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Chapter 1

Some basic facts from the theory of
elasticity

The notes cover the second semester of a two-semester seismological course that the
author teaches in the Department of Geophysics at the Colorado School of Mines. The
first semester is devoted to the basics of elasticity, theory of seismic sources and plane-
wave propagation in 1-D isotropic media. I begin with reviewing some relevant results
from the first part of the course in Chapters 1 and 2.

We will be dealing with linear-elastic solids, and this means that each component of
the stress tensor 7;; represents a linear combination of the components of the strain tensor

€Ll

Tij = CijklCkl » (1~0~1)

summation over repeated indices is implied. This is a modern version of Hooke’s law
that assumes a generally anisotropic linear-elastic medium. To describe nonlinear-elastic
solids, we would have to add quadratic terms to the right-hand side of equation (1.0.1).

Due to the symmetry in the stress and strain tensors, we can switch the indices ¢ and
J, k and [ in the stiffness tensor c¢;;p:

Cijkl = Cjikl
Cijkl = Cijlk
Also, from thermodynamic considerations
Cijkl = Cklij
Due to these symmetries, we have “just” 21 independent elastic constants in the tensor

Cijkl-
For the strain tensor we have

1 auk 8ul
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Therefore, Hooke’s law can be rewritten through the displacement components as

ou
Tij = Cz’jkla—x]; : (1.0.3)

The equation of motion (wave equation) is given by (Aki and Richards, 1980)

82ui aTi]’ .
patQ - aI] _fia

where f is the body force per unit volume.

Substituting Hooke’s law (equation [1.0.3]) and assuming that the stiffness coefficients
are either constant or vary slowly in space, we obtain the basic wave equation for the
displacement vector:

82 U; 82uk
P ot? Ikl 0z ;0

If the medium is isotropic, ¢;jr; becomes a fourth-order isotropic tensor:

= [i- (1.0.4)

Cijkt = A0ijOkt + p(0ik0ji + ditdjn) (1.0.5)

A and g are the so-called Lame constants.
Equations (1.0.4) and (1.0.5) make it possible to find the wave equation for homogen-
eous isotropic media:

() gt g = i (1.0.6)

At this point, we will introduce potentials in order to split this relatively complicated
equation into two more simple equations for the two potential functions. Note that this
technique does not work for a more complex wave equation (1.0.4) in anisotropic media.
In this case, the wave equation can be solved directly by decomposing the displacement
vector into Fourier integrals.

But for now,

G=Vo+V xtp=gradd+ curli), (1.0.7)

where ¢ and @/7 are the scalar and vector potentials, respectively. We will also require that

div) =V -1 =0. (1.0.8)

Substituting equation (1.0.7) into the wave equation (1.0.6) and assuming that there
are no sources (f = 0), we get two wave equations for the potentials:

*¢
o = V%, (1.0.9)



82?; 2v72,7
= bV, (1.0.10)
c=1/(A+2u)/p is the P-wave velocity, b = \/T/p is the S-wave velocity.

Aki and Richards (1980) show that we can always find potentials that satisfy equa-
tions (1.0.7)—(1.0.10). Therefore, instead of dealing with the original wave equation for
the displacement vector, we can use the above equations for the potentials, which are
much simpler. We should keep in mind that for solutions of equations (1.0.9) and (1.0.10)
to form a solution of the wave equation (1.0.6), the vector potential must have a zero
divergence (1.0.8). We will see the advantages of the potentials a little bit later, when we
will consider wave propagation in 1-D isotropic elastic media.






Chapter 2

Plane waves in 1-D isotropic media

2.1 Homogeneous and evanescent plane waves

We have decomposed the wave equation into two equations for the potentials ¢ and @/7
The simplest solution of this equations, as we know, is a harmonic (steady-state) plane
wave. Let us try a solution for the scalar potential in the form

Py = Ag (M=t (2.1.1)

Clearly, the surfaces of constant phase m;x; —t = const are planes perpendicular to

the slowness vector m = l;/w, k is the wave vector.
Substituting the plane wave into the wave equation (1.0.9), we obtain

Im|? =1/c%. (2.1.2)

Now it is clear why we call m the slowness vector. Introducing the unit vector 77
perpendicular to the wavefront, we can now represent the plane wave as

Pp = Ag e miti/e=t) (2.1.3)

A plane wave is the simplest and most natural solution of the wave equation to be
used in seismology. Also, it can be shown (Aki and Richards, 1980) that if we solve the
wave equation by the method of separation of variables, we get a harmonic plane wave.

Here we assume that the components of the slowness and wave vectors are real. In
this case we get a straightforward graphical representation of plane waves: they have a
constant amplitude and a plane wavefront propagating in the direction determined by the
slowness (or wave) vector.

However, we will see that in some cases we will have to deal with plane waves which
have one or more complex components of the slowness vector. These waves are called
inhomogeneous or evanescent. Two most important problems where the concept of in-
homogeneous waves plays the central role are post-critical reflection-transmission of plane
and spherical waves and decomposition of point-source radiation into plane waves.

If the components of the slowness vector are allowed to be complex, then



oyt = Ag izt —ome (2.1.4)

This equation means that now the planes of constant phase are different from the
planes of constant amplitude (m;m:v] = const). We can show that the two planes are
orthogonal to each other. Substituting the plane wave from equation (2.1.4 or 2.1.1) into
the wave equation (1.0.9), we find

) 1
Em? = E(m; + z'm;-m)2 =3 (2.1.5)

If there is no attenuation in the medium, the P-wave velocity c¢ is real, and the ima-
ginary part of the left side of the equation should be zero:

Smimi™ =0, (2.1.6)

and the two planes are perpendicular to each other. This is no longer the case when the
medium is attenuative, and c is complex.

The next question to be answered is about the velocity of inhomogeneous waves. The
time dependence is present only in the term iw(myxj — t), so the velocity is determined
by the the absolute value of 7i". From equation (2.1.5) we find

|2 = 3+ |72 (2.1.7)

Therefore, the slowness of inhomogeneous plane waves is always larger than the slow-
ness of conventional homogeneous waves, and the velocity of inhomogeneous waves would
always be slower than the medium velocity c¢. This simple fact explains the velocity struc-
ture of two large classes of waves: surface waves and the so-called nongeometrical waves;
we will talk about both classes in more detail later in the course.

