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3-D moveout velocity analysis and parameter
estimation for orthorhombic media

Vladimir Grechka∗ and Ilya Tsvankin∗

ABSTRACT

Orthorhombic symmetry describes several azimuth-
ally anisotropic models typical for fractured formations,
such as those containing two orthogonal crack sys-
tems or parallel vertical cracks in a VTI (transversely
isotropic with a vertical symmetry axis) background.
Here, we present a methodology for inverting multiazi-
muth P-wave reflection traveltimes for the parameters
of vertically inhomogeneous orthorhombic media. Our
approach is based on the general analytic representa-
tion of normal-moveout (NMO) velocity as an ellipse
in the horizontal plane. A minimum of three differently
oriented common-midpoint (CMP) lines (or a “wide-
azimuth” 3-D survey) is needed to reconstruct the ellipse
and thus obtain NMO velocity in any azimuthal direc-
tion. Then, the orientation and the semiaxes of the NMO
ellipse, which are dependent on both anisotropy and het-
erogeneity, can be inverted for the medium parameters.

Our analytic and numerical study shows that for the
model of a homogeneous orthorhombic layer above a
dipping reflector, the exact P-wave NMO velocity is de-
termined by the symmetry-plane orientation and five
parameters: the NMO velocities from a horizontal re-
flector measured in the symmetry planes [V (1,2)

nmo ] and
three anisotropic coefficients η(1,2,3) introduced by anal-
ogy with the Alkhalifah-Tsvankin parameter η for VTI
media. The importance of the medium parameteriza-
tion in terms of the η coefficients goes well beyond
the NMO-velocity function. By generating migration

impulse responses, we demonstrate that the parameters
V (1,2)

nmo and η(1,2,3) are sufficient to perform all time pro-
cessing steps (normal-moveout and dip-moveout cor-
rections, prestack and poststack time migration) in or-
thorhombic models.

The velocities V (1,2)
nmo and the orientation of the verti-

cal symmetry planes can be found using the azimuthally
dependent NMO velocity from a horizontal reflector.
Then the NMO ellipse of at least one dipping event is
additionally needed to obtain the coefficients η(1,2,3) that
control the dip dependence of normal moveout. We dis-
cuss the stability of the inversion procedure and specify
the constraints on the dip and azimuth of the reflector;
for instance, for all three η coefficients to be resolved
individually, the dip plane of the reflector should not co-
incide with either of the symmetry planes.

To carry out parameter estimation in vertically inho-
mogeneous orthorhombic media, we apply the gener-
alized Dix equation of Grechka, Tsvankin and Cohen,
which operates with the matrices responsible for inter-
val NMO ellipses rather than with the NMO velocities
themselves. Our algorithm is designed to find the interval
values of V (1,2)

nmo and η(1,2,3) using moveout from horizon-
tal and dipping reflectors measured at different vertical
times (i.e., only surface P-wave data are needed). Appli-
cation to a synthetic multiazimuth P-wave data set over
a layered orthorhombic medium with depth-varying ori-
entation of the symmetry planes verifies the accuracy of
the inversion method.

INTRODUCTION

Reflection moveout and, in particular, normal-moveout
(NMO) velocity have been extensively used to build isotropic
velocity models of the subsurface (e.g., Hubral and Krey, 1980).
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The main complication in extending these velocity-analysis
methods to anisotropic media is the multiparameter nature of
the problem: the angular dependence of the velocity function at
each spatial location is described by several (up to 21) elastic co-
efficients. Even for relatively simple transversely isotropic (TI)
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media, P- and SV-wave propagation (the qualifiers in “quasi–
P-wave” and “quasi–S-wave” will be omitted) is governed by
the orientation of the symmetry axis and four stiffness coeffi-
cients. This number, however, can be reduced if we focus exclu-
sively on kinematic signatures of P-waves, which depend (for
a fixed symmetry-axis orientation) on the symmetry-direction
velocity VP0 and just two of Thomsen’s anisotropic coefficients
ε and δ (Tsvankin and Thomsen, 1994). Furthermore, as shown
by Alkhalifah and Tsvankin (1995), P-wave NMO velocity and
all time-processing steps [NMO and dip-moveout (DMO) cor-
rection, time migration] in TI models with a vertical symme-
try axis (VTI media) are controlled by only two combinations
of VP0, ε, and δ: the zero-dip NMO velocity Vnmo(0) and the
“anellipticity” coefficient η ≡ (ε − δ)/(1 + 2δ). Alkhalifah and
Tsvankin (1995) also developed a method for obtaining Vnmo(0)
and η in vertically inhomogeneous VTI media using P-wave
NMO velocities from reflectors with two different dips (e.g.,
from horizontal and dipping interfaces). That algorithm, how-
ever, is based on the 2-D NMO equation of Tsvankin (1995),
which can be applied only to common-midpoint (CMP) lines
in the dip plane of the reflector.

Reflection moveout for out-of-plane (3-D) wave propaga-
tion in inhomogeneous anisotropic media was analyzed by
Grechka and Tsvankin (1998b), who showed that the azimuthal
dependence of NMO velocity is described by a simple quadratic
form and typically represents an ellipse in the horizontal plane.
In the special case of a horizontal layer with a horizontal sym-
metry plane, the elliptical dependence of NMO velocity was
obtained by Sayers and Ebrom (1997), who developed an ap-
proximate representation of long-spread moveout based on an
expansion of group velocity in spherical harmonics.

If the medium above a dipping reflector has the VTI symme-
try, the axes of the NMO ellipse lie in the dip and strike direc-
tions of the reflector. Grechka and Tsvankin (1998b) proved
that both semiaxes of the ellipse (and, therefore, the NMO
velocity in any azimuthal direction) for P-waves in VTI me-
dia depend on just the two Alkhalifah-Tsvankin parameters,
Vnmo(0) and η. NMO velocity and zero-offset traveltimes for
a dipping event obtained on two CMP lines with different az-
imuthal orientation are needed to recover Vnmo(0) and η, along
with the azimuth of the dip direction of the reflector. Alterna-
tively, both parameters can be found using normal moveout
from a horizontal and dipping reflector on a single CMP line
with a known azimuthal orientation relative to the dip direc-
tion (Grechka and Tsvankin, 1998b). Additional azimuths, if
available, provide redundant information that might increase
the accuracy of the parameter estimation.

In this paper, we use the analytic results of Grechka and
Tsvankin (1998b) and Grechka et al. (1999) to generalize this
methodology for more complicated, azimuthally anisotropic
media. The NMO ellipse for a given reflection event is always
described by three independent parameters and can be recon-
structed from NMO velocities measured in at least three differ-
ent azimuthal directions. The feasibility of obtaining P-wave
NMO ellipses in a “wide-azimuth” 3-D survey (one that has
good offset coverage in a wide range of azimuthal angles) and
using them for fracture detection has been shown by Corrigan
et al. (1996) and Grechka et al. (1999).

The parameters of the NMO ellipse can be inverted for
the combinations of the medium coefficients responsible for

normal moveout of the P-wave or some other recorded mode.
In general, this inversion requires moveout data for several
reflectors with different dips and azimuths (depending on
the symmetry of the medium). Although conceptually this
problem can be solved for arbitrary anisotropic media, this
work is restricted to orthorhombic (or orthotropic) anisotropy,
which describes several models typical for fractured reservoirs
(e.g., Wild and Crampin, 1991; Schoenberg and Helbig, 1997;
Tsvankin, 1997). For instance, orthorhombic symmetry may
be caused by a system of parallel vertical cracks embedded
in a background VTI medium (Figure 1) and also by two or-
thogonal (or nonorthogonal but identical) vertical crack sys-
tems in a purely isotropic or VTI matrix. Although orthorhom-
bic models with a fixed orientation of the symmetry planes
are described by nine independent stiffnesses, P-wave veloci-
ties and traveltimes depend on just the vertical velocity and
five anisotropic parameters introduced by Tsvankin (1997).
Grechka and Tsvankin (1998b) provided exact explicit expres-
sions for NMO velocity in a horizontal orthorhombic layer
and demonstrated that Tsvankin’s notation (briefly reviewed
below) leads to a significant simplification in the analytic de-
scription of NMO velocity.

Extending this result to a homogeneous orthorhombic layer
above a dipping reflector, we show that P-wave normal-
moveout velocity (expressed through the horizontal slowness
components of the zero-offset ray) depends on the orientation
of the symmetry planes, symmetry-plane NMO velocities from
a horizontal reflector [V (1,2)

nmo ], and three anisotropic parameters
η(1,2,3) defined similarly to the Alkhalifah-Tsvankin coefficient
η. Furthermore, the same parameters are responsible for post-
stack time-migration impulse response and, therefore, for all
time-processing steps in orthorhombic media. This conclusion
is in agreement with the work by Ikelle (1996), who showed
that the dispersion relation in weakly anisotropic orthorhom-
bic media depends on the two zero-dip NMO velocities in the
symmetry planes and three “anellipticity” coefficients. All five
parameters can be obtained from surface P-wave data using

FIG. 1. Orthorhombic media have three mutually orthogonal
planes of mirror symmetry. One of the models that would give
rise to orthorhombic anisotropy is a combination of parallel
vertical cracks and vertical transverse isotropy (e.g., due to
thin horizontal layering) in the background medium.
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azimuthally dependent NMO velocities from a horizontal and
at least one dipping interface (provided the dip plane of the
reflector is not too close to either of the vertical symmetry
planes) or, alternatively, using two different dipping events.
To find the interval values of V (1,2)

nmo and η(1,2,3) in horizontally
layered orthorhombic media above a dipping reflector, we de-
vise a layer-stripping procedure based on the generalized Dix
equation of Grechka et al. (1999). Finally, we apply our inver-
sion algorithm to synthetic P-wave traveltimes generated by
ray tracing for a stratified orthorhombic model with different
orientations of the vertical symmetry planes in each layer.

NOTATION FOR ORTHORHOMBIC MEDIA

Orthorhombic (or orthotropic) media have three mutually
orthogonal planes of mirror symmetry; for the model with a sin-
gle system of vertical cracks in a VTI background (Figure 1),
the symmetry planes are determined by the crack orientation.
Here, we assume that one of the symmetry planes is horizontal,
but we do not restrict ourselves to any particular physical model
and consider a general stiffness tensor for orthorhombic me-
dia with nine independent components ci j . Evidently, inverting
moveout information for nine parameters (which can vary in
space) is an extremely difficult problem, especially given a lim-
ited angle coverage of reflection data.

