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Joint inversion of
Theory and a physical modeling study

P- and PS-waves in orthorhombic media:

Vladimir Grechka*, Stephen Theophanis*, and Ilya Tsvankin*

ABSTRACT

Reflection traveltimes recorded over azimuthally ani-
sotropic fractured media can provide valuable informa-
tion for reservoir characterization. As recently shown
by Grechka and Tsvankin, normal moveout (NMO) ve-
locity of any pure (unconverted) mode depends on only
three medium parameters and usually has an elliptical
shape in the horizontal plane. Because of the limited in-
formation contained in the NMO ellipse of P-waves, it
is advantageous to use moveout velocities of shear or
converted modes in attempts to resolve the coefficients
of realistic orthorhombic or lower-symmetry fractured
models.

Joint inversion of P and PS traveltimes is especially
attractive because it does not require shear-wave ex-
citation. Here, we show that for models composed of
horizontal layers with a horizontal symmetry plane, the
traveltime of converted waves is reciprocal with respect
to the source and receiver positions (i.e., it remains
the same if we interchange the source and receiver)
and can be adequately described by NMO velocity on
conventional-length spreads. The azimuthal dependence
of converted-wave NMO velocity has the same form

as for pure modes but requires the spatial derivatives
of two-way traveltime for its determination. Using the
generalized Dix equation of Grechka, Tsvankin, and
Cohen, we derive a simple relationship between the
NMO ellipses of pure and converted waves that pro-
vides a basis for obtaining shear-wave information from
P and PS data. For orthorhombic models, the combina-
tion of the reflection traveltimes of the P-wave and two
split PS-waves makes it possible to reconstruct the az-
imuthally dependent NMO velocities of the pure shear
modes and to find the anisotropic parameters that cannot
be determined from P-wave data alone.

The method is applied to a physical modeling data
set acquired over a block of orthorhombic material—
Phenolite XX-324. The inversion of conventional-spread
P and PS moveout data allowed us to obtain the orien-
tation of the vertical symmetry planes and eight (out of
nine) elastic parameters of the medium (the reflector
depth was known). The remaining coefficient (c;, or §&)
in Tsvankin’s notation) is found from the direct P-wave
arrival in the horizontal plane. The inversion results ac-
curately predict moveout curves of the pure S-waves and
are in excellent agreement with direct measurements of
the horizontal velocities.

INTRODUCTION

Analysis of stacking (moveout) velocities obtained from re-
flection traveltimes is routinely used to build starting velocity
models for migration and inversion. Moveout velocities in 3-D
surveys are often azimuthally dependent, which is usually at-
tributed to the influence of subsurface structure or lateral ve-
locity variation. Another possible reason for azimuthal changes
in reflection traveltimes is the presence of azimuthal anisotropy
associated with fracture systems or transversely isotropiclayers
(e.g., shales) with a tilted symmetry axis. Substantial azimuthal

variations in normal moveout of P-waves caused by fracture-
induced azimuthal anisotropy are demonstrated on field data
by Lynn et al. (1996), Corrigan et al. (1996), and Grechka
et al. (1999). (For brevity, the qualifiers in quasi-P-wave and
quasi-S-wave are omitted.) An analytic tool for quantitative
interpretation of azimuthal moveout anomalies is provided by
Grechka and Tsvankin (1998), who show that the NMO ve-
locity of any pure (unconverted) reflection mode represents
a three-parameter curve (usually an ellipse) in the horizontal
plane. The orientation and semi-axes of the NMO ellipse are
influenced by both the reflector geometry and properties of the
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overburden; therefore, they can be inverted for the medium pa-
rameters. Closed-form expressions for the NMO ellipses from
horizontal and dipping interfaces in arbitrary anisotropic me-
dia are given by Grechka et al. (1999).

This work focuses on normal moveout of converted and pure
waves in media with orthorhombic (or orthotropic) symmetry.
Orthorhombic anisotropy is believed to be typical for frac-
tured formations and can be caused, for instance, by two or-
thogonal vertical crack systems or parallel vertical cracks in
a transversely isotropic matrix with a vertical symmetry axis
(Wild and Crampin, 1991; Schoenberg and Helbig, 1997). Or-
thorhombic media have three mutually orthogonal symme-
try planes in which the Christoffel equation has the same
form as in transversely isotropic models with a vertical sym-
metry axis (VTI media). Tsvankin (1997) uses this analogy
to introduce a notation for orthorhombic media based on
the same rationale as that of Thomsen (1986) parameters for
vertical transverse isotropy. The same analogy was used ear-
lier by Brown et al. (1991) and Cheadle et al. (1991) to de-
scribe wave propagation in symmetry planes of orthorhombic
media.

Tsvankin’s notation is especially advantageous for move-
out inversion because it reduces the number of parameters
responsible for P-wave traveltimes from nine to six and sim-
plifies description of NMO velocity both within and outside
symmetry planes. As shown by Grechka and Tsvankin (1998),
the semi-axes of the P-wave NMO ellipse in a horizontal or-
thorhombic layer are aligned with the symmetry planes (this
is the case for other pure modes as well) and depend on just
three of Tsvankin’s parameters: the vertical velocity Vp, and
the anisotropic coefficients §(V) and §. If the vertical velocity
is unknown, P-wave NMO velocity from horizontal reflectors
can be inverted for the orientation of the symmetry planes
and the NMO velocities Vino' within them. Additional infor-
mation for traveltime inversion is provided by P-wave NMO
velocities of dipping events (discussed in detail by Grechka and
Tsvankin, 1997), which depend on V%2 and three anelliptic-
ity coefficients n">% defined in the symmetry planes. Grechka
and Tsvankin (1997) develop an inversion scheme designed to
obtain these five parameters using P-wave NMO ellipses from
horizontal and dipping reflectors in vertically inhomogeneous
orthorhombic media.

Still, P-wave traveltime data cannot be used to recover the
three parameters (Vg, (", and y @) responsible for the S-wave
velocities in the coordinate directions (Tsvankin, 1997); more-
over, conventional-spread P-wave moveout from horizontal
reflectors depends only on Vpy and (2. Therefore, it is impor-
tant to investigate the possibility of using moveout of shear
or converted waves to constrain the remaining anisotropic
parameters.

Combining P and PS data from a conventional source rep-
resents a viable alternative to the direct generation of S-waves
because of the relatively high cost of multicomponent sources
and often insufficient quality of shear data. If the medium is
isotropic, S-wave velocity can be obtained in a straightforward
way from NMO velocity of P- and PS-waves (Tessmer and
Behle, 1988). Seriff and Sriram (1991) present a relationship
between the NMO velocities of pure and converted modes in
VTImedia that can be used to find the NMO velocity of the SV-
wave from P and PSV data. The transition from the NMO to
vertical S-wave velocity in VTI models, however, is impossible
without knowledge of the reflector depth.

Tsvankin and Thomsen (1994) obtain the quartic move-
out coefficient for PSV arrivals and study the distortions in
moveout-velocity estimation from nonhyperbolic moveout.
They find that SV-wave moveout becomes strongly nonhyper-
bolic for models with negative difference € —§, thus hampering
direct estimation of the SV-wave NMO velocity. PSV moveout
curves on conventional moderate spreads, however, are typi-
cally close to a hyperbola even in this case, and SV-wave NMO
velocity can still be recovered from P and PSV moveouts in a
relatively stable fashion. These results for vertical transverse
isotropy remain entirely valid in the vertical symmetry planes
of orthorhombic media.

We present an analytic treatment of converted-wave move-
out in horizontally layered media with a horizontal symmetry
plane (e.g., the layers may be orthorhombic or monoclinic).
Reflection traveltime of any converted arrival in these mod-
els is an even function of offset governed (on conventional-
length spreads) by NMO velocity. Extending the formalism of
Grechka and Tsvankin (1998) and Grechka et al. (1999), we
show that the NMO velocity of converted waves has the same
(elliptical) azimuthal dependence as that for pure reflections.
Furthermore, it can be found by a Dix-type summation of the
matrices responsible for the pure-mode NMO velocities. This
general result is used to develop an inversion scheme for the
model of a horizontal orthorhombiclayer and to invert physical
modeling data acquired over a composite orthorhombic mate-
rial, Phenolite XX-324 (Gibson and Theophanis, 1996). NMO
velocities of the P-wave and two split PS-waves, obtained from
semblance analysis, allow us to find the orientation of the sym-
metry planes and (using the known layer thickness) eight elastic
coefficients, while the remaining parameter [§©) in Tsvankin’s
(1997) notation] is recovered from the azimuthally depen-
dent traveltime of the direct P-wave arrival in the horizontal
plane.