Although I have not talked about boundary conditions yet, I would like to show how we
can get inhomogeneous waves during reflection/transmission at a boundary. According
to Snell’s law, the projection of the slowness vector on the boundary is the same for all
reflected /transmitted waves. If a homogeneous wave is incident in the plane [z1, 3] on a
horizontal boundary z3 = const, then

sin 6
myp = %
6 is the incidence angle. The reflection/refraction angles 6, are given by

= const, (2.1.8)

v
inf, =sinf — . 2.1.9
sin sinf) ( )

During reflection/transmission for VV > 1 it can happen that sinf, > 1, and the

slowness vector becomes complex making the reflected /transmitted wave inhomogeneous.
Conversely, inhomogeneous plane waves can be transformed into homogeneous ones if a
wave is transmitted into a medium with lower velocity. It is noteworthy that inhomogen-
eous plane waves is an important component of wavefields not only in attenuative but
also in purely elastic media.



I have used the P-wave potential in the above discussion. Evidently, inhomogeneous
(evanescent) shear waves can be treated exactly the same way.

It is important to remember that inhomogeneous waves are unbounded and cannot
be considered in full space. In the following we will use inhomogeneous waves in layered
media or in halfspaces making sure that they decay away from the interfaces.

2.2 Equations of motion for P-SV and SH-waves

It looks like we do not gain much by using potentials instead of the displacement vector:
while the equations became somewhat simpler, we have to handle four functions (the scalar
potential plus 3 components of the vector potential) instead of the 3 components of the
displacement vector. However, normally it is not necessary to introduce all 3 components
of QZ; also, another advantage of potentials is that we can separate P and S-waves.

Let us consider 1-D isotropic media consisting of a stack of plane layers; the layers
may in general be either liquid or solid. We will be looking at plane waves propagating in
the vertical plane [zq, 23] perpendicular to the layering. Later in the text, we will refer to
x1 as x and to x3 as z. It does not affect the generality of our treatment because the choice
of the vertical plane is arbitrary. If we have a plane wave with an arbitrary direction of the
wavefront normal, we just choose the vertical plane containing this normal. For P-waves,
the polarization or displacement vector will always lie in the vertical plane. S-waves
should be decomposed into the SV-waves polarized in the vertical plane and SH-waves
polarized horizontally.

An important point here is that the displacements in the vertical plane and in the
transverse horizontal direction are completely decoupled. Due to the symmetry of the
model, a motion in the vertical plane cannot excite anything in the transverse horizontal
direction and vice versa. This is actually true for any model in which the vertical plane
is a plane of symmetry, not just for 1-D isotropic media.

If y(xq)-direction is perpendicular to the vertical propagation plane, the wave equa-
tion (1.0.6) may be rewritten for horizontally polarized waves uy(x, z) as

82U2 42 82'&2 32u2
o2 (8352 022 )
This is exactly the acoustic wave equation for the pressure, the only difference being
that the coefficient here is the shear-wave velocity b. We will see that the boundary
conditions are also completely analogous to the acoustic case.
P- and SV-waves polarized in the vertical plane will be described by the potentials we
introduced earlier. Since the motion is confined to the vertical plane, only one component

of the vector potential is needed. The displacement due to the vector potential is given
by @* = curly:

(2.2.1)

o 000,
T Oy 0z’
voo9z or



.o, O

YT oy oy

Since u; = 0, the only component of J we need is ¢, (we denote it just as ¢)). Note

that since %ﬁf = %15 = 0, the divergence of the vector potential is zero, as it should be.
The potentials satisfy the wave equations (1.0.9,1.0.10) given above; however, now we
consider just one component of the vector potential, and both potentials are independent

of y:

% _ 02(% N %), (2.2.2)
a;_tqf _ 62(% N 22715). (2.2.3)
The displacement due to both potentials (1.0.7) in the vertical plane is
" — % B Z_f, (2.2.4)
v — % N g_z/;_ (2.2.5)

It is easy to show that the plane-wave vector potential produces a plane shear wave,
while a scalar potential brings about a longitudinal (P-wave) motion.

2.3 Boundary conditions

To solve wave propagation problems in layered elastic media, we need to define the condi-
tions at the interfaces between the layers. The type of boundary conditions has extremely
important consequences in reflection-transmission problems. For example, the very exist-
ence of surface waves is dependent on the type of the interface. The Stoneley wave always
exists at a fluid/solid boundary but almost never - at a solid/solid boundary. It turns out
that the velocity and density ratios necessary for the Stoneley wave to propagate along a
solid/solid boundary are seldom encountered in realistic Earth models.

The so-called kinematic conditions pertain to the displacement vector. For two solids
in welded contact all three components of the displacement vector should be continuous.
The stresses across a solid /solid boundary should also be continuous; the conditions on the
stress tensor are usually called ”dynamic.” Therefore, at a solid/solid interface z = const
we get, the following boundary conditions:

[ux] = [uy] = [uz] =0, (2.3.1)

[sz] = [sz] = [Tzz] =0. (2.3.2)

The brackets denote the difference in the stresses or displacements above and below
the boundary.



The stress components can be expressed through displacement:

ou, Ou,
= 2.3.
Tzz M(az+ax)v (2.3.3)
ou
Toy = “a—zy’ (2.3.4)
Ou, Ou, ou,
= . 2.3.
Tz )\(835+8z)+2ﬂ3z (2.3.5)

Equations (2.3.1-2.3.5) are quite general. Now let us rewrite them for the P-SV po-
tentials describing wave propagation in the [x,z] plane and the SH-wave polarized in the
y direction.

For the SH-wave, the situation is very simple: the only non-zero stress component is
T.y, and the boundary conditions are just

[uy] =0, (2.3.6)

and

[72y] = lu%l =0. (2.3.7)

Therefore, SH-wave propagation in 1-D elastic media is completely equivalent to the
propagation of acoustic (pressure) waves in 1-D fluid media. The wave equation and
boundary conditions for u, are identical to those for the acoustic pressure, if we replace
i by 1/p and the velocity b by ¢ (Brekhovskikh, 1980).

Expressing the stresses (2.3.3-2.3.5) through the potentials of P-SV waves using equa-
tions (2.2.4,2.2.5) yields

0% 0%

. _ 2
¢ (sza Tzys Tzz) = (2M8—$3Z7 0, \V<¢p + 2M—822) , (238)
PP Py 0y
: = — — . 2.3.

The full set of the boundary conditions for P-SV waves at a solid/solid boundary now
can be written as

96 0
el = 57 ~ 51 =0 (2310
o6 0
fuy] = [a_f 4 a_f: _0, (2.3.11)
o Py 0P
el = iy + s = g =0, (2512)

9



9 0?¢p 0%
2] = [AVg + Qﬂ(az'? + 0z0x

If we replace one of the solids by a fluid, the normal displacement (perpendicular to
the boundary) should remain continuous, while the tangential displacement (parallel to
the boundary) becomes discontinuous because the fluid may slip along the solid. Thus, for
P-SV waves at a fluid/solid boundary we can use only the last three conditions (2.3.11-
2.3.13). Evidently, SV and SH-waves cannot propagate in the fluid at all.