Significant progress, however, can be made by combining the
stiffnesses in such a way that will simplify analytic descriptions
of seismic velocities and amplitudes. Tsvankin (1997) used the
fact that the Christoffel equation has the identical form in the
symmetry planes of orthorhombic and TI media to introduce
a notation based on the same principle as Thomsen (1986) pa-
rameters for vertical transverse isotropy. Tsvankin’s notation
contains two “isotropic” quantities (the vertical velocities of
the P-wave and one of the split S-waves) and seven dimen-
sionless anisotropic parameters similar to the VTI coefficients
ε, δ, and γ . The definitions of these parameters and their brief
description are as follows:

VP0—the P-wave vertical velocity:

VP0 ≡
√

c33

ρ
, (1)

where ρ is the density.
VS0—the vertical velocity of the S-wave polarized in the
x1-direction:

VS0 ≡
√

c55

ρ
. (2)

ε(2)—the VTI parameter ε in the [x1, x3] symmetry plane
normal to x2-axis (this explains the superscript “2”):

ε(2) ≡ c11 − c33

2 c33
. (3)

δ(2)—the VTI parameter δ in the [x1, x3] plane:

δ(2) ≡ (c13 + c55)2 − (c33 − c55)2

2 c33 (c33 − c55)
. (4)

γ (2)—the VTI parameter γ in the [x1, x3] plane:

γ (2) ≡ c66 − c44

2c44
. (5)

ε(1)—the VTI parameter ε in the [x2, x3] symmetry plane:

ε(1) ≡ c22 − c33

2c33
. (6)

δ(1)—the VTI parameter δ in the [x2, x3] plane:

δ(1) ≡ (c23 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
. (7)

γ (1)—the VTI parameter γ in the [x2, x3] plane:

γ (1) ≡ c66 − c55

2 c55
. (8)

δ(3)—the VTI parameter δ in the [x1, x2] plane (x1 plays
the role of the symmetry axis):

δ(3) ≡ (c12 + c66)2 − (c11 − c66)2

2 c11 (c11 − c66)
. (9)

This notation preserves the attractive features of Thomsen
parameters (discussed in detail by Tsvankin, 1996) in describ-
ing symmetry-plane velocities, traveltimes, and reflection co-
efficients. Also, as shown in Tsvankin (1997), a subset of the
parameters introduced above captures the combinations of
ci j ’s responsible for P-wave kinematic signatures both within
and outside symmetry planes, even for strongly anisotropic or-
thorhombic media. P-wave velocities and traveltimes (includ-
ing reflection moveout) depend on just six parameters (VP0,
ε(1), δ(1), ε(2), δ(2), and δ(3)) and the orientation of the symmetry
planes, rather than nine coefficients in the conventional (ci j )
notation. Since the parameters δ(1) and δ(2) determine near-
vertical P-wave velocity variations, they concisely describe
P-wave NMO velocity from horizontal reflectors (Grechka and
Tsvankin, 1998b). The results below show that normal move-
out of dipping events is a function of simple combinations of
ε’s and δ’s as well.

Another advantage of this notation is the convenience of
characterizing anisotropy by a set of dimensionless anisotropic
coefficients that go to zero in isotropic media and are well suited
for developing weak-anisotropy approximations for various
seismic signatures. Below, we apply the weak-anisotropy ap-
proximation to the NMO-velocity function to identify the pa-
rameters that govern P-wave moveout in orthorhombic media.

EQUATION OF THE NMO ELLIPSE

Grechka and Tsvankin (1998b) considered azimuthally de-
pendent reflection moveout of pure (nonconverted) modes
around a certain CMP location over an arbitrary anisotropic
heterogeneous medium. By expanding the one-way traveltime
τ from the zero-offset reflection point to the surface into a
double Taylor series with respect to the horizontal Cartesian
coordinates (x1, x2), they derived the following expression for
the normal-moveout velocity (see also Grechka et al., 1999):

V−2
nmo(α) = W11 cos2 α + 2 W12 sin α cos α + W22 sin2 α ,

(10)
where α is the azimuth of the CMP line with respect to the
x1-axis, and the symmetric matrix W is given by

Wi j = τ0
∂2τ

∂xi ∂xj

∣∣∣∣∣
τ=τ0

= τ0
∂pi

∂xj
, (i, j = 1, 2). (11)
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Here, τ0 is the one-way zero-offset traveltime, and p1 and p2

are the horizontal components of the slowness vector; the spa-
tial derivatives of τ and pi are evaluated for the zero-offset
ray (i.e., at the CMP location). Grechka and Tsvankin (1998b)
showed that if the CMP traveltime increases with offset for all
azimuths α (which is usually the case), the matrix W is posi-
tive definite, and the azimuthally varying NMO velocity (10)
represents an ellipse. To demonstrate the elliptical character
of Vnmo(α), equation (10) can be rewritten as (for details, see
Grechka and Tsvankin, 1998b; Grechka et al., 1999)

V−2
nmo(α) = λ1 cos2(α − β) + λ2 sin2(α − β), (12)

where λ1,2 are the eigenvalues of the matrix W, and β is the
rotation angle (determined by the eigenvectors of W) defined
as

β = tan−1

W22 − W11 +
√

(W22 − W11)2 + 4W2
12

2W12

 .

(13)
Except for uncommon models with reverse moveout (i.e., with
negative V2

nmo, which implies that λ1 < 0 and/or λ2 < 0), equa-
tion (12) does indeed describe an ellipse in the horizontal plane.
The NMO velocities in the directions of the elliptical axes (we
denote them Vè 1 and Vè 2) are expressed through the eigenval-
ues as Vè 1 = 1/

√
λ1 and Vè 2 = 1/

√
λ2.

Since the NMO ellipse (10) is fully defined by only three
quantities (W11, W12, and W22), it can be reconstructed from
reflection data using a minimum of three NMO-velocity mea-
surements in different azimuthal directions. Below, we show
how the elements of the matrix W for horizontal and dipping
events can be inverted for the parameters of orthorhombic
media.

NMO VELOCITY IN A HOMOGENEOUS
ORTHORHOMBIC LAYER

Horizontal layer

As mentioned above, we consider an orthorhombic medium
with a horizontal symmetry plane. Then the azimuths of the
other two (vertical) symmetry planes determine the orientation
of the NMO ellipse in a horizontal orthorhombic layer, which
can be demonstrated by aligning the coordinate directions
x1 and x2 with the vertical symmetry planes. In this case,
W12 = 0, and equation (10) reduces to (Grechka and Tsvankin,
1998b)

V−2
nmo(α, 0) = W11 cos2 α + W22 sin2 α

= [
V (2)

nmo

]−2 cos2 α + [
V (1)

nmo

]−2 sin2 α ,

(14)

where V (2)
nmo and V (1)

nmo are the NMO velocities in the symmetry
planes [x1, x3] and [x2, x3], respectively, which can be easily
found by analogy with vertical transverse isotropy (Tsvankin,
1997). For instance, the symmetry-plane NMO velocities for
P-waves are given by

V (i )
nmo = VP0

√
1 + 2 δ(i ), (i = 1, 2), (15)

where VP0 and δ(i ) are introduced in equations (1), (4), and (7).
The remarkable simplicity of the exact NMO equations (14)

and (15) illustrates the advantages of Tsvankin’s parameteri-
zation (1)–(9).

Clearly, by obtaining the P-wave NMO ellipse in a horizon-
tal orthorhombic layer, we can determine the orientation of the
vertical symmetry planes and the NMO velocities V (1,2)

nmo within
them. The only case in which the azimuths of the symmetry
planes cannot be resolved is when the ellipse degenerates into
a circle (i.e., V (2)

nmo = V (1)
nmo). Likewise, the symmetry-plane direc-

tions can be recovered from the azimuthally dependent NMO
velocities of either split shear mode.

Layer above a dipping reflector

NMO equation for general anisotropy.—If the bottom of a
homogeneous orthorhombic layer is dipping, the azimuthal de-
pendence of NMO velocity is influenced by both the reflector
orientation and azimuthal anisotropy. Unless the dip plane of
the reflector coincides with one of the symmetry planes of the
medium, the model as a whole no longer has vertical symme-
try planes, and NMO velocity cannot be described by equa-
tion (14). Whereas the azimuthal variation of normal-moveout
velocity remains elliptical in accordance with the general equa-
tion (10), the semiaxes of the NMO ellipse do not necessarily
coincide with the symmetry-plane directions of the layer above
the reflector.

For the purposes of traveltime inversion, it is essential to
express the NMO velocity through quantities that can be mea-
sured from reflection data. In the 2-D problem dealing with
moveout in the dip plane of the reflector (which should co-
incide with a symmetry plane of the medium), the slope of
reflections on the zero-offset section yields the ray parameter
(horizontal slowness) of the zero-offset ray (Alkhalifah and
Tsvankin, 1995). (In contrast, recovering the actual dip of the
reflector from reflection traveltimes requires knowledge of the
velocity field, even if the medium is purely isotropic.)

Similarly, in the more general 3-D case discussed here, the
horizontal components (p1 and p2) of the zero-offset slowness
vector can be obtained directly from the azimuthally depen-
dent slope of zero-offset reflections. Although we do need a
minimum of three different azimuths to reconstruct the NMO
ellipse, the zero-offset sections along any two of them can be
used to find p1 and p2 (Grechka and Tsvankin, 1998b). Indeed,
the zero-offset reflection slope in any azimuthal direction is
simply equal to the projection of the zero-offset slowness vec-
tor onto this direction. Snell’s law implies that the slowness
vector of the zero-offset ray (but not necessarily the ray itself)
is normal to the reflector at the zero-offset reflection point.
The components p1 and p2, therefore, allow us to determine
reflector azimuth, while the dip still remains unknown because
the vertical slowness component cannot be found directly from
traveltimes measured in the horizontal plane.

The analysis below is based on the exact explicit expession
for NMO velocity in a homogeneous layer of arbitrary sym-
metry given by Grechka et al. (1999), who expressed the com-
ponents of the matrix W through the slowness vector of the
zero-offset ray as

W = p1q,1 + p2q,2 − q

q,11q,22 − q2
,12

(
q,22 −q,12

−q,12 q,11

)
, (16)

where q ≡ q(p1, p2) ≡ p3 is the vertical component of the
slowness vector; q,i and q,i j , (i, j = 1, 2) denote the partial
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derivatives q,i ≡ ∂q/∂pi and q,i j ≡ ∂2q/∂pi ∂pj that should
be evaluated for the zero-offset ray. Substitution of W into
equation (10) for the NMO ellipse yields

V−2
nmo(α, p1, p2) = p1q,1 + p2q,2 − q

q,11q,22 − q2
,12

× [
q,22 cos2 α − 2q,12 sin α cos α + q,11 sin2 α

]
.