NMO OF CONVERTED WAVES IN LAYERED
AZIMUTHALLY ANISOTROPIC MEDIA

NMO equation for models with a horizontal symmetry plane

We consider a converted wave recorded on a suite of differ-
ently oriented common-midpoint (CMP) lines with the same
CMP location. The derivation of the pure-mode NMO equa-
tion in Grechka and Tsvankin (1998) is based on replacing the
CMP reflection traveltime with the one-way traveltimes be-
tween the zero-offset reflection point and the surface. Then,
an expansion of the traveltime field in a Taylor series is used to
obtain the azimuthally dependent NMO velocity as a function
of the spatial derivatives of the slowness vector.

Generalization of this formalism for converted waves is dis-
cussed in Appendices A and B. Because of the nature of mode
conversions and the influence of reflection-point dispersal on
the NMO velocity, their moveout expansion can no longer
be described by one-way traveltimes and, in general, contains
odd (linear, cubic, etc.) terms in offset [equation (A-1)]. How-
ever, as shown in Appendix B, significant simplifications can
be achieved in horizontally layered media with a horizontal
symmetry plane. The layers can, for instance, be orthorhom-
bic, monoclinic (in both models, one of the symmetry planes
should be horizontal) or transversely isotropic with a vertical
or horizontal symmetry axis. Since the slowness and group-
velocity surfaces in these models are symmetric with respect
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to the horizontal plane, the traveltime of converted waves re-
mains the same when we interchange the source and receiver
(Appendix B). Thus, the traveltime series for converted waves
cannot contain odd-power terms, and the leading contribution
to reflection moveout is made by the NMO velocity, which
takes the same form as for pure modes [equation (A-7)]:

nmo(oz) = Wi cos? o 4+ 2Wis sina cos o + W, sin’ a.
1
Here, « is the azimuth of a 2-D CMP gather and W is a sym-
metric matrix determined by
to 9%t

o 4 8Xi8Xj xl:()’
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where t is the (two-way) reflection traveltime of a given con-
verted wave as a function of the source coordinates {X;, X,},
X1 = X = 0 corresponds to the CMP location, and t) = t(x; =
0, X, = 0) is the zero-offset reflection traveltime.

The converted-wave NMO equation (1) has exactly the same
form as that for pure modes and therefore can be expressed in
the same way through the eigenvalues 1; and A, of matrix W
(Grechka et al., 1999; Grechka and Tsvankin, 1998):

1( ) — )+ dasinda—B).  (3)

The rotation angle
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is the azimuth of one of the eigenvectors of W with respect to
axis ;. Typically, the traveltime surface t(X;, X;) has a minimum
at zero offset; therefore, the squared NMO velocity is positive
in all azimuthal directions [see equation (A-6)]. This implies
that both A, and A, should be positive as well, and equations (3)
and (1) describe an ellipse in the horizontal plane.

Note that our representation of conventional-spread travel-
times in terms of NMO velocity may break down in areas where
reflection traveltime cannot be approximated by the Taylor se-
ries expansion (e.g., near shear-wave cusps) or for models with
anomalously strong nonhyperbolic moveout (see Tsvankin and
Thomsen, 1994).

Relationship between the NMO velocities of pure
and converted waves

While NMO equations (1) and (3) are valid for both pure
and converted waves, matrix W for pure modes depends on
the one-way traveltimes (Grechka and Tsvankin, 1998):

WY (w7t FM)
i [pure modes] =ty " ————
8X|8XJ x1=()
X2=O
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where t®M is the traveltime from the zero-offset reflection
point to location x{X;, X,} at the surface, téPM) = t®M(0, 0) is
the zero-offset time, and p; are the components of the slow-
ness vector corresponding to the ray emerging at point x. The
spatial derivatives of the slowness vector in equation (5) can
be expressed through the slowness components of the zero-
offset ray, which leads to a concise representation of the NMO
velocity for any pure mode (Grechka et al., 1999).

In contrast, the two-way traveltimes in the definition of ma-
trix W [equation (2)] for converted waves are more difficult
to relate to the slowness vector and, eventually, to the model
parameters. The most convenient way to include shear informa-
tion in moveout inversion is to obtain the S-wave NMO velocity
(generally, there are two split shear waves in anisotropic media)
from P and PS data. Then the orientation and semi-axes of the
pure-mode ellipses can be inverted for the elastic coefficients.
Such an algorithm represents a generalization of the known
method of shear-wave velocity estimation in isotropic media
based on the NMO velocities of P- and PS-waves (Tessmer
and Behle, 1988). In arbitrary anisotropic inhomogeneous me-
dia, this methodology can be implemented only numerically,
using, for example, the approach developed by Grechka et al.
(1999).

For layered media with a horizontal symmetry plane, how-
ever, it is possible to obtain a simple relationship between the
NMO velocities of pure and converted waves based on the
generalized Dix equation of Grechka et al. (1999). As demon-
strated in Appendix B, matrix W(F9 of the converted PS-wave
[equation (2)] in a single layer is related to the correspond-
ing matrices of the pure P- and S-waves [equation (5)] in the
following way:

PIWEI ™ =P [WP WO (6)

where téps) = tép) + tés) is the two-way zero-offset time for
the PS-wave expressed through the one-way zero-offset times
for the pure modes. Equation (6) makes it possible to obtain
the shear-wave NMO velocity (i.e., the matrix W) from az-
imuthally dependent P and PS moveout data.

Repeating the derivation from Appendix B for a stack of
plane layers with a horizontal symmetry plane shows that the
reciprocity relationship for PS-waves and equation (6) remain
valid in stratified media as well. In this case, however, matrices
WP and WS become effective quantities (i.e., for the medium
between the reflector and the surface) that should be expressed
through interval values WEP) and WES) using the generalized
Dix equation (Grechka et al., 1999):

1 N P P
Q =1
and
S S

where té? and téi) are the interval one-way zero-offset trav-
eltimes. Thus, after P and PS data have been used to obtain
the effective matrices W of S-waves for different reflectors
[equation (6)], the interval shear-wave matrices WES) can be
found from equation (8).
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Orthorhombic layer

In the following, we concentrate on the model of a homo-
geneous orthorhombic layer used in the physical modeling
experiment discussed below. An orthorhombic medium with
a horizontal symmetry plane also has two vertical symmetry
planes that determine the directions of the axes of the pure-
mode NMO ellipses (Grechka and Tsvankin, 1998). Indeed,
by choosing the vertical symmetry planes of the medium as
the coordinate planes [X;, X;] and [X;, X;], we eliminate the
off-diagonal terms of the pure-mode matrices W(® and W(®
[equation (5)]. It is clear from equation (1) that a diagonal ma-
trix W describes an NMO ellipse with axes in the coordinate
directions. Matrix W(F9 [equation (6)] in this case becomes
diagonal as well, which implies that the axes of the PS-wave
NMO ellipse are also aligned with the symmetry planes. There-
fore, matrices W are fully defined by the NMO velocities in the
symmetry planes VAR

©Q 1 )
Wy = e 2 W,” =0,
[VQ,nmo] (9)
©Q 1
2 :ﬁ’ (Q= P, S,OrPS).
[VQ,an]

Here and below, the superscript 1 corresponds to the [%, X3]
plane and 2 corresponds to the [X;, X;] plane (the superscripts
denote the axis normal to each plane).

Since all W(® become diagonal, equation (6) splits into two
separate equations for the symmetry-plane NMO velocities:

7 Ve gamol” = 67 [Ve ol + 67 [Vanml

S,nmo
(i=1,2). (10)

As could be expected from the kinematic equivalence be-
tween the symmetry planes of orthorhombic and VTI me-
dia (Tsvankin, 1997), equation (10) has the same form
as the relationship between the NMO velocities of P-,
SV-,and PSV-waves for vertical transverse isotropy (Seriff and
Sriram, 1991) or for the vertical symmetry planes in TI media
with a horizontal symmetry axis.

If we have obtained the NMO velocities of the P-wave
and two split converted waves in both symmetry planes, the
symmetry-plane NMO velocities of the shear modes can be
found from equation (10):

(PO, () 2 _i(Pry ) 92

V(i) 2 _ b [VPSnmo] -1 [VP,nmo] 11

[ S,nmo] - t(ps) t(p) . ( )
0 -

Although this approach looks relatively straightforward, ap-
plication of equation (11) is compounded by the fact that only
one (PSV) converted wave can be generated in each symmetry
plane; this will be discussed in more detail below.