For a fluid/fluid boundary (¢ = 0), we have to deal with the potential ¢ only. The
only non-zero traction component is 7,,; therefore, the two boundary conditions left are
those on u, and 7,,.

Finally, at a free surface of an elastic halfspace we cannot impose any conditions on the
displacement vector but, clearly, the stresses should vanish completely. As a result, for
P-SV waves at the free surface we are left just with the two last equations (2.3.12,2.3.13).

The wave equations and boundary conditions are all we need to solve reflection/transmission
problems in layered media.

)] =0. (2.3.13)

2.4 Reflection and transmission at a fluid/fluid
boundary

Below we will briefly consider reflection/transmission problems for plane waves at the
boundaries described in the previous sections. The emphasis will be on the properties of
the reflected and transmitted waves important in analysis of point-source radiation.

We start with the simplest case of a fluid/fluid boundary between the halfspaces with
the acoustic velocities and densities ¢ and p (incidence medium) and ¢; and p; (reflecting
medium). A plane harmonic acoustic wave incident on the boundary z = 0 from the
halfspace z > 0 is given by

d)inc — 6ik(acsin 60—z cos 0)—iwt ) (241)

6 is the incidence angle; k = w/c; the factor e=™! will be omitted in the following.

The reflected and transmitted (refracted) waves can be represented as

¢refl — Veik(xsinﬂg-i—zcosﬂo) : (242)

d)tr — Weikl(:vsinﬂl—z cos 01) ) (243)

V and W are the reflection and transmission coefficients, respectively; the signs of
the components of the wave vector depend on the direction of wave propagation. If the
boundary were located at z # 0, we would have to add the corresponding phase shift both
to the reflected and transmitted waves.

As we found out above, there are two boundary conditions in this case:

10



[u,] =0,

[1..] =0.

Using equations (2.3.11,2.3.13), the boundary conditions can be written as

[% =0, (2.4.4)
[AVZ¢] = [p%] =0. (2.4.5)

Substituting expressions (2.4.1 - 2.4.3) into the first boundary condition (2.4.4) and
setting z = 0, we find
—ik cos 050 ik cos Oy Vet = ik, cos 0, Wekresinit (2.4.6)
Since this equation should be satisfied at all x, the phase functions should be identical,
and

sinf = sinf,, (2.4.7)

sin @ _ sin 6, . (2.4.8)
C C1

This is Snell’s law that is valid not just for this particular problem, but for all other
types of boundaries as well. In order to satisfy boundary conditions, the horizontal
slownesses of all waves taking part in the reflection/transmission process should be the
same. The horizontal slowness is often called the ray parameter; from Snell’s law it is
clear that the ray parameter is preserved during the plane-wave propagation in 1-D media.
Snell’s law is valid for anisotropic media as well; however, the velocities in equation (2.4.8)
are themselves functions of incidence and refraction angles.

Equation (2.4.6) now becomes

kcos@(1—V)=kycosty W. (2.4.9)
The second boundary condition (2.4.5) takes the form

p(14+V)=pW. (2.4.10)
Solving equations (2.4.9,2.4.10) for the reflection and transmission coefficients, we get

c1ppcost — cpcosl
V= 101 P 1

2.4.11
c1p1 cos B + cpcos by’ ( )

11



2cipcosf

w=L@a+v)=

. 2.4.12
P1 c1p1 cos B + cpcos by ( )

These are the coefficients for the potential function. For the z-component of the
displacement vector, the reflection coefficient changes sign but keeps the same absolute
value, while the transmission coefficient changes to

2 0
W, — cpcos b

ciprcosl +cpcost (2:4.13)
Usually, acoustic problems are solved for pressure rather than potential or displace-
ment. In this case, the transmission coefficients would have a slightly different form but
this difference is immaterial for our purposes.
At normal incidence, the reflection coefficient reduces to the fractional difference
between the acoustic impedances of the two media:

y=an—w (2.4.14)

c1p1 +cp

Now we will discuss reflection and transmission in the case when one or more waves
become inhomogeneous. From Snell’s law,

c
sin f; = sinf — (2.4.15)
c
and for ¢; > c and sin § > ¢/¢; the refraction angle f; becomes complex. 8, = sin™"(c/c;)
is called the critical angle. Thus, if the reflecting medium has a higher velocity, at post-
critical incidence angles the transmitted wave becomes inhomogeneous:

cosf = iy/sin®0; — 1. (2.4.16)

The sign in equation (2.4.16) is chosen to keep the amplitude of the transmitted wave
finite in the halfspace z < 0. The transmitted wave then becomes

¢tr — Wei/ﬂxsinal-i-k)lz‘cosaﬂ ) (2417)

This is an inhomogeneous wave of the type we discussed above. It propagates in
the x-direction with the velocity cuor = c¢1/sinfy, which is smaller than the medium
velocity ¢y, and exponentially decays in the vertical (z) direction away from the boundary.
Inhomogeneous waves of this type play an important role in analysis of point-source
radiation.

The reflection coefficient at post-critical incidence is

0 —1i 7
Vo €11 COS icp| cos b, |

: 2.4.18
c1p1 €os 0 + icp| cos b | ( )

The absolute value of V' at post-critical incidence angles is unity, and we get what is
sometimes called the total internal reflection.

12



Let us now make one more step forward and let both angles be complex. It is not
clear why the incidence angle becomes complex but we will see that these complex angles
are necessary to describe inhomogeneous plane waves contained in any plane-wave de-
composition of point-source radiation. Now we consider an incident wave of the form

¢ _ ez'lcxsin09flcz|cos09| : (2419)

sinf > 1, |cosf] = Vsin? 0 — 1.
If the reflecting medium has a higher velocity, both angles are complex, and the
reflection coefficient is again real:

_cyp1|cosf| — cp|cos b, |

- : 2.4.20
c1p1| cos 8] + cp| cos 0| ( )

In principle, at a certain complex angle, the reflection coefficient may go to infinity,
and this angle would correspond to the horizontal velocity of the surface wave. We will
discuss this effect in more detail for a more classical model of the free surface of an elastic
medium.

An important special case is the refraction of inhomogeneous waves into a low-velocity
medium ¢; < ¢. From Snell’s law (2.4.15) it is clear that for a certain range of complex
angles 6 the refraction angle is real i.e, if 1 < sinf < ¢/c;, sinf); < 1. This means that
inhomogeneous plane waves can be converted into conventional homogeneous ones during
the transmission into a low-velocity medium.

2.5 Reflection at a free surface

Essentially the same approach as above works for all kinds of boundaries. However, the
behavior of the reflection/transmission coefficients strongly depends on the character of
the boundary conditions. For a more complicated case of point source radiation, the
boundary conditions and the velocity ratios determine the number and types of surface
and nongeometrical waves generated during the reflection/transmission process.