(17)

Equation (17) is valid for all pure (i.e., nonconverted) reflec-
tion modes and any mutual orientation of the CMP line and
reflector strike. The vertical slowness q ≡ p3 can be found from
the Christoffel equation,

det(ci jkl pj pk − ρδi l ) = 0, (18)

where δi l is the Kronecker’s symbolic delta. Note that in a
medium with a horizontal symmetry plane (the case considered
here), the Christoffel equation reduces to a cubic polynomial
with respect to q2. The derivatives q,i and q,i j can be calcu-
lated by implicit differentiation of equation (18), as described
by Grechka et al. (1999).

Although the NMO equation (17) is quite general, here we
apply it only to P-waves in orthorhombic media. Since the
NMO ellipse (17) is defined by three components of the ma-
trix W (i.e., three coefficients of the trigonometric functions),
no more than three combinations of the layer parameters can
be extracted from moveout measurements for a single reflec-
tor with certain values of p1 and p2. As discussed above, if the
reflector is horizontal, P-wave NMO velocity is sufficient to de-
termine the orientation of the symmetry planes and the NMO
velocities within them. An important question addressed be-
low is which parameters of an orthorhombic medium can be
obtained using P-wave NMO velocity from dipping reflectors
with different strike orientations.

P-wave NMO velocity in the weak-anisotropy limit.—Al-
though numerical evaluation of equation (17) is relatively
straightforward, the dependence of NMO velocity on the
medium parameters is hidden in the slowness components and
their derivatives. Therefore, to identify the coefficients respon-
sible for P-wave NMO velocity, it is convenient to apply the
weak-anisotropy approximation. This approach has proved ex-
tremely productive in the analysis of NMO velocity and other
seismic signatures for vertical transverse isotropy (Tsvankin,
1995, 1996; Alkhalifah and Tsvankin, 1995; Cohen, 1997). For
instance, Alkhalifah and Tsvankin (1995) provided analytic
support for their two-parameter methodology by showing that
P-wave NMO velocity in weakly anisotropic VTI media de-
pends just on the zero-dip value Vnmo(0) and the difference
ε − δ ≈ η. Cohen (1997) further substantiated this conclusion
by analyzing the weak-anisotropy approximation quadratic in
the anisotropic parameters.

To express the vertical slowness through p1 and p2, we use
the P-wave phase-velocity equation for weakly orthorhombic
media given in Tsvankin (1997):

V2 = V2
P0

[
1 + 2n4

1ε
(2) + 2n4

2ε
(1) + 2n2

1n2
3δ

(2) + 2n2
2n2

3δ
(1)

+2n2
1n2

2(2ε(2) + δ(3))
]
. (19)

Here n = pV is the unit vector parallel to the slowness vector p
defined in the coordinate system associated with the symmetry
planes (i.e., [x1, x3] is a vertical symmetry plane), VP0 is the
vertical P-wave velocity [equation (1)], and ε(i ) and δ(i ) are
Tsvankin’s anisotropic parameters [equations (3), (4), (6), (7),
and (9)]. Equation (19) is fully linearized in the dimensionless
anisotropic coefficients that are supposed to be small in the
limit of weak anisotropy.

Substituting the slowness vector p into equation (19), we
obtain the vertical slowness q ≡ p3 as an explicit function of
the horizontal slowness components.

q2 =
(

1
V2

P0

− p2
1 − p2

2

)
− 2V2

P0

{(
p2

1 + p2
2

)
× [

p2
1(ε(2) − δ(2)) + p2

2(ε(1) − δ(1))
]

+ p2
1δ

(2) + p2
2δ

(1)

V2
P0

+ p2
1 p2

2

(
ε(1) − ε(2) − δ(3)) }

.

(20)

As follows from equations (19) and (20), in the weak
anisotropy approximation both the P-wave phase velocity V
and the vertical component of the slowness vector q depend on
only six quantities: the vertical velocity VP0 and five anisotropic
parameters ε(1), ε(2), δ(1), δ(2), and δ(3). Since phase velocity
determines all other kinematic signatures of a given mode,
these six parameters fully control P-wave velocities and travel-
times in weakly orthorhombic media. Tsvankin (1997) proved
that this conclusion remains valid even for strong velocity
anisotropy when the weak-anisotropy equations become nu-
merically inaccurate.

It is also important to recognize that equation (20) contains
the combinations ε(2) − δ(2) and ε(1) − δ(1), which represent
the linearized versions of the “anellipticity” coefficients η(2)

and η(1) introduced in Tsvankin (1997) by analogy with the
Alkhalifah-Tsvankin coefficient η:

η(2)—the VTI parameter η in the vertical symmetry plane
[x1, x3]:

η(2) ≡ ε(2) − δ(2)

1 + 2 δ(2)
. (21)

η(1)—the VTI parameter η in the vertical symmetry plane
[x2, x3]:

η(1) ≡ ε(1) − δ(1)

1 + 2 δ(1)
. (22)

In the linearized weak-anisotropy approximation, η(2) ≈ ε(2) −
δ(2) and η(1) ≈ ε(1) − δ(1).

The kinematic equivalence between the symmetry planes
of orthorhombic and VTI media implies that η(2) and η(1) are
responsible for the “2-D” P-wave NMO-velocity function in
the [x1, x3] and [x2, x3] planes, respectively. This equivalence,
however, is valid only if the symmetry plane coincides with
the dip plane of the reflector; otherwise, reflected rays propa-
gate outside the vertical incidence plane and are influenced by
azimuthal velocity variations.

Equation (20) also contains a linear combination of the
anisotropic coefficients (ε(1) − ε(2) − δ(3)) that involves the pa-
rameter δ(3) specified for the horizontal symmetry plane [x1, x2]
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[equation (9)]. To identify this combination as another lin-
earized η coefficient, this time corresponding to the [x1, x2]
plane, let us recall the definition of η for VTI media (Alkhalifah
and Tsvankin, 1995):

η ≡ 1
2

[
V2

hor

V2
nmo(0)

− 1
]

. (23)

In applying equation (23) to the [x1, x2] symmetry plane, we
have to keep in mind that x1 plays the role of the symmetry
axis of the equivalent VTI medium [see equation (9)]. Hence,
the horizontal velocity should be evaluated in the x2-direction:

Vhor = V (1)
nmo

√
1 + 2η(1) = VP0

√
1 + 2ε(1),

whereas the corresponding “Vnmo(0)” is given by

Vnmo(0) = V (2)
nmo

√
1 + 2η(2)

√
1 + 2δ(3)

= VP0

√
1 + 2ε(2)

√
1 + 2δ(3).

Substituting these values of Vhor and Vnmo(0) into equation (23),
we define the η coefficient in the [x1, x2] plane as

η(3) ≡ 1
2

{ [
V (1)

nmo
]2 (1 + 2η(1))[

V (2)
nmo

]2 (1 + 2η(2))(1 + 2δ(3))
− 1

}

= ε(1) − ε(2) − δ(3) (1 + 2ε(2))
(1 + 2ε(2)) (1 + 2δ(3))

. (24)

For weak orthorhombic anisotropy, η(3) reduces to the linear
combination (ε(1) − ε(2) − δ(3)) from equation (20). The ex-
pression for η(3) is more complicated than those for η(1) and
η(2) because neither the velocity along the x1-axis (the symme-
try axis of the effective VTI medium) nor the coefficient ε in
the [x1, x2] plane are included in Tsvankin’s parameterization
(both would be redundant).

Introducing the values of η(1), η(2), and η(3) into the expres-
sion for the vertical slowness q [equation (20)], substituting
q and its derivatives into the NMO equation (17) and carry-
ing out further linearization in the anisotropic coefficients, we
find the following weak-anisotropy approximation for P-wave
NMO velocity (Appendix A):

V−2
nmo(α, p1, p2) = cos2 α

{[
V (2)

nmo

]−2 − p2
1 +

3∑
i =1

d1i η(i )

}

+ 2 sin α cos α

{
−p1 p2 +

3∑
i =1

d2i η(i )

}

+ sin2 α

{[
V (1)

nmo

]−2 − p2
2 +

3∑
i =1

d3i η(i )

}
, (25)

where V (1,2)
nmo [equations (A-12)] are the linearized symmetry-

plane NMO velocities from a horizontal reflector (i.e., the semi-
axes of the corresponding NMO ellipse), η(i ) are the linearized
versions of the parameters defined in equations (21), (22),
and (24), and the quantities dki (p1, p2) are given in Ap-
pendix A. The azimuth α in equation (25) is measured from
the [x1, x3] symmetry plane. Note that for a horizontal reflec-
tor p1 = p2 = dki = 0, and equation (25) reduces to the
NMO ellipse for a horizontal orthorhombic layer given by
equation (14).

Although, as discussed above, P-wave phase velocity de-
pends on six medium parameters, only five combinations of
them (V (1)

nmo, V (2)
nmo, η(1), η(2), and η(3)) determine the P-wave

NMO velocity (25) in the weak anisotropy limit. This indicates
that the NMO ellipse (25) for a dipping reflector (p1 6= 0 and/or
p2 6= 0) can be inverted for the three η coefficients provided
V (1)

nmo, V (2)
nmo, and the orientation of the vertical symmetry planes

have already been found using horizontal events.
To gain analytic insight into the possibility of recovering all

three η coefficients from a single dipping event, let us assume
that the dip azimuth of the reflector is aligned with one of
the vertical symmetry planes. We will show that in this case the
inversion can yield only one η coefficient and the difference
between the two others.

Suppose, for instance, that the dip azimuth coincides with
the x1-direction. Then, the zero-offset slowness vector (and
the zero-offset ray) is confined to the [x1, x3] symmetry plane,
and the horizontal slowness component p2 is equal to zero.
Evaluating the coefficients dki [equations (A-2)–(A-10)] for
p2 = 0 and substituting the results into the NMO equation (25),
we obtain

V−2
nmo(α, p1, p2 = 0) =
cos2 α

{[
V (2)

nmo

]−2 − p2
1 − 2p2

1η
(2)(4p4

1 Ṽ4 − 9p2
1 Ṽ2 + 6

)}
+ sin2 α

{
[V (1)

nmo]−2 − 2p2
1

[
η(1) − η(3) + η(2)(1 − p2

1 Ṽ2)]},
(26)

where Ṽ = 1
2 (V (1)

nmo + V (2)
nmo); as discussed in Appendix A, in

the linearized weak-anisotropy approximation, it is possible to
add any anisotropic terms to Ṽ without changing the final ex-
pression. Equation (26) shows that the semiaxes of the NMO
ellipse are parallel to the dip and strike directions of the reflec-
tor. This result (which is valid for any strength of the anisotropy,
see Grechka and Tsvankin, 1998b; Grechka et al., 1999) could
be expected because the dip plane becomes a plane of symme-
try for the whole model.

