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3-D moveout inversion in azimuthally anisotropic media
with lateral velocity variation: Theory and a case study

Vladimir Grechka∗ and Ilya Tsvankin∗

ABSTRACT

Reflection moveout recorded over an azimuthally
anisotropic medium (e.g., caused by vertical or dipping
fractures) varies with the azimuth of the source-receiver
line. Normal-moveout (NMO) velocity, responsible for
the reflection traveltimes on conventional-length spre-
ads, forms an elliptical curve in the horizontal plane.
While this result remains valid in the presence of arbi-
trary anisotropy and heterogeneity, the inversion of the
NMO ellipse for the medium parameters has been dis-
cussed so far only for horizontally homogeneous models
above a horizontal or dipping reflector.

Here, we develop an analytic moveout correction for
weak lateral velocity variation in horizontally layered
azimuthally anisotropic media. The correction term is
proportional to the curvature of the zero-offset travel-
time surface at the common midpoint and, therefore, can
be estimated from surface seismic data. After the influ-

ence of lateral velocity variation on the effective NMO
ellipses has been stripped, the generalized Dix equation
can be used to compute the interval ellipses and eval-
uate the magnitude of azimuthal anisotropy (measured
by P-wave NMO velocity) within the layer of interest.

This methodology was applied to a 3-D “wide-azim-
uth” data set acquired over a fractured reservoir in the
Powder River Basin, Wyoming. The processing sequence
included 3-D semblance analysis (based on the elliptical
NMO equation) for a grid of common-midpoint “super-
gathers,” spatial smoothing of the effective NMO ellipses
and zero-offset traveltimes, correction for lateral veloc-
ity variation, and generalized Dix differentiation. Our
estimates of depth-varying fracture trends in the survey
area, based on the interval P-wave NMO ellipses, are
in good agreement with the results of outcrop and bore-
hole measurements and the rotational analysis of four-
component S-wave data.

INTRODUCTION

The azimuthal variation of normal-moveout velocity for pure
(nonconverted) modes is described by an ellipse in the hori-
zontal plane, even if the medium is arbitrarily anisotropic and
heterogeneous (Grechka and Tsvankin, 1998). This conclu-
sion breaks down only for rare subsurface models in which
common-midpoint reflection traveltime cannot be described
by a series expansion or does not increase with offset. The ori-
entation of the normal-moveout (NMO) ellipse and the values
of its semi-axes are determined by the orientation of the reflect-
ing interface at the zero-offset reflection point and the medium
properties above the reflector.

Conventional stacking-velocity analysis in 3-D surveys (e.g.,
those acquired using rotated swath or button-patch geome-
tries) ignores the azimuthal dependence of normal moveout
from horizontal reflectors, which may lead to distortions in
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seismic processing (Lynn et al., 1996). A single value of stack-
ing (normal-moveout) velocity at a given spatial location will
generally cause underestimation of NMO velocity for source-
receiver azimuths near the “fast” direction and overestimation
of Vnmo near the “slow” direction. Hence, mixing up different
azimuths may impair the performance of moveout correction
and the quality of the stacked section. The result of Grechka
and Tsvankin (1998) makes it possible to avoid these distor-
tions by reconstructing the best-fit NMO ellipse from the data
and picking the correct stacking velocity for all azimuthal di-
rections.

The inversion of the NMO ellipse is a much more compli-
cated issue because the ellipticity can be caused not just by
azimuthal anisotropy but also by reflector dip and lateral het-
erogeneity. If the medium above the reflector is horizontally
homogeneous, reflector dip manifests itself through the re-
flection slope on the zero-offset section and can be accounted
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for in the parameter-estimation procedure. Depending on the
symmetry of the medium, the recovery of the anisotropic
parameters in horizontally homogeneous models may require
NMO ellipses measured for several different modes or re-
flector orientations. For instance, in orthorhombic media with
a horizontal symmetry plane, the P-wave NMO velocity is
controlled by the directions of the vertical symmetry planes,
two symmetry-plane NMO velocities from a horizontal re-
flector, and three “anellipticity” coefficients similar to the
Alkhalifah-Tsvankin (1995) parameter η for vertical transverse
isotropy (Grechka and Tsvankin, 1999). All these parameters
can be determined from two P-wave NMO ellipses recorded
over an orthorhombic layer for different reflector dips and/or
azimuths. Grechka and Tsvankin (1999) extended the move-
out inversion to vertically inhomogeneous (i.e., horizontally
stratified) orthorhombic media above a dipping reflector us-
ing the generalized Dix equation of Tsvankin et al. (1997).
This methodology is also valid for the simplest azimuthally
anisotropic model—transverse isotropy with a horizontal sym-
metry axis (HTI media), where the inversion becomes even
more stable because of the smaller number of the anisotropic
parameters (Contreras et al., 1999).

Reflection moveout and NMO velocity, however, are also
influenced by lateral velocity variation that can make the az-
imuthal dependence of NMO velocity elliptical even for a
horizontal reflector beneath an azimuthally isotropic medium.
Since the anisotropy-induced ellipticity of the effective NMO
velocity usually is relatively small (up to 10%), it may well be
comparable to the distortions caused by mild lateral velocity
variations. Here, we introduce a moveout correction for lat-
eral velocity variation in horizontally layered media by using
the approach of Grechka (1998) originally developed for verti-
cal transverse isotropy (see Appendix A). The distortion of the
NMO ellipse caused by lateral variation in the elastic constants
turns out to be controlled by the curvature of the zero-offset
traveltime surface at the common-midpoint (CMP) location,
which can be evaluated using surface data. After removing the
influence of lateral velocity variation on the effective NMO
(stacking) velocity, we obtain the interval NMO ellipses from
the generalized Dix equation. For such common azimuthally
anisotropic models as HTI and orthorhombic media with a sin-
gle vertical fracture system, the azimuth of one of the axes of
the interval NMO ellipse corresponds to the fracture orien-
tation, and the fractional difference between the semi-axes is
related to the fracture density (Tsvankin, 1997a; Grechka and
Tsvankin, 1999).

After discussing the theory and methodology, we present
an application of our algorithm to a 3-D data set acquired by
ARCO (with funding from the Gas Research Institute) over
a fractured reservoir in the Powder River Basin, Wyoming.
Our processing sequence made it possible to invert for the
depth-varying fracture orientation and estimate the magnitude
of azimuthal variation of P-wave moveout velocity over the
survey area.

THEORY

Equation of the NMO ellipse

Grechka and Tsvankin (1998) considered azimuthally de-
pendent reflection moveout of pure (nonconverted) modes
around a fixed CMP location over an arbitrary anisotropic het-

erogeneous medium. For source-receiver offsets that do not
exceed the distance between the CMP and the reflector, the
reflection traveltime t in most cases can be approximated ac-
curately by the hyperbolic equation,

t2(h, α) = t2
0 + 4h2

V2
nmo(α)

, (1)

where h is half the source-receiver offset, α is the azimuth
of the CMP line, t0 is the zero-offset traveltime, and Vnmo(α)
is the normal-moveout velocity analytically defined in the
zero-spread limit. Since NMO velocity is not influenced by
reflection-point dispersal (Hubral and Krey, 1980, Appendix D;
Grechka and Tsvankin, 1998), the hyperbolic portion of the
moveout curve can be found as the sum of the one-way travel-
times τ from the zero-offset reflection point to the source and
receiver. Under the assumption that τ is sufficiently smooth
near the common midpoint to be expanded in a Taylor series
in the horizontal coordinates x1 and x2, the azimuthally varying
NMO velocity is given by (Grechka and Tsvankin, 1998)

V−2
nmo(α) = W11 cos2 α + 2W12 sin α cos α + W22 sin2 α,

(2)
where the symmetric matrix W depends on the derivatives of
τ with respect to the horizontal coordinates (x1, x2) as

Wi j = τ0
∂2τ

∂xi ∂xj

∣∣∣∣∣
x=xCMP

= τ0
∂pi

∂xj

∣∣∣∣∣
x=xCMP

,

(i, j = 1, 2). (3)

Here τ0 = t0/2, and (p1, p2) are the horizontal components of
the slowness vector for rays excited at the zero-offset reflection
point and recorded at the surface.