NMO VELOCITIES OF P- AND S-WAVES
IN AN ORTHORHOMBIC LAYER

Having obtained the relationships between the NMO el-
lipses of pure and converted modes in orthorhombic media,
we next need to discuss the dependence of NMO velocities

of P- and S-waves on the anisotropic parameters. As shown
above, NMO velocity of each mode is fully determined by the
NMO velocities in the symmetry planes:

1 _ costa N sin® o
) T v 2 @ g2
VQ,nmo(a) [ Qﬁnmo] [VQ,“mO]

(Q=P. S, 0rs), (12)

where the angle o specifies the direction with respect to the
[%1, X3]-plane.

Because of the identical form of the Christoffel equation
in the symmetry planes of orthorhombic and VTI media, all
symmetry-plane kinematic signatures, including NMO veloc-
ity, can be obtained by analogy with vertical transverse isotropy
(Tsvankin, 1997). (The only exception is cuspoidal shear wave-
fronts near point singularities, which can introduce additional
group-velocity branches in orthorhombic media.) Tsvankin’s
(1997) notation is especially convenient for adapting VITequa-
tions because its basis is similar to that of Thomsen’s pa-
rameters for vertical transverse isotropy. For P-waves, the
symmetry-plane NMO velocities are given by (Tsvankin, 1997;
Grechka and Tsvankin, 1998)

Vlg?r)lmo =Vpov1+ 25(2), Vlg,r)lmo =Vpov1+ 25(1)’
(13)

where Vpy is the P-wave vertical velocity and §(:?) are the ani-
sotropic coefficients defined in Appendix C.

Before giving the corresponding expressions for shear waves,
it is necessary to review some relevant polarization properties
of S-waves for orthorhombic anisotropy. A drawing of typi-
cal phase-velocity sheets in orthorhombic media is shown in
Figure 1. The outer (P-wave) phase-velocity surface is usu-
ally separated from the two sheets corresponding to split shear
waves. The shear-wave phase velocities in orthorhombic media

Fic. 1. Sketch of body-wave phase velocity surfaces in or-
thorhombic media. The value &; =,/Cj/p, where G are the
elastic stiffness coefficients and p is the density.
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coincide in certain directions corresponding to the so-called
point singularities (Crampin and Yedlin, 1981), such as point
Ain Figure 1. We assume that the singularities are far enough
from vertical so that the fast shear wave, S, can be distin-
guished from the slow wave, S, in some vicinity of the vertical
direction sufficiently large to obtain NMO velocities.

While applying the equivalence with VTI media to S-waves,
we must remember that the polarization of shear waves with
respect to the vertical incidence plane varies with azimuth.
Suppose the fast vertically traveling shear wave S is polar-
ized in the X;-direction and, therefore, represents a pure trans-
verse (SH) wave for any phase direction in the [x;, X3] plane.
As we move along the phase-velocity surface of the S -wave
around the Xxs-axis to the [X;, X3] plane (Figure 1), its polar-
ization changes from transverse (cross-plane) to in-plane (in
other words, from SH in the [, X3] plane to SV in the [X, X3]
plane). Thus, according to the kinematic analogy with verti-
cal transverse isotropy, the §-wave propagating in the [X;, Xs]
plane is equivalent to the SH-wave in VTI media, while in the
[X2, X3] plane it is equivalent to the SV-wave. Likewise, the po-
larization of the S-wave changes from SV in the [X;, X3] plane
to SHin the [%,, X3] plane. This property of S-waves has a di-
rect bearing on the form of their NMO velocities listed below
(again, the superscript 1 corresponds to the [x,, ;] plane and
2 corresponds to the [x;, 3] plane):

V(z,)nrno ZVSI v 1+2)/(2 = VC66/ ’

(14)
Ve o=V V14200,
and
Vo =Ve V14200,
(15)
V(l,)nrno = VSZ \ 1 +2)/(1 =V 066/ ’
where

2
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V 9

S

2
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S

(16)

The anisotropic coefficients ¢ and y ) are described in Ap-
pendix C. The vertical shear velocities Vs, and Vs, (we assume
Vs, > Vs,) in equations (14)—(16) are related to Tsvankin’s
(1997) vertical velocity Vg (Appendix C) as

1+2yM
Vs, = Ve[ ———. 17
ST 142,@ {17

Equations (11) and (13)—(16) provide an analytic basis for
obtaining the parameters of an orthorhombic layer from move-
out measurements. Note that the NMO velocities of three pure
modes depend on eight (out of nine) parameters of the or-
thorhombic layer. The only coefficient that makes no contri-
bution to the NMO velocities is §® (or ¢,); this parameter is
defined in the horizontal symmetry plane and cannot be found
from near-vertical measurements of NMO velocity. Another
important observation relates to the fact that the SH-wave ve-

Vs, = Vg,

locities in the symmetry planes [equations (14) and (15)] are
identical:

V(2,)IIII10 = ézl,)nmo' (18)
This indicates a possible redundancy in the moveout measure-
ments that can be used to increase the accuracy of the inversion
procedure.

Suppose we have found the zero-offset traveltimes of all
three pure modes (P, S, $) and their NMO velocities in the
symmetry planes (in our case, using P- and PS-waves). Since
the ratios of the vertical velocities can be obtained from the
zero-offset traveltimes, only one vertical velocity must be de-
termined. Therefore, for a total of seven unknowns (Vpq, €1,
812 (1.2 there are only six moveout equations (13)—(15).
Separating out the SH-wave equations that depend on y (-2
(or a single stiffness coefficient, cg), we have four moveout
equations for P- and SV-waves that include five unknown pa-
rameters (Vpo, €2, §(1:2)), Clearly, the number of unknowns
exceeds the number of equations by one, and the inversion is
impossible without including some additional information. The
same underdetermined inverse problem, as discussed in detail
by Tsvankin and Thomsen (1995), arises for vertical transverse
isotropy (or, equivalently, in each vertical symmetry plane of
orthorhombic media).

To resolve the anisotropic coefficients, we assume that the
layer thickness is known and all vertical velocities can be found
from the zero-offset traveltimes. Possible alternatives include
use of dipping events or long-spread (nonhyperbolic) moveout,
but this information was not available in our physical modeling
experiment.

In the discussion above, we assumed that the combination
of P- and PS-waves is sufficient to determine the symmetry-
plane NMO velocities for all three pure modes. Polarization
properties of shear waves, however, have serious implications
for the generation of the converted modes used in our algo-
rithm. Since the phase-velocity sheets (and the corresponding
wavefronts) of the waves P, S, and S are continuous, from
the kinematic viewpoint the converted waves PS; and PS,
can be recorded in all azimuthal directions. However, P-waves
propagating in either vertical symmetry plane of a horizon-
tal orthorhombic layer cannot generate the converted PSH-
wave because the particle motion should be confined to the
incidence plane. Thus, the PS;-wave does not exist in the [X;,
x3] plane, while the PS,-wave cannot be excited in the [x,, X3]
plane. Moreover, PSH-type reflections will also be weak
near those symmetry planes because shear-wave polarizations
change in a continuous fashion. However, the NMO velocities
of these (in practice unmeasurable) converted waves in the
symmetry planes can be reconstructed from moveout measure-
ments in other azimuthal directions by taking advantage of the
known (elliptical) azimuthal dependence of the NMO-velocity
function.

INVERSION OF PHYSICAL MODELING DATA

Scaled physical modeling over anisotropic materials has
proven to be useful in testing theoretical predictions of var-
ious wave-propagation phenomena. A number of publica-
tions are devoted to simulations of fracture-induced anisotropy
and measurements of shear-wave splitting (e.g., Tatham et al.,
1987; Ebrom et al., 1990). In a series of experiments with
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orthorhombic phenolic laminate, Cheadle et al. (1991) and
Brown et al. (1991) recorded transmitted waves propagating
in different directions and determined the stiffness coefficients
of the material. Sayers and Ebrom (1997) generated wide-
angle P-wave data for an orthorhombic material in vertical
seismic profiling (VSP) geometry and used a nonhyperbolic
moveout equation to reconstruct the P-wave group-velocity
surface. Here, we simulate a reflection seismic survey over an
azimuthally anisotropic layer by recording pure and converted
reflected waves generated in a rectangular block of orthorhom-
bic Phenolite XX-324. Previous experiments with the same ma-
terial are described by Gibson and Theophanis (1996).