If the azimuths of the symmetry planes have already been
found from horizontal events, the orientation of the ellipse does
not carry new information about anisotropy. Therefore, in this
case, the NMO ellipse for a single dipping event can be used to
recover only two combinations of the medium parameters con-
tained in the elliptical semiaxes. According to equation (26),
the NMO velocity in the dip plane of the reflector (α = 0) is
given by

V−2
nmo(0, p1) =[

V (2)
nmo

]−2 − p2
1 − 2p2

1η
(2) × (

4p4
1 Ṽ4 − 9p2

1 Ṽ2 + 6
)
,

(27)

which reduces to the weak-anisotropy approximation for the
dip-line P-wave NMO velocity in VTI media derived by
Alkhalifah and Tsvankin (1995) [their equation (A-10)], if we
choose Ṽ as V (2)

nmo and recall that η(2) and V (2)
nmo are equivalent

to the VTI parameters η and Vnmo(0). Since the reflected rays
on the dip line cannot deviate from the incidence (symmetry)
plane, Vnmo(0, p1) should indeed be given by the VTI equa-
tion (for any strength of the anisotropy) due to the kinematic
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analogy between the symmetry planes of orthorhombic and
VTI media (Tsvankin, 1997). Conclusions of Alkhalifah and
Tsvankin (1995) drawn for VTI media imply that the NMO
velocity in the [x1, x3] plane can be inverted in a stable fashion
for the coefficient η(2), if the reflector dip (represented by the
horizontal slowness p1) reaches at least 20–25◦.

Additional information about the medium parameters is
contained in the NMO velocity Vnmo(π/2, p1) measured in the
strike direction (the second semiaxis of the NMO ellipse).
Equation (26) indicates that Vnmo(π/2, p1) depends on the dif-
ference η(1) − η(3) rather than on the individual values of η(1)

and η(3). Therefore, if the [x1, x3] plane is orthogonal to the
strike of a dipping reflector, the semiaxes of the NMO el-
lipse can be inverted for the parameter η(2) and the difference
η(1) − η(3) (the NMO velocities from a horizontal reflector are
assumed to be known). Likewise, if the reflector strike is nor-
mal to the [x2, x3] plane, we can expect to obtain η(1) and the
difference η(2)−η(3). (Note that in the weak-anisotropy approx-
imation, the definition of η(3) is symmetric in the sense that it
does not change if we use x2 as the symmetry axis of the ef-
fective VTI medium in the [x1, x2] plane.) Therefore, resolving
all three η coefficients individually requires the presence of a
dipping reflector with the strike that deviates sufficiently from
both vertical symmetry planes.

As shown in Appendix A, the VTI equation (27) can be used
on the dip line even outside the symmetry planes, but with the
azimuthally dependent zero-dip NMO velocity and η coeffi-
cient. This result, valid only for weak anisotropy, follows from
the identical form of the phase-velocity equation in any ver-
tical plane of orthorhombic and VTI media (Tsvankin, 1997).
A more detailed discussion of the equivalence between VTI
and orthorhombic media for out-of-plane propagation can be
found in Rommel and Tsvankin (1997).

P-wave NMO velocity for strong anisotropy.—The main pur-
pose of applying the weak-anisotropy approximation to the
NMO equation was to gain insight into the dependence of the
moveout function on the anisotropy parameters. In the actual
inversion procedure described below, we use the exact equa-
tion (17) valid for any strength of the anisotropy. Therefore,
it is necessary to find out whether the parameters V (1)

nmo, V (2)
nmo,

η(1), η(2), and η(3) alone control the P-wave NMO velocity for
models with strong velocity variations. It should be emphasized
that here and below we use the definitions of the η coefficients
given in equations (21), (22), and (23) rather than their lin-
earized weak-anisotropy approximations.

If the dip plane of the reflector coincides with one of the
vertical symmetry planes, the dip-line NMO velocity is given
by the VTI equations and, therefore, is fully determined by
the zero-dip NMO velocity (i.e., the velocity from a horizontal
reflector) and the corresponding η coefficient (Tsvankin, 1997).
Even in this special case, however, the strike-line NMO velocity
is influenced by azimuthal velocity variations and has to be
studied separately.

To show that the five parameters listed above are indeed suf-
ficient to describe the 3-D P-wave NMO velocity for strongly
anisotropic media, we performed several numerical tests. A
typical result for a reflector with the dip-plane azimuth diverg-
ing by 30◦ from the [x1, x3] symmetry plane is displayed in
Figure 2. The NMO ellipse, explicitly defined in equation (12),

was characterized by its semiaxes Vè 1 and Vè 2 (Figures 2a,b)
and the rotation angle β between the larger semiaxis and the
[x1, x3] symmetry plane (Figure 2c). All three parameters were
calculated for a wide range of reflector dips governed by the
horizontal slowness p =

√
p2

1 + p2
2 . In the first test, we varied

the ε and δ coefficients keeping the parameters V (1)
nmo, V (2)

nmo,
η(1), η(2), and η(3) constant (compare the solid and dashed
lines). Clearly, the NMO ellipses for these significantly dif-
ferent strongly anisotropic models, which have the same pa-
rameters V (1,2)

nmo and η(1,2,3), practically coincide for all dips. In

FIG. 2. The dependence of the NMO ellipse for reflections
from a dipping interface on the parameters of an orthorhom-
bic layer. The dip plane of the reflector makes an angle of
30◦ with the [x1, x3] symmetry plane; the reflector dip changes
in accordance with the horizontal slowness (ray parameter)
p=

√
p2

1 + p2
2. (a) and (b) P-wave NMO velocities in the di-

rections of the semiaxes of the NMO ellipse; (c) the rotation
angle β of the larger semiaxis with respect to the [x1, x3]–plane.
Solid line (model 1): V (1)

nmo = 1.8 km/s, V (2)
nmo = 2.2 km/s, η(1) = 0.2,

η(2) = 0.3, η(3) = 0.15, ε(1) = 0.2, ε(2) = 0.695, δ(1) = 0, δ(2) = 0.25,
δ(3) = −0.27. Dashed line (model 2): all V (i )

nmo and η(i ) are
the same as above, but ε(1) = −0.031, ε(2) = 0.3, δ(1) = −0.165,
δ(2) = 0, δ(3) = −0.27. Dotted line (model 3): V (1)

nmo = 1.8 km/s,
V (2)

nmo = 2.2 km/s, η(1) = 0.1, η(2) = 0.2, η(3) = 0.15. Ṽ is defined by
equation (A-11).
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contrast, variation in the relevant parameter combinations η(1)

and η(2) (dotted) leads to noticeable changes in the semiaxes
and orientation of the NMO ellipse with increasing dip. The
substantial magnitude of the influence of η(1) and η(2) on nor-
mal moveout indicates that these coefficients can be obtained
in a stable fashion from the NMO ellipse for a dipping event
(provided the dip is not too mild).

Similar results have been obtained for a wide range of reflec-
tor azimuths and the values of anisotropic parameters. Thus,
for a fixed orientation of the vertical symmetry planes, the exact
NMO velocity Vnmo(α, p1, p2) is a function of only five medium
parameters: V (1,2)

nmo and η(1,2,3). From equation (24), it is clear that
η(3) can be replaced by the original coefficient δ(3) of Tsvankin
(1997), but we prefer to use η(3) to maintain uniformity in the
definition of the coefficients. Also, η(3) appears to be a more
natural choice for the moveout-inversion problem because it
directly enters the weak-anisotropy approximation for the ver-
tical slowness [equation (20)].

To recover these five parameters along with the symmetry-
plane azimuths, we need a minimum of six moveout mea-
surements which, in principle, can be obtained from at least
two NMO ellipses corresponding to two distinct reflector dips
and/or azimuths. In terms of the acquisition design, we need
good offset coverage in at least three different azimuthal direc-
tions to reconstruct the elliptical NMO-velocity dependencies
and determine the horizontal slowness components of the cor-
responding reflection events.

INVERSION OF P-WAVE NMO VELOCITY
IN A SINGLE LAYER

Although in principle the inverse problem can be posed for
two arbitrary reflector dips, for the sake of simplicity we assume
that one of the reflectors is horizontal. The NMO ellipse for the
horizontal event [equation (14)] provides the azimuths of the
symmetry planes and the NMO velocities V (1,2)

nmo within them.
Then the zero-offset traveltimes of the dipping reflection, mea-
sured in different azimuthal directions, can be used to find the
horizontal slowness components p1 and p2 of the zero-offset
ray, while the corresponding NMO ellipse can be inverted for
the parameters η(1,2,3). We formulate the conditions necessary
for resolving all three η coefficients and study the stability of
the inversion procedure in the presence of errors in input data.

This algorithm relies on the difference between the
symmetry-plane NMO velocities for reflections from a hori-
zontal interface to find the orientation of the symmetry planes.
It may happen, however, that V (1)

nmo = V (2)
nmo (δ(1) = δ(2)), and the

NMO ellipse for horizontal events degenerates into a circle. In
this case (not discussed here), we need two different dipping
events to recover the symmetry-plane azimuths and the three
η coefficients.

If V (1,2)
nmo and the orientation of the symmetry planes have

been obtained, the elements of the matrix W for a dipping event
with the horizontal slowness components p1 and p2 become
functions of η(1,2,3) [see equation (16)]:

Wi j
(
η(1), η(2), η(3)) =

q,i j (2δi j − 1) × p1q,1 + p2q,2 − q

q,11q,22 − q2
,12

, (i, j = 1, 2),

(28)

where δi j is the Kronecker’s δ. Since the matrix W is symmetric,
the system (28) contains three nonlinear equations for the three
unknowns. We obtain the η coefficients by using the simplex
method to solve the following least-squares problem:

FP ≡
2∑

i, j =1

[
Ŵi j − Wi j

(
η(1), η(2), η(3))]2 = min, (29)

where Ŵ is the matrix that determines the NMO ellipse re-
constructed from azimuthally dependent moveout data. Nu-
merical tests (see examples below) performed with various
initial guesses showed that the inversion algorithm success-
fully converges towards the correct values of η(1,2,3) (or their
correct combinations, if the parameters cannot be resolved
individually).