The components of the matrix W can be determined from
surface data by means of semblance velocity analysis based
on equation (2). Analytic representation of W [equation (3)]
can then be used in the inversion of moveout data for the
anisotropic parameters. Indeed, equation (3) can be conver-
ted into a relatively simple function of the slowness compo-
nents of the zero-offset ray. This allows one to find W for a
given anisotropic model directly from the Christoffel equation
and build an efficient parameter-estimation scheme (Tsvankin
et al., 1997). Contreras et al. (1999) applied this formalism to
invert azimuthally dependent P-wave NMO velocities (i.e., the
matrices W) of horizontal and dipping events for the parame-
ters of HTI media.

To show that the azimuthal variation in NMO velocity is
elliptical, we introduce the angle

β = tan−1


W22 − W11 +

√
(W22 − W11)2 + 4W2

12

2W12




(W12 6= 0) (4)

that corresponds to one of the principal directions of the matrix
W. Expressing W in terms of its eigenvalues

λ1,2 = 1
2

[
W11 + W22 ±

√
(W11 − W22)2 + 4W2

12

]
(5)
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and the angle β, we can rewrite equation (2) as

V−2
nmo(α) = λ1 cos2(α − β) + λ2 sin2(α − β). (6)

Unless reflection traveltime decreases with offset in some di-
rections leading to reverse moveout (i.e., V2

nmo < 0, which im-
plies that λ1 < 0 and/or λ2 < 0), equation (6) describes an
ellipse in the horizontal plane (Grechka and Tsvankin, 1998).
The NMO velocities in the directions of the elliptical axes (we
denote them vè 1 and vè 2) can be expressed through the eigen-
values as

vè 1 = 1/
√

λ1 and vè 2 = 1/
√

λ2. (7)

Generalized Dix equation

If the model consists of a stack of horizontal homogeneous
layers above a dipping reflector, NMO velocity can be found
analytically from the generalized Dix equation of Tsvankin
et al. (1997). The matrix W(L) [equation (3)] that defines the
NMO ellipse (2) for reflection from the bottom of layer L
can be expressed through a Dix-type average of the inverse
interval matrices W` weighted by the interval zero-offset
traveltimes τ` as

W−1(L) = 1
L∑

`=1
τ`

L∑
`=1

τ` W−1
` . (8)

To solve equation (8) for the interval quantities, it can be
rewritten in the Dix-type differentiation form:

W−1
` = τ (`)W−1(`) − τ (` − 1)W−1(` − 1)

τ (`) − τ (` − 1)
. (9)

The matrices W(` − 1) and W(`) describe the effective NMO
ellipses for reflections from the top and the bottom of the
`th layer; τ (` − 1) and τ (`) are the corresponding zero-offset
traveltimes. Equation (9) allows one to calculate the matrix
W` that determines the interval NMO ellipse in the `th layer.

Equations (8) and (9) represent a 3-D generalization, for
arbitrary anisotropic media, of the well-known Dix (1955) for-
mula. The interval matrices W` in equation (3) are computed
for the horizontal components of the slowness vector of the
zero-offset ray. If the reflectors are dipping and the zero-offset
slowness directions are not vertical, the matrices W(`) and
W−1(` − 1) determined from the data will generally corre-
spond to slowness vectors with different horizontal components
(Tsvankin et al., 1997). As a result, layer-stripping by means
of equation (9) involves recalculating each interval matrix W`

from one value of the slowness vector to another. This prob-
lem, however, does not arise for horizontal reflectors, because
in this case the horizontal slowness components are equal to
zero for all reflection events.

It should be emphasized that equation (9) cannot be used if
the horizontal components of the slowness vector vary along
the one-way ray under the influence of lateral heterogeneity
and/or dipping (or irregular) interfaces above the `th reflector.
For these laterally heterogeneous models, Hubral and Krey
(1980) suggested implementing the Dix-type differentiation us-
ing the downward continuation of the wavefront curvature as-
sociated with the zero-offset ray. In principle, this methodology

can be generalized to construct the effective NMO ellipses in
anisotropic heterogeneous media (Tsvankin et al., 1997). How-
ever, such an approach involves numerical ray tracing through
heterogeneous anisotropic models; also, the downward contin-
uation requires knowledge of the medium parameters in the
overburden. Note that the numerical solution is required even
for relatively simple isotropic models containing homogeneous
layers separated by curved interfaces (Hubral and Krey, 1980).

Influence of weak lateral heterogeneity on NMO ellipses

The discussion above suggests that reconstruction of the in-
terval NMO ellipses in heterogeneous anisotropic media is im-
possible without determination of the properties of the over-
burden and employing numerical algorithms. The only way to
preserve the relative simplicity of the Dix differentiation [equa-
tion (9)] in the presence of lateral heterogeneity is to impose
certain restrictions on the model complexity. We implement
this approach below by assuming that the medium consists of
horizontal layers with weak lateral velocity variation.

Horizontal layer with lateral velocity variation.—Let us con-
sider the simplest model of a single anisotropic layer above a
horizontal reflector. We assume that the horizontal plane is a
plane of symmetry, which implies that the medium may be mon-
oclinic, orthorhombic, or transversely isotropic with a vertical
or horizontal symmetry axis. In general, the type of symmetry
may change laterally provided the slowness surface remains
symmetric with respect to the horizontal plane.

Suppose the NMO ellipse (2) for the reflection from the
bottom of the reference homogeneous layer (with the same
parameters as at the CMP location) is described by a matrix
denoted as Whom [equation (3)]. In accordance with the general
result of Grechka and Tsvankin (1998), the azimuthal variation
of NMO velocity in the presence of lateral velocity variation
remains elliptical, but the corresponding matrix W is differ-
ent (Whet). Assuming that lateral velocity variation (or lateral
heterogeneity, “LH”) is weak on the scale of the CMP gather
and retaining only linear terms in the spatial derivatives of the
velocity function yields the following relationship between the
two NMO ellipses (Appendix A)

Whet
i j = Whom

i j − τ 2
0

3 V0

∂2V0

∂yi ∂yj

∣∣∣∣∣
y=yCMP

, (i, j = 1, 2),

(10)
where τ0 = τ0(y) is the one-way zero-offset (vertical) travel-
time, and V0 = V0(y) is the vertical velocity at the CMP loca-
tion y = (y1, y2). Equation (10) indicates that, in the linear
approximation employed here, the influence of lateral velocity
variation on the NMO ellipse is proportional to the curvature
of the vertical-velocity surface V0(y) at the common midpoint.

If the reflector possesses dip (ignored here), equation (10)
will also contain the first spatial derivatives of the velocity
V0(y). These derivatives, however, make a noticeable contri-
bution only for substantial dips φ because they are multiplied
with the cubic and higher powers of sin φ (Grechka and Cohen,
1996). In the case study discussed below, the dips are on the
order of the first few degrees, and equation (10) is sufficiently
accurate. Correction for lateral velocity variation in dipping
layers will be treated in sequel publications.
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Figure 1 displays a numerical test of equation (10) for a
transversely isotropic medium with a horizontal symmetry axis
parallel to the axis y1. Ray-traced P-wave reflection travel-
times were computed at a common-mipoint y1 = y2 = 0 for two
anisotropic models: an HTI layer with laterally varying verti-
cal velocity and a reference homogeneous HTI layer with the
parameters corresponding to the CMP location (Figure 1a). Af-
ter calculating the traveltime along four differently oriented
CMP lines, we used the hyperbolic moveout equation (1) to
obtain azimuthally dependent NMO velocity and reconstruct
the NMO ellipses for both the homogeneous and LH layers
(Figure 1b). The difference between the two ellipses can be
understood by analyzing the saddle-shaped velocity surface
V0(y) in Figure 1a. The positive curvature of V0(y) in approxi-
mately y2 direction (Figure 1a) increases the velocity for rays
propagating in this direction and, therefore, leads to a higher
NMO velocity for azimuths close to 90◦ (Figure 1b). Likewise,
there is a small decrease in the NMO velocity at azimuths
near 0◦ because of the negative curvature of V0(y) in the y1-
direction.