Laboratory setup

The model for the ultrasonic experiment was constructed of
six 30.0 x 5.0 x 14.81-cm blocks of Phenolite XX-324, a com-
posite material with orthorhombic symmetry. The slow (in
terms of P-wave velocity) axes of the blocks were aligned in
a direction that will be called the x;-axis of the model. The
blocks were bonded with epoxy to make a sample with di-
mensions 30.0 x 30.0 x 14.81 cm (z=14.81 cm is the vertical
thickness). The epoxy bonding of the joints was performed
under a uniform pressure of 15 psi. The reflection coefficient
for the epoxy joints between layers was tested with both P-
and S-waves of the appropriate frequencies and found to be
unmeasureably small.

Taking into account the seismic velocities and size of the
Phenolite model, ultrasonic transducers were chosen to pro-
duce an acoustic wavelength close to one-sixth of the model
thickness. This wavelength corresponds to frequencies of ap-
proximately 100 kHz for S-waves and 200 kHz for P-waves.
Vertical and horizontal contact transducers (supplied by Pana-
metrics, Waltham, MA), used as source and receiver, had a
diameter of 1.0 inch. The central frequency and bandwidth of
the transducers can be adjusted by varying the width of the ex-
citation pulse. The pulse was produced by a Hewlett Packard
214B high-voltage pulse generator (it has independent con-
trol of voltage, pulse width, and repetition rate). Data were
collected directly from the receiving transducer with a Lecroy
9304 A oscilloscope, which has real-time signal-averaging capa-
bility for noise reduction as well as a disk drive for data storage.

CMP surveys were simulated by recording arrivals reflected
from the bottom of the block (free surface). Gathers were ac-
quired along differently oriented CMP lines, with offsets for
each line ranging from 5 to 25 cm with 2-cm increments. Data
were collected sequentially with P—P transducer pairs at az-
imuths 0°, 45°, 90°, and 135° with respect to axis x; and with
P-S transducer pairs along azimuths 0°, 30°, 60°, and 90°.

Processing P-wave data

We begin with processing reflection data recorded by ver-
tical transducers along azimuths 0°, 45°, 90°, and 135° (Fig-
ure 2). The seismogram for azimuth 135° is not shown in Fig-
ure 2 because it looks similar to that for azimuth 45°. The most
prominent feature of the seismograms is a significant azimuthal
variation in the P-wave traveltimes. Clearly, the moveout ve-
locity increases as the azimuth changes from 0° to 90°, which
leads to a corresponding decrease in the P-wave traveltime
for any fixed offset. To reconstruct the azimuthal dependence

of moveout velocity, we performed conventional hyperbolic
semblance analysis and displayed the results in the semblance
panels (Figure 2d—f). (We used a nonlinear amplitude scale to
enhance semblance maxima and muted out all semblance val-
ues below a certain level.) The position of the semblance max-
imum on the velocity axis varies with azimuth by more than
1.0 km/s (42%), indicating a high degree of P-wave azimuthal
anisotropy. Having picked the moveout velocities from the
semblance panels, we calculated the corresponding hyperbolic
moveout curves for each azimuth and superimposed them on
the seismograms (dashed lines). Since the zero-offset travel-
times of the semblance maxima are larger than the times of the
first breaks, we introduced an appropriate correction in the
picked t, that allowed us to match the actual arrival times on
the seismograms. Clearly, except for relatively small deviations
at the very far offsets, the hyperbolic moveout approximation
is close to the traveltimes in all azimuthal directions. Therefore,
nonhyperbolic moveout on the spreads used in the experiment
(the maximum offset-to-depth ratio is 1.7) is relatively weak
for the Phenolite model (for more details, see “Discussion”).

Using the P-wave moveout velocities measured in all four az-
imuthal directions, we reconstructed the P-wave NMO ellipse
(Figure 3). The data points, which correspond to finite-spread
moveout velocities, lie very close to the best-fit elliptical curve
(the maximum deviation is 1.6% at azimuth 90°). This serves
as another corroboration of the small magnitude of nonhyper-
bolic moveout and high accuracy of the hyperbolic moveout
equation parameterized by the analytic NMO velocity. The az-
imuths of the axes of the best-fit NMO ellipse in the coordinate
frame of our experiment are 0.6° and 90.6°. As discussed above,
in orthorhombic media these axes should be aligned with the
vertical symmetry planes; indeed, our results are in good agree-
ment with the expected symmetry-plane orientation. The val-
ues of the NMO velocities along the axes (i.e., in the symmetry
planes; see Table 1) were combined with the vertical velocity
Vpo =22/tép) =3.57 km/s to compute the anisotropic param-
eters 8(1? from equations (13) (6 =0.073, §® = —0.22). No
other information can be obtained from P-wave moveout mea-
surements for a horizontal reflector on conventional-length
spreads.

Processing converted-wave data

To obtain moveout velocities of converted waves, we pro-
cessed seismograms recorded by horizontal transducers ori-
ented along four CMP lines at azimuths 0°, 30°, 60°, and
90° (Figures 4 and 5). Although P-waves can be seen on all
four sections of horizontal displacement, the largest semblance

Table 1. NMUO velocities (in km/s) in the symmetry planes of
the model. The velocities of the P- and PS-waves were obtained
from the reconstructed NMO ellipses; the velocities of the pure
shear reflections were computed using equation (11).

Azimuth
Reflection 0° 90°
PP 2.68 3.82
PS 1.92 2.84
PS 2.10 2.33
SS 1.36 2.14
SS 1.83 1.35
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maximum corresponds to the second arrival, which we identi-
fied as a converted wave. Our interpretation is based on the
zero-offset traveltimes of these modes, their relatively low
moveout velocities, and predominantly horizontal polariza-
tion. Since the wavefield was excited by a vertical source, we
did not expect to record strong pure shear reflections at the
moderate offsets used in the experiment. Although § S - and
S S-waves can be seen on the horizontal displacement com-
ponent, their semblance maxima are not focused enough for
accurate velocity picking. Therefore, for each section we deter-
mined the moveout velocity of a single (PS) mode correspond-
ing to the most pronounced semblance maximum and used it
in moveout inversion. After obtaining the model parameters,
we computed the reflection moveout of pure S-waves and plot-
ted it against the actual arrivals to verify the accuracy of our
algorithm.

Grechka et al.

It is clear from both the seismograms and semblance pan-
els that we observe two different converted waves, each one
dominating the radial component of the wavefield in a certain
range of azimuthal angles. While the second arrival at azimuths
0° and 30° (Figure 4) has a zero-offset traveltime of 0.148 ms,
the value of ty for the second arrival at 60° and 90° (Figure 5)
is noticeably smaller (0.119 ms). The difference in the zero-
offset traveltimes allows us to identify the PS reflection in Fig-
ure 4 as the slow converted wave (PS;) and the correspond-
ing event in Figure 5 as the fast wave (PS;). The magnitude of
shear-wave splitting in the vertical direction is sufficient for the
two converted waves to be well separated in time. The vertical
shear-wave velocities Vs, and Vs, can be calculated from the
zero-offset traveltimes and the known layer thickness using
the equation tO(PS') =2/Vg +2/Vpo,i =1, 2; we obtained Vg, =
1.91 km/s and Vs, =1.39 km/s.
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FIG.2. Seismograms of the vertical displacement component recorded at azimuths (a) 0°, (b) 45°, and (c) 90° and the corresponding
semblance panels (d-f). Dashed lines mark P-wave moveouts picked from the semblance panels.



P- and PS-Waves in Orthorhombic Media 153

Figures 4 and 5 confirm our prediction that only one con-
verted wave (close to the PSV type) can be observed in a vicin-
ity of each symmetry plane. The fast wave PS; has the SV po-
larization in the [X;, X3] plane (azimuth 90°) and therefore is
recorded at azimuths 60° and 90°. In contrast, the sections at
0° and 30° contain an intensive PS, arrival, with the SV polar-
ization in the [y, X3] plane. It is likely that the arrival with the
zero-offset traveltime close to 0.12 ms that can be seen at small
offsets in Figure 4b is the PS; reflection, but its amplitude is
not sufficient to generate a focused semblance maximum.

Even if the SH-type waves were excited at the reflecting
boundary, they would not be recorded by our in-line hori-
zontal receiver. In general, PS-wave processing in azimuthally
anisotropic media requires two orthogonal horizontal geo-
phones (in-line and cross-line) that would record the horizontal
displacement of both split converted modes. Then the in-line
and cross-line seismograms should be simultaneously rotated
to separate the converted arrivals; this algorithm in application
to pure SSreflections excited by a single source is described
in detail by Thomsen (1988). Because of the high degree of
S-wave splitting in our model, the converted waves were sepa-
rated in time at all offsets and the rotation was unnecessary. A
cross-line receiver, however, could have helped to enhance the
converted waves with quasi-SH polarization near the vertical
symmetry planes.