The first step in this inversion procedure is determination
of the parameters of NMO ellipses—a procedure that may be
influenced by nonhyperbolic moveout on finite-spread gath-
ers. However, as shown by Grechka and Tsvankin (1998b) and
Grechka et al. (1999), conventional-spread P-wave moveout
in an orthorhombic layer is typically close to hyperbolic with
the moveout (stacking) velocity well approximated by the an-
alytic NMO value from equation (17). The numerical example
in Figure 3, performed for spreadlength equal to the CMP-
reflector distance, confirms this conclusion for both the hori-
zontal and dipping reflector. The inversion of the two ellipses
reconstructed from finite-spread moveout data yields accurate
estimates of the η coefficients: η(1) = 0.084 , η(2) = 0.041, and
η(3) = 0.123 (correct values: 0.1, 0.05 and 0.15, respectively).

FIG. 3. Comparison of the P-wave NMO ellipses for hori-
zontal and dipping events from equations (14) and (17) (thin
solid lines) with the moveout (stacking) velocity (dots) ob-
tained by least-squares fitting of a hyperbola to the exact trav-
eltimes computed for speadlength equal to the distance be-
tween the CMP and the reflector. The dashed lines mark the
best-fit ellipses approximating the measured moveout velocity
(i.e., traced through the dots). For the dipping reflector, the
azimuth of the dip plane is 30◦ (azimuth 0◦ on the plot cor-
responds to the [x1, x3] symmetry plane) and dip is 40◦. The
layer parameters are V (1)

nmo = 1.90 km/s, V (2)
nmo = 2.10 km/s,

η(1) = 0.1, η(2) = 0.05, η(3) = 0.15 (ε(1) = 0.1, ε(2) = 0.17, δ(1) = 0,
δ(2) = 0.11, δ(3) = −0.16).
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The higher error in the parameter η(3) is due to the fact that
this coefficient mostly influences near-horizontal velocity vari-
ations (see the discussion below).

The results for the model in Figure 3, as well as those for a
number of other models we have studied, show that a certain
percentage error in the NMO velocity translates into a similar
absolute error in the coefficients η(1) and η(2); the same con-
clusion was drawn previously for η inversion in VTI media by
Alkhalifah and Tsvankin (1995) and Grechka and Tsvankin
(1998b). In the example from Figure 3, the maximum error in
the NMO velocity for both horizontal and dipping events is
smaller than 1.5%. The magnitude of nonhyperbolic moveout

FIG. 4. Inversion of the P-wave NMO ellipses from a horizontal and dipping reflector for η(1) (dashed line), η(2)

(solid line), and η(3) (dash-dotted line) in the presence of errors in input data. The dip plane makes an angle of 30◦
with the [x1, x3] symmetry plane, and the dip is 40◦. (a) and (c) Errors (in percent) in the semiaxes of the ellipse
for the horizontal event; (b) and (d) errors (in percent) in the semiaxes of the ellipse for dipping event; (e) errors
(in degrees) in the orientation angle β(0) of the NMO ellipse for the horizontal event; (f) errors (in degrees) in the
orientation angle β(p) of the NMO ellipse for the dipping event. The actual parameters are η(1) = 0.05, η(2) = 0.10,
and η(3) = 0.15. The inversion results in the absence of errors: η(1) = 0.053, η(2) = 0.099, and η(3) = 0.145.

for horizontal reflectors increases with η(1) and η(2), but the as-
sociated NMO-velocity error on conventional spreads seldom
exceeds 2.5–3%. If the data after hyperbolic moveout correc-
tion show residual moveout, it is possible to obtain a more ac-
curate estimate of Vnmo by applying a nonhyperbolic moveout
equation (Grechka and Tsvankin, 1998a).

The only source of errors in the example from Figure 3 is the
influence of nonhyperbolic moveout, which proved to be rela-
tively small. A more general analysis of the influence of errors
in the input data is presented in Figure 4. If the components
of the matrices W are taken from the two exact NMO ellipses,
the inversion of equation (28) gives almost perfect results, with
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the recovered η(1,2,3) differing by no more than 0.005 from the
actual values. These minor errors are explained by the fact
that in the inversion procedure we intentionally used inaccu-
rate values of VP0 = Ṽ = 2.0 km/s [see equation (A-11)] (the
actual VP0 = 1.9 km/s) and VS0 = VP0/2 = 0.95 km/s (the actual
VS0 = 0.6 km/s). This is another illustration of the negligible in-
fluence of the vertical velocities (which are generally unknown)
on the NMO function; hence, it is justified to use reasonable
estimates for VP0 and VS0 in the inversion procedure.

It is clear from Figure 4 that the various η coefficients are
most sensitive to errors in different measured quantities. For
instance, η(2) (the solid line in Figures 4a,b) strongly depends
on the larger semiaxes of both NMO ellipses (which are close
to the [x1, x3] plane) and is almost insensitive to the changes in
the smaller semiaxes (Figures 4c,d). These conclusions are in
good agreement with the analytic results obtained in the weak-
anisotropy approximation. As indicated by equation (26), η(2)

is the only anisotropic coefficient that controls the larger semi-
axis of the NMO ellipse (i.e., the dip-line NMO velocity) for a
reflector with the dip plane parallel to the x1-axis. The inver-
sion of the dip-line NMO velocity for η(2) in this case involves
just V (2)

nmo—the zero-dip NMO velocity in the same (x1) direc-
tion [see equation (27)]. Since for the model in Figure 4 the az-
imuth of the dip plane is closer to the x1-axis than to the x2-axis,
η(2) remains primarily responsible for the larger semiaxis of the
ellipse for the dipping event and is highly sensitive to V (2)

nmo.
Equation (26) also shows that if [x1, x3] represents the dip

plane of the reflector, η(1) and η(3) influence just the strike-line
NMO velocity (i.e., the smaller semiaxis of the NMO ellipse),
and only as the difference η(1) − η(3). In addition, note that the
NMO velocity in the strike direction depends on V (1)

nmo but does
not contain V (2)

nmo [equation (26)]. This allows us to understand
the results of the inversion for η(1) and η(3) in Figures 4a–d. First,
both η(1) and η(3) are sensitive mostly to the errors in the smaller
semiaxis of the NMO ellipse for the dipping event, as well as in
V (1)

nmo. Second, we were able to restore the difference η(1) − η(3)

with a much higher accuracy than either of the coefficients
individually (see Figure 4c,d).

The influence of error in the orientation of the ellipses (Fig-
ures 4e,f) is more difficult to interpret, but it can also be ex-
plained in terms of the general weak-anisotropy approxima-
tion (25). Note that the coefficient η(3) (but not η(1) and η(2)) is
quite sensitive to errors in the orientation of the ellipse for the
dipping event.

Overall, if the dip plane of the reflector is closer to the x1

direction, the coefficient most tightly constrained by P-wave
moveout data is η(2). This is not surprising since the parameter
η(2) is fully responsible for the dip-dependent NMO velocity
in the [x1, x3] plane. In contrast, the coefficient η(3) proves to
be most sensitive to errors in the input data, especially in the
orientation and in the smaller semiaxis of the NMO ellipse
for the dipping event. Since η(3) is defined in the horizontal
symmetry plane, its influence on NMO velocity for moderate
reflector dips (e.g., a dip of 40◦ in Figure 4) is smaller than
that of η(1) and η(2). A more stable estimate of η(3) requires the
presence of a steeper reflector with the dip plane sufficiently
deviating from the vertical symmetry planes.

In summary, the inversion of the P-wave NMO ellipses cor-
responding to reflections from a horizontal and dipping in-
terface in a homogeneous orthorhombic layer may yield the

orientation of the vertical symmetry planes, two symmetry-
plane NMO velocities from a horizontal reflector, and three
anisotropic parameters η(1,2,3). Since the η coefficients control
the dip dependence of NMO velocity and make no contribu-
tion to moveout for horizontal events, the dipping interface
used in the inversion should not be too close to horizontal. In
agreement with the results of Alkhalifah and Tsvankin (1995)
for η inversion in VTI media, the estimates of the anisotropic
parameters become unstable for mild dips below 20–25◦.

MOVEOUT INVERSION FOR LAYERED MEDIA

Dix-type layer stripping in orthorhombic media

The inversion approach outlined above can be extended to
horizontally layered orthorhombic media above a dipping re-
flector (Figure 5) using the generalized Dix equation developed
by Grechka et al. (1999). As before, it is assumed that we have
a minimum of three azimuthal moveout measurements that al-
low us to reconstruct the effective NMO ellipses [i.e., the ma-
trices W(L)] for reflections from both horizontal and dipping
interfaces. Also, we use reflections on the zero-offset sections
along the same lines to obtain the horizontal slowness compo-
nents p1 and p2 of the zero-offset ray for the dipping event.

The matrix W(L) that describes the effective NMO ellipse
for data recorded at the surface from a horizontal or dipping

FIG. 5. Horizontally layered orthorhombic medium above a
dipping reflector.
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reflector can be found by the following averaging of the interval
matrices W` (Grechka et al., 1999):

W−1(L) = 1
τ (L)

L∑
`=1

τ` W−1
` , (30)

where τ` are the interval zero-offset traveltimes and τ (L) =∑L
`=1 τ`. Equation (30) for the effective matrix W is valid for

horizontally layered overburden (Figure 5) with arbitrary sym-
metry in each layer. It should be emphasized that all inter-
val matrices in equation (30) are evaluated for the horizontal
slownesses p1 and p2 of the zero-offset ray from the dipping
reflector.

Given the effective matrices for reflections from the top and
bottom of layer ` and the corresponding zero-offset travel-
times, the interval matrix W` can be obtained by Dix-type dif-
ferentiation,

W−1
` = τ (`)W−1(`) − τ (` − 1)W−1(` − 1)

τ (`) − τ (` − 1)
. (31)

Evidently, instead of the squared NMO velocities in the con-
ventional Dix equation, equations (30) and (31) contain the
inverse of the matrices W responsible for the interval NMO
ellipses. Only if the model has a throughgoing symmetry plane
(i.e., the dip plane coincides with a plane of symmetry in all
layers), does equation (30) split into two rms-averaging equa-
tions for the NMO velocities in the dip and strike directions
(Grechka et al., 1999). In general, however, application of the
conventional form of the Dix equation in the presence of az-
imuthal anisotropy and/or reflector dip leads to errors in the
interval values. For instance, as shown in Appendix B, rms av-
eraging of interval NMO velocities at a fixed azimuth always
underestimates the effective velocity near intersections of in-
terval NMO ellipses.