To test the analytic correction for lateral velocity variation,
we calculated the derivatives ∂2V0/∂yi ∂yj at the CMP location
and used equation (10) with the exact expression for Whom

i j to
obtain Whet

i j and the NMO velocity in the LH layer. This analytic
NMO ellipse (solid line in Figure 1b) is virtually identical to
the one generated numerically (dotted line), with the maximum
difference less than 0.5%. Note that the quasi-linear increase
in vertical velocity in the y1-direction (Figure 1a) has almost no
influence on NMO velocity that is controlled by the curvature
of V0(y) at the common midpoint. This observation agrees with
the result of Grechka (1998) who proved that NMO velocity for
vertical transverse isotropy is independent of constant lateral
velocity gradient (in the linear approximation).

Even though equation (10) provides an adequate approxi-
mation for the NMO ellipse in an LH layer, it is difficult to
use in reflection data processing because the vertical velocity
V0 in anisotropic media cannot be determined from P-wave
reflection traveltimes. [The only exception is the HTI model in

FIG. 1. (a) Lateral variation of the vertical velocity in an HTI layer with the symmetry axis parallel to the y1-direction. (b) NMO
ellipses: dashed—for a homogeneous HTI layer, dotted and solid—for an HTI layer with lateral velocity variation shown on the
left. The dotted NMO ellipse is reconstructed from ray-traced traveltimes on a speadlength equal to the thickness of the layer (1.75
km), the solid one is obtained from the NMO ellipse in the homogeneous HTI layer using equation (10). The generic Thomsen
(1986) parameters of the medium (defined with respect to the symmetry axis) are ε = 0, δ = 0.2. Azimuth 0◦ corresponds to the
y1-axis in Figure 1a.

which one of the semi-axes of the NMO ellipse is equal to the
true vertical velocity (Tsvankin, 1997a; Contreras et al., 1999).]
However, since the layer is horizontal and V0τ0 = const, the
spatial derivatives of the vertical velocity V0 can be replaced
with those of the vertical traveltime τ0. Differentiating V0τ0

twice with respect to yi and yj yields

∂2V0

∂yi ∂yj
τ0 + ∂2τ0

∂yi ∂yj
V0 = 0. (11)

Terms (∂V0/∂yi )(∂τ0/∂yj ) were dropped from equation (11)
because they are quadratic in the small quantities related to
LH. Substituting equation (11) into equation (10) gives the
following representation of Whom:

Whom
i j = Whet

i j − τ0

3
∂2τ0

∂yi ∂yj

∣∣∣∣∣
y=yCMP

, (i, j = 1, 2).

(12)

Note that all terms on the right-hand side of equation (12)
can be found from the traveltimes of a given reflection event
recorded over an area around the CMP location. Evaluating
the second derivative of the vertical traveltime usually requires
smoothing the function τ0(y1, y2); this is discussed in more de-
tail in the section devoted to the case study.

Two layers with lateral velocity variation.—The methodol-
ogy discussed in the previous section can be extended to the
reflector beneath any number of horizontal anisotropic lay-
ers with a horizontal symmetry plane. For multilayered media,
however, we assume that not only lateral velocity variation, but
also azimuthal anisotropy is weak. Without the latter assump-
tion, the correction term involves the interval vertical velocities
that cannot be found from reflection data.

If the model consists of two horizontal layers, the NMO el-
lipse for the reflection from the bottom of the second layer can
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be represented as (Appendix B)

Whom
i j = Whet

i j − τ0

3

[
k2 ∂2τ0

∂yi ∂yj
+ (1 + k)

∂2τ01

∂yi ∂yj

]
,

(i, j = 1, 2), (13)

with

k = 1 − τ01V2
cir1

τ0V2
cir

. (14)

Here τ01 and τ0 are the one-way zero-offset traveltimes for the
reflections from the bottom of the first and the second layer,
respectively; all derivatives are evaluated at the CMP location
y = yCMP . Vcir1 and Vcir are the “circular” approximations of the
NMO ellipses for the reflections from the bottom of the first
and second layer (Vcir1 coincides with the interval value V (1)

cir
introduced in Appendix B). They are obtained by averaging
the azimuthally dependent NMO velocity [equation (2)] over
all azimuths as

V−2
cir = 1

2π

∫ 2π

0
V−2

nmo(α) dα = Whet
11 + Whet

22

2
. (15)

To examine how the lateral velocity variation in a certain
interval contributes to the overall correction term in equa-
tion (13), we consider a model with a laterally homogeneous
upper layer, i.e.,

∂2τ01

∂yi ∂yj
= 0. (16)

In this case, equation (13) simplifies to

Whom
i j = Whet

i j − k2τ0

3
∂2τ0

∂yi ∂yj
, (i, j = 1, 2). (17)

Therefore, as could be expected, the correction caused by
the lateral velocity variation becomes smaller if we add a lat-
erally homogeneous layer on top of an LH layer. Indeed, the
difference between the correction terms in equation (17) and
in the single-layer equation (12) is in the factor k2 = (1−
τ01V2

cir1/τ0V2
cir)

2, which is always smaller than unity. More im-
portantly, equation (17) shows that, if V2

cir1 = V2
cir, the correc-

tion for LH is proportional to the squared relative thickness of
the LH layer. If, for example, the relative thickness of the LH
layer [(τ0 − τ01)/τ0] is equal to 0.5, the term (1 − τ01/τ0)2 goes
down to 0.25 (k2 = 0.25) compared to unity for a single layer.
Such a nonlinear dependence means that the influence of an
LH layer with a fixed thickness on the effective NMO ellipse
decreases rapidly with the layer’s depth. This fact can be ex-
plained by considering the lateral position of reflected rays in
a CMP gather: as the LH layer moves deeper, the rays cross-
ing it sample a smaller vicinity of the common midpoint and,
therefore, are less dependent on the lateral velocity variation.

FIELD-DATA EXAMPLE

The correction for lateral velocity variation combined with
the generalized Dix formula provides an analytic basis for in-
terval moveout velocity analysis in arbitrary anisotropic me-
dia. We tested the formalism described above on a 3-D data
set acquired for purposes of fracture detection by ARCO
(with funding from the Gas Research Institute) in the Powder

River Basin, Wyoming. This survey was designed using a
button-patch geometry to provide full azimuthal coverage
in the conventional range of source-receiver offsets. To en-
hance the signal-to-noise ratio, the data were collected into
169 “superbins,”1 each with a somewhat random distribution
of azimuths and offsets; a typical superbin is shown in Figure 2.
A description of the geology of the area, data acquisition, and
preliminary processing results can be found in Corrigan et al.
(1996) and Withers and Corrigan (1997).

Our main goal was to recover the interval P-wave NMO
ellipses associated with azimuthal anisotropy and use them to
characterize the laterally varying fracturing in different subsur-
face layers. The processing flow included the following main
steps:

1) 3-D semblance analysis to obtain the effective NMO el-
lipses for each superbin;

2) Spatial smoothing of the effective NMO ellipses;
3) Correction of the effective NMO ellipses for lateral ve-

locity variation;
4) Generalized Dix-type layer stripping to obtain the inter-

val NMO ellipses.

Below, we describe each processing step in more detail and
discuss our final results.

3-D semblance analysis

First, it was necessary to find the effective NMO ellipses for
reflections from the most prominent boundaries over the sur-
vey area. There are at least two possible ways of performing
moveout velocity analysis of 3-D multi-azimuth P-wave re-
flection data and obtaining the effective NMO ellipses. First,
one can divide the data for a given superbin into several az-
imuthal sectors and perform conventional hyperbolic velocity

FIG. 2. Plan view of the source and receiver positions (dots)
for a single superbin. The superbin contains approximately 400
source-receiver pairs with the common-midpoint scatter of up
to about 80 m (2% of the maximum offset). The maximum off-
set is approximately equal to the depth of the deepest reflector.

1A composite CMP gather that includes all source-receiver pairs with
close midpoints.
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analysis for source-receiver pairs within each sector. Then, the
best-fit moveout (stacking) velocity Vnmo(α) for a given re-
flector is determined by approximating the moveout-velocity
measurements with an ellipse using equation (2). While az-
imuthal sectoring makes it possible to use conventional soft-
ware for semblance analysis, we found that the number and
size of the sectors may influence the results of the velocity esti-
mation because the distribution of offsets and azimuths is not
completely random.