Using the semblance maximum of the most intensive arrival
(Figures 4c,d and 5c,d), we obtained the NMO velocities of
each converted wave in two azimuthal directions and plotted
the corresponding moveouts with dashed lines in Figures 4a,b
and 5a,b. As was the case with P-waves, the best-fit hyperbolic
moveout curve is close to the PS traveltimes, with deviations
becoming noticeable only at far offsets. Most importantly, the
velocities corresponding to the semblance maxima for each
converted wave exhibit a pronounced azimuthal dependence.
For instance, there is a significant increase in the best-fit move-
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Fic. 3. Moveout velocities corresponding to the semblance
maxima for the reflected P-wave (dots) and the best-fit NMO
ellipse (solid line).

out velocity of the PS; reflection from an azimuth of 60° to
90°.

In general, a minimum of three different azimuthal move-
out measurements is necessary to recover the NMO velocity
for each mode. However, since the orientation of the NMO
ellipses (i.e., the azimuths of the symmetry planes) has already
been determined from P-wave data (Figure 3), two sufficiently
separated azimuths provide enough information to find the
values of the elliptical semi-axes. [Note: If the medium does
not have vertical symmetry planes (e.g., the symmetry is lower
than orthorhombic), the NMO ellipses of pure and converted
modes may have different orientations.]

The NMO velocities of both converted waves, reconstructed
from the data, are shown in Figure 6. The least trivial part of the
converted-wave processing is determination of the moveout
velocities of the physically nonexistent reflected PSH-waves
in the symmetry planes (PS; in the [x;, X3]-plane and PS, in
the [%;, X3]-plane). These velocities have been obtained es-
sentially by extrapolating the moveout measurements of the
waves PS; and PS, in other azimuthal directions using the
known functional form of the azimuthal dependence of NMO
velocity.

Estimation of anisotropic parameters

Substituting the symmetry-plane NMO velocities of the con-
verted waves into equation (11), we computed the correspond-
ing velocities of the pure shear modes (Table 1) and plotted
their NMO ellipses with dashed lines in Figure 6. Although the
time delay between the vertically traveling shear and converted
waves is rather significant, the NMO ellipses of the S-waves
(as well as the ellipses of the converted waves) intersect each
other as a result of the influence of the anisotropic coefficients
in equations (14) and (15).

Since the vertical velocities and coefficients §(!-? are already
known, equations (14)—(16) make it possible to find anisotropic
parameters €2 and y (" from the symmetry-plane NMO ve-
locities of the pure shear waves. The set of Tsvankin’s (1997) pa-
rameters (Appendix C) of the Phenolite model obtained from
the moveout inversion is as follows:

Vpg = 3.57 km/s, Vg = 1.91 km/s,
§®) =022, 81 =0.073,

e® = —0.16, e® =0.11,

y@ = —0.25, y = —0.028.

The difference between the coefficients §() and 6 is respon-
sible for the azimuthal variation in the P-wave NMO velocity,
while () — e® determines the variation in the P-wave hor-
izontal velocity between the X;- and X;-axes. The values y®
and y@ define the velocity anisotropy of the SH-waves in the
symmetry planes (§ in the [x;, X;] plane and S in the [X, X3]
plane).

The only anisotropic coefficient not determined from move-
out inversion is 8. As mentioned earlier, this parameter has
no influence on either the vertical velocities or the NMO
velocities of any mode and therefore is not constrained by
conventional-spread reflections from horizontal interfaces.
The coefficient §&, however, does contribute to the traveltime
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of the direct P-wave arrival in the horizontal plane that can we calculated the following stiffness matrix (in km?/s?):
be identified at relatively large offsets in Figures 4a,b and 5a,b.

Like the other § coefficients, 6 influences the phase velocities 858 2.74 2.01 0 0 0
only away from the coordinate directions of the orthorhombic 274 15.51 9.76 0 0 0

model. Therefore, we estimated §® from the group velocity of

the direct P-wave arrival at azimuths 30° and 60° (Figure 7). Gi = 200976 1274 0 0 0
We found that the value of §©) = —0.21 gives the best fit to the P 0 0 0 365 0 0
group-velocity measurements in both azimuthal directions. 0 0 0 0 1.93 0

Thus, we have obtained the full set of Tsvankin’s parameters 0 0 0 0 0 1.84
for the Phenolite model. Using the expressions for these pa- ’
rameters in terms of the stiffness coefficients ¢;; (Appendix C), (19)
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Verification of inversion results

There are several ways to check the accuracy of the inversion
algorithm. First, as discussed above, we have some redundancy
in the moveout measurements since the NMO velocity of the
fast mode § S at azimuth 0° ([x;, X3] plane) should be equal to
the $S-wave NMO velocity at azimuth 90° [see equation (18)].
These velocities correspond to the SH-waves in the symmetry
planes and therefore could not be measured from the data
directly because of the absence of PSH reflections. Neverthe-
less, the values computed using the extrapolated NMO ellipses
of both converted waves are remarkably close to each other
(Table 1).
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Another way of verifying the inversion results is to compute
the traveltimes of reflection arrivals not used for parameter
estimation and check the extent to which the predicted move-
outs match the data. PP-wave moveout curves calculated for
the obtained model parameters are shown in Figures 4b and Sa
(azimuths 30° and 60°). Although the P-wave NMO ellipse was
built from moveout data at azimuths 0°, 45°, 90°, and 135°, it
accurately predicts P-wave moveout in these intermediate di-
rections. In addition, we computed the traveltimes of both pure
shear reflections, which are excited by the source together with
P-waves and essentially represent a byproduct of the experi-
ment. Figures 4a,b and 5a,b show that the predicted moveout
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FiG. 5. Seismograms of the horizontal in-line displacement component recorded at azimuths (a) 60° and (b) 90° and the corre-
sponding semblance panels (c,d). Dashed lines mark PS;-wave moveouts picked from the semblance panels. Moveouts of the pure
P- and S -wave reflections, computed using the inversion results, are marked by dots.
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curves lie close to these relatively weak shear-wave arrivals not
used in the inversion.

The most direct check of the inversion procedure is a com-
parison between the predicted and measured group velocities
in certain directions. The reflection data used in our exper-
iment illuminate a limited range of group (ray) angles with
respect to vertical, and the maximum incidence angle for pure
reflections reaches about 40°. Still, the shear-wave inversion
allowed us to obtain coefficients (V) and € responsible for
the P-wave horizontal velocity along the axes X; (1/Ci1/p) and
%2 (+/C22/p). These results are in excellent agreement with the
direct measurements of the P-wave horizontal velocities given
in Table 2. Also, the NMO velocities of the SH-waves in the
symmetry planes should be equal to the corresponding hori-
zontal velocity /Ces/p [see equations (14) and (15)]. Although
the moveout of the SH-waves was estimated by extrapolating
the NMO ellipses of the converted waves rather than from ac-
tual S H-reflections, the inverted SH-wave horizontal velocity is
also close to the directly measured value. There was no need to
check the horizontal velocities of the SV-waves in each vertical
symmetry plane because they are equal to the corresponding
vertical velocities.

We conclude that the underlying assumption about the or-
thorhombic symmetry of the model is valid, and the accuracy

Table 2. Comparison of the horizontal velocities obtained
from moveout inversion with the directly measured values.

Inverted Measured Difference
velocity (km/s) velocity (km/s) (%)
Jcu/p 2.93 2.92 0.2
VCn/p 3.94 4.02 -1.9
/Ces/ 0 1.36 1.39 -2.6
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FIG. 6. The converted-wave NMO ellipses (solid lines) recon-
structed from the picked moveout velocities (dots) and the
NMO ellipses of pure shear reflections (dashed) computed
from the NMO velocities of P- and PS-waves.

of the moveout inversion is sufficient for obtaining the orienta-
tion of the symmetry planes and the elastic parameters of the
medium.

DISCUSSION

Despite the excellent results of the inversion procedure, the
model used in our experiment was relatively simple (a sin-
gle layer) and strongly anisotropic, which helped separate the
split converted waves in a straightforward fashion. Below, we
discuss the main potential problems in the application of this
algorithm to processing of multicomponent data acquired over
typical vertically inhomogeneous fractured formations.

