −0.3, δ

(2)
3 = −0.2, δ

(3)
3 = 0.05; the azimuth of the [x1, x3] symmetry plane β3 = 60◦.

The interface depths are z1 = 1.0 km, z2 = 2.0 km, z3 = 3.0 km. The reflector dip is 20◦,

the azimuth of the dip plane is 0◦.
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FIG. 7. (a) Comparison between the theoretical P -wave NMO ellipse calculated from the

generalized Dix equation (solid) and moveout velocities obtained from ray-traced traveltimes

for spreadlength equal to the distance between the CMP and the reflector (dots). The model

is shown in Figure 6; the dashed line marks the best-fit ellipse found from the finite-spread

moveout velocities. (b) Hyperbolic moveout curve parameterized by the exact NMO velocity

(solid) vs. computed traveltimes (dots) at azimuths 60◦ and 150◦; D is the CMP-reflector

distance.
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FIG. 8. Comparison of the theoretical P -wave NMO ellipse (solid) and finite-spread

moveout velocity (dots; the spreadlength is equal to the CMP-reflector distance) in an

azimuthally-anisotropic model with dipping layers. The NMO ellipse is computed from

equations (3) and (4), with the spatial derivatives of the ray parameter evaluated using

equation (38). The model consists of three dipping transversely layers with different ori-

entation of the symmetry axis. The first layer is VTI with VP0,1 = 2.0 km/s, ε1 = 0.2,

and δ1 = 0.1. The second layer is HTI with the azimuth of the symmetry axis of 30◦ and

VP0,2 = 2.4 km/s, ε2 = 0.15, δ2 = 0. The third layer is TI with a tilted symmetry axis (the

azimuth is 60◦, the tilt is 30◦) and VP0,3 = 3 km/s, ε3 = 0.25, δ3 = 0.08 [for all layers we

used the generic Thomsen’s (1986) parameters]. The azimuth ψ and dip φ of the bottom

of the first layer are ψ1 = 70◦ and φ1 = 10◦; for the bottom of the second layer ψ2 = 20◦

and φ2 = 15◦; for the reflector ψ3 = 50◦ and φ3 = 35◦. The distances between the CMP

and the interfaces are 1 km, 2 km, and 3 km.
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FIG. 9. Plan view of the sourse and receiver positions for a typical superbin with a

radius of 2 km. The maximum source-receiver offset is close to the depth of the basement;

the basement reflection is recorded at about 2.58 s (see Figure 10).
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FIG. 10. Common-midpoint gather composed of traces with source-receiver azimuths

within a 20◦ azimuthal sector centered at N30E. Arrows mark the reflection events used in

our analysis.
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FIG. 11. Semblance curves obtained by conventional velocity analysis that ignores the

azimuthal dependence of stacking velocity (dashed) and by our azimuthal velocity analysis

(solid).
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FIG. 12. (a) The effective NMO ellipses for the reflection events at 2.14 s (dashed) and

2.58 s (solid) reconstructed from the data. N4E is the azimuth of the semi-major axis of the

NMO ellipse for the deeper event. (b) The corresponding interval NMO ellipse computed

from the generalized Dix equation; the azimuth of the semi-major axis is N2E.
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