Our next model will be the free surface of an elastic halfspace. Either a P or SV-wave
is incident on the surface from the halfspace z > 0 with the P- and S-velocities of ¢ and
b respectively. The full system of potentials for the incident P-wave can be written as

b= ik(xsin 60—z cos 0) + ‘/;)p otk (@ sin0+zcos0) , (251)

7/) — ‘/;75 eiks(xsinﬁerzcosQS) ) (252)
The boundary conditions in this case are
Tez =0, T, = 0.

Expressing the stresses using equations (2.3.12,2.3.13), we get two equations to be
solved for the reflection (V,,) and conversion (V,,) coefficients. Denoting the vertical

13



component of the wave vector for the reflected waves by a = kcos# (for P-waves) and
B = ks cos O for (S-waves), we find

_af—¢
Taf+ g’
where ¢ = [€2 — (k2/2)]/€, € = ksinf = k,sin 0, is the horizontal component of the wave

vector which remains the same for all reflected/converted waves.
The conversion coefficient is given by

(2.5.3)

2aq
Vs = ——. 2.5.4
p OZﬁ‘f’(]Q ( )

If the S-wave is incident on the free surface, the corresponding expressions are

Vis = Vip, (2.5.5)
—203q

s S 2.5.6

P aB+q? ( )

At normal incidence, £ = 0, ¢ = 0o, and the reflection coefficients are

Vop = Vis = —1. (2.5.7)

We should remember that the above formulas are for the potentials rather than the
displacements. For normal incidence, the P-wave displacement is

u,(P) = —ike™™* 4 ikV,, e™* . (2.5.8)

Thus, the reflection coefficient for the displacement has the opposite sign compared
to the coefficient for the potential. This means that for normal incidence the P-wave
amplitude at the free surface doubles rather than goes to zero. The same thing happens
with the SV-wave amplitude: although the SS reflection coefficient in potentials at normal
incidence is equal to -1, the total displacement is twice the displacement of the incident
wave.

Both conversion coefficients (V,s and V,) for normal incidence are zero, so the P-wave
does not excite shear reflection and vice versa. On the other hand, at some horizontal
slowness it may happen that a3 = ¢%, and the P-wave at the surface transforms entirely
into the shear wave without exciting a P-reflection, while the incident SV-wave goes
entirely into the P-wave.

If the SV-wave is incident at post-critical angles sinf; > b/c, the reflected P-wave
becomes inhomogeneous with

¢refl - Vép eiﬁmfz\od (259)

with a = ikv/sin” § — 1; the SS reflection coefficient is |V,| = 1.
We have already discussed this situation when we considered post-critical incidence
of an acoustic wave on a fluid/fluid boundary. The SP reflection from the free surface

14



at post-critical incidence propagates horizontally at velocities smaller than the P-wave
velocity ¢ and decays exponentially away from the boundary. The horizontal velocity of
the inhomogeneous SP-wave is

c b

o=t -2 2.5.1
Vi sinff  sinf, (2:5.10)

From equation (2.5.10) (essentially, Snell’s law) one can see that V},,, for the inhomo-
geneous wave changes from the P-wave velocity ¢ for sinf; = b/c to the S-wave velocity
b for sinf, = 1.

We will see that the distorting influence of the inhomogeneous SP reflection on the
S-wave polarization has unpleasant consequences in polarization shear-wave analysis in
anisotropic media.

One subtle point about inhomogeneous waves is the phase shifts caused by the com-
plexity of the wave vector. When one of the reflected/converted waves is inhomogeneous,
the reflection/conversion coefficients become complex but they seem to be independent of
frequency. However, it turns out that that the phase shifts in the inhomogeneous waves
change sign in accordance with the sign of frequency. Let us get back to equation (2.5.9).
The displacements of the inhomogeneous SP-wave can be written as:

Uy = sinHVsp 6ikxsin0—z|kcos€\ , (2511)

u, = COSH‘/L-;p eik:vsinafz‘kcosg‘ , (2512)

cosf = ivsin?§ — 1, if w > 0. We omit the factor ik that would appear during the
formal differentiation of equation (2.5.9) assuming that the displacement components of
the incident wave are real. It is more appropriate to consider Vj, in the above formulas as
the conversion coefficient for displacements but the difference is not important in terms
of the discussion below.

There are two phase shifts in expressions (2.5.11,2.5.12) we have to distinguish between.
First, since cos is imaginary, there is a phase shift of /2 between the vertical and ho-
rizontal components of the displacement vector. As a result, the particle motion of the
inhomogeneous wave will be elliptical rather than linear. To show this explicitly, we take
the real parts of the vertical and horizontal displacements:

u;e — sinH |‘/L-9p| e*Z‘kCOSQ‘ coS ¢(t) , (2513)

ul® = \/sin?@ — 1 |V,,| e **s0_gin (1)], (2.5.14)

¢(t) = kxsinf + &, — wt, P, is the phase of the conversion coefficient. Now it is clear
that

(ug)? /17 + (i) /m* =1,
l2 — sin2 0 (|‘/;p| efz\kcos0|)2 :
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mZ — (SiIlZ H — 1) (|Vsp| efz\kcos0|)2,

and the particle motion represents an ellipse in the [x,z] plane.

In order to find out whether the motion is prograde (clockwise with the axis z pointing
down) or retrograde, it is convenient to examine the point where ¢(t) = 27n, n is an
integer. At this point, u’¢ is positive and reaches its maximum, while v7¢ = 0. It is clear
from equations (2.5.13,2.5.14) that with increasing time u’® becomes positive, and this
means that the particle moves down, in the prograde fashion.

Second, both displacement components have phase shifts with respect to conventional
homogeneous waves due to the complexity of cos @ and the conversion coefficient V,. We
have chosen the sign for the P-wave vertical wavenumber assuming that the frequency
is positive. If it is negative, then in order to assure that the inhomogeneous SP wave
decays away from the boundary, we have to set cos® = —iv/sin’?# — 1. This will give
us the same expressions (2.5.11,2.5.12) for the displacement but the sign of the phase of
the conversion coefficient (2.5.6) is now different. Indeed, if w < 0, # and ¢ change sign,
while o = * cos f remains the same. Also, the phase shift due to cos# in equation (2.5.12)
becomes —7r/2 instead of /2. Thus, the phase shifts in the displacements (2.5.11,2.5.12),
being the same for all positive frequencies or all negative frequencies, change the sign
when we switch from positive to negative frequency.