In contrast to the conventional Dix equation, the only com-
ponents of equation (30) that can be obtained from the data di-
rectly are the effective matrix W(L) and the zero-offset travel
time τ (L) for the reflection from the dipping interface. The
interval matrices W in the horizontal layers generally corre-
spond to nonexistent reflectors normal to the slowness vector
of the zero-offset ray. Nevertheless, it is still possible to devise
a layer-stripping procedure using equation (31), if dipping re-
flectors (not necessarily with the same dip) are present in each
interval.

Here, we develop such a layer-stripping procedure for a strat-
ified orthorhombic medium. First, we carry out the Dix-type
differentiation (31) of the NMO ellipses for reflections from
horizontal interfaces to obtain the interval matrices W` for the
horizontal events. Since the slowness vector of the zero-offset
ray from all horizontal boundaries is vertical (p1 = p2 = 0), the
effective matrices for the top and bottom of each layer needed
in equation (31) can be obtained from the data directly, with-
out any recalculation from one ray-parameter value to another.
The interval NMO ellipses for horizontal reflectors yield the
orientation of the symmetry planes in each layer [described by
the rotation angles β`(0)] and the symmetry-plane NMO ve-
locities V (1)

nmo,` andV (2)
nmo,`. Note that we do not assume that the

medium has throughgoing vertical symmetry planes [i.e., β`(0)
is not necessarily constant]; the generalized Dix equation al-
lows the orientation of the symmetry planes to vary from layer
to layer in an arbitrary fashion.

After performing the Dix-type differentiation for horizon-
tal reflections, we can use dipping events to estimate the inter-
val values of η

(1,2,3)
` . The results of the single-layer inversion

show that to resolve all three η coefficients in each interval, we
need at least one dipping reflector, with the azimuth of the dip
plane deviating sufficiently from that of the symmetry planes
for this layer. Realistically, we determine the effective values
of the anisotropic coefficients between the available velocity
picks, whether the corresponding intervals are homogeneous
or not.

The inversion procedure in the first (subsurface) layer [equa-
tions (28) and (29)] yields the values of V (1)

nmo,1, V (2)
nmo,1, β1(0), η(1)

1 ,
η

(2)
1 , and η

(3)
1 that can be used to calculate the interval matrix

W1 for the parameters p1 and p2 corresponding to the dipping
reflector in the second layer. Then we compute the effective
matrix W(2) from the azimuthally dependent NMO velocity
for this dipping reflector (along with the zero-offset travel-
time) and apply equation (31) to obtain the interval matrix
W2 in the second layer. Using the interval values V (1)

nmo,2, V (2)
nmo,2

found from the horizontal events, the matrix W2 is inverted for
the parameters η

(1)
2 , η

(2)
2 , and η

(3)
2 . This layer-stripping proce-

dure is continued downward, as long as both horizontal and
dipping events are available. Note that to calculate the interval
matrix in any layer WL , the matrices W` in all overlying layers
` = 1, . . . , L − 1 need to be recalculated to the values of p1 and
p2 for the dipping reflector in layer L .

Implementation of the Dix-type layer-stripping procedure
described above requires computing not only the interval ma-
trices W`, but also the interval traveltimes τ`, as functions of
p1 and p2. Although P-wave traveltimes in general depend
on the vertical velocity and five ε and δ coefficients, below we
show that the moveout parameters V (1)

nmo, V (2)
nmo, η(1), η(2), and η(3)

are sufficient for converting the vertical zero-offset traveltime
τ0,` in a horizontal orthorhombic layer (known from horizontal
events) into the traveltime along an arbitrary oblique ray. The
one-way traveltime τ (p) in the `th layer (below we omit the
index ` for brevity) can be calculated as the ratio of the layer
thickness zand the vertical component of the group velocity g3,

τ (p) = z

g3
= τ0 VP0

g3
, (32)

where τ0 is the vertical zero-offset traveltime and VP0 is the
vertical velocity. For the vertical group-velocity component,
Grechka et al. (1999) obtained the following equation:

g3 = 1
q − p1q,1 − p2q,2

, (33)

where, again, q,i are the partial derivatives of the vertical com-
ponent of slowness q ≡ p3 with respect to the horizontal com-
ponents pi . Substituting equation (33) into equation (32) yields

τ (p) = τ0 VP0 (q − p1q,1 − p2q,2) . (34)

Numerical analysis of equation (34) indicates that the ratio
τ (p)/τ0 expressed through the parameters p1 and p2 is indeed
fully controlled by the two NMO velocities and three η coeffi-
cients responsible for the NMO-velocity function (Figure 6).

The principle of our layer-stripping procedure is close to that
of the 2-D inversion algorithm for η in VTI media, described
by Alkhalifah and Tsvankin (1995). Here, however, we oper-
ate with NMO ellipses influenced by the 3-D character of wave
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propagation, rather than with normal-moveout velocities mea-
sured in a vertical symmetry plane of the model.

The stability of the interval parameter estimation is influ-
enced by errors in the single-layer inversion procedure dis-
cussed above, as well as by the magnification of errors during
the Dix-type differentiation. As in the conventional Dix ve-
locity analysis, the accuracy in the interval values is inversely
proportional to the thickness of the interval. Let us denote the
relative time thickness of the `th layer (for which the differen-
tiation is performed) as

σ` = τ`

τ (`)
. (35)

Then equation (31) can be rewritten in the form

W−1
` = 1

σ`

[W−1(`) − (1 − σ`)W−1(` − 1)] , (36)

which explicitly shows that, for small σ`, any errors in effective
NMO ellipses will propagate into the errors in interval ellipses
with the magnification factor 1/σ`.

Synthetic example

We applied our algorithm to the inversion of the exact (ray-
traced) reflection traveltimes in a three-layer orthorhombic
model having a throughgoing dipping reflector (Figure 7).
NMO ellipses for horizontal and dipping events were obtained
by hyperbolic semblance analysis for spreadlengths close to
and even larger than the CMP-reflector distance. In principle,
these estimates may be distorted by the influence of nonhy-
perbolic moveout that is usually enhanced by vertical inhomo-
geneity. However, as seen in Figure 8, deviations of the exact
traveltimes from the hyperbola parameterized by the analytic
NMO velocity become pronounced only for offsets that exceed
the distance between the CMP and the reflector. Note that the

FIG. 6. Dependence of the traveltime τ (p) along an oblique
ray on the parameters of a horizontal orthorhombic layer. The
slowness vector is confined to the vertical plane that makes an
angle of 30◦ with the x1-axis. Models are taken from Figure 2:
the solid line is for model 1, the dashed line is for model 2 (the
same V (i )

nmo and η(i ) as in model 1 but different ε(i ) and δ(i )),
and the dotted line is for model 3 (smaller η(1) and η(2) than in
model 1). Ṽ is defined by equation (A-11).

moveouts shown in Figure 8 are calculated for rays that crossed
three orthorhombic layers with different orientation of the ver-
tical symmetry planes and, therefore, bear the full impact of az-
imuthal anisotropy and vertical inhomogeneity. It is interesting
that the magnitude of nonhyperbolic moveout is much more
significant for the horizontal reflector, whereas the moveout
of the dipping event stays close to the analytic hyperbola up
to relatively large offsets. The same conclusion was drawn by
Tsvankin (1995) in his study of dip-plane moveout for verti-
cal transverse isotropy. Indeed, if both the spreadlength and
the distance between the CMP and the reflector are fixed, the
range of take-off angles for reflected rays decreases with dip,
which mitigates the influence of anisotropy on the traveltimes
and reduces the departure from hyperbolic moveout.

Although the errors in the effective NMO ellipses are some-
what higher (mostly for horizontal events) than those in the
single-layer model (Figure 3), the accuracy of our NMO equa-
tions is quite sufficient for a stable recovery of the anisotropic
parameters (Table 1). The overall maximum error in the η coef-
ficients is slightly over 0.03, with the error in the relatively thin
deepest layer of just 0.02. The consistently negative errors in
all anisotropic coefficients are explained by the fact that the in-
creasing influence of nonhyperbolic moveout with depth leads
to overestimation of the interval NMO velocities from horizon-
tal reflectors. (This interval error, however, is not substantial
because the distortion in the NMO velocities from both the
top and bottom of each layer has the same sign.) Since the er-
rors in the NMO velocities from dipping reflectors are almost
negligible, the overestimates of V (1,2)

nmo have to be compensated
by underestimates of η(1,2,3) to match the NMO ellipses for the
dipping events.

P-WAVE TIME PROCESSING IN ORTHORHOMBIC MEDIA

The kinematic equivalence between the symmetry planes of
orthorhombic media and vertical transverse isotropy implies
that 2-D P-wave time processing [i.e., NMO and dip-moveout
(DMO) corrections, prestack and poststack time migration]
in each vertical symmetry plane of orthorhombic media is
controlled solely by the in-plane zero-dip NMO velocity and

FIG. 7. 2-D sketch of the layered orthorhombic model used to
test the inversion algorithm. The azimuth β(0) of the [x1, x3]
symmetry plane changes with depth: layer 1, β1(0) = 0◦; layer
2, β2(0) = −10◦; layer 3, β3(0) = −20◦ (the parameters of each
layer are given in Table 1). The azimuth of the dip plane of the
reflector is 30◦, and the dip is 40◦.
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the corresponding η coefficient (Tsvankin, 1997). (The 2-D
assumption implies that both the rays and their correspond-
ing phase-velocity vectors stay in the vertical symmetry plane,
which can happen only if this symmetry plane coincides with
the dip plane of the subsurface structure.) The needed param-
eters for the [x1, x3] plane are V (2)

nmo and η(2), and for the [x2, x3]
plane the appropriate pair is V (1)

nmo and η(1).
One can expect that 3-D time processing outside the symme-

try planes involves at least one additional parameter: η(3) (or
δ(3)). Indeed, while normal moveout from horizontal reflec-
tors and, therefore, NMO correction are determined by the
symmetry-plane azimuths and two zero-dip NMO velocities
V (1)

nmo and V (2)
nmo, NMO velocity for dipping events (and DMO

correction) also depends on η(1), η(2), and η(3). In this section,
we analyze migration impulse responses and show that post-
stack time migration in orthorhombic media is governed by
the same parameters as is normal moveout. This conclusion is
in agreement with the work by Ikelle (1996), who studied the
dispersion relation in weakly anisotropic orthorhombic media.
It should be emphasized that our results are not limited to weak
anisotropy.

