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Moveout inversion of P-wave data for horizontal transverse isotropy

Pedro Contreras∗, Vladimir Grechka‡, and Ilya Tsvankin‡

ABSTRACT

The transversely isotropic model with a horizontal
symmetry axis (HTI media) has been extensively used
in seismological studies of fractured reservoirs. In this
paper, a parameter-estimation technique originally de-
veloped by Grechka and Tsvankin for the more general
orthorhombic media is applied to horizontal trans-
verse isotropy. Our methodology is based on the inver-
sion of azimuthally-dependent P-wave normal-moveout
(NMO) velocities from horizontal and dipping reflectors.

If the NMO velocity of a given reflection event is plot-
ted in each azimuthal direction, it forms an ellipse de-
termined by three combinations of medium parameters.
The NMO ellipse from a horizontal reflector in HTI me-
dia can be inverted for the azimuth β of the symme-
try axis, the vertical velocity VP0, and the Thomsen-type
anisotropic parameter δ(V). We describe a technique for
obtaining the remaining (for P-waves) anisotropic pa-
rameter η(V) (or ε(V)) from the NMO ellipse correspond-
ing to a dipping reflector of arbitrary azimuth. The inter-
val parameters of vertically inhomogeneous HTI media
are recovered using the generalized Dix equation that
operates with NMO ellipses for horizontal and dipping
events. High accuracy of our method is confirmed by

inverting a synthetic multiazimuth P-wave data set gen-
erated by ray tracing for a layered HTI medium with
depth-varying orientation of the symmetry axis.

Although estimation of η(V) can be carried out by the
algorithm developed for orthorhombic media, for more
stable results the HTI model has to be used from the
outset of the inversion procedure. It should be empha-
sized that P-wave conventional-spread moveout data
provide enough information to distinguish between HTI
and lower-symmetry models. We show that if the medium
has the orthorhombic symmetry and is sufficiently differ-
ent from HTI, the best-fit HTI model cannot match the
NMO ellipses for both a horizontal and a dipping event.

The anisotropic coefficients responsible for P-wave
moveout can be combined to estimate the crack density
and predict whether the cracks are fluid-filled or dry.
A unique feature of the HTI model that distinguishes it
from both vertical transverse isotropy and orthorhombic
media is that moveout inversion provides not just zero-
dip NMO velocities and anisotropic coefficients, but also
the true vertical velocity. As a result, reflection P-wave
data acquired over HTI formations can be used to build
velocity models in depth and perform anisotropic depth
processing.

INTRODUCTION

Horizontal transverse isotropy (HTI) (Figure 1) is a com-
mon model in shear-wave studies of fractured reservoirs that
describes a system of parallel vertical penny-shaped cracks em-
bedded in an isotropic host rock (e.g., Thomsen, 1988). The
fractional difference between the velocities of split S-waves
at vertical incidence is proportional to the crack density
(Thomsen, 1995) and, therefore, provides important insight
into the properties of the fractured reservoir. An alternative
approach to parameter estimation in HTI media is based on
the inversion of azimuthally-dependent reflection traveltimes.
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Tsvankin (1997a) gave an exact equation for normal-
moveout (NMO) velocity (analytically defined in the zero-
spread limit) of pure modes in a horizontal HTI layer and
showed that it represents an ellipse with the axes parallel to
the vertical symmetry planes of the medium. For P-waves,
the NMO ellipse depends on the azimuth of the symmetry
axis β, the vertical velocity VP0, and the anisotropic coeffi-
cient δ(V) analogous to the parameter δ introduced by Thom-
sen (1986) for transversely isotropic (TI) models with a verti-
cal symmetry axis (VTI media). The superscript “(V)” in δ(V)

stands for the “equivalent” VTI medium and is used to avoid
confusion with the generic Thomsen coefficients defined with
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respect to the symmetry axis (Rüger, 1997; Tsvankin, 1997a).
P-wave kinematic signatures in HTI media are controlled not
just by β, VP0, and δ(V), but also by another anisotropic coeffi-
cient, ε(V), that is close to the fractional difference between
the symmetry-direction P-wave velocity and VP0. Tsvankin
(1997a) suggested obtaining ε(V) either by combining NMO
velocities of the P-wave and slow S-wave (the wave polarized
perpendicular to the cracks at vertical incidence) or by invert-
ing dip-dependent P-wave moveout in the vertical plane that
contains the symmetry axis (the “symmetry-axis plane”). The
inversion of dip moveout in the symmetry-axis plane is based
on a 2-D NMO equation (Tsvankin, 1995) and, therefore, can
be applied only if the symmetry axis lies in the dip plane of the
reflector. In principle, the parameter ε(V) can also be recov-
ered from nonhyperbolic (long-spread) moveout, as described
by Al-Dajani and Tsvankin (1998). The set of the three P-wave
moveout coefficients (VP0, δ(V), ε(V)) can be used to reconstruct
P-wave phase velocity and perform seismic imaging, as well as
to estimate the crack density and investigate the contents of
the fracture network (Rüger and Tsvankin, 1997; Tsvankin,
1997a).

In this paper, we present an algorithm designed to obtain the
parameter ε(V) and, if necessary, the symmetry-axis direction
using the azimuthally-dependent NMO velocity from a dip-
ping reflector with arbitrary orientation. As shown by Grechka
and Tsvankin (1998), the azimuthal variation of pure-mode
NMO velocity typically is described by an ellipse for any inho-
mogeneous arbitrary anisotropic medium. Since the ellipse is
fully determined by three quantities (e.g., by its orientation and
semiaxes), only three combinations of medium parameters can
be found from multiazimuth NMO-velocity measurements of
a certain mode. Clearly, these parameter combinations depend
on the anisotropy of the model for which the inversion is car-
ried out. For example, Grechka and Tsvankin (1998) proved
that the P-wave NMO ellipse for dipping events in VTI me-
dia, expressed through the horizontal slowness components of
the zero-offset ray, is a function of two Alkhalifah-Tsvankin
(1995) parameters: the “zero-dip” NMO velocity from a hor-
izontal reflector Vnmo(0) and the “anellipticity” coefficient η.
For the more complicated azimuthally-anisotropic model with
orthorhombic symmetry, NMO velocity of P-waves depends

FIG. 1. HTI model is used to describe a system of paral-
lel vertical cracks in an isotropic background medium (after
Rüger, 1997). The two vertical symmetry planes are called
the “isotropy plane” (parallel to the cracks) and the “symme-
try-axis plane” (orthogonal to the cracks).

on six quantities: the azimuth of one of the vertical symme-
try planes, the zero-dip NMO velocities in the symmetry-plane
directions V (1,2)

nmo , and three anisotropic coefficients η(1,2,3) de-
fined similarly to the parameter η for VTI media. Grechka and
Tsvankin (1999), who obtained this result, also developed a
parameter-estimation procedure to find the symmetry-plane
orientation and five moveout parameters from the NMO el-
lipses of a horizontal and a dipping event.