Therefore, we implemented another approach by treating all
azimuths simultaneously and performing semblance analysis
for the whole superbin at each zero-offset time τ0. This “global”
semblance analysis is based on the hyperbolic moveout equa-
tion (1) and requires scanning over the three components of
the matrix W responsible for the NMO ellipse [equation (2)].
Note that since the maximum offset was a little smaller than
the depth of the basement (the deepest reflector), the moveout
for all superbins was close enough to hyperbolic.

To make this search more efficient and avoid the full-scale
3-D semblance scan, we use an equivalent representation of
the NMO ellipse (2) in terms of the average velocity Vcir [equa-
tion (15)] and two dimensionless quantities, e1 and e2:

V−2
nmo(α) = V−2

cir (1 + e1 cos 2α + e2 sin 2α), (18)

where the parameters e1 and e2 control the deviation of the
NMO ellipse from an average “NMO circle.” Combining equa-
tions (2), (15), and (18) yields

e1 = W11 − W22

W11 + W22
and e2 = 2 W12

W11 + W22
. (19)

Although both equation (18) and the original NMO el-
lipse (2) contain three unknown parameters, the introduction
of e1 and e2 allows us to speed up the semblance analysis by
dividing it into two stages. Indeed, the NMO ellipses are not
far different from a circle, and e1 and e2 are small compared
to unity, if azimuthal anisotropy is relatively weak and the re-
flectors are subhorizontal (a common case). Therefore, at first
we assume e1 = e2 = 0 and carry out a conventional 1-D scan
over Vcir. This procedure, routinely applied in 3-D process-
ing, ignores the azimuthal dependence of NMO velocity and
yields an average NMO circle that can be considered as an ini-
tial guess for the NMO ellipse. Then the coefficients e1 and e2

are obtained by deforming the circle into the best-fit NMO el-
lipse (18) that provides the highest value of semblance. This
search is performed by an efficient minimization technique
[Powell’s method, see Press et al. (1987)] that usually converges
in 5–10 iterations, making an extensive 3-D semblance scan un-
necessary.

Figure 3 shows typical semblance curves obtained from the
conventional and azimuthal velocity analysis for one of the su-
perbins. (By conventional velocity analysis we mean the first
stage of our semblance search that provides the best-fit az-
imuthally independent velocity Vcir.) While the two curves are
close to each other over most of the time interval (i.e., the
NMO ellipses are close to a circle), for the reflections at the
vertical times of 1.54 s, 1.84 s and, especially, 2.57 s, the az-
imuthal velocity analysis improves the fit to moveout and pro-
vides higher semblance values. For these reflection events, the
conventional algorithm smears the azimuthal velocity varia-

tions and produces a distorted value of moveout velocity for
any given azimuth, thus leading to a lower quality of stack. And,
of course, conventional moveout analysis cannot be used to ex-
tract information about azimuthal anisotropy from reflection
traveltimes.

According to Withers and Corrigan (1997), the reflection at
a two-way vertical time of 2.14 s corresponds to the bottom
of the Frontier/Niobrara formations, and the event at 2.57 s
is the basement reflection. The producing fractured reservoir
(the main target of the survey) covers the time interval approx-
imately between 1.84 s and 2.14 s.

The results of the azimuthal velocity analysis for reflections
marked in Figure 3 over the whole survey area are shown in
Figure 4. Each tick corresponds to the effective NMO ellipse at
a certain superbin. The direction of a tick indicates the azimuth
of the semi-major axis of the NMO ellipse, while the tick’s
length is proportional to the ellipticity e (i.e., the elongation
of the NMO ellipse). We define e as the fractional difference
between the semi-axes vè 2 and vè 1 [equation (7)] to obtain

e = 2
vè 2 − vè 1

vè 2 + vè 1
. (20)

The maximum value of efor the whole survey area does not ex-
ceed 0.05. We will see, however, that the interval NMO ellipses
in certain layers may have much higher values of e. The ellip-
ticity patterns in Figure 4 are sufficiently close to the results of
Withers and Corrigan (1997), who used a somewhat different
(interactive) algorithm for azimuthal velocity analysis of this
data set.

Smoothing of the effective NMO ellipses

An important issue to contemplate is to what extent we can
trust the rapid lateral variations in the parameters of the NMO
ellipses in Figure 4. Note that the size of the whole survey area is
not far different from the maximum offset for a single superbin
(compare the scales in Figures 2 and 4). This means that the
reflected rays corresponding to adjacent superbins propagate

FIG.3. Semblance curves obtained by the conventional velocity
analysis that ignores the azimuthal dependence of moveout
velocity (dashed) and by our azimuthal velocity analysis (solid).
Arrows indicate the reflections used in the generalized Dix
differentiation.
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through almost the same subsurface volume. Hence, a 90◦

rotation of the semi-major axis of the NMO ellipse between
adjacent superbins [e.g., between the point with the crossline
coordinate y1 = 0.6 km and inline coordinate y2 = 2.0 km and
an adjacent point y = (0.6, 2.2) km in Figure 4d] is most likely
caused by noise in input data that leads to errors in azimuthal
velocity analysis. Clearly, reliable estimation of the interval el-
lipticities is impossible without spatial smoothing of the effec-
tive NMO ellipses.

Our design of the smoothing procedure is based on the size
of the first Fresnel zone at the reflector that was estimated for

FIG. 4. Raw effective ellipticities for reflections at 1.54 s (a), 1.84 s (b), 2.14 s (c), and 2.57 s (d).

FIG. 5. (a) Raw effective ellipticities for the reflection at a vertical time of 2.57 s with a circle corresponding to the first Fresnel zone
at the reflector. (b) The effective ellipticities from Figure 5a after smoothing.

the central frequency in the data. Figure 5 shows that the whole
survey area is only about 6–7 times larger than the area of the
Fresnel zone computed for the deepest reflector. Since it is
reasonable to assume that each Fresnel zone can yield a single
NMO ellipse, no more than 6–7 independent ellipses can be
obtained for the whole area. Therefore, the spatial variation in
the smoothed matrix Whet(y) should be represented by a func-
tion with 6–7 independent parameters. In essence, by applying
spatial smoothing we suppress high-frequency spatial varia-
tions in the NMO velocity that cannot be resolved from the
data.
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Thus, we seek Whet(y) as a quadratic polynomial

Whet
i j (y1, y2) =

k+l≤2∑
k,l=0

W (kl)
i j yk

1 yl
2, (i, j = 1, 2), (21)

where the six coefficients W (kl)
i j (for each element Wi j of the

matrix Whet) are found by least-squares fitting of equation (21)
to the raw NMO ellipses from Figure 4. The choice of the
quadratic polynomial (21) means that the NMO ellipses are
approximated with surfaces Whet(y) of constant curvature over
the whole survey area.

The effective ellipticities after the spatial smoothing are dis-
played in Figures 5b and 6. The smoothing led to an overall
decrease in the magnitude of azimuthal NMO-velocity varia-
tion for the events at 1.54, 1.84, and 2.14 s. For the deepest
reflection at 2.57 s, the smoothed ellipticity is more substantial
and has a predominant north-south orientation. The results
of smoothing indicate that the level of errors in picking az-
imuthally dependent NMO velocities is about 1–2%, and small
effective ellipticities on the order of 2%, quite common for all
reflection events, may not carry useful information about the
fracture direction.

Correction for lateral velocity variation

The formalism of Grechka and Tsvankin (1998) shows that
the effective ellipticities in Figure 6 may be caused by the fol-
lowing three factors:

FIG. 6. Smoothed effective ellipticities for the reflections at 1.54 s (a), 1.84 s (b), 2.14 s (c), and 2.57 s (d).

1) reflector dip;
2) lateral heterogeneity above the reflector;
3) azimuthal anisotropy.

Correcting for the influence of reflector dip and lateral het-
erogeneity is a crucial problem in fracture characterization us-
ing azimuthal moveout analysis. Below, we demonstrate that
the reflector dips in the area are negligibly small, and the sub-
surface model can be represented adequately by a stack of
horizontal layers. Then, we use the analytic expressions devel-
oped above [equations (12)–(14)] to correct the effective NMO
ellipses for lateral velocity variation. Applicability of our ap-
proximations, based on the assumption of weak lateral velocity
variation and weak anisotropy, is justified by the fact that the
effective ellipticity is relatively small (Figure 6), and, therefore,
all factors responsible for it have to be small as well.