Although a curved wavefront rather than a plane wave is needed to excite a surface
wave, we can already show how to get the velocity of the Rayleigh wave from the boundary
conditions. It turns out that it is possible to satisfy the boundary conditions just by using
the waves propagating away from the surface, with no incident wave at all. Denoting the
amplitudes of the outgoing potentials as A, and Ay, we get from the boundary conditions

ﬁAs = qu )

qu = _aApa

and the equations are simultaneously solved if

af = —q*. (2.5.15)

All three quantities in equation (2.5.15) depend on the horizontal slowness or the
horizontal component of the wave vector €. Solving equation (2.5.15) gives the horizontal
velocity of the Rayleigh wave, which turns out to be somewhat smaller than the S-wave
velocity b.

Let us describe several important properties of the Rayleigh wave. First, the Rayleigh
root of equation (2.5.15) and, consequently, the Rayleigh wave at the free surface always
exists. Since ¢ is real (in the absence of attenuation), @ and  are imaginary, i.e., both
waves propagating from the boundary are inhomogeneous, exponentially decaying in the
vertical direction.

Second, the Rayleigh wave is not dispersive in an unbounded non-attenuating half-
space i.e., its velocity is independent of frequency. However, the Rayleigh wave becomes
dispersive in the presence of layering.
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Third, the P- and SV-components of the Rayleigh wave have different degrees of
amplitude decay. The potentials in the Rayleigh wave can be written as

¢ = A, eSTTHVER (2.5.16)

P = A, T IVER (2.5.17)

¢ is the horizontal wavenumber of the Rayleigh wave at a certain frequency. Since £ < ks,
the rate of decay away from the surface is higher for the P-component than for the SV-
component, and the latter dominates the Rayleigh wave’s displacement when z increases.

Fourth, the motion in the Rayleigh wave at the surface is retrograde elliptical, although
both components (P, SV) have prograde trajectories. At a certain depth, the motion in
the Rayleigh wave degenerates into a vertical line and at greater depths becomes prograde.

Derivation of the formulas for the displacement components of the Rayleigh wave and
analysis of the particle motion is left out as an exercise for the students.

By definition, surface waves in the plane-wave domain exist without an incident wave.
Therefore, an alternative way to derive the velocity of the Rayleigh wave is to set the
denominator of the reflection coefficient to zero, which leads to the same equation (2.5.15).

It is clear that the incident wave corresponding to the Rayleigh root would be unboun-
ded since its amplitude would increase exponentially away from the surface. In reality,
the Rayleigh wave is excited by seismic sources, and its amplitude decreases between the

source and the surface as well as away from the surface to a receiver (if the receiver is
buried).

2.6 Reflection and transmission at a solid/solid
boundary

This is the most important model in seismological applications. The solutions are quite
straightforward and, in principle, not much different from the ones discussed above.
However, the reflection/transmission process is more difficult to analyze due to a more
complex algebra.

We consider a P-wave incident on a solid/solid boundary from the halfspace z > 0 with
the P-wave velocity ¢, S-wave velocity b, and density p. The parameters of the reflecting
medium will have subscript ”1.” Using the same notation as in the previous problem, the
potentials in the incidence medium can be written as (the horizontal slowness term and
the factor e=*! are omitted):

¢=e "+ V,,e, (2.6.1)

P = Vps 7. (2.6.2)

The potentials in the second medium are
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I A (2.6.3)

¢1 = Wps ewlz . (264)

According to the boundary conditions (2.3.10-2.3.13), two components of the displace-
ment vector and two traction components should be continuous at the interface. Substi-
tuting equations (2.6.1-2.6.4) into (2.3.10-2.3.13), we arrive at a system of four linear
simultaneous equations. The solution is quite straighforward but algebraically involved;
the final results in different notations can be found in a number of papers and books,
including Brekhovskikh (1980) and Aki and Richards (1980). Using Brekhovskikh’s nota-
tion,

Vip & = AT = A} [a + (on/51)(BY — BBy /o) + m(B1/B — on /o) (kg /4€7),  (2.6.5)

where
A = A7+ pAfa + (an/5) (B} + BB3/a) +m(B1 /B + ar fa)(ky, 4€7) (2.6.6)

Ay =0 —mq /€,

Ay = (n2q —maqi)/B,
B, = (”2 —-m)B /€,
By = (81/8)(n*q/§ —m),
o =[§7 — (k31/2)]/€,
n=>b/by, m=p/p.

The other coefficients are given by

(=A/2) Vys = A1 Az + (e /B1) B1 By, (2.6.7)
A pr = (k21/§2) (Al - BZ) ) (2-6-8)
AWy = (k31/€%) (A + anBi /1) - (2.6.9)

Since there are four possible waves incident on the boundary from both halfspaces,
there is a total of 16 reflection/transmission coefficients. However, it is not necessary
to solve the four simultaneous equations arising from boundary conditions anew for each
incident wave. If we substitute all 4 possible waves into the boundary conditions, it turns
out that the 16 reflection/transmission coefficients can be gathered into the so-called
scattering matriz S
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PP SP PP SP
pPs SS PS SS 1

S = pp P PP <p | = M °N. (2.6.10)
PS 85 PS SS

The first letter in the elements of the scattering matrix denotes the incident wave, the
second one - the reflected /transmitted wave. An acute accent (P) stands for an upgoing
wave, a grave accent (P) denotes a downgoing wave. M and N are 4x4 matrices with
the elements depending on the horizontal slowness and elastic parameters (for explicit
expressions of M and N see Aki and Richards, 1980).

The formula of the most practical importance in seismology is the one for the PP
reflection coefficient V,,, (2.6.5). At normal incidence, V,, reduces to the fractional differ-
ence in the acoustic impedances across the boundary, i.e., to the reflection coefficient at a
fluid /fluid boundary (2.4.11). However, the angular behavior of the reflection coefficient
strongly depends on the ratio of S-wave velocities in both media, and this fact has seri-
ous implications in the so-called amplitude-versus-offset (AVO) analysis - one of the few
methods capable of direct detection of hydrocarbon reservoirs.

There is a number of critical angles corresponding to a solid/solid interface. If, for
instance, the SV-wave is incident on the boundary from the low-velocity medium (b <
by < ¢ < ¢1), the critical angles are

0, =sin~'(b/cy), (2.6.11)
0, = sin™'(b/c), (2.6.12)
03 = sin '(b/b;) . (2.6.13)

If the incidence angle # is larger than the smallest critical angle 6, the transmitted
SP wave becomes inhomogeneous. At large incidence angles, exceeding all three critical
angles, both transmitted waves and the the SP reflection are inhomogeneous, and only
the SS reflection is a homogeneous plane wave. The inhomogeneous reflected /transmitted
waves have essentially the same properties considered above for the models of a fluid /fluid
boundary and a free surface. For instance, the horizontal velocity of the transmitted
SP inhomogeneous wave may become as low as b compared to the minimum horizontal
velocity of ¢; for the conventional homogeneous SP-wave. The slower the inhomogeneous
wave becomes, the faster is the amplitude decay away from the boundary.