Nonhyperbolic moveout.—Our inversion scheme operates
with NMO velocities obtained from the data using the hyper-
bolic approximation for reflection traveltimes. One may be-
lieve that for converted waves this approximation is inherently
contradictory because PS-wave moveout is known to be non-
hyperbolic, even in a homogeneous isotropic medium. How-
ever, as shown by Tsvankin and Thomsen (1994) for vertical
transverse isotropy, PS moveout curves typically do not de-
viate much from a hyperbola on conventional-length spreads
(i.e., close to the reflector depth), especially for positive values
of the anisotropic parameter o. This conclusion remains en-
tirely valid in the symmetry planes of orthorhombic media if
we use the appropriate o coefficient [equation (16)]. Both o™
and 0@ were positive (and small) in our physical modeling
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3.200 km/s (60°).
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experiment, and nonhyperbolic moveout for PS arrivals was
not significant, despite a relatively large offset-to-depth ratio
of 1.7.

The magnitude of nonhyperbolic moveout for P-waves
mostly depends on the degree of anellipticity of the model
measured by the parameters (Tsvankin, 1997)

o €D =35

142807
Neither n" nor 7@ exceeded 10% in our model (n™" = 0.042,
n® = 0.098), and P-wave moveout on the spreadlengths used
in the experiment was close to hyperbolic as well. Another fac-
tor that helped mitigate the influence of nonhyperbolic move-
out for both P- and PS-waves is a rapid decrease of the ampli-
tudes with offset (Figures 4a,b and 5a,b), most likely caused by
the source radiation pattern.

In realistic layered media, the magnitude of nonhyperbolic
moveout may be enhanced by vertical inhomogeneity. In this
case, stable recovery of NMO velocities requires either muting
out offsets exceeding the reflector depth (as is conventionally
done in seismic processing) or applying nonhyperbolic sem-
blance analysis based, for instance, on the equation developed
by Tsvankin and Thomsen (1994).

(i =1,2).

Strength of azimuthal anisotropy and shear-wave splitting.—
In the inversion for the medium parameters, we used the zero-
offset traveltimes and azimuthally dependent NMO velocities
of the converted waves PS; and PS,. These measurements re-
quire prior separation of the split converted waves on the seis-
mograms. The strength of shear-wave splitting near vertical can
be described by the shear-wave splitting parameter y®, which
is close to the fractional difference between the shear-wave
vertical velocities [y ¥ = (Vg /Vsz2 —1)/2~ (Vs / Vs, —1)]. For
the Phenolite sample, the splitting coefficient turned out to
be uncommonly large (y® =0.44), and the PS; and PS, ar-
rivals were well separated at all offsets used in the experiment.
If y® were smaller, the converted waves would interfere near
vertical, making the moveout velocities much more difficult
to obtain. In this case, it is necessary to deploy two horizon-
tal geophones and use a rotation algorithm (Thomsen, 1988)
to separate orthogonally polarized split converted waves. This
operation may reduce the accuracy of moveout inversion even
in a single layer.

The situation becomes much more complicated in stratified
media, especiallyif the target layer is overlain by an azimuthally
anisotropic overburden. In principle, equations (6)—(8) can be
used to obtain the effective and interval NMO ellipses of pure
shear modes from those of P- and PS-waves. However, the data
may be too corrupted by multiple splitting in the overburden
for reliable identification of the converted waves.

Shear-wave point singularities.—The problem of shear-wave
singularities is directly related to the issue of the magnitude
of shear-wave splitting discussed above. We assumed that the
phase-velocity (or slowness) sheets of waves S and S do not
intersect in some vicinity of the vertical direction. In other
words, shear-wave point singularities (point A in Figure 1),
which always exist in orthorhombic media, are supposed to
be sufficiently far from vertical. The position of singularities
with respect to the vertical axis is determined by the value of

the parameter y9: the separation of the shear-wave velocity
sheets near vertical increases with y(®, and singularities move
closer to the horizontal plane.

Because of the large value of y® in the Phenolite model, the
singularity closest to the vertical axis corresponds to a phase
angle (with respect to vertical) of 68.5°. Clearly, the assump-
tion that the phase-velocity sheets of split S-waves intersect far
from vertical is satisfied. However, if y(® were smaller and the
reflected rays for a certain range of offsets and azimuthal an-
gles crossed a singularity region, we would record complicated
converted wavefields (including multiple arrivals) that would
be difficult to separate into distinct PS; and PS, reflections
(Crampin and Yedlin, 1981; Grechka and Obolentseva, 1993).

Polarization of shear waves.—The physical modeling con-
firmed our theoretical prediction that each of the converted
waves does not exist in a vicinity of one of the symmetry
planes, where its polarization becomes close to that of an SH-
wave (Figure 1). This fact imposes additional requirements on
the number of azimuthal measurements needed to reconstruct
the NMO ellipses. While three well-separated CMP lines are
generally sufficient to obtain P-wave NMO ellipses (Grechka
and Tsvankin, 1998), there is no guarantee that both PS re-
flections will be intensive enough along at least two of those
lines. (We need two or more measurements of the NMO ve-
locity for each PS-wave to build the NMO ellipse, assuming
that the symmetry-plane orientation has been determined from
P-wave data.) We believe that acquisition of converted-wave
data along four well-separated CMP lines (and on two horizon-
tal displacement components) should be accepted as a min-
imum requirement. Useful redundancy in PS moveout mea-
surements can be provided by 3-D surveys with a wide range
of source-receiver azimuths.

Sorting into common conversion point gathers.—One of the
essential steps in processing of mode-converted reflections is
sorting the data into common conversion point gathers. If the
medium is laterally heterogeneous, the offset dependence of
the reflection (conversion) point of PS-wave arrivals on CMP
gathers may cause distortions in velocity analysis and degrade
the quality of stack. Both our theoretical and physical models,
however, were horizontally homogeneous, so common conver-
sion point sorting was unnecessary. In principle, the moveout-
inversion procedure introduced here can be performed on
either CMP or common conversion point gathers, but in field-
data applications it is preferable to carry out common conver-
sion point sorting before velocity estimation. Unfortunately,
the position of the conversion point in orthorhombic media de-
pends on the anisotropic parameters, which are seldom known
in advance. Therefore, azimuthal velocity analysis and move-
out inversion can be carried out first on CMP gathers to ob-
tain an approximate anisotropic model. Then these parameter-
estimation results can be used to sort the data into CCP gathers
and to refine the model by repeating the inversion procedure.

These complications show that the problem of joint inver-
sion of P and PS traveltime data in azimuthally anisotropic
media may become much more involved under less favorable
circumstances than in our experiment, especially in the pres-
ence of vertical inhomogeneity. Also, a strong assumption of
our method, which may not be satisfied in some subsurface
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models, is the possibility to record P and PS reflections from
the same interface. Depending on the contrasts in the elastic
parameters across the reflector and the properties (e.g., the
Q-factor) of the overburden, the amplitude of either the P-
or PS-wave may be too small for reliable application of the
moveout inversion.

CONCLUSIONS

We derived a moveout equation for mode-converted waves
in horizontally layered anisotropic media with a horizontal
symmetry plane by generalizing the approach developed for
pure modes by Grechka and Tsvankin (1998). As a result of the
mirror symmetry with respect to the reflectors, the traveltime
series for converted waves contains only even terms in offset
and, for conventional spreadlengths, reduces to a hyperbolic
equation parameterized by NMO velocity. Furthermore, the
azimuthal dependence of converted-wave NMO velocity has
the same (elliptical) form as for pure modes and can be recon-
structed from three or more moveout measurements in differ-
ent azimuthal directions. The parameters of the NMO ellipse
for converted waves were expressed through those of the cor-
responding pure modes using the generalized Dix equation of
Grechka et al. (1997). This Dix-type relationship makes it pos-
sible to obtain both effective and interval shear-wave NMO
velocity from the azimuthally dependent moveout of P- and
PS-waves. Then interval NMO velocities of pure P and Sre-
flections can be inverted for a subset of the anisotropic param-
eters that depends on the anisotropic symmetry and available
wavetypes. We implemented this algorithm for orthorhom-
bic models (typical for fractured reservoirs), taking advantage
of the simplicity of moveout equations in Tsvankin’s (1997)
notation.

The method was tested on physical modeling data ac-
quired over a block of azimuthally anisotropic Phenolic ma-
terial known to have orthorhombic symmetry. By combining
NMO velocities and zero-offset traveltimes of P- and two split
PS-waves, we determined the orientation of the vertical sym-
metry planes and eight (out of nine) elastic parameters of the
material. In the inversion procedure we used the known layer
thickness to obtain the vertical velocities that otherwise would
not be constrained by the reflection data. (If reflector depths
are unknown, parameter estimation in orthorhombic media
cannot be based solely on NMO velocities from horizontal
reflectors and should include either nonhyperbolic moveout
or dip dependence of NMO velocity.) The theory even al-
lowed us to reconstruct the moveout velocities of the converted
PSH-waves in the symmetry planes, although these arrivals
cannot be physically excited in our model. The only elastic co-
efficient that could not be recovered from moveout data [§®) in
Tsvankin’s (1997) notation] was evaluated using the group ve-
locity of the direct P-wave. The high accuracy of the inversion
procedure was verified in several ways, including a comparison
of the inverted and directly measured horizontal velocities of
pure modes.