Figure 7 shows smoothed surfaces of the two-way, zero-
offset reflection traveltime t(y) = 2τ0(y) for the four reflec-
tion events. The smoothing function had the same form as
the one used for NMO ellipses [equation (21)]. The maxi-
mum apparent dip in Figure 7 reaches 30–40 ms over a dis-
tance of about 3 km, giving an apparent horizontal slowness
p = 1

2 dt/dy of about 0.005 s/km. Attributing this spatial varia-
tion in the zero-offset time to reflector dip φ yields the relative
correction in the NMO velocity that can be estimated rou-
ghly (in the isotropic limit) as (1/ cos φ − 1) ≈ (1/

√
1 − p2V2

cir

−1). Substituting p = 0.005 s/km and Vcir = 4.0 km/s (see
Figure 8), we find that the distortion caused by reflector
dip is close to just 0.02% of Vcir. This distortion is an order of
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FIG. 7. Smoothed two-way zero-offset traveltime surfaces for the reflections at 1.54 s (a), 1.84 s (b), 2.14 s (c),
and 2.57 s (d).

FIG. 8. Smoothed average effective NMO velocities Vcir [equation (15)] for the reflections at 1.54 s (a), 1.84 s (b),
2.14 s (c), and 2.57 s (d).
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magnitude smaller than the estimated errors in the effective
NMO ellipses. Even though the apparent dip of the zero-offset
traveltime surface is also influenced by lateral velocity varia-
tion (Figure 8), it is clear that the contribution of dip to NMO
velocity can be ignored for all reflection events. The absence
of dip enables us to correct for lateral velocity variation using
the theory for horizontally layered media developed above.

The zero-offset traveltime surfaces t(y) (Figure 7), together
with the surfaces of the average NMO velocity Vcir(y) shown
in Figure 8, can be used to strip the influence of lateral ve-
locity variation from the effective NMO ellipses. Note that
the curvature of the traveltime surface, responsible for the
influence of lateral velocity variation on the NMO ellipse, is
directly determined by the coefficients of our smoothing func-
tion [equation (21)] and remains constant over the survey area.
The correction for lateral velocity variation for the shallow re-
flection (at 1.54 s) was carried out using the single-layer equa-
tion (12), while for the event at 1.84 s we applied the two-layer
equation (13). In principle, the two deepest events (at 2.14 s
and 2.57 s) should be treated by means of a more complicated
multiple-layer correction formula (not given here). However,
to simplify the processing algorithm, we used the same equa-
tion (13) for both deeper reflections under the assumption that
the whole stratified overburden may be described as a single
effective layer. For instance, in calculating the correction term
for the basement reflection (2.57 s), the first-layer parameters
in equation (13) (τ01 and Vcir1) were assumed to correspond to
the event at 2.14 s.

Comparing the corrected NMO ellipses in Figure 9 with the
input ones in Figure 6 illustrates the distortions caused by lat-

FIG. 9. Effective ellipticities corrected for lateral velocity variation for the reflections at 1.54 s (a), 1.84 s (b),
2.14 s (c), and 2.57 s (d).

eral velocity variation in the azimuthal dependence of NMO
velocity. As an example, for the event at 1.54 s the surface t(y)
has a negative curvature in approximately the east-west, or
crossline, direction (Figure 7a). Hence, the lateral velocity vari-
ation leads to an increase in the NMO velocity in the east-west
azimuth [see equation (12)], making the uncorrected NMO el-
lipses in Figure 6a almost circular. By removing the influence
of lateral velocity variation, we produce the ellipses extended
in the orthogonal (south-north) direction, thus restoring the
signature caused by the azimuthal anisotropy (Figure 9a). For
the other three reflections, the interpretation of the results be-
comes more complicated because the correction term involves
two traveltime surfaces (τ0 and τ01).

It should be emphasized that the correction for lateral veloc-
ity variation is highly sensitive to the shape of the surfaces t(y).
Since these surfaces are supposed to be differentiated twice
[see equations (12) and (13)], the form of the smoothing func-
tion can change the corrected NMO ellipse substantially. We
attempted to reduce the degree of smoothing of NMO ellipses
by using a bi-cubic polynomial [k + ` ≤ 3 in equation (21)] or
the running average over the area of the first Fresnel zone (see
Figure 5). In both cases, we obtained unrealistic large values
of the corrected effective ellipticity (exceeding 0.3), which is
indicative of overfitting the data and amplifying errors in the
raw NMO ellipses.

Generalized Dix differentiation of the effective NMO ellipses

After removing the influence of lateral velocity variation, we
can perform the last step of our processing sequence—apply
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the generalized Dix equation (9) to the effective ellipticities
(Figure 9) and obtain the interval NMO ellipses (Figure 10).
Azimuthal variation in the interval NMO velocity in Figure 10
is associated exclusively with azimuthal anisotropy and, there-
fore, carries information about fracturing. Assuming that each
layer contains a single set of vertical fractures in an isotropic
or vertical transversely isotropic (VTI) matrix, which is consis-
tent with the available geologic information (Corrigan et al.,
1996; Withers and Corrigan, 1997), the azimuth of the semi-
major axis of the NMO ellipse gives the fracture orientation
(i.e., NMO velocity reaches its maximum in the fracture direc-
tion), while the ellipticity e is related to the fracture density
(Tsvankin, 1997a).

In the layer between 1.54 s and 1.84 s, the semi-major axis of
the NMO ellipse is predominantly oriented east-west, but the
ellipticity is rather small—up to 3% (Figure 10a). The pattern
changes significantly in the producing interval between 1.84
and 2.14 s. The azimuth of the NMO ellipse varies substan-
tially over the area, with the maximum ellipticity reaching 8%
(Figure 10b); higher ellipticities are observed in the the north-
west and south-east corners of the survey area. In the deepest
layer above the basement, the NMO ellipses are oriented close
to the south-north direction, with the ellipticity somewhat in-
creasing toward the south (Figure 10c).

The generalized Dix differentiation, as its conventional
counterpart, suffers from amplification of errors for layers that
are thin compared to their depth. The average relative thick-
ness of the intervals used in our analysis reaches about 15%,

FIG. 10. Interval NMO ellipticities for the horizons between 1.5 and 1.84 s (a), 1.84 and 2.14 s (b), 2.14 and
2.57 s (c).

which is close to the limit of applicability of the Dix differenti-
ation. The effective NMO velocities, however, were obtained
by two sequential averaging procedures, which should have
increased the stability of the interval moveout estimation. In-
deed, the effective NMO ellipse was built by a 3-D semblance
search for the whole superbin (which amounts to azimuthal
averaging of NMO velocity) followed by the spatial smoothing
of the NMO ellipses over the survey area. As discussed below,
the results of our interval moveout analysis (Figure 10) are
supported by independent borehole measurements and shear-
wave data.

DISCUSSION AND CONCLUSIONS

We have developed and applied to field data a method of
interval moveout analysis capable of separating the influence
of azimuthal anisotropy and weak lateral velocity variation on
normal-moveout velocity. The correction for lateral velocity
variation in horizontally layered media depends on the shape
(curvature) of the vertical-traveltime surface at the CMP loca-
tion. Hence, obtaining the NMO ellipse for a reference later-
ally homogeneous medium does not require any information
in addition to surface seismic data.

Our processing methodology consists of the following main
steps:

1) Azimuthal velocity analysis.—We compute 3-D sem-
blance as a function of vertical time at a fixed CMP location for
all available data (i.e., including all source-receiver offsets and
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azimuths) using the hyperbolic moveout equation (1) param-
eterized by the NMO-velocity ellipse. As in the conventional
velocity analysis, the semblance maximum at a certain vertical
time indicates a reflection event. Azimuthal velocity analysis
is not a model-dependent procedure and can be applied to any
pure-mode reflection data.

2) Smoothing of the vertical traveltimes and effective NMO
ellipses.—Smoothing is needed to reduce picking errors and
compute vertical-traveltime surfaces and effective NMO el-
lipses suitable for the subsequent processing steps. Without
careful smoothing we would not have been able to account
for the lateral velocity variation in our case study and obtain
meaningful interval NMO ellipses.