The method of Grechka and Tsvankin (1999) can be applied
to the moveout inversion in HTI media because horizontal
transverse isotropy can be considered as a special case of the
more general orthorhombic model. The transition from orth-
orhombic to HTI media becomes particularly simple within
the framework of Tsvankin’s (1997b) notation for orthorhom-
bic anisotropy. For instance, the P-wave NMO ellipse from
a horizontal reflector in HTI media can be obtained from the
corresponding NMO ellipse in orthorhombic media just by set-
ting the appropriate δ coefficient to zero. Likewise, the P-wave
NMO velocity of dipping events in HTI media depends on only
one η coefficient (η(V)) directly related to the parameter ε(V).
Since NMO ellipse is described by three independent quanti-
ties, there is a useful redundancy in estimating the parameter
η(V). We discuss the moveout inversion for η(V) in HTI media
and show that it is more stable than the inversion for the three
coefficients η(1,2,3) in orthorhombic media.

Extention of the moveout-inversion algorithm to vertically-
inhomogeneous HTI media is based on the generalized Dix
equation of Tsvankin et al. (1997). This equation expresses the
exact NMO velocity for a stack of layers above a dipping reflec-
tor as an average of the matrices responsible for the interval
NMO ellipses. Dix-type differentiation makes it possible to find
the interval values of β, VP0, δ(V), and ε(V), which are sufficient
to perform depth processing in HTI media. The performance
of the algorithm is illustrated by numerical examples for a sin-
gle HTI layer and a stratified HTI model with depth-varying
azimuth of the symmetry axis.

NOTATION FOR HTI AND ORTHORHOMBIC MEDIA

Since our approach is based on the methodology of Grechka
and Tsvankin (1999) developed for orthorhombic media, we
need to review the relation between the parameters of or-
thorhombic and HTI models. An orthorhombic (or orthotro-
pic) symmetry system may be caused, for instance, by a
set of parallel vertical cracks embedded in a background
VTI medium (Figure 2) or by two orthogonal (or identical
nonorthogonal) vertical crack systems in a purely isotropic or
VTI matrix (e.g., Wild and Crampin, 1991; Schoenberg and
Helbig, 1997). Regardless of the reasons for orthorhombic
anisotropy, it is characterized by three mutually orthogonal
planes of mirror symmetry, which are conventionally chosen
as the coordinate planes. Tsvankin (1997b) used an identical
form of the Christoffel equation within the symmetry planes of
orthorhombic and VTI media to parameterize orthorhombic
models by two vertical velocities (the “isotropic” quantities)
and seven VTI-style dimensionless anisotropic coefficients.
This notation, based on the same principle as Thomsen (1986)
parameters for vertical transverse isotropy, is particularly well-
suited for traveltime inversion (Grechka and Tsvankin, 1999).
The expressions for Tsvankin’s parameters in terms of the stiff-
ness coefficients ci j and density ρ are given below:
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1) VP0 is P-wave vertical velocity:

VP0 ≡
√

c33

ρ
. (1)

2) VS0 is the vertical velocity of the S-wave polarized in the
x1-direction:

VS0 ≡
√

c55

ρ
. (2)

3) ε(2) is the VTI parameter ε in the [x1, x3] symmetry plane
normal to x2-axis (this explains the superscript “2”):

ε(2) ≡ c11 − c33

2 c33
. (3)

ε(2) is close to the fractional difference between the P-
wave velocities in the x1- and x3-directions.

4) δ(2) is the VTI parameter δ in the [x1, x3]-plane:

δ(2) ≡ (c13 + c55)2 − (c33 − c55)2

2c33(c33 − c55)
. (4)

Within the [x1, x3]-plane, δ(2) is responsible for near-
vertical P-wave velocity and influences the velocity of
the in-plane polarized shear wave.

5) γ (2) is the VTI parameter γ in the [x1, x3]-plane:

γ (2) ≡ c66 − c44

2c44
. (5)

γ (2) is close to the fractional difference between the SH-
wave velocities in the x1- and x3-directions (by the
SH-wave, we mean the shear wave that propagates in
the [x1, x3]-plane being polarized in the x2-direction).

6) ε(1) is the VTI parameter ε in the [x2, x3] symmetry plane:

ε(1) ≡ c22 − c33

2c33
. (6)

ε(1) is close to the fractional difference between the P-
wave velocities in the x2- and x3-directions.

FIG. 2. Orthorhombic media have three mutually orthogonal
planes of mirror symmetry. One of the reasons for orthorhom-
bic anisotropy is a combination of parallel vertical cracks and
vertical transverse isotropy in the background medium.

7) δ(1) is the VTI parameter δ in the [x2, x3]-plane:

δ(1) ≡ (c23 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
. (7)

Within the [x2, x3]-plane, δ(1) is responsible for near-
vertical P-wave velocity and influences the velocity of
the in-plane polarized shear wave.

8) γ (1) is the VTI parameter γ in the [x2, x3]-plane:

γ (1) ≡ c66 − c55

2c55
. (8)

γ (1) is close to the fractional difference between the
SH-wave velocities in the x2-and x3-directions (here, the
SH-wave is polarized in the x1-direction).