The condition for the existence of a surface wave (it is called the Stoneley wave) at a
solid/solid boundary is A = 0. Unlike the case of a free surface or fluid/solid boundary,
this surface wave does not exist for all sets of elastic parameters (Sezawa and Kanai, 1939;
Ginzburg and Strick, 1958). More than that, it cannot exist for ratios of velocities and
densities typical for seismic reflectors in the Earth; essentially, the medium with higher
velocities should have a smaller density for the Stoneley wave to be excited.
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2.7 Plane waves in stratified media

Suppose that the model we are dealing with consists not just of a single boundary but
of a stack of plane layers. If we are interested in a specific wave type (say, transmitted
PPSP wave) or several wave types, it is sufficient to multiply the appropriate reflec-
tion/transmission coefficients and take into account the appropriate phase shifts. Let
us add one more boundary to the model of a solid/solid interface discussed above and
consider a P-wave reflected from a plane layer. As before, we will omit the horizontal
phase term. Parameters of the incidence medium will be denoted by index 1, of the layer
- by 2, of the underlying medium - by 3. The wave transmitted through the layer’s top
can be written as (equation [2.6.3])

¢ =Wipe " (2.7.1)

with Wi, is the transmission coefficient given by equation (2.6.8). If the thickness of
the layer is denoted by d, the layer’s bottom would correspond to z = —d. The P-wave
reflected from the bottom is then

d; = le‘/gg 6ia2(2+2d) . (272)

Va3 is the PP-reflection coefficient from the layer’s bottom as given by equation (2.6.5).
The phase of the reflected plane wave is chosen to satisfy the boundary conditions; since the
incident wave has a phase shift of ayd at z = —d, all reflected /transmitted waves should
contain the same phase term at the boundary. The sign of the phase in equation (2.7.2)
ensures that the reflected waves propagates upwards, in the positive z-direction.

When the reflected wave gets back to the layer’s top, its phase becomes 2ayd. After
the transmission back into the first medium, the primary P-reflection is

d)pr = ng‘/Q;),WQl ei(a1z+2a2d) . (273)

Repeating this derivation for the first multiple inside the layer, we obtain

¢m1 = Wia Va3 Vo Vs Woy €i(a1z+4a2d) . (2-7-4)

Summing up all P-reflections including the reflection from the top yields

d)refl = €m12(‘/12 + W12%3W21 62m2d + W12V223V21W21 €4ia2d + ) . (275)

It is an infinite geometrical progression with the sum

Wi Va3 Wy, e?ierd
1 — Vo3V e2ind 7

Equation (2.7.6) gives the complete solution for the acoustic case, when there is no
P-S conversion. The method outlined above will still work in elastic media if we are
interested just in certain wave types (say, in pure P-waves or a specific conversion, like
PPSPS-wave), especially if the model is relatively simple. Note that the above expressions

Gret = € (Via + (2.7.6)
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for plane waves provide a basis for ray-theory treatment of body waves. An important
advantage of the techniques based on summation of elementary waves is an easy decom-
position of the wavefield into individual wave types.

However, often we would like to get the full reflection and transmission response of
a layered model including all kinds of multiple reflections and conversions. In this case,
the simple summation approach is ineffective, and we have to use the so-called matrix
propagators. I will describe the simplest version of the matrix technique due to Thom-
son (1950). There have been many improvements upon the original Thomson’s work,
especially in connection with the development of the reflectivity method; most of them
are summarized by B.L.N. Kennett (1983). After Kennett’s book had been published,
the matrix-propagator method was extended to anisotropic media but the essence of it
remains unchanged.

Let a plane P-wave be incident on a stack of elastic layers. We place the origin of
the coordinate system on the top of the first layer. The potentials of the upgoing and
downgoing waves in the upper halfspace are

¢1 — (CI§1 efz'alz + le 6ioaz) eigw, (277)

U = (P e 07 4 4fy €7) e (2.7.8)

If the potentials are given by equations (2.7.7,2.7.8), the vertical displacement, accord-
ing to equation (2.2.5), becomes (index 1 and the horizontal slowness term are omitted):

u, = iacos(az)(¢p—d) —asin(az)(dp+ ) +i€ cos(Bz) (b + 1) +Esin(B2) (P —4) . (2.7.9)

From equation (2.7.9) we see that u, is a linear combination of the sums and differences
of the potential coefficients for P and SV-waves. It is straightforward to show that the
horizontal displacement u, (equation [2.2.4]) and the components of the stress tensor 7,
and 7., (equations [2.3.3],[2.3.5]) are also linear combinations of the same quantities O+,
b — ¢, b+, 1) — 1h. We can write these relations for the upper halfspace in the matrix
form as

ull) ¢§1 + 6

(1) ¢ ;
u 1 — ¢1

2| = P(e en by pr s , 2.7.10
e (& c1,b1, p1,2) w1+7/)1 ( )
7 @/)1 %/)1

where P is a 4x4 matrix dependent on the incidence angle, medium parameters, and the
vertical coordinate.

The displacement-stress vector at the first boundary is given by equation (2.7.10)
with P = P(&, ¢, b1, p1,0). The potentials in the first layer (below the boundary) can be
written in the same form as in equations (2.7.7,2.7.8), only the vertical components of the
wave vector would be different. Clearly, the same relationship as (2.7.10) between the
displacement-stress vector and the potential coefficients is valid in the first layer:
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u? ¢§2+¢;2
: b
u 9 — P
2| = P(Eenby ) | 2% 2.7.11
e (&, ¢, b2, p2, 2) o+ U ( )
= —

Since all four components of the stress-displacement vector remain continuous across
the boundary, the left columns in equations (2.7.10,2.7.11) are identical at z = 0. There-
fore,

o1+ 0 b+ o
P(&Cl,bl,ﬂl,o) Zj:i _T_ZZII - P(gaCZabZaPZ,O) ZZ _T_ZS; s (2712)
=t Vo — Py
SO
(25:2 + Q§2 ¢:1 + Q§1
Pr— 2 | _ 5 b1 — ¢
@Z):Q +77/§2 - P (§7027b27p270) P(gaclablaplao) 77[):1 +77/}1 . (2713)
Y2 — Yo Y1 —

Essentially, we have transmitted the potentials through the top of the first layer.
Equation (2.7.13) can be used to find the reflection and transmission coefficients at a
solid/solid boundary discussed above. However, in a layered medium we lack equations
to find the potentials on both sides of the boundary. Physically this means that we cannot
find the potentials inside the layer by using the boundary conditions only at the layer’s
top.