3) Correction for lateral heterogeneity.—The presence of lat-
eral velocity variation significantly complicates the recovery
of the interval moveout parameters from surface reflection
data. Generally, moveout inversion in laterally heteroge-
neous anisotropic media would require tomographic algo-
rithms based on anisotropic ray tracing. Here, we found a sim-
ple approximate way of correcting for weak lateral velocity
variation in horizontally layered anisotropic models without
ray tracing. However, we had to assume that not only the lat-
eral variation in the elastic constants, but also the anisotropy
is weak to be able to apply our equations to vertically inho-
mogeneous media. Our approximate solutions [equations (12)
and (13)] indicate that the influence of lateral velocity varia-
tion on the NMO ellipses is controlled by the curvatuve of the
vertical-traveltime surface τ (y), where y are the lateral (CMP)
coordinates. Stable estimation of the curvature is impossible
without smoothing the traveltime surface.

4) Generalized Dix differentiation.—After correcting the ef-
fective NMO ellipses for lateral velocity variation, one can ob-
tain the interval NMO velocity by the generalized Dix differen-
tiation (9). For most common azimuthally anisotropic models
caused by a single system of vertical fractures, the semi-major
axis of the P-wave interval NMO ellipse coincides with the
fracture direction, while the fracture density is related to the
difference between the semi-axes.

Applying this processing sequence to a “wide-azimuth” 3-D
data set from the Powder River Basin, Wyoming, we obtained
the interval P-wave NMO ellipses shown in Figure 10. Un-
doubtedly, the final result is influenced to a certain extent by a
number of assumptions and approximations discussed above.
Also, effective ellipticities are relatively small, which made
the recovery of the anisotropic signature in moveout veloc-
ity rather difficult; we expect our methodology to be more ro-
bust in areas with a higher magnitude of azimuthal anisotropy
and more substantial azimuthal variation of moveout veloc-
ity. Therefore, it is important to compare our conclusions with
information about the fracture orientation obtained by other
methods (D. Corrigan, personal communication):

1) The shallow section has fractures oriented approximately
N110E. This is supported by outcrop measurements, FMI/FMS
borehole scans and is recognizable on the rotational analysis
of four-component S-wave data. The N110E orientation is in
general agreement with our results for the layer immediately
above t = 1.84 s.

2) Outcrop studies and analysis of a nine-component verti-
cal seismic profiling (VSP) survey indicate that the fractures in
the interval between t = 1.84 and 2.14 s are oriented approxi-
mately N70E. The same orientation was obtained by a layer-
stripping analysis of the surface S-wave data. These are pro-
ducing fractures whose orientation and density are of most in-
terest from an exploration standpoint. The average azimuth of
the semi-major axis of the NMO ellipse (Figure 10b) is indeed
between N50E and N70E; note, however, that moveout data re-
veal substantial variability in both the direction and density of
fractures.

3) Fracture orientation in the interval between t = 2.14 and
2.57 s is not as well established. However, there is some out-
crop evidence for a south-north direction, which is close to the
predominant orientation of the semi-major axis of the NMO
ellipse.

One of the most important issues related to this analysis is
which anisotropic coefficients can be estimated from the in-
terval P-wave NMO ellipses. The answer is model-dependent
and becomes increasingly complex for lower anisotropic sym-
metries. For the simplest azimuthally anisotropic model, hor-
izontal transverse isotropy, the semi-major axis of the NMO
ellipse is equal to the vertical P-wave velocity and points in
the fracture direction (see the ticks in Figure 10). The dif-
ference between the semi-axes is roughly proportional to the
anisotropic coefficient δ(V), which is typically negative and de-
pends on both the density and content of the cracks (Rüger,
1997; Tsvankin, 1997a). If the cracks are thin and filled with
fluid, δ(V) for formations with no equant porosity usually is close
by absolute value to the fracture density (Tsvankin, 1997a).
For dry cracks, however, (−δ(V)) may be about twice as large
as the crack density, which shows the potential of P-wave data
in evaluating the content of the cracks (Rüger and Tsvankin,
1997). On the other hand, spatial variations in the ellipticity
may be caused, for instance, by the replacement of gas in the
cracks with brine (or vice versa), rather than changes in the
crack density. To estimate δ(V) and the crack density separately,
P-wave NMO velocity for horizontal events has to be com-
bined with other data, such as the azimuthal AVO response
(Rüger and Tsvankin, 1997), NMO velocity for dipping events
(Contreras et al., 1999), time delays between split S-waves at
vertical incidence or azimuthally dependent NMO velocity of
the slow (SV) shear wave (Tsvankin, 1997a).

If the model is orthorhombic with a horizontal symmetry
plane, the ellipticity is determined by the difference between
the two anisotropic coefficients, δ(1) and δ(2), defined in the ver-
tical symmetry planes of the medium (Tsvankin, 1997b). For
orthorhombic media with a single fracture system, this differ-
ence is related to the crack density (it goes to zero if there are no
fractures), and one of the semi-axes is parallel to the crack ori-
entation. However, orthorhombic symmetry can also be caused
by two orthogonal fracture systems, or two nonorthogonal sys-
tems with equal crack density. For these more complicated
physical models the interpretation of the NMO ellipse becomes
more ambiguous. Therefore, it is even more important to sup-
plement P-wave moveout with additional data listed above.

It should be mentioned that for both HTI and orthorhombic
media the axes of the P-wave NMO ellipse are parallel to the
polarization vectors of two split shear waves at vertical inci-
dence. More complex fracture models may have monoclinic
symmetry (e.g., because of two unequal nonorthogonal sets of
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cracks), for which the orientation of P-wave NMO ellipse de-
viates from the polarization directions of vertically traveling
S-waves.
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Rüger, A., 1997, P-wave reflection coefficients for transversely iso-
tropic models with vertical and horizontal axis of symmetry:
Geophysics, 62, 713–722.
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APPENDIX A

NMO ELLIPSE IN A LAYER WITH WEAK LATERAL VELOCITY VARIATION

Here, we obtain a first-order correction for the influence of
weak lateral velocity variation (for brevity, we will call it lateral
heterogeneity, or LH) on the NMO ellipse in a single horizon-
tal anisotropic layer. The general 3-D NMO equation (2) pa-
rameterized by the matrix W [equation (3)] accounts for both
anisotropy and lateral heterogeneity, unless deviations from
hyperbolic moveout make the very notion of normal-moveout
velocity meaningless. Our goal is to find the relationship be-
tween the matrix Whet, responsible for the NMO ellipse in a
LH layer, and the matrix Whom for a reference homogeneous
medium.

Assuming that lateral velocity variation is weak and follow-
ing the approach developed by Grechka (1998) for vertical
transverse isotropy, we apply first-order perturbation theory
to express the matrix Whet as the sum of Whom and small quan-
tities related to LH. We restrict ourselves to anisotropic mod-
els with a horizontal symmetry plane (i.e., the medium can
be transversely isotropic, orthorhombic, or monoclinic), which
imposes additional constraints on the character of lateral ve-
locity variation. While each elastic constant can vary laterally
in a different fashion, it is assumed that these spatial variations
do not destroy the symmetry of the phase- and group-velocity
surfaces with respect to the horizontal plane.

Using equation (3) for a common midpoint (CMP) located
at y{y1, y2} = 0 (Figure A-1), we can write

FIG. A.1. In the derivation of NMO velocity for a layer with
a weak lateral velocity variation, the actual reflection raypath
(solid) in CMP geometry can be replaced with a non-specular
raypath (dashed) going through the zero-offset reflection point
R in the laterally homogeneous layer.
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Whet
i j = τ het

0
∂2τ het

∂xi ∂xj

∣∣∣∣∣
x=0

, (i, j = 1, 2) (A-1)

and

Whom
i j = τ hom

0
∂2τ hom

∂xi ∂xj

∣∣∣∣∣
x=0

, (i, j = 1, 2), (A-2)

where τ het and τ hom are the one-way traveltimes from the
zero-offset reflection point to the location x at the surface;
τ het

0 = τ het(x = 0) and τ hom
0 = τ hom(x = 0) are the zero-offset

traveltimes. τ hom is obtained for a reference homogeneous
layer with the parameters taken at the CMP. One-way trav-
eltimes from the zero-offset reflection point appear in equa-
tions (A-1) and (A-2) because reflection-point dispersal has
no influence on normal-moveout velocity, even if the medium
is anisotropic and heterogeneous (Hubral and Krey, 1980;
Grechka and Tsvankin, 1998).