9) δ(3) is the VTI parameter δ in the [x1, x2]-plane (x1 plays
the role of the symmetry axis):

δ(3) ≡ (c12 + c66)2 − (c11 − c66)2

2c11(c11 − c66)
. (9)

An important parameter combination that we will use
below is the shear-wave splitting coefficient at vertical
incidence:

γ (S) ≡ c44 − c55

2c55
= γ (1) − γ (2)

1 + 2γ (2)
. (10)

γ (S) is close to the fractional difference between the ve-
locities of split S-waves at vertical incidence.

Only a subset of these parameters (VP0, ε(1,2), and δ(1,2,3))
controls P-wave kinematic signatures for orthorhombic media
(Tsvankin, 1997b). Furthermore, Grechka and Tsvankin (1999)
showed that P-wave normal-moveout velocity for horizontal
and dipping reflectors, expressed through the horizontal slow-
ness components of the zero-offset ray, depends on just five
parameter combinations. These moveout parameters include
the symmetry-plane NMO velocities from a horizontal reflec-
tor,

V (i )
nmo = VP0

√
1 + 2δ(i ), (i = 1, 2) (11)

and three anisotropic coefficients η(1,2,3) defined by analogy
with the Alkhalifah-Tsvankin (1995) parameter η in VTI
media.

η(2) is the VTI parameter η in the vertical symmetry plane
[x1, x3]:

η(2) ≡ ε(2) − δ(2)

1 + 2 δ(2)
; (12)

η(1) is the VTI parameter η in the vertical symmetry plane
[x2, x3]:

η(1) ≡ ε(1) − δ(1)

1 + 2 δ(1)
; (13)

η(3) is the VTI parameter η in the horizontal symmetry plane
[x1, x2] (x1 plays the role of the symmetry axis):

η(3) ≡ ε(1) − ε(2) − δ(3)
(
1 + 2ε(2)

)
(
1 + 2ε(2)

)(
1 + 2δ(3)

) . (14)
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For the HTI model that may be considered as a special case of
orthorhombic media, the number of independent parameters
reduces from nine to five. If we align the symmetry axis with
the x1-direction (Figure 1), the velocities of all three modes in
the [x2, x3]-plane (the isotropy plane) become constant, and the
anisotropic coefficients in this plane [equations (6)–(8)] vanish
(Tsvankin, 1997b):

ε(1) = δ(1) = γ (1) = 0. (15)

Since the symmetry-axis plane [x1, x3] of HTI media is equiv-
alent to the orthorhombic [x1, x3] symmetry plane, the defini-
tions of the anisotropic coefficients ε(2), δ(2), and γ (2) [equa-
tions (3)–(5)] remain valid for horizontal transverse isotropy.
Tsvankin (1997a) and Rüger (1997), who introduced Thomsen-
style parameterization for HTI media, called these parameters
ε(V), δ(V), and γ (V), respectively:

ε(V) ≡ ε(2), (16)

δ(V) ≡ δ(2), (17)

γ (V) ≡ γ (2). (18)

The coefficient δ(3) [equation (9)] for HTI media becomes a
function of ε(V), δ(V), and the ratio of the vertical velocities
(Tsvankin, 1997a):

δ(3) = δ(V) − 2ε(V)
(
1 + ε(V)

/
f
)

(
1 + 2ε(V)

/
f
)(

1 + 2ε(V)
) , (19)

where

f ≡ 1 − V2
S0

/
V2

P0. (20)

Thus, properties of an HTI medium are determined by a
total of five independent parameters: VP0, VS0, ε(V), δ(V), and
γ (V). Kinematic signatures of P-waves can be described with
sufficient accuracy by the vertical velocity VP0, ε(V), and δ(V)

(Tsvankin, 1997a); these three parameters are supposed to con-
trol P-wave NMO velocity as well. Indeed, the NMO veloci-
ties from a horizontal reflector in the symmetry planes [equa-
tion (11)] in HTI media take the form

V (1)
nmo = VP0, (21)

V (2)
nmo = VP0

√
1 + 2 δ(V). (22)

The number of independent η coefficients for horizontal trans-
verse isotropy reduces from three to one; in accordance with
the definitions of η(1,2,3) [equations (12)–(14)], in HTI media
with the symmetry axis in the x1 direction,

η(1) = 0, (23)

η(2) = η(V) = ε(V) − δ(V)

1 + 2δ(V)
, (24)

η(3) = ε(V) − δ(V)

1 + 2
(

δ(V) + ε(V)
1 − f

f

) ≈ η(V). (25)

Although the shear-wave vertical velocity does enter equa-
tion (25) through the quantity f , its influence is limited to

terms quadratic in the anisotropic parameters and can be ig-
nored (Tsvankin, 1997a). Note that if the symmetry axis points
in the x2-direction, then the parameter η(2) = 0, while η(1) and
η(3) become identical and equal to η(V). Therefore, instead of
five P-wave moveout parameters in orthorhombic media, we
have only three (VP0, ε(V) or η(V), and δ(V)) in an HTI model
with a given orientation of the symmetry axis.

NMO ELLIPSES IN A HOMOGENEOUS HTI LAYER

Grechka and Tsvankin (1998) obtained a general equation
for azimuthally-varying NMO velocity of any pure mode in the
form

V−2
nmo(α) = W11 cos2 α + 2 W12 sin α cos α + W22 sin2 α,

(26)

where α is the azimuth of the common-midpoint (CMP) line
with respect to the x1-axis, and W is a symmetric matrix given
by

Wi j = τ0
∂pi

∂xj
, (i, j = 1, 2). (27)

Here, τ0 is the one-way zero-offset traveltime, and p1 and p2 are
the horizontal components of the slowness vector for rays ema-
nating from the zero-offset reflection point; the spatial deriva-
tives of pi are evaluated at the CMP location. Equation (26)
is valid for any inhomogeneous anisotropic medium in which
reflection traveltime can be expanded in a Taylor series near
the common midpoint. Unless reflection traveltime decreases
with offset in a certain direction, the azimuthally-dependent
NMO velocity (26) is represented by an ellipse in the horizon-
tal plane. A more detailed discussion of the NMO ellipse can
be found in Grechka and Tsvankin (1998) and Tsvankin et al.
(1997).