The displacement-stress vector at the bottom of the layer (2 = —d) is given by

u? (—=d) b2 + s

(2) —d ’ . N
%)E_dg = P(&, ¢z, b2, p2, —d) Zz N ZZ : (2.7.14)
732 (=d) o — 1y

Using the relation between the potentials in the incidence medium and the layer
(2.7.13), we get

ul?) (—d) o1+ b
ulP(=d) | _ (/;1 - §Z§1
(=) | T e | (271
72 (—d) U1 —

where

PEZ = P(gac%b?ap?a _d) Pil(gac%b?;p?ao) P(ga Clablaplao)
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Note that we can now move the origin of our coordinate system to the bottom of
the first layer since it does not change the displacement-stress vector. Continuing this
procedure down to the last, (n — 1) — th boundary, we find the relation between the
potentials in the upper and lower halfspaces:

o + 9" b1+ 01
AR Py 1= o , (2.7.16)
o+ i+
Y — Y1 — Yy
where Py is the product of the propagator matrices for the whole stack of layers:
_ ~1 _
PE = P (gacnabnapnao) P(gvcn—labn—lapn—la d) (2717)

P*l(é-, Cn—labn—lapn—lao) P(é-? Clvblaplao) .

Essentially, we have reduced the reflection-transmission problem for a multilayered
medium to the problem for a single boundary we have already considered. However,
the potentials in the upper and lower halfspaces are now related by a product of matrix
propagators corresponding to all individual layers. Since we consider the incident P-wave,
(;51 =1, wl = 0; also, there are no upgoing waves in the lower halfspace, and gb” = w" = 0.
Therefore,

¢" ¢:1 +1
—on" o1 —1

ol =p I 2.7.18
o e -
—pm (0

All we have to do is to solve these four simultaneous equations for two reflected and two
transmitted waves, thus getting the reflection and transmission responses of the layered
medium. The reflection and transmission coefficients for the incident SV-wave can be
obtained exactly the same way.

One of the reasons why this approach is attractive is that the matrix propagators
can be easily inverted. Although the matrix-propagator approach is straightforward in
principle, it suffers from some numerical problems, such as the loss of accuracy due to the
exponential terms in the propagator matrices. This and some other problems of matrix
propagators are discussed in Kind (1976) and Kennett (1983), among others.
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Chapter 3

Point-source radiation in fluid models

3.1 Plane-wave decomposition of point-source
radiation

First, we will decompose point-source radiation into plane and cylindrical waves and then
solve the reflection/transmission problem for a spherical wave at a fluid/fluid boundary.
This will enable us to establish many important concepts to be used in more complicated
reflection/transmission problems for realistic models consisting of solid layers.

Let us consider the wave equation for the P-wave potential ¢ (1.0.9) with a point
source at the origin of the Cartesian coordinate system:

’o

a5 — OV = dnc? [(1)5(7) (3.1.1)

For the time being, the source will be a harmonic oscillator with f(t) = e™®*. This
means that we will get solutions for a fixed frequency; the corresponding solutions in
the time domain can be obtained by applying a Fourier transform to a particular source
pulse.

Equation (3.1.1) describes a small (compared to the predominant wavelength) sphere
oscillating in a fluid or an explosive (spherically-symmetric) source in a solid.

Since the medium is isotropic and the source is spherically-symmetric, the solu-
tion of equation (3.1.1) should also be spherically-symmetric, determined just by R =
V2 4+ y? + z2. The form of the spherically-symmetric solution of the wave equation is
well-known (Aki and Richards, 1980):

1 .
— ellkRwt) 3.1.2
e (312)
It is easy to verify that the spherical wave (3.1.2) satisfies the wave equation at R # 0.
A rigorous proof that the potential (3.1.2) gives the required singularity at the source
point can be found in Aki and Richards (1980). Below we will outline an alternative way

to prove that the solution of the wave equation (3.1.1) is represented by (3.1.2). If the

¢(T,1) =
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coefficient 47¢c? is not added to the right-hand side of the wave equation, it appears in the
expression for the spherical wave.

The spherical wave propagates away from the source with the velocity ¢ and decays
as 1/R; the amplitude depends only on the distance from the source. Our task now is
to represent the spherical solution (3.1.2) in the way that will make it easy for us to
solve reflection-transmission problems in stratified media. Since we already know reflec-
tion/transmission coefficients for plane waves, we will decompose point-source radiation
into plane waves and, later on, into the so-called cylindrical waves.

Let us represent the solution of equation (3.1.1) as a triple Fourier transform :

. e—iwt 00 00 [ BN ik 2) 37
A5 = G /,oo /,oo /,oo ok, w)elbeethuythea) g (3.1.3)
dk = dkq dk, dk..
Similarly,
1 ee] 5 —
(S(f) _ (2 )3 / el(kz$+kyy+kzz) dk R (314)
T —00

Substituting equations (3.1.3,3.1.4) into the wave equation (3.1.1), we get

47 c?

ok W) =

Now we have found the integral kernel in equation (3.1.3), and it is possible to prove by
direct integration of (3.1.3) that the spherical wave’s potential is given by equation (3.1.2):

(3.1.5)

2 ikrR—wt) _ €
R 27'('2 —00 kZ — w_z

1 —iwt oo ei(kmm+kyy+kzz) .
/ di, (3.1.6)

Although it looks like we have already decomposed the spherical wave into plane
waves, we are not there yet: the plane waves under the integral (3.1.6) do not satisfy the
wave equation (although their sum does). Actually the waves which comply with the wave
equation cause singularities in the integrand. The simplest way to reduce the spherical
wave to a sum of plane-wave solutions of the wave equation is to carry out integration over
one of the wavenumbers. Since we wish to use the result in solving reflection-transmission
problems at horizontal boundaries, we will integrate over the vertical wavenumber k,.

We carry out the integration over k, by extending the integral to the complex plane
and apply residue theory. If 2 > 0, we have to use a semicircle in the upper half-plane, so
that ik,z decays for k, = ico. If z < 0, the semicircle should lie in the lower half-plane.
Now we have to find the poles within the semicircles.

The integrand has poles at the vertical wavenumbers k? = “Lf—j — k2 — k7. Apparently,
the poles can lie on the real axis of k, i.e., on the integration path. To avoid this situation,
we introduce small attenuation, making the velocity ¢ complex. For positive frequencies,
Im(1/¢) > 0 for the spherical wave (3.1.2) to decay away from the source. This trick
adds a positive imaginary part to k2 and moves the poles from the real axis to the first
and third quadrants.
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The poles corresponding to negative values of ‘Z—; —k2— k; lie on the imaginary axis. By
introducing small attenuation, we also move these poles to the first and third quadrants.