The responses displayed in Figures 9 and 10 were computed
using the 3-D PSPI (phase-shift-plus-interpolation) migration
code developed by Le Rousseau (1997). Models 1 and 2, al-
ready used in Figure 2, have vastly different elastic properties
but identical parameters V (1)

nmo, V (2)
nmo, η(1), η(2), and η(3). The 3-D

poststack time-migration impulse responses for these models
proved to be practically indistinguishable, both within and out-
side the symmetry planes; this is illustrated in Figure 9 for a

Table 1. Comparison of the inverted and actual values of the interval parameters for the three-layer orthorhombic model
from Figure 7.∗

Correct values Inverted values

V (1)
nmo V (2)

nmo β V (1)
nmo V (2)

nmo β

Layer (km/s) (km/s) (◦) η(1) η(2) η(3) (km/s) (km/s) (◦) η(1) η(2) η(3)

1 2.50 2.76 0.0 0.10 0.05 0.15 2.54 2.79 0.0 0.07 0.04 0.13
2 2.90 3.18 −10.0 0.15 0.10 0.15 2.97 3.23 −8.0 0.12 0.08 0.13
3 3.20 3.77 −20.0 0.20 0.15 0.20 3.25 3.83 −18.0 0.18 0.13 0.18
∗The maximum source-receiver offsets used in estimating moveout velocity are as follows: horizontal and dipping reflectors in layer
3 = 1.8 km (spreadlength-to-depth ratio Xmax/D = 0.9); layer 2 = 1.8 km (Xmax/D = 1.06); layer 1 = 1.2 km (Xmax/D = 1.2).

FIG. 8. Accuracy of the hyperbolic moveout equation for the model from Figure 7. Dots show P-wave traveltimes
computed by 3-D anisotropic ray tracing; solid lines are hyperbolic moveout curves parameterized by the NMO
velocity calculated using the generalized Dix equation (30). (a) Reflection from the deepest horizontal boundary
(bottom of layer 3); (b) reflection from the segment of the dipping interface in layer 3. τ is the traveltime, X is
the source-receiver offset, τ0 = τ (X = 0); D is the distance between the CMP and the reflector.

vertical section making an angle of 30◦ with the x1-axis. The
same results were obtained in other tests performed for a rep-
resentative set of orthorhombic models.

Any variation in the relevant parameters leads to changes
in the shape of the migration impulse response. For instance,
a decrease in η(1) and η(2) translates into smaller horizontal
velocities and thus narrower impulse response (Figure 10).

Since both normal moveout (i.e., NMO and DMO) and post-
stack time migration are fully controlled by the symmetry-
plane orientation, zero-dip NMO velocities V (1)

nmo and V (2)
nmo, and

the anisotropic coefficients η(1), η(2) and η(3), these parameters
are responsible for the whole P-wave 3-D time-processing se-
quence. Consequently, the same set of parameters is sufficient
for prestack time migration. P-wave depth processing, how-
ever, requires knowledge of the vertical velocity and all ε and
δ coefficients (a total of six parameters).

DISCUSSION AND CONCLUSIONS

We have shown that the exact P-wave normal-moveout ve-
locity in orthorhombic media is fully controlled by the orienta-
tion of the vertical symmetry planes and five medium parame-
ters: two symmetry-plane NMO velocities for reflections from
a horizontal interface (V (1)

nmo and V (2)
nmo) and three anisotropic co-

efficients (η(1), η(2), and η(3)). The parameters η(1) and η(2) are
introduced in the vertical symmetry planes by analogy with
the Alkhalifah-Tsvankin “anellipticity” coefficient η for ver-
tical transverse isotropy, and η(3) is a similar parameter de-
fined in the horizontal symmetry plane [in principle, it can be
replaced with the original Tsvankin’s (1997) coefficient δ(3)].
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FIG. 9. Impulse response of 3-D poststack time migration in the vertical plane that makes an angle of 30◦ with
the [x1, x3] symmetry plane. Models are taken from Figure 2; model 2 has the same V (i )

nmo and η(i ) as in model 1
but different ε(i ) and δ(i ).

FIG. 10. The influence of the η coefficients on the time-migration impulse response. The plot for model 1 is
reproduced from Figure 9. Model 3 has the same parameters as model 1, except for η(1) = 0.1 and η(2) = 0.2.
Note the difference in the responses near horizontal (arrows).
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The velocities V (1)
nmo and V (2)

nmo are responsible for normal move-
out from horizontal reflectors, while η(1,2,3) determine the dip
dependence of NMO velocity. It should be emphasized that
the above parameters govern the NMO function expressed
through the horizontal slowness components of the zero-offset
ray (rather than the dip and azimuth of the reflector normal)—
quantities that can be obtained from reflection slopes on zero-
offset sections.

The parameters identified in our study of the NMO func-
tion proved to be of crucial importance in time migration as
well. By using the phase-shift (PSPI) migration algorithm of
Le Rousseau (1997), we showed that 3-D poststack time mi-
gration for orthorhombic anisotropy is controlled by the same
parameters as is normal moveout. Therefore, the orientation of
the symmetry planes, two zero-dip NMO velocities and three
η coefficients are fully responsible for all 3-D P-wave time-
processing steps (NMO correction, DMO removal, prestack
and poststack time migration) in orthorhombic media. Depth
processing, however, requires knowledge of all six parameters
that determine P-wave kinematic signatures in orthorhombic
media: the vertical velocity and five ε and δ coefficients.

All time-processing parameters can be obtained from
normal-moveout velocities of horizontal and dipping events
(i.e., from surface P-wave data alone). We developed a
moveout-inversion procedure for horizontally layered or-
thorhombic media above a dipping reflector using the ana-
lytic representation of NMO velocity given by Grechka and
Tsvankin (1998b) and by Grechka et al. (1999). For any pure
mode, the azimuthal dependence of NMO velocity is governed
by three parameters and typically has an elliptical shape in
the horizontal plane (Grechka and Tsvankin, 1998b). Hence,
a minimum of three azimuthal moveout measurements (e.g.,
available in “wide-azimuth” 3-D surveys; Corrigan et al., 1996)
is required to reconstruct the NMO ellipse for a given reflec-
tion event. Then, the three coefficients of the ellipse (e.g., its
semiaxes and the orientation angle) can be inverted for the
relevant combinations of the medium parameters.

First, we studied the inversion of reflection traveltimes from
horizontal and dipping reflectors in a single orthorhombic
layer. The NMO ellipse for horizontal events yields the ori-
entation of the vertical symmetry planes and the velocities
V (1)

nmo and V (2)
nmo. Then, we used normal moveout of at least one

dipping event along with the obtained values of V (1,2)
nmo to find

the coefficients η(1), η(2), and η(3). Since η(1,2,3) control the dip-
dependence of NMO velocity and make no contribution to
moveout for horizontal events, the dip used in the inversion
should not be too mild. The presence of a sufficient dip, how-
ever, does not guarantee the recovery of all three η parameters.
If the dip-plane azimuth is close to the [x1, x3] symmetry plane,
one can resolve only the coefficient η(2) (defined in this plane)
and the difference (η(1) − η(3)). Likewise, if the dip line is close
to the [x2, x3] plane, the inversion yields the parameter η(1) and
the difference (η(2) − η(3)). Estimation of the individual values
of all three coefficients becomes reasonably stable if the reflec-
tor azimuth makes an angle of 20–25◦ or more with the nearest
symmetry plane. For dips up to about 50◦, the sensitivity to
the errors in input data is higher for η(3) than for the other
two coefficients because this parameter is largely determined
by near-horizontal velocity variations outside the vertical sym-
metry planes.

Extension of our inversion scheme to vertically inhomo-
geneous media is based on the generalized Dix equation
(Grechka et al., 1999), which operates with the matrices re-
sponsible for interval NMO ellipses. For horizontal events, our
procedure is similar to the conventional Dix differentiation be-
cause the effective NMO ellipses corresponding to the reflec-
tions from the top and bottom of each horizontal layer can be
obtained from the data directly. In the case of dipping events,
however, it is necessary to carry out a full-scale layer-stripping
procedure by recalculating the NMO ellipses and zero-offset
traveltimes in the overburden to the ray-parameter values cor-
responding to the dipping reflector. As a result of the layer
stripping, we obtain the orientation of symmetry planes and the
five relevant parameters (V (1)

nmo, V (2)
nmo, η(1), η(2), and η(3)) in each

layer. Our algorithm is subject to the same trade-off between
accuracy and resolution as is conventional Dix differentiation
(i.e., the accuracy increases with the relative time-thickness of
the interval).

We tested our inversion method on a synthetic data set gener-
ated by ray tracing in a three-layer orthorhombic model with
pronounced anisotropy and depth-varying orientation of the
vertical symmetry planes. Despite the presence of nonhyper-
bolic moveout caused by both heterogeneity and anisotropy,
we were able to reconstruct the NMO ellipses on conventional-
length spreads with sufficient accuracy and obtain good esti-
mates of the interval values of all parameters.

Our modeling shows that moveout of dipping events remains
close to hyperbolic on surprisingly long spreads, twice as large
as the CMP-reflector distance. In contrast, traveltimes of hor-
izontal events start to deviate noticeably from a hyperbola for
offsets exceeding the reflector depth. These deviations indi-
cate that nonhyperbolic moveout from horizontal reflectors
can be included in the inversion for the medium parameters
(Sayers and Ebrom, 1997). If the hyperbolic moveout correc-
tion does not fully flatten the data, a more reliable estimate of
the NMO velocity can be obtained by using a nonhyperbolic
moveout equation (Tsvankin and Thomsen, 1994; Grechka and
Tsvankin, 1998a).
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APPENDIX A

WEAK-ANISOTROPY APPROXIMATION FOR P-WAVE NMO VELOCITY IN AN ORTHORHOMBIC LAYER

Here, we derive the weak-anisotropy approximation for
P-wave normal-moveout velocity by linearizing the exact
NMO equation (17) in the anisotropic coefficients. Then, we an-
alyze this expression in the dip plane of the reflector and show
that it is equivalent to the approximation for the NMO velocity
in VTI media given by Alkhalifah and Tsvankin (1995).