Horizontal reflector

Suppose the symmetry axis of a horizontal HTI layer makes
the angle β with the coordinate axis x1. Adapting the exact ex-
pression for normal-moveout velocity [Tsvankin, 1997a, equa-
tion (21)], we can represent the P-wave NMO ellipse as

V−2
nmo(α) = cos2(α − β)

V2
P,nmo

+ sin2(α − β)
V2

P0

, (28)

where VP,nmo ≡ V (2)
nmo = VP0

√
1 + 2δ(V) is the NMO velocity

in the symmetry-axis direction given by equation (22). Equa-
tion (28) can also be obtained from the more general NMO
equation in an orthorhombic layer (Grechka and Tsvankin,
1998) by setting the δ coefficient in the isotropy plane to zero.

The semiaxes of the ellipse (28) are aligned with the vertical
symmetry planes of the HTI layer, and the NMO velocity is
determined by three quantities: the azimuth β of the symmetry
axis, the vertical velocity VP0, and the anisotropic coefficient
δ(V). A minimum of three well-separated azimuthal moveout
measurements is needed to reconstruct the NMO ellipse and
find β, VP0, and δ(V). Then we can use the vertical velocity to
obtain the layer thickness

z = VP0τ0, (29)

where τ0 is the one-way vertical traveltime.
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The accuracy and stability of this inversion procedure and the
optimal number and spread of CMP lines are discussed in detail
by Al-Dajani and Alkhalifah (1997). Note that unambiguous
recovery of VP0 and δ(V) is impossible without identification of
the symmetry-axis and isotropy planes, which cannot be done
using moveout data alone (in general, it is necessary to include
S-wave polarizations or P-wave AVO information). However,
the parameter δ(V) is predominantly negative for fractured for-
mations (Tsvankin, 1997a), and the smaller (semiminor) axis
of the NMO ellipse should correspond to the azimuth of the
symmetry axis.

Dipping reflector

Tsvankin (1997a) discussed one special case of dip-moveout
inversion in HTI media. If the dip plane of the reflector coin-
cides with the symmetry-axis plane, the moveout problem on
the dip line becomes two-dimensional because reflected rays
do not deviate from the incidence plane. Due to the kinematic
equivalence between the symmetry-axis plane of HTI media
and any vertical plane in VTI media, the dip-moveout inversion
method of Alkhalifah and Tsvankin (1995) is fully applicable
to the estimation of η(V) on the dip line.

In this paper, we extend this result to a dipping reflector
with arbitrary orientation. If the reflector strike is not aligned
with either of the symmetry-plane azimuths, the NMO ellipse
cannot be represented in the simple form (28) since its semiaxes
deviate from the symmetry planes. For instance, for a reflector
with the dip plane making an angle of 45◦ with the symmetry
axis in Figure 3, the azimuth of the semimajor axis of the NMO
ellipse is equal to 55.6◦.

The NMO ellipse from Figure 3 was calculated using an exact
equation of Tsvankin et al. (1997) who expressed the compo-
nents of the matrix W [equation (27)] through the slowness
vector of the zero offset ray. This equation, valid for any pure

FIG. 3. The P-wave NMO ellipse in an HTI layer above a dip-
ping reflector. The reflector dip is equal to 30◦, the azimuth of
the dip plane is 45◦. The medium parameters correspond to a
system of fluid-filled cracks embedded in an isotropic matrix
(Rüger and Tsvankin, 1997): VP0 = 4.498 km/s, VS0 = 2.34
km/s, ε(V) = −0.003, δ(V) = −0.088. The azimuth of the sym-
metry axis β = 0◦.

mode in a homogeneous layer and arbitrary orientation of the
CMP line, has the following form:

V−2
nmo(α, p1, p2) = p1q,1 + p2q,2 − q

q,11q,22 − q2
,12

× [
q,22 cos2 α − 2q,12 sin α cos α + q,11 sin2 α

]
, (30)

where q ≡ q(p1, p2) ≡ p3 is the vertical component of the
slowness vector; q,i and q,i j , (i , j = 1, 2) denote the partial
derivatives q,i ≡ ∂q/∂pi and q,i j ≡ ∂2q/∂pi ∂pj that should be
evaluated for the zero-offset ray.

The horizontal slownesses (p1, p2) of the zero-offset ray can
be found using the reflection slopes on zero-offset sections
recorded in two different azimuthal directions. Then the ver-
tical slowness q can be determined from the Christoffel equa-
tion for a given anisotropic model. Alternatively, if the dip
and azimuth of the reflector are known, the Christoffel equa-
tion can be solved for the slowness direction orthogonal to the
reflector (it corresponds to the zero-offset ray) yielding the
slowness components p1, p2, and q. The simplest way to ob-
tain the derivatives q,i and q,i j is by implicit differentiation
of the Christoffel equation represented through the slowness
components (Tsvankin et al., 1997).

Equation (30) can be used to obtain the parameter η(V)

from the azimuthally-dependent NMO velocity of an arbi-
trary dipping event. To gain analytic insight into this inver-
sion procedure, we use the weak anisotropy approximation
(linearization in the anisotropic coefficients) for the P-wave
NMO ellipse in orthorhombic media derived by Grechka and
Tsvankin (1999) from equation (30). After substituting the HTI
relationships (21)–(25) into Grechka and Tsvankin’s equations
(A-1)–(A-10), we find

V−2
nmo(α, p1, p2) = cos2 α

{
1

V2
P,nmo

− p2
1 − 2p2

1η
(V) d1

}

− 2 sin α cos αp1 p2
{
1 − 8η(V) p2

1V2
P0 d2

}
+ sin2 α

{
1

V2
P0

− p2
2 + 2η(V) p4

1V2
P0 d3

}
,

(31)

where

d1 = 6 − 9p2
1V2

P0 + 4p4
1V4

P0,

d2 = 1 − p2
1V2

P0,

d3 = 1 − 4p2
2V2

P0;
α is the angle between the CMP line and the symmetry axis.