Although the physical modeling experiment was performed
for a single orthorhombic layer, the theory remains valid
for more complicated vertically inhomogeneous azimuthally
anisotropic models. The main problem in the practical imple-
mentation of this algorithm is the recovery of reflection move-
out of converted waves in the presence of multiple splitting in
azimuthally anisotropic layers. Also, the transition from NMO

velocities of horizontal events to the anisotropic coefficients
requires knowledge of vertical velocity or reflector depth.

ACKNOWLEDGMENTS

We are grateful to Gilein Steensma (CSM) and mem-
bers of the A(nisotropy)-Team of the Center for Wave Phe-
nomena at CSM for helpful discussions. We also thank Jim
Brown (PGS), Jim Gaiser (Western), Ken Larner (CSM), and
Reinaldo Michelena (Intevep) for their thorough reviews of
the manuscript. The support for this work was provided by the
members of the Consortium Project on Seismic Inverse Meth-
ods for Complex Structures at the Center for Wave Phenomena
and by the U.S. Dept. of Energy (Velocity Analysis, Parame-
ter Estimation, and Constraints on Lithology for Transversely
Isotropic Sediments project within the framework of the Ad-
vanced Computational Technology Initiative).

REFERENCES

Brown, R. J., Lawton, D. C., and Cheadle, S. P, 1991, Scaled phys-
ical modelling of anisotropic wave propagation: Multioffset pro-
files over an orthorhombic medium: Geophys. J. Internat., 107, 693—
702.

Cheadle, S. P, Brown, R. J., and Lawton, D. C., 1991, Orthorhom-
bic anisotropy: A physical seismic modeling study: Geophysics, 56,
1603-1613.

Corrigan, D., Withers, R., Darnall, J., Skopinski, T., 1996, Fracture map-
ping from azimuthal velocity analysis using 3D surface seismic data:
66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
1834-1837.

Crampin, S., and Yedlin, M., 1981, Shear-wave singularities of wave
propagation in anisotropic media: J. Geophys., 49, 43-46.

Ebrom, D. A., Tatham, R. H., Sekharan, K. K., McDonald, J. A., and
Gardner, G. H. F, 1990, Hyperbolic traveltime analysis of first ar-
rivals in an azimuthally anisotropic medium: A physical modeling
study: Geophysics, 55, 185-191.

Gibson, R. L., Jr., and Theophanis, S., 1996, Ultrasonic and numer-
ical modeling of reflections from azimuthally anisotropic media:
66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
1025-1028.

Grechka, V., and Obolentseva, 1., 1993, Geometrical structure of shear
wave surfaces near singularity directions in anisotropic media: Geo-
phys. J. Internat., 115, 609-616.

Grechka, V., and Tsvankin, 1., 1997, Moveout velocity analysis and
parameter estimation for orthorhombic media: 67th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1226-1229.

1998, 3-D description of normal moveout in anisotropic inho-
mogeneous media: Geophysics, 63, 1079-1092.

Grechka, V., Tsvankin, I., and Cohen, J. K., 1999, Generalized Dix
equation and analytic treatment of normal-moveout velocity for
anisotropic media: Geophys. Prosp., 47, no. 2 (in print).

Hubral, P, and Krey, T., 1980, Interval velocities from seismic reflection
measurements: Soc. Expl. Geophys.

Lynn, H., Simon, K., Bates, C., and Van Doc, R., 1996, Azimuthal
anisotropy in P-wave 3-D (multiazimuth) data: The Leading Edge,
15, 923-928.

Sayers, C. M., and Ebrom, D. A., 1997, Seismic traveltime analysis for
azimuthally anisotropic media: Theory and experiment: Geophysics,
62, 1570-1582.

Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: Modeling
elastic wave behavior in a vertically fractured earth: Geophysics, 62,
1954-1974.

Seriff, A.J.,and Sriram, K. P, 1991, P-SV reflection moveouts for trans-
versely isotropic media with a vertical symmetry axis: Geophysics,
56, 1271-1274.

Tatham, R. H., Matthews, M. D., Sekharan, K. K., Wade, C. J., and
Liro, L. M., 1987, A physical model study of shear-wave splitting
and fracture intensity: 57th Ann. Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, 642-645.

Tessmer, G., and Behle, A., 1988, Common reflection point data-
stacking technique for converted waves: Geophys. Prosp., 36,
671-688.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954—
1966.

1988, Reflection seismology over azimuthally anisotropic
media: Geophysics, 53, 304-313.
Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for



P- and PS-Waves in Orthorhombic Media 159

orthorhombic media: Geophysics, 62, 1292-1309.

Tsvankin, I., and Thomsen, L., 1994, Nonhyperbolic reflection moveout
in anisotropic media: Geophysics, 59, 1290-1304.

1995, Inversion of reflection traveltimes for transverse isotropy:

Geophysics, 60, 1075-1107.

Wild, P, and Crampin, S., 1991, The range of effects of azimuthal isotropy
and EDA anisotropy in sedimentary basins: Geophys. J. Internat., 107,
513-529.

APPENDIX A
NMO EQUATION FOR CONVERTED WAVES IN MEDIA WITH A HORIZONTAL SYMMETRY PLANE

Here, we derive an exact equation for NMO velocity of con-
verted waves valid in horizontally layered media with a hori-
zontal symmetry plane. Let us consider a converted mode of
arbitrary type recorded on CMP lines with different azimuthal
orientation but the same CMP location (Figure A-1). For a
fixed midpoint X; = x, =0, the reflection traveltime of a given
mode can be represented as a function of the source coor-
dinates {x;, X%} (the corresponding receiver coordinates are
{—X1, —X:}). Following the approach of Grechka and Tsvankin
(1998), we expand the two-way reflection traveltime t(x) in a
double Taylor series in the vicinity of the CMP:

2 2
1
t(X)=tO+ZtﬁiXi+§ Ztvij XiXj+ -, (A-1)
i=1 ij=1
where
ot 3%t
ti=— s tij = ,
9% X 0X;
X1=X2=0 X1=X2:0

and ty = t(0) is the two-way zero-offset traveltime.

In the pure-mode case, NMO velocity in CMP geometry is
not influenced by reflection-point dispersal, and reflected rays
can be assumed to travel from the zero-offset reflection point
(Hubral and Krey, 1980). Therefore, the moveout expansion
similar to equation (A-1) can be rewritten for pure modes

/xz

nonzero-offset

zero-offset
ray

FiIG. A-1. Reflection-point dispersal for converted waves can-
not be ignored in the derivation of NMO velocity. Also, if the
overburden does not have a horizontal symmetry plane or the
reflector is dipping, the minimum of the traveltime field will be
shifted from the CMP location.

through the one-way traveltimes, and the spatial derivatives of
t can be expressed through the horizontal components of the
slowness vector (Grechka and Tsvankin, 1998). Unfortunately,
this convenient simplification is not valid for converted waves
because the reflection traveltime is calculated along two seg-
ments, each corresponding to different modes. Also, the offset
dependence of the coordinates of the reflection point y [which
lies on the reflector f(y) =0, Figure A-1] can no longer be ig-
nored, although this deviation does not contribute explicitly to
our final NMO equation.

We restrict ourselves to horizontally layered models with
a horizontal symmetry plane in which the reflection trav-
eltime of any converted mode remains the same if we in-
terchange the source and receiver (see Appendix B). This
reciprocity with respect to the source and receiver positions
[t(x1, X2) =t(—X;, —%;)] removes another complication associ-
ated with mode conversions—the odd terms in offset contained
in the traveltime equation (A-1).

Keeping only the zero-offset traveltime and the quadratic
term in the Taylor series expansion (A-1), we obtain the squa-
red two-way CMP traveltime as

2
) =15 +4 ) Wixx;, (A-2)
ij=1
where W is a symmetric matrix of the second traveltime
derivatives,
ty 9t

T4 0X; 0X; X1=0.
X2=0

g (A-3)

The factor 1/4 makes the matrix W compatible with the corre-
sponding matrices for pure-mode reflections defined through
one-way traveltimes.