Since the layer is horizontal and has a horizontal symme-
try plane, in the absence of lateral heterogeneity the zero-
offset reflection point R coincides with the projection of the
CMP onto the boundary and has the coordinates {0, 0, x3} (Fig-
ure A 1). The traveltime τ hom in the homogeneous layer is given
by

τ hom(x1, x2) = τ hom(h, α) =
√

h2 + x2
3

g(α, θ)
, (A-3)

where x1, x2 are the receiver coordinates, h =
√

x2
1 + x2

2 is half
the source-receiver offset, and g(α, θ) is the group velocity as a
function of the azimuth of the CMP line α = tan−1(x2/x1) and
the polar angle θ = tan−1(h/x3).

In general, lateral velocity variation leads to a shift of the
zero-offset reflection point from R to a new location Rc (Fig-
ure A-1). Nonetheless, since LH is assumed to be weak (i.e.,
the quadratic and higher-order terms in the spatial derivatives
of the elastic constants can be ignored), the traveltime per-
turbations that result from lateral velocity variation can be
computed along the unperturbed ray propagating in the homo-
geneous model (Grechka and McMechan, 1997). Hence, we
obtain the traveltime τ het as an integral along the nonspecular
raypath originated at point R to get

τ het(x1, x2) =
∫ √

h2+x2
3

0

dζ

g(α, θ, ζ )
, (A-4)

where the group velocity gnow depends on the distance ζ along
the ray. Introducing the horizontal displacement along the ray
(ξ), the traveltime can be rewritten as

τ het(x1, x2) =
√

h2 + x2
3

h

∫ h

0

dξ

g(α, θ, y1(ξ), y2(ξ))
;

(A-5)

y1 = ξ cos α and y2 = ξ sin α. (A-6)

Assuming that the lateral variation in group velocity is suf-
ficiently smooth, it can be expanded in a double Taylor series

in the vicinity of the common midpoint y1 = y2 = 0:

g(α, θ, ξ) = g(α, θ, y1, y2)

= g0

[
1 + 1

g0

2∑
i =1

g,i yi + 1
g0

2∑
i, j =1

g,i j yi yj + · · ·
]
,

(A-7)

where

g0 ≡ g(α, θ, 0, 0), (A-8)

g,i ≡ ∂g(α, θ, y1, y2)
∂yi

∣∣∣∣∣
y1=y2=0

, (A-9)

and

g,i j ≡ ∂2g(α, θ, y1, y2)
∂yi ∂yj

∣∣∣∣∣
y1=y2=0

. (A-10)

Since the lateral velocity variation is weak, all terms involv-
ing yi in equation (A-7) are small compared to unity, and in the
linear approximation

1
g(α, θ, y1, y2)

= 1
g0

[
1 − 1

g0

2∑
i =1

g,i yi − 1
g0

2∑
i, j =1

g,i j yi yj − · · ·
]
.

(A-11)

Substituting equations (A-6), (A-8)–(A-11) into (A-5) and
evaluating the integral yields

τ het(x1, x2) =
√

h2 + x2
3

g0

[
1 − h

2g0
(g,1 cos α + g,2 sin α)

− h2

6g0

(
g,11 cos2 α + 2g,12 sin α cos α

+ g,22 sin2 α
) − · · ·

]
. (A-12)

From equation (A-3) it is clear that the term in front of
the brackets in equation (A-12) is the traveltime τ hom(x1, x2).
Using the relations x1 = h cos α and x2 = h sin α (Figure A-1),
equation (A-12) can be rewritten in the form

τ het(x1, x2) = τ hom(x1, x2)
[

1 − 1
2g0

(g,1x1 + g,2x2)

− 1
6g0

(
g,11x2

1 + 2g,12x1x2 + g,22x2
2

) − · · ·
]
.

(A-13)

Equation (A-13) expresses the contribution of the lateral ve-
locity variation to the one-way traveltime in terms of the spatial
derivatives of the group-velocity function. Note that since we
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ignored the influence of LH on reflection-point dispersal, the
zero-offset ray in the LH layer remains vertical, and

τ het
0 = τ hom

0 . (A-14)

To obtain the matrix Whet defined by equation (A-1), we
need to find the second-order partial derivatives of the trav-
eltime τ het [equation (A-13)] with respect to the coordinates
(x1, x2)
at zero offset x = 0:

∂2τ het

∂xi ∂xj

∣∣∣∣∣
x=0

= ∂2τ hom

∂xi ∂xj

∣∣∣∣∣
x=0

−∂τ hom

∂xi

∣∣∣∣∣
x=0

g, j

2g0
− ∂τ hom

∂xj

∣∣∣∣∣
x=0

× g,i

2g0
− τ hom

0

[
∂

∂xi

(
g, j

2g0

)
+ ∂

∂xj

(
g,i

2g0

)
+ g,i j

3g0

]∣∣∣∣∣
x=0

.

(A-15)

The second and third terms on the right-hand side of equa-
tion (A-15) depend on the horizontal components of the slow-
ness vector p in the homogeneous layer:

∂τ hom

∂xi
≡ pi . (A-16)

At zero offset, p1|x=0 = p2|x=0 = 0 because the slowness vector
of the zero-offset ray is vertical [it has to be orthogonal to the
(horizontal) reflector], so the terms containing (∂τ hom/∂xi ) and
(∂τ hom/∂xj ) go to zero.

Next, let us show that the terms (∂/∂xi )(g, j /2g0) and
(∂/∂xj )(g,i /2g0) in equation (A-15) vanish as well. Indeed, g0

is an even function of x1 and x2 because the group velocity
in a medium with a horizontal symmetry plane is symmetric
with respect to vertical in any vertical plane. The derivatives of
group velocity with respect to yi (g,1 and g,2) also have to be
even functions of x1 and x2; otherwise, the symmetry of group
velocity with respect to the horizontal plane will not be pre-
served away from the CMP location. Therefore, the derivatives
of (g, j /2g0) and (g,i /2g0) with respect to x1 and x2 go to zero
at x = 0.

Thus, equation (A-15) reduces to

∂2τ het

∂xi ∂xj

∣∣∣∣∣
x=0

= ∂2τ hom

∂xi ∂xj

∣∣∣∣∣
x=0

− τ hom
0

g,i j

3g0

∣∣∣∣∣
x=0

. (A-17)

The group velocity g0 and its spatial derivatives g,i j in equa-
tion (A-17) are evaluated at the zero offset x = 0, i.e., for the
vertical ray emanating from the zero-offset reflection point.
Since in a medium with a horizontal symmetry plane the ver-
tical phase and group velocities are equal to each other, we
can replace g0 and g,i j with the vertical phase velocity V0 and
its derivatives with respect to yi . Finally, multiplying equa-
tion (A-17) by τ het

0 = τ hom
0 = τ0 [see equation (A-14)], we ob-

tain the following relationship between the matrices Whom and
Whet:

Whet
i j = Whom

i j − τ 2
0

3 V0

∂2V0

∂yi ∂yj

∣∣∣∣∣
y = 0

, (i, j = 1, 2).

(A-18)
Thus, in the linear approximation employed here, the influence
of lateral velocity variation on the NMO ellipse is proportional
to the curvature of the vertical-velocity surface V0(y) at the
CMP location.

APPENDIX B

NMO ELLIPSE IN A TWO-LAYERED MODEL WITH WEAK LATERAL VELOCITY VARIATION

Here, we extend the derivation from Appendix A to a model
that contains two horizontal anisotropic layers with lateral ve-
locity variation. In addition to the assumptions used in Ap-
pendix A (the horizontal plane is a plane of symmetry, the
lateral heterogeneity is weak), we will consider only weakly
anisotropic media. The weak-anisotropy assumption makes it
possible not only to simplify the derivation, but also to obtain
the final expression for the NMO ellipse in terms of quantities
that can be measured from reflection seismic data—the effec-
tive NMO velocities and zero-offset traveltimes for reflections
from the two interfaces of our model (Figure B-1).