Since the slowness vector of the zero-offset ray is orthogonal
to the reflector, the azimuth of the dip plane depends on the
ratio p2/p1. Suppose that the the dip plane coincides with the
symmetry-axis plane of an HTI layer (i.e., reflector strike is
parallel to the axis x2). Then the zero-offset ray is confined to
the [x1, x3] plane (p2 = 0), and approximation (31) yields

V−2
nmo(α, p1, p2) = cos2 α

{
1

V2
P,nmo

− p2
1 − 2p2

1η
(V) d1

}

+ sin2 α

{
1

V2
P0

+ 2η(V) p4
1V2

P0

}
. (32)
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The dip-line NMO velocity (α = 0) in this case is identical to
the corresponding VTI approximation given in Alkhalifah and
Tsvankin (1995) and discussed for HTI media by Tsvankin
(1997a). Provided the zero-dip NMO velocity in the symmetry-
axis plane has been obtained from horizontal events, Vnmo(α =
0, p1) for a dipping event (i.e., p1 6= 0) is sufficient to deter-
mine η(V). Equation (32) also shows that the strike-line NMO
velocity (α = 90◦) from a dipping reflector provides a useful
redundancy in estimating η(V).

If the dip plane of the reflector coincides with the isotropy
plane and reflector strike is parallel to the axis x1 (p1 = 0),

V−2
nmo(α, p1, p2) = cos2 α

V2
P,nmo

+ sin2 α

{
1

V2
P0

− p2
2

}
. (33)

Clearly, η(V) has no influence on both semiaxes of the el-
lipse (33) and, therefore, cannot be found from moveout data.
Therefore, we expect the inversion for η(V) to be unstable if the
reflector azimuth (i.e., the azimuth of the dip plane) is close to
the isotropy plane of the HTI model.

Another situation when η(V) is not well constrained by dip
moveout is when the reflector is close to horizontal and both
slowness components p1 and p2 in equation (31) are small.
Relevant quantitative estimates can be found in Alkhalifah
and Tsvankin (1995) for VTI media and in Grechka and
Tsvankin (1999) for orthorhombic media.

PARAMETER ESTIMATION IN AN HTI LAYER

P-wave normal-moveout velocity in HTI media, expressed
by equation (30), depends on the symmetry-axis orientation β,
the vertical velocity VP0, and the anisotropic coefficients ε(V)

(or η(V)) and δ(V). Since a single NMO ellipse is determined by
three parameter combinations, we need at least two NMO el-
lipses from reflectors of different dips and/or azimuths to carry
out the inversion procedure (i.e., two reflection events provide
six equations for four unknowns). Note that in orthorhombic
media there are two more unknowns for the same number of
equations (Grechka and Tsvankin, 1999), so the inversion pro-
cedure in HTI media is expected to be more stable compared
to that for orthorhombic models.

Inversion algorithm

In subsequent analysis, we assume that one of the reflectors
is horizontal. Then the axis orientation β, VP0, and δ(V) can be
found using the horizontal event, which leaves η(V) or ε(V) as
the only unknown to be obtained from the NMO ellipse for
a dipping reflector. As mentioned above, the negative value
of δ(V) (for fracture-induced HTI media) allows us to distin-
guish between the azimuths of the symmetry-axis and isotropy
planes: the semiminor axis of the NMO ellipse from a horizon-
tal reflector defines the direction of the symmetry axis (normal
to the fractures). It may happen that δ(V) = 0, and the NMO el-
lipse of horizontal events degenerates into a circle. In this case,
the azimuth β of the symmetry axis has to be retrieved, along
with η(V), from the NMO velocity of a dipping event (then,
there are three equations for two unknowns).

Our inversion algorithm uses the components of the matrix
W for a dipping event as input data. Assuming that β, VP0,
and δ(V) have already been found, we search for the value of

η(V) that minimizes the norm of the difference between the
measured and theoretical (computed) matrices W:

F(
η(V)) = ‖Wmeas − Wtheor‖ = min, (34)

where the matrix Wtheor is obtained from the exact equation of
the NMO ellipse (30). Since Wtheor depends on β, VP0, δ(V), and
a single unknown η(V), the minimization is carried out by the
Golden Section method (Press et al., 1987).

Stability of the estimation of η(V)

Before discussing the inversion results, we verify whether
the shear-wave vertical velocity VS0 can be ignored in the
parameter-estimation procedure. In agreement with Tsvankin
(1997a), although VS0 [or the quantity f from equation (20)]
does enter the exact phase-velocity equations for the P-wave,
its influence on the NMO velocity and inversion results is negli-
gibly small (Figure 4). Therefore, in the examples below we use
a “reasonable” value of the VS0/VP0 ratio that does not neces-
sarily correspond to the true shear-wave vertical velocity in the
model. The parameters of the model used in Figure 4 (includ-
ing ε(V) = 0) are typical for HTI media due to thin fluid-filled
cracks in a nonporous matrix (Rüger and Tsvankin, 1997).

If the inversion is performed on error-free data (as in Fig-
ure 4), the value of η(V) is found with excellent accuracy. The
main purpose of the numerical test in Figure 5 is to evaluate
the stability of the η(V)-estimation procedure in the presence
of errors in the symmetry-plane NMO velocities from a hori-
zontal reflector. The input data include the exact NMO ellipse
for a dipping event (matrix Wmeas) and the NMO ellipse for a
horizontal event that has the correct orientation but a range of
errors in the values of the semiaxes (i.e., VP0 and δ(V) are inaccu-
rate but β is exact). For each dipping reflector, we present two
sets of the inversion results, one of which is computed for the

FIG. 4. The influence of the shear-wave vertical velocity VS0 on
the inversion of the NMO ellipse of a dipping event for η(V).
The azimuth of the dip plane of the reflector with respect to
the symmetry axis is 45◦, the dips are 35◦ (solid line) and 70◦
(dashed line). The medium parameters are VP0 = 4.0 km/s,
ε(V) = 0, δ(V) = −0.143 (η(V) = 0.2). The actual VS0/VP0 ratio
is shown on the plot; the inversion was always performed with
VS0/VP0 = 0.5 and actual values of VP0, δ(V), and β.
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HTI model, while the other is obtained under the assumption
that the model is orthorhombic (see below).