Equation (A-2) represents a hyperbolic approximation of
the converted-mode reflection traveltime. The source coordi-
nates can be expressed through the half-offset h and azimuth
of the CMP line «:

X1 = hcosa, X, = hsina. (A-4)
Equation (A-2) then becomes

t2(h, o) = t7 + 4h2(W11 cos? a
+2Wis sin & cos o + Why sin® a). (A-5)

According to the definition of the NMO velocity Vimo,

4h?
t?’(h,a) =t>+ ——— +---.
( Ol) 0+V2 (O{)+

nmo

(A-6)

Combining equations (A-5) and (A-6) yields

Vn’rfo(oz) = Wiy cos? a + 2 Wys sin o cos o + Wh, sin’ a.

(A7)
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Equation (A-7) is identical to the NMO expression for pure
modes given in Grechka and Tsvankin (1998), but matrix W
for converted waves is expressed through two-way traveltimes.
Another way to prove that the azimuthal dependence of NMO

velocity has the same functional form for pure and converted
waves is described in Appendix B, which also introduces a sim-
ple relationship between the NMO velocities of converted and
pure modes.

APPENDIX B
RECIPROCAL PROPERTIES AND GENERALIZED DIX EQUATION FOR CONVERTED-WAVE MOVEOUT

Here, we show that the reflection traveltime of a converted
wave in a plane layer with a horizontal symmetry plane is re-
ciprocal with respect to the source and receiver positions (i.e.,
it remains the same when we interchange the source and re-
ceiver). The reciprocity implies the absence of odd terms in the
traveltime series and helps extend the generalized Dix equa-
tion of Grechka et al. (1999) to converted waves.

Reciprocity of converted-wave traveltime

Let us consider the converted PS-wave traveling along ray
SRGand build a reciprocal ray G; R;G, with G being in the
middle of SG, (Figure B-1). Our goal is prove that the travel-
times along rays SRGand G; R; G are equal to each other.

Because of the presence of the horizontal symmetry plane,
the upgoing and downgoing rays with the same values of the
horizontal slowness components p; and p, will be symmetric
with respect to the horizontal plane; also, the group velocities
along these rays are equal to each other. The same symmetry
holds for two downgoing rays with the horizontal slownesses of
the same magnitude but opposite signs. Hence, to find the re-
flected PS-wave from G; to G, we generate a downgoing P-ray
G, R, (Figure B-1) with the horizontal slownesses (—p;) and
(—=p2), where p; and p; correspond to ray SR. Then Gy R; will
represent a mirror image of SR with respect to the horizontal
plane, and the traveltimes along these two rays will be identical.
Also, as illustrated by the plan view in Figure B-1, the projec-
tions of R; and R on the surface are symmetric with respect to
G. Therefore, ray R; G and the shear-wave reflected ray RG are
symmetric with respect to the horizontal plane as well. In accor-
dance with the earlier discussion of P-waves, this implies that
R; G corresponds to the ray parameters (—p;) and (—p,) and
therefore represents the S-wave reflected at R; (the horizontal
slowness should be preserved during reflection/transmission).
Thus, the P and Ssegments of the PS reflection from G; to G
represent mirror images with respect to the horizontal plane
of the corresponding segments of ray SRG As a result, the
traveltimes along SRGand G, R;G coincide with each other,
and the PS moveout is reciprocal with respect to the source
and receiver positions.

Relationship between NMO velocities of pure
and converted waves

Next, we show that the NMO velocity of a converted wave in
a medium with a horizontal symmetry plane can be obtained
from the generalized Dix equation of Grechka et al. (1999),
originally developed for pure-mode reflections. Using the PS-
wave in a plane layer (Figure B-1) as an example, we represent

its NMO velocity in the form of equation (A-7):

[V PI(@)] 2 = W cos?a + 2 WS I sina cos

+ WP sina, (B-1)

where matrix W9 is defined in equation (A-3).

To relate WS to matrices W™ and W® of the pure
modes, let us add a second identical layer beneath the first one
and construct a PSSP reflected wave from the bottom of this
artificial model (Figure B-1). Since the intermediate interface
represents a symmetry plane, the refracted shear-wave ray RG
is a mirror image of ray RG, while the S-wave reflection GR

ik

YX3

Plan view:

FiG. B-1. Geometry of rays used in proving the reciprocity of
PS traveltimes in a layer with a horizontal symmetry plane.
Rays SRGand G; R|G (SG=GG;) are two reciprocal PS rays
reflected from the bottom of the layer (x; = z). Ray SRG R, G, is
reflected from the interface x; =2z below two identical layers.
The inset shows the projections of points S, G, G;, R, and R
onto the horizontal plane.
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should coincide with RG and hit point R;. Finally, R; G, repre-
sents the refracted P-wave excited by GR; at R, because it is
a P-wave ray with the horizontal slowness components p; and
p., which should be preserved along the whole raypath of the
PSSP wave.

Hence, the PS-wave traveltime along ray SRG can be re-
placed with the traveltime along S RG, which in turn is equal to
one-half of the reflection traveltime along SRG R, G;. Since the
offset SG= SG, /2, the NMO velocities for the PS-converted
wave SRG and the reflected wave SRGR G; are equal to
each other. Kinematically, the PSSP-wave is analogous to a
pure-mode reflection, so its NMO velocity is described by the
quadratic form (A-7) (Grechka and Tsvankin, 1998). There-
fore, the analogy between pure and converted waves developed
here represents an alternative way to prove equation (A-7) ob-
tained in a more formal way in Appendix A.

The NMO velocity of the PSSP-wave can be written as

[V(PSSB(oz)T2 = Wl(lpssF) cos’ o

nmo

+2 Wl(zpssa sino cosa + W2<2PS'SFJ sina.  (B-2)

The matrix W(PSS9 is determined by the generalized Dix equa-
tion of Grechka et al. (1999):

t(PSSAW(PSSA] _ ot P W] 4 2t [wO] ™,

(B-3)

where té ") and tés) are the one-way zero-offset traveltimes of
the P- and S-waves in the layer and the matrices W(P) and
W describe the pure P- and Sreflections. Note that W(P)
and W are defined through one-way traveltimes t within the
layer (Grechka et al., 1999); for instance,

3t

wP =2 (B-4)

9X%; 8Xj x1=0

X2:0
Since the NMO velocities of the PS- and PSSP-waves are
equal to each other, V\/i(-PSSB = V\/igps). Taking into account that
to( SSH = 2téps) (t(()PS) is the PS-wave zero-offset traveltime in

the layer), we finally obtain for matrix W(P9

tO(PS)[W(pS)]—l =t(§P)[W(P)]_1 +tés)[w(s)]—1, (B-5)

APPENDIX C
TSVANKIN’S NOTATION FOR ORTHORHOMBIC MEDIA

Because of the identical form of the Christoffel equation,
the kinematic signatures and plane-wave polarizations in the
symmetry planes of orthorhombic media are given by the same
equations as for vertical transverse isotropy. This equivalence
was used by Tsvankin (1997) to introduce anisotropic param-
eters similar to the well-known Thomsen’s (1986) coefficients
€,8,and y for VTI media. Expressions for these parameters in
terms of the stiffness components ¢;; and density p are given
below.

Vpo—P-wave vertical velocity:

Vo= | 2. (C-1)
0

Vg—the vertical velocity of the S-wave polarized in the x;-

direction:
C
Vg = / ﬁ' (C-2)
0

€®—the VTI parameter ¢ in the [X;, X;] symmetry plane

normal to the x,-axis (this explains the superscript 2):
Ci1—¢C

C) 3 (C-3)

2C33

The value €@ is close to the fractional difference between the
P-wave velocities in the X;- and X3-directions.
8®—the VTI parameter 8 in the [x;, 3] plane:

5@ = (13 + Cs5)* — (C33 — Cs5)?
2C33(C33 — 055) ’

(C-4)

The value §? is responsible for near-vertical P-wave veloc-
ity variations in the [X;, X3]-plane; it also influences SV-wave
velocity anisotropy.

y@—the VTI parameter y in the [x;, Xs] plane:

@ = %6 ~Cu (C-5)

v 2Cy4

The value y@ is close to the fractional difference between the
SH-wave velocities in the X;- and x3-directions.
e(D—the VTI parameter € in the [X,, X3] symmetry plane:

Cpn —C33
W = BT (C-6)

80 —the VTI parameter 8 in the [X,, X3] plane:

s — (G + Cua)® — (C33 — Cua)?

C-7
2¢33(C33 — Caa) 7
y(D—the VTI parameter y in the [X,, X;] plane:
(1) o Ceo — Css C-8
T (C-9)

8®)—the VTI parameter § in the [x;, X;]-plane (x; plays the
role of the symmetry axis):

3 _ (Ci2 +Ce6)* — (Ci1 — Co)”

)
2¢11(Ci1 — Cs6)

(C9)