In the model without lateral velocity variation, the one-way
traveltime τ hom from the zero-offset reflection point to the sur-
face is given by

τ hom(h) ≡ τ hom
1 + τ hom

2 =
√(

h(1)
)2 + (

x(1)
3

)2

g(1)

+
√(

h(2)
)2 + (

x(2)
3

)2

g(2)
, (B-1)

where g(1) and g(2) are the group velocities along the ray (Fig-
ure B-1) and h = h(1) + h(2) is half the source-receiver offset.
For convenience, we denote

FIG. B.1. The projection of the nonspecular raypath from the
zero-offset reflection point onto the vertical plane that contains
the CMP line.
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h(2) = kh and h(1) = (1 − k)h. (B-2)

Despite the presence of the horizontal symmetry plane in
each layer, the influence of depth-varying azimuthal anisotropy
forces the ray to deviate from the vertical incidence plane
shown in Figure B-1. This deviation, however, produces trav-
eltime distortions quadratic in the anisotropy coefficients
(Grechka and Tsvankin, 1998) because the traveltime in the
linearized weak-anisotropy approximation can always be cal-
culated along the unperturbed ray. Here, we restrict ourselves
to linear terms in the anisotropy coefficients and evaluate the
traveltimes in both homogeneous and LH models along the
rays confined to the vertical incidence plane.

The one-way traveltime τ het in the model with lateral velocity
variation can be found by analogy with equation (A-5):

τ het(h) =
√(

h(1)
)2 + (

x(1)
3

)2

h(1)

∫ h

h(2)

dξ

g(1)(ξ)

+
√(

h(2)
)2 + (

x(2)
3

)2

h(2)

∫ h(2)

0

dξ

g(2)(ξ)
, (B-3)

where ξ is the horizontal displacement along the ray.
Expanding the interval group velocities g(1) and g(2) near

the CMP in a double Taylor series in the horizontal coordi-
nates [see equation (A-7)] and evaluating the integrals in equa-
tion (B-3), we express τ het through the traveltimes τ hom

1 and
τ hom

2 in the laterally homogeneous model as

τ het(x) = τ hom
1 (x)

[
1 − 1 + k

2 g(1)
0

(
g(1)

,1 x1 + g(1)
,2 x2

)

− 1 + k + k2

6 g(1)
0

(
g(1)

,11x2
1 + 2 g(1)

,12x1x2 + g(1)
,22x2

2

)]

+ τ hom
2 (x)

[
1 − k

2 g(2)
0

(
g(2)

,1 x1 + g(2)
,2 x2

)

− k2

6 g(2)
0

(
g(2)

,11x2
1 + 2 g(2)

,12x1x2 + g(2)
,22x2

2

)]
,

(B-4)

where x1 = h cos α, x2 = h sin α (α is the azimuth of the CMP
line), and g(1,2)

0 , g(1,2)
,i , and g(1,2)

,i j are defined in the same way as
g0, g,i , and g,i j in Appendix A.

Next, we express the parameter k [equation (B-2)] in terms
of the velocities and traveltimes. In the weak anisotropy limit,
Snell’s law at the transmission point R1 (Figure B-1) can be
written as

sin θ1

g(1)
= sin θ2

g(2)
, (B-5)

where the phase velocities in both layers were replaced with
the group velocities. Multiplying the numerator and denomi-
nator on both sides of equation (B-5) by the corresponding ray
lengths in each layer `(1,2) = τ hom

1,2 g(1,2) yields (see Figure B-1)

h(1)

τ hom
1

(
g(1)

)2 = h(2)

τ hom
2

(
g(2)

)2 . (B-6)

From equation (B-6) and the definition of k [equation (B-2)] it

follows that

k = τ hom
2

(
g(2)

)2

τ hom
1

(
g(1)

)2 + τ hom
2

(
g(2)

)2 . (B-7)

Note that the dependence of k on x in equation (B-4) for
small incidence angles can be neglected. Indeed, when replac-
ing the sines with tangents in equation (B-5), we find

1 − k

k
= g(1)x(1)

3

g(2)x(2)
3

. (B-8)

Although the ratio of the group velocities g(1)/g(2) (and k) does
change with x, the offset-dependent terms are entirely a result
of the anisotropy and lateral velocity variation. Hence, these
terms can be ignored in equation (B-4), where they are multi-
plied with small quantities related to lateral variation in group
velocity.

To obtain the matrix Whet, it is necessary to evaluate the
second-order partial derivatives of equation (B-4) with respect
to x1 and x2 at the CMP location (x = 0). Since the interfaces
are horizontal and the horizontal plane is a plane of symmetry,
∂τ hom

1,2 /∂xi and ∂g(1,2)/∂xi vanish at x = 0 (see Appendix A).
Taking this into account and ignoring the dependence of k on
x (see above), we obtain

∂2τ het

∂xi ∂xj

∣∣∣∣∣
x=0

= ∂2

∂xi ∂xj

(
τ hom

1 + τ hom
2

) ∣∣∣∣∣
x=0

−
[

1 + k + k2

3 g(1)
0

τ hom
1 g(1)

,i j + k2

3 g(2)
0

τ hom
1 g(2)

,i j

] ∣∣∣∣∣
x=0

. (B-9)

Multiplying equation (B-9) by the zero-offset traveltime

τ0 ≡ τ het
0 = τ hom

0 = τ hom
01 + τ hom

02 ≡ τ01 + τ02 (B-10)

and using the definitions of the matrices Whet and Whom [equa-
tions (A-1) and (A-2)] yields

Whet
i j = Whom

i j − τ0

3

[
(1 + k + k2)τ01

g(1)
0

g(1)
,i j

+ k2τ02

g(2)
0

g(2)
,i j

] ∣∣∣∣∣
x=0

, (i, j = 1, 2).

(B-11)

Since both reflectors in our model are horizontal (see Fig-
ure B-1), the second-order partial derivatives of the vertical
velocities g(1)

,i j and g(2)
,i j in equation (B-11) can be experessed

in terms of derivatives of the vertical traveltimes. Differenti-
ating equations τ0` g(`)

0 = const, (` = 1, 2) twice with respect
to spatial coordinates yi gives in the linear approximation [see
equation (11)]

τ0`g
(`)
,i j = −τ0`,i j g(`)

0 , (B-12)

where τ0`,i j ≡ ∂2τ0`/∂yi ∂yj . Substituting equations (B-12) into
equations (B-11) yields

Whet
i j = Whom

i j + τ0

3

[
(1 + k + k2)τ01,i j + k2τ02,i j

]
,

(i, j = 1, 2). (B-13)
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The derivative τ02,i j can be expressed in terms of τ0 and τ01

using equation (B-10) to yield

τ02,i j = τ0,i j − τ01,i j , (i, j = 1, 2). (B-14)

Substituting equation (B-14) into (B-13), we find the matrix
Whet as

Whet
i j = Whom

i j + τ0

3

[
k2τ0,i j + (1 + k)τ01,i j

]
,

(i, j = 1, 2). (B-15)

The value of k at zero offset is given by equation (B-7)
with the vertical group velocities and traveltimes. In the weak
anisotropy approximation, the vertical velocities g(1,2)

0 can be
replaced further with the interval normal-moveout velocities
V (1,2)

cir [equation (15)] because g(1,2)
0 contribute only to the al-

ready small terms that involve lateral velocity variation. Then
equation (B-7) becomes

k = τ02
(
V (2)

cir

)2

τ01
(
V (1)

cir

)2 + τ02
(
V (2)

cir

)2 . (B-16)

The interval NMO velocity in the second layer V (2)
cir cannot be

obtained directly from reflection data. To express V (2)
cir through

the effective NMO velocities for reflections from the bottom of
the first (V (1)

cir ) and second (Vcir) layer, we use the conventional
Dix (1955) formula:

τ0V2
cir = τ01

(
V (1)

cir

)2 + τ02
(
V (2)

cir

)2
. (B-17)

In general, normal-moveout velocity in azimuthally anisotropic
media should be obtained by averaging the interval NMO el-
lipses rather than the NMO velocities at a particular azimuth
(Tsvankin et al., 1997). Nonetheless, Tsvankin et al. (1997) also
show that the conventional Dix equation (B-17) provides a lin-
ear approximation (in the anisotropic coefficients) to the exact
“generalized” Dix-type averaging of the NMO ellipses.

Substituting equation (B-17) into equation (B-16) and using
relation (B-10) allows us to express k in terms of quantities that
can be obtained from reflection data:

k = 1 − τ01
(
V (1)

cir

)2

τ0V2
cir

. (B-18)

Hence, the final result is given by equation (B-15) with k
defined in equation (B-18).