Assuming the medium to be HTI from the outset of the in-
version procedure, we recover η(V) (thin solid line) in a stable
fashion for the reflectors with dip-plane azimuths of 20◦ and 45◦

with respect to the symmetry axis (Figure 5a–d). In accordance
with the weak-anisotropy approximation discussed above, the
inversion for η(V) becomes less stable as the reflector azimuth
approaches the isotropy plane (Figure 5e, f). The value of η(V)

in this case is especially sensitive to errors in the zero-dip NMO
velocity in the symmetry-axis plane (Figure 5f). A small devia-
tion of η(V) from the actual value even in the absence of errors
is caused by the wrong value of the shear-wave vertical velocity
intentionally used in the inversion.

HTI versus orthorhombic symmetry in moveout inversion

Since in field experiments we may not know the medium
symmetry in advance, it is interesting to carry out the inversion

FIG. 5. Inversion of the NMO ellipse for a dipping event in the presence of errors in the symmetry-plane NMO
velocities from a horizontal reflector (in percent). The reflector dip is 50◦; the azimuth of the dip plane is different
for each row: 20◦ (a, b), 45◦ (c, d), and 70◦ (e, f). The layer parameters are VP0 = 4.0 km/s, ε(V) = 0, δ(V) = −0.143
(η(V) = 0.2). The thin solid line denotes η(V) obtained by assuming the HTI model in the inversion procedure.
Under the assumption that the model is orthorhombic, we computed η(1) (dashed line), η(2) (dotted line), and
η(3) (dash-dotted line). For the HTI model used to generate the data, η(2) = η(3) = η(V) = 0.2 and η(1) = 0.

of the NMO ellipse (computed for the actual HTI model) us-
ing the algorithm of Grechka and Tsvankin (1999) for the more
general orthorhombic medium. In this case, we have to invert
three components of the matrix W for three unknown parame-
ters: η(1), η(2), and η(3). An accurate inversion procedure should
yield the expressions for η(1,2,3) valid in HTI media: η(2) = η(V)

and η(1) = 0. Also, for the model from Figure 5, ε(V) = 0 and,
following from equation (25), η(3) = η(V) (in general, the last
relationship is approximate).

If the zero-dip NMO velocities are exact, we indeed obtain
the values that almost satisfy these HTI constraints. The errors
in input data, however, get “distributed” among the three η

parameters, and it may not be easy to recognize the HTI model
by examining the inversion results. For instance, if the reflector
azimuth is equal to 20◦ (Figure 5a, b), the value of η(2) stays
close to η(V), but η(1) and η(3) show substantial variations under
the influence of errors in VP0. This result is in agreement with
the conclusion of Grechka and Tsvankin (1999) that if the dip
plane of the reflector is near the [x1, x3] symmetry plane, NMO
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velocity constrains the difference between η(1) and η(3), but not
the individual values of the coefficients. The HTI signature is
most apparent in the inverted values for a reflector azimuth
of 45◦ (Figure 5c, d), where η(1) ≈ 0 and η(2) ≈ η(3) ≈ 0.2 for the
whole range of errors in the zero-dip NMO velocities. Thus,
to recognize the HTI symmetry in the inversion results for
orthorhombic media in a reliable fashion, the dip plane of the
reflector should make an angle of 30–50◦ with the symmetry
axis.

A more direct way to identify the symmetry system is by
checking whether the inverted HTI model provides a satisfac-
tory fit to the NMO ellipses. For instance, in Figure 5b, the
NMO ellipse of the dipping event for the obtained HTI model
does not deviate from the exact ellipse by more than 1%. In
such a case, performing inversion for the more complicated
orthorhombic model is hardly justified because it would only
lead to overfitting the data.

If the medium has the orthorhombic symmetry and is suffi-
ciently different from HTI [i.e., equations (23)–(25) are not sat-
isfied with acceptable accuracy], the best-fit HTI model found
from moveout inversion cannot adequately explain the ob-
served moveout velocities. As illustrated by the example in
Figure 6, the HTI algorithm applied to orthorhombic data suc-
ceeds in fitting the NMO ellipse for a horizontal event by
distorting the vertical velocity VP0 and making correspond-
ing adjustments in the parameter δ(V). However, as discussed
above, the remaining parameter η(V) has to be found from three
nonlinear equations describing the NMO ellipse for a dipping
event. Since the data are generated for orthorhombic media
and do not comply with the HTI relationships, these equations
cannot be accurately solved for any value of η(V). As a result,
the best-fit HTI model fails to match the NMO ellipse for the
dipping event (Figure 6). We conclude that if the medium has

FIG. 6. HTI inversion of the NMO ellipses computed for an
orthorhombic model with VP0 = 4.388 km/s, ε(1) = −0.2,
ε(2) = −0.15, δ(1) = 0.1, δ(2) = −0.155, and δ(3) = 0.101
(η(1) = 0.008, η(2) = −0.25, η(3) = −0.16). Dotted lines—input
NMO ellipses from a horizontal interface and a dipping reflec-
tor (the dip-plane azimuth is 40◦, dip = 45◦). Solid lines—the
ellipses for the best-fit HTI model obtained from the inversion;
the model parameters are VP0 = 4.752 km/s, ε(V) = −0.272,
δ(V) = −0.213 (η(V) = −0.103).

orthorhombic or lower symmetry, the HTI model is unable to
fit P-wave moveout data provided NMO ellipses for a horizon-
tal and a dipping reflection events are available.

MOVEOUT INVERSION IN VERTICALLY
INHOMOGENEOUS HTI MEDIA

The inversion approach described above can be extended
to horizontally layered HTI media above a dipping reflector
using the generalized Dix equation (Tsvankin et al., 1997). This
equation expresses the exact effective NMO velocity through
the average of the matrices W responsible for the interval NMO
ellipses [equations (26) and (27)]:

W−1(L) = 1
τ (L)

L∑
`=1

τ` W−1
` , (35)

where W(L) and W` define the effective and interval NMO
ellipses, respectively, τ` are the interval zero-offset traveltimes,
and τ (L) = ∑L

`=1 τ`. Equation (35) is valid for reflections from
a dipping interface beneath an arbitrary anisotropic vertically
inhomogeneous overburden.