General case

The linearized expression for the vertical slowness q, ob-
tained from the Christoffel equation, is given in the main text
[equation (20)]. Differentiating equation (20) with respect to
p1 and p2, substituting the results into equation (17), and fur-
ther linearizating the NMO equation in the coefficients η(1,2,3)

yields (we used Mathematica software)

V−2
nmo(α, p1, p2) = cos2 α

{[
V (2)

nmo

]−2 − p2
1 +

3∑
i =1

d1i η(i )

}

+ 2 sin α cos α

{
−p1 p2 +

3∑
i =1

d2i η(i )

}

+ sin2 α

{[
V (1)

nmo

]−2 − p2
2 +

3∑
i =1

d3i η(i )

}
, (A-1)

where η(i ) are the linearized anisotropic coefficients from equa-
tions (20)–(24), and dki are given by

d11 = −2p2
2

(
1 − 4p2

1 Ṽ2) (
1 − p2

1 Ṽ2 − p2
2 Ṽ2) , (A-2)

d12 = −2
(
6p2

1 + p2
2 − 9p4

1 Ṽ2 − 5p2
1 p2

2 Ṽ2 + 4p6
1 Ṽ4

+ 4p4
1 p2

2 Ṽ4), (A-3)

d13 = 2p2
2

(
1 − 5p2

1 Ṽ2 + 4p4
1 Ṽ4), (A-4)

d21 = −4p1 p2
(
1 − 2p2

2 Ṽ2) (
1 − p2

1 Ṽ2 − p2
2 Ṽ2), (A-5)

d22 = −4p1 p2
(
1 − 2p2

1 Ṽ2) (
1 − p2

1 Ṽ2 − p2
2 Ṽ2), (A-6)

d23 = 4p1 p2
(
1 − p2

1 Ṽ2 − p2
2 Ṽ2 + 2p2

1 p2
2 Ṽ4), (A-7)

d31 = −2
(
6p2

2 + p2
1 − 9p4

2 Ṽ2 − 5p2
1 p2

2 Ṽ2

+ 4p6
2 Ṽ4 + 4p2

1 p4
2 Ṽ4), (A-8)

d32 = −2p2
1

(
1 − 4p2

2 Ṽ2) (
1 − p2

1 Ṽ2 − p2
2 Ṽ2), (A-9)

d33 = 2p2
1

(
1 − 5p2

2 Ṽ2 + 4p4
2 Ṽ4). (A-10)

The parameter Ṽ is chosen as

Ṽ = 1
2

(
V (1)

nmo + V (2)
nmo

)
, (A-11)

where V (1,2)
nmo are the semiaxes of the NMO ellipse from the hor-

izontal reflector linearized in the anisotropic coefficients δ(i )

[equations (15)]:

V (i )
nmo = VP0

√
1 + 2 δ(i ) ≈ VP0

(
1 + δ(i )), (i = 1, 2).

(A-12)

There is some flexibility in defining the parameter Ṽ which
reduces to VP0 for isotropic media. Note that Ṽ appears only in
equations (A-2)–(A-10) for the coefficients dki that are multi-
plied by the small quantities η(i ) in equation (A-1). Therefore,
in the linearized weak-anisotropy approximation, we can add
any anisotropic terms to Ṽ without changing the final result:

Ṽ = VP0
[
1 + f

(
ε(i ), δ(i ), η(i ))], (A-13)

where f (ε(i ), δ(i ), η(i )) is an arbitrary combination of the
anisotropic coefficients that goes to zero in isotropic media.
Our choice of Ṽ emphasizes the fact that the linearized NMO
equation can be represented as a function of just five medium
parameters [V (1,2)

nmo and η(1,2,3)], while the individual values of the
ε and δ coefficients influence only quadratic and higher-order
terms.

NMO velocity in the dip plane

Since the slowness vector of the zero-offset ray is normal to
the reflecting interface, it is confined to the dip plane of the
reflector. Hence, the horizontal components of the slowness
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vector can be expressed through the azimuth ν of the dip plane
as p1 = p cos ν and p2 = p sin ν (p =

√
p2

1 + p2
2 is the hori-

zontal slowness). Substitution of these values of p1 and p2 into
equation (A-1) yields the following weak-anisotropy approxi-
mation for the NMO velocity in the dip direction:

V−2
nmo(ν, p) = V−2

nmo(ν, 0) − p2 − 2p2 η̄(ν)

× (4p4Ṽ4 − 9p2Ṽ2 + 6), (A-14)

where

η̄(ν) = η(1) sin2 ν + η(2) cos2 ν − η(3) sin2 ν cos2 ν.

(A-15)
Since Ṽ can be replaced by Vnmo(ν, 0), equation (A-14) co-

incides with the linearized expression for the dip-line NMO
velocity in a VTI medium with the zero-dip NMO velocity
Vnmo(ν, 0) and parameter η = η̄(ν) [Alkhalifah and Tsvankin,
1995; also, see equation (27) of the main text].

To understand the meaning of η̄(ν), we express the weak-
anisotropy approximation for P-wave phase velocity [equa-
tion (19)] as a function of azimuth ν and the phase angle θ with
vertical (Tsvankin, 1997):

VP(θ, ν) = VP0 [1 + δ(ν) sin2 θ cos2 θ + ε(ν) sin4 θ ];
(A-16)

δ(ν) = δ(1) sin2 ν + δ(2) cos2 ν,

ε(ν) = ε(1) sin4 ν + ε(2) cos4 ν

+ (
2ε(2) + δ(3)) sin2 ν cos2 ν.

Equation (A-16) has exactly the same form as Thomsen’s
(1986) weak-anisotropy approximation for vertical transverse
isotropy, but with azimuthally dependent coefficients ε and
δ. Therefore, for any vertical plane ν = const in weakly or-
thorhombic media, in-plane P-wave kinematic signatures can
be described by the VTI equations. The linearized VTI param-
eter η at azimuth ν is given by

η(ν) = ε(ν) − δ(ν) = η(1) sin2
ν + η(2) cos2 ν − η(3) sin2

ν cos2 ν,

which coincides with the coefficient η̄(ν) from equations (A-14)
and (A-15).

Therefore, the NMO velocity in the dip plane of the reflector
can be obtained from the weak-anisotropy approximation for
a VTI medium with the parameters ε(ν) and δ(ν) correspond-
ing to the dip-plane azimuth. This result becomes obvious if we
recall that for the CMP line in the dip direction, the reflected
rays deviate from the incidence (vertical) plane only due to
the influence of azimuthal anisotropy. Evidently, in the linear
weak-anisotropy approximation, out-of-plane phenomena can
be neglected and rays can be assumed to propagate in the dip
plane where all P-wave kinematic signatures (including NMO
velocity) are identical to those in VTI media. The analogy with
vertical transverse isotropy, however, is limited to the dip plane
of the reflector and cannot be applied to CMP lines with any
other direction.

APPENDIX B

EFFECTIVE NMO VELOCITY NEAR INTERSECTIONS OF INTERVAL NMO ELLIPSES

As discussed by Grechka et al. (1999), the averaging of the
matrices W in the generalized Dix equation (30) is different
from the conventional rms averaging of NMO velocities mea-
sured in a fixed azimuthal direction. In this appendix, we illus-
trate this difference by examining the effective NMO velocity
near intersections of interval NMO ellipses.

Let us consider a two-layer model with intersecting NMO-
velocity ellipses [see equation (10)]:

V−2
nmo,i (α) = W11,i cos2 α + 2 W12,i sin α cos α

+ W22,i sin2 α , (i = 1, 2) (B-1)

and the corresponding effective ellipse [equation (30)]:

U−1 = 1
τ1 + τ2

(
τ1W−1

1 + τ2W−1
2

)
, (B-2)

where τ1 and τ2 are interval zero-offset traveltimes. Without
loss of generality, we can assume that the coordinate system
has been chosen in such a way that the ellipses (B-1) intersect
(or touch) each other at azimuth α = 0, which implies that

W11,1 = W11,2 = W11. (B-3)

Clearly, conventional rms averaging of NMO velocities atα = 0
yields the effective velocity

V2
rms,eff(0) = 1

W11
. (B-4)

Here, we compare Vrms,eff(0) with the exact effective NMO ve-
locity in the same direction (α = 0) that can be obtained from
equation (B-2) as

V2
ex,eff(0) = 1

U11
. (B-5)

Substituting equations (B-1) into equation (B-2), we find

V2
ex,eff(0)

V2
rms,eff(0)

− 1 = τ1τ2 (W12,1 − W12,2)2

(τ1 + τ2) (τ1 det W2 + τ2 det W1)
.

(B-6)

Since the interval matrices Wi are positive definite (Grechka
and Tsvankin, 1998b), both determinants in the denominator
are positive, and the right-hand side of equation (B-6) is non-
negative. Hence,

Vex,eff(0) ≥ Vrms,eff(0), (B-7)

i.e., the rms averaging of the interval NMO velocities always
underestimates the effective velocity at an intersection of the
NMO ellipses.

As a simple example, let us consider a model that consists
of two identical horizontal orthorhombic layers with inter-
changed vertical symmetry planes. The interval ellipses (solid
and dashed lines) in such a model are identical but rotated with
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respect to each other by 90◦ (Figure B-1). The effective NMO
ellipse (dotted line in Figure B-1) in this case is a circle because
the effective NMO velocities in both symmetry planes coincide
with each other.

Let us compare the exact effective NMO velocity and the
rms-averaged value in the direction α = π/4. For α = π/4,
the two interval NMO velocities are equal to each other and,
therefore, to their rms average [see equation (B-1) with W12 =
0]:

1
V2

rms,eff(π/4)
= 1

2

(
1[

V (1)
nmo

]2 + 1[
V (2)

nmo
]2

)
, (B-8)

where V (i )
nmo are the interval NMO velocities in the symme-

try planes. Therefore, the squared rms velocity at α = π/4
represents the harmonic average of the squared semiaxes of
the interval NMO ellipse.

Since the exact effective NMO velocity in this model is circu-
lar, at α = π/4 it is equal to the values at the symmetry planes
(α = 0 or α = π/2), which can be found by conventional rms
averaging (Grechka et al., 1999):

V2
ex,eff(π/4) = 1

2

([
V (1)

nmo
]2 + [

V (2)
nmo

]2
)

. (B-9)

Thus, the exact squared NMO velocity Vex,eff(π/4) is the arith-
metic average of [V (1)

nmo]2 and [V (2)
nmo]2. According to the relation

between the harmonic and arithmetic averages,

Vex,eff (π/4) ≥ Vrms,eff (π/4), (B-10)

in agreement with the general equation (B-7).

FIG.B-1. The interval P-wave NMO ellipses (solid and dashed)
and the effective NMO ellipse (dotted) in a two-layer or-
thorhombic model. Both layers are horizontal, have the same
thickness z1 = z2 = 1.0 km and the same elastic parameters,
but their vertical symmetry planes are rotated by 90◦ with re-
spect to each other. The vertical velocity VP0,1 = VP0,2 = 2.0
km/s. The parameters δ that control the NMO velocity in the
symmetry planes are interchanged: δ

(1)
1 = −0.1, δ

(2)
1 = 0.2, and

δ
(1)
2 = 0.2, δ

(2)
2 = −0.1.