Rewriting equation (35) in the differentiation form yields

W−1
` = τ (`)W−1(`) − τ (` − 1)W−1(` − 1)

τ (`) − τ (` − 1)
. (36)

It should be emphasized that the interval matrices W` in all
layers are evaluated for the horizontal slownesses p1 and p2 of
the zero-offset ray. Even if the medium contains a throughgo-
ing interface with constant dip (e.g., a fault plane), zero-offset
reflections from this interface in different layers will not gen-
erally have the same values of p1 and p2. As a result, equa-
tion (36) should be applied through a stripping procedure that
involves layer-by-layer determination of the moveout param-
eters starting from the subsurface layer and continuing down-
ward (Grechka and Tsvankin, 1999).

Figure 7 illustrates the difference between the (exact) aver-
aging of NMO ellipses and conventionally used (approximate)
rms averaging of NMO velocities at a certain azimuth. The
effective NMO ellipse from the bottom of the two-layer HTI
model (dashed line) was computed by applying equation (35)
to the interval NMO ellipses. Note that at azimuth 69◦, where
two effective ellipses (solid and dashed) intersect and the effec-
tive NMO velocities are equal to each other, the interval NMO
velocity in the second layer (dotted) is smaller than both ef-
fective ones. This interval velocity would be overestimated by
the conventional Dix differentiation of the NMO velocities at
this azimuth that would just yield the effective value. Likewise,
the interval NMO ellipses (solid and dotted) intersect at an az-
imuth of 61◦, where the effective NMO ellipse computed from
equation (35) (dashed) yields a greater effective NMO veloc-
ity than both interval values. In such a case, conventional Dix
averaging underestimates the effective NMO velocity. A more
detailed comparison of the exact NMO equation (35) and the
rms averaging of NMO velocities is given in Tsvankin et al.
(1997).

SYNTHETIC EXAMPLE

To evaluate the performance of our parameter-estimation
methodology, we applied it to the inversion of ray-traced
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traveltimes in a stratified HTI model with a dipping reflec-
tor cutting through all layers (Table 1). We computed the ex-
act P-wave reflection traveltimes from horizontal and dipping
reflectors along 6 azimuths with an increment of 30◦. Large
offsets were muted out to maintain a spreadlength-to-depth
ratio of 1 for all reflections. Using the conventional hyperbolic
approximation for reflection moveout, we calculated the best-
fit moveout velocities at each azimuth and reconstructed the
corresponding NMO ellipses. After carrying out the moveout
inversion in the first layer, we used the generalized Dix equa-
tion (36) to recover the interval NMO ellipses for the hori-
zontal and dipping events in the second layer and obtain the
layer parameters. Then we repeated this operation for the last
(third) layer; a more detailed description of this layer-stripping
procedure is given in Grechka and Tsvankin (1999).

The maximum error in the interval vertical velocity VP0 and
the layer thicknesses z is just 0.6% (see Table 1), whereas the
errors in the interval anisotropic coefficients ε(V) and δ(V) are

FIG. 7. Azimuthally-dependent NMO velocities in an HTI
model that consists of two horizontal layers. Solid line—the
NMO ellipse from the bottom of the first layer; dotted line—the
interval ellipse for the second layer; dashed line—the effec-
tive ellipse from the bottom of the second layer. The rel-
evant parameters of the first layer are VP0,1 = 2.5 km/s,
δ

(V)
1 = −0.4, β1 = 0◦, z1 (thickness) =1.0 km; for the second la-

yer, VP0,2 = 2.9 km/s, δ
(V)
2 = −0.3, β2 = 60◦, z2 = 1.0 km.

Table 1. Comparison of the actual and inverted parameters for a three-layer HTI model with a throughgoing dipping reflector
(e.g., a fault plane). The reflector dip is 40◦, the azimuth of the dip plane is 60◦. The spreadlength-to-depth ratio is equal to unity
for all events.

Actual values Inverted values
z VP0 β z VP0 β

Layer (km) (km/s) ε(V) δ(V) (degrees) (km) (km/s) ε(V) δ(V) (degrees)

1 1.000 2.500 −0.100 −0.200 0.00 0.994 2.485 −0.130 −0.178 0.07
2 0.700 2.900 −0.050 −0.100 20.00 0.701 2.902 −0.040 −0.090 19.23
3 0.300 3.200 −0.200 −0.300 40.00 0.301 3.206 −0.181 −0.289 40.05

limited by 0.03. The orientation of the symmetry axis, which
varied from layer to layer, was accurately restored as well. The
small inversion errors are caused by the influence of nonhy-
perbolic moveout on the moveout velocities, which served as
input data for parameter estimation. Our results indicate that
P-wave reflection moveout for conventional offsets close to the
reflector depth does not deviate much from a hyperbola. The
same conclusion was drawn by Grechka and Tsvankin (1999)
in their study of reflection moveout in orthorhombic media.

PHYSICAL PROPERTIES OF CRACKS
FROM MOVEOUT INVERSION

The azimuthal variation of P-wave NMO velocity can be
used to determine the direction of the symmetry axis and,
therefore, identify the fracture orientation. Also, the results
of moveout inversion for HTI media can be directly related
to the physical properties of crack systems important in char-
acterization of fractured reservoirs. One of these properties
is the crack density (the product of the number of cracks per
unit volume and their mean cubed diameter), which is pro-
portional to the shear-wave splitting parameter γ (S) at vertical
incidence (Thomsen, 1995). Although P-wave moveout inver-
sion cannot yield the shear-wave splitting parameter directly,
γ (S) [equation (10)] can be calculated from ε(V) and δ(V) using
the constraint on the stiffness coefficients for the HTI model
due to thin parallel cracks (Tsvankin, 1997a):

γ (S) = V2
P0

2 V2
S0

ε(V)[2 − 1/ f ] − δ(V)

1 + 2ε(V)
/

f +
√

1 + 2δ(V)
/

f
; (37)

f was defined in equation (20). Although equation (37) in-
volves the shear-wave vertical velocity that cannot be obtained
from P-wave moveout data, a rough estimate of VP0/VS0 is suf-
ficient for applying this expression for γ (S) in detecting “sweet
spots” of high crack density in fractured reservoirs.

Once the set of all three anisotropic coefficients (γ (S), ε(V),
and δ(V)) has been recovered, it can be used to deduce more
information about the properties of the crack system. For in-
stance, for thin fluid-filled cracks in the absence of equant
porosity, ε(V) ≈ 0, while γ (S) ≈ −δ(V) (Thomsen, 1995; Tsvankin,
1997a). In contrast, for dry cracks typically ε(V) ≈ δ(V) < 0, and
γ (S) is much smaller than |ε(V)| (Rüger and Tsvankin, 1997).

DISCUSSION AND CONCLUSIONS

Normal-moveout velocity of P waves for horizontal trans-
verse isotropy is controlled by the azimuth of the symmetry axis
β (normal to the fractures), the vertical velocity VP0, and the
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anisotropic coefficients ε(V) and δ(V). For purposes of moveout
inversion, ε(V) is convenient to replace with the “anelliptic-
ity” coefficient η(V) responsible for dip moveout. In this paper,
we show that all four parameters can be recovered in a stable
fashion using azimuthally-dependent NMO velocities from a
horizontal and a dipping reflector. The NMO ellipse for a hori-
zontal event can be inverted for the symmetry-axis orientation
β, VP0, and δ(V), and the remaining coefficient η(V) can be ob-
tained from the moveout for a dipping reflector. If δ(V) = 0,
the NMO velocity from a horizontal reflector is independent
of azimuth, and the angle β should be recovered (along with
η(V)) from the NMO ellipse of a dipping event.

Our inversion technique is based on the exact NMO equa-
tion for a homogeneous layer of arbitrary symmetry given by
Tsvankin et al. (1997) and follows the methodology devel-
oped by Grechka and Tsvankin (1999) for the more general
orthorhombic model. In principle, it is possible to carry out the
inversion assuming that the model is orthorhombic and iden-
tify the HTI symmetry by the specific relationships between
the obtained η coefficients. Although such an algorithm works
well on error-free data, it can give ambiguous results in field
applications because the errors in input information tend to be
distributed among the three orthorhombic η parameters in a
complicated fashion. A better approach is to assume the HTI
symmetry from the outset of the parameter-estimation proce-
dure and verify this assumption by the inversion results. If the
inverted HTI model provides a good fit to the data (i.e., to the
NMO ellipses of a horizontal and a dipping event), then it is
not warranted to move on to a more complicated orthorhombic
model. On the other hand, if the inversion algorithm is unable
to find a suitable set of the HTI parameters, it is a strong indica-
tion that the reservoir has the orthorhombic or lower symmetry
(such an example was given above).

Analytic and numerical results show that the parameter η(V)

can be obtained with good accuracy for a wide range of reflector
dips and azimuths, and is especially well-determined if the dip
plane of the reflector is close to the direction of the symmetry
axis. The only range of reflector azimuths unfavorable for η(V)

inversion corresponds to a vicinity of the isotropy plane.
We also extended our inversion technique to vertically in-

homogeneous HTI media above an arbitrary-oriented dipping
reflector using the generalized Dix equation (Tsvankin et al.,
1997). As a result of the Dix-type layer-stripping procedure, we
find the interval values of β, VP0, η(V) (ε(V)), δ(V), and the inter-
val thickness z. Application of the Dix differentiation imposes
obvious restrictions on the minimum thickness of the interval,
which are well known for isotropic media and remain valid in
the presence of anisotropy.

The inversion algorithm was tested on ray-traced traveltime
data generated for a stratified HTI model with depth-varying
orientation of the symmetry axis. All interval values were re-
stored with excellent accuracy, which indicates that nonhyper-
bolic moveout does not seriously distort moveout velocity on
conventional spreads close to the reflector depth.

An attractive feature of parameter estimation in HTI media
is the possibility to find the true vertical velocity and reflector
depth from P-wave moveout data. In contrast, surface data
acquired over VTI and orthorhombic media do not provide
enough information for the transition from moveout to vertical
velocities. Therefore, P-wave moveout inversion for horizontal
transverse isotropy allows one to build a velocity model for

depth processing, as opposed to time processing for VTI and
orthorhombic media.

Another advantage of the HTI model is a relatively simple
relationship between the moveout parameters and the physi-
cal properties of the crack system. The direction of the sym-
metry axis yields the crack orientation, while the parameters
ε(V) [calculated from η(V) using equation (24)] and δ(V) can be
combined to estimate the shear-wave splitting coefficient γ (S)

and the crack density (Tsvankin, 1997a). Furthermore, the re-
lationship between ε(V), δ(V), and the crack density depends on
the contents of the cracks, which makes it possible to discrimi-
nate between fluid-filled and dry cracks using P-wave moveout
data. Of course, since this method is based on kinematic analy-
sis, the reservoir has to be thick enough to change the reflection
traveltimes in a measurable way.

Although P-wave moveout alone can provide us with use-
ful information, it is beneficial to combine it with amplitude-
variation-with-offset (AVO) signature or results of shear-wave
splitting analysis. For instance, the P-wave AVO gradient in
HTI media depends on a combination of δ(V) and γ (S) (Rüger,
1997). Therefore, AVO inversion can be used to evaluate the
shear-wave splitting parameter, if δ(V) has been found from
P-wave moveout. If shear data are available, the coefficient
γ (S) can be obtained directly from the time delay between two
split shear waves at near-vertical incidence. Then, it can be
combined with the results of P-wave moveout inversion (i.e.,
with the parameters δ(V) and ε(V)) to study the contents of the
cracks. In addition, both the AVO response and shear-wave po-
larizations yield an independent estimate of the azimuth of the
symmetry axis. Of course, the combination of moveout and am-
plitude analyses makes certain assumptions about the charac-
ter of the distribution of the elastic parameters (e.g., piecewise
constant).
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