If z > 0, we have to pick up the residue in the upper half-space (i.e., in the first
quadrant). The direction of the integration path is positive, and

wt
/ / gilkoathythe) g g (3.1.7)

¢ = 2mi Res[Imk, > 0] =
27r

where k, = (‘;’—22 — k2 — k;)l/Z, and the square root is chosen so that Rek, >0, Imk, > 0.
Similarly, for z < 0

—zwt

2

¢ = —2mi Res[Imk, < 0] = / / Uitk ki) g gk (3.1.8)

where k, = (";—22 — k2 — k2)!/2, but the square root is chosen so that Re k. < 0.

The physical meaning of this difference in signs of k, is that the waves are going away
from the source: for z > 0 they are propagating in the positive z-direction, for z < 0 - in
the negative z-direction. Equations (3.1.7,3.1.8) can be written together as the so-called
Weyl integral:

1 kR 7 /oo /oo ei(k$$+kyy+kZ|Z|)
— et = — dkdk, . 3.1.9
R o s k. y (3.1.9)

The sign of k, in equation (3.1.9) is chosen so that Rek, > 0. Now we have reached
our goal: the field of a point source is decomposed into plane waves which satisfy the
wave equation. We already know how to solve reflection/transmission problems for an
elementary plane wave from integral (3.1.9).

Plane waves comprising point-source radiation propagate in all directions because
the integration is carried out over all possible k;, k,. More than that, in addition to
conventional homogeneous waves, the Weyl integral (3.1.9) contains inhomogeneous plane
waves decaying in the vertical direction. The inhomogeneous waves are due to the poles
near the imaginary axis on the complex k,-plane picked up during the integration over k,.

It is useful to replace the horizontal wavenumbers with the angles which determine
the direction of propagation of elementary plane waves (Figure 3.1).

We denote

ky = ksintcos ¢, k, = ksinfsing, k, = kcosf.
The area element in polar coordinates is

dky dk, = kydk,do,

where k, = |/k2 + k2 = ksin 0. Hence,

dk, dk, = k*sin 0 cos 0 dOdg .
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Figure 3.1: The angles used in the plane-wave decomposition of point-source radiation.

Then

; 2—ico [2
%eikR — % /0 T/ /0 " gilkaathy ke 2 i1 9 d0dg . (3.1.10)

The limits of the integration over 0 (Figure 3.2) need to be explained. When k, > k,
then sinf > 1, and the integrand becomes an inhomogeneous wave. Clearly, for k < k, <
oo the angle 6 should be complex. To cover the range k > k, < oo, we represent  as
§ = w/2 —ia, where a is real and non-negative. Then, sin § = cosh a, and cos § = i sinh a.
For the integration over #, the path lies on the real axis up to # = 7/2, and then turns
down into the complex plane parallel to the imaginary axis. The part of the integration
path on the real axis corresponds to homogeneous plane waves, the part parallel to the
imaginary axis picks up inhomogeneous plane waves.

Inhomogeneous waves decay in the vertical direction as e I 'and propagate in
the horizontal direction with the velocity v = ¢/ sinf = ¢/cosh a, which is smaller than
the medium velocity ¢. The smaller the velocity of an inhomogeneous wave, the faster is
the amplitude decay in the vertical direction. We have analyzed inhomogeneous waves of
this type when we considered reflection/transmission problems for plane waves.

Why do we need inhomogeneous waves in the plane-wave decomposition of the point-
source radiation? From equation (3.1.10) it is clear that it is impossible to get the required
singularity at x = y = 2z = 0 by superposition of homogeneous plane waves only since
the integral has finite limits. By including inhomogeneous waves, we make the field at
the source infinite. If z # 0, the integral becomes finite because of the attenuating factor
for inhomogeneous waves. When x # 0 or y # 0, the finite value of the field is ensured
by the oscillations of the integrand (interference of inhomogeneous waves with different
phases).

Our model (a homogeneous medium) is axially symmetric, and we can take advantage
of the symmetry to reduce the double integral (3.1.10) to a single integral over horizontal
slowness. Substituting the expressions for the horizontal components of the wave vector

—k sinha
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Figure 3.2: The path of integration in the decomposition of point-source radiation into
plane and cylindrical waves.

yields

] m/2—ico 2T
%eikR = %/0 / /0 eilkrrcos(@=a)tk:lzll in g dhdg (3.1.11)
where we used x = rcosa, y = rsina.

The dependence on the azimuthal angle ¢ is limited to the term cos(¢ — a). Using an
integral expression for the zero-order Bessel function

1 2.
Jolw) = 3= /0 TSty (3.1.12)
we arrive at the so-called Sommerfeld integral:
1 . w/2—ic0 |
= e* = ik / ekl=leosd g (krsin §) sin @ df . (3.1.13)
0

As before, Re k,(Re cosf) > 0. Instead of the plane waves in the Weyl integral, the
elementary components of the Sommerfeld integral are the so-called “cylindrical” waves
with a separate dependence on r and z. Note that wavefronts of “cylindrical” waves from
the Sommerfeld’s integral are not cylinders. We will see that integral (3.1.13) is very
convenient in solving reflection/transmission problems at plane boundaries. Although,
unlike the Weyl integral, it does not formally contain plane waves, boundary problems
for cylindrical waves can still be handled using plane-wave reflection/transmission coef-
ficients. As the Weyl integral (3.1.10), decomposition (3.1.13) contains inhomogeneous
waves corresponding to complex values of 6.
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3.2 Integral solutions for scattering at a plane
boundary

Suppose a point source is located at distance zy above a plane interface 2 = 0. The

pressure or potential of the spherical wave radiated by the source may be decomposed

into plane or cylindrical waves as discussed in the previous section. Let us start with the
Weyl integral over plane waves (3.1.10). The field of the incident wave is given by

¢inc = ﬁ

2T

Since we are dealing with a linear problem, each elementary plane wave under the

integral (3.2.1) can be treated separately. Taking into account the vertical phase shift,
the reflected plane wave can be written as

w[2—ico p2m
/ / eilksatkyyth=(0-2)] gin 0d0de . (3.2.1)
0 0

Fog =V (0) elherthothe(ztzo)l, (3.2.2)
Integrating over the reflected plane waves, we get
ke pm/2—ico 2w .
Prefi = ;—/ / V(9) elkerthyythe G200l gin 0 dhdgp . (3.2.3)
m Jo 0

Applying formula (3.1.12) for the Bessel function, we find

/2—i00 ]
Grest = ik / V(0) ek 200030 g (ko sin ) sin 0d0 . (3.2.4)
0

This expression is very similar to the Sommerfeld integral, only the vertical phase term
corresponds to the reflected wave and the plane-wave amplitude contains the reflection
coefficient. It turns out that we can apply plane-wave reflection/transmission coefficients
directly to the cylindrical waves comprising the Sommerfeld integral because the horizontal
phase term remains unchanged during reflection or transmission at a horizontal boundary.

The transmitted wave, obtained in the same way, is

w/2—i00 .
G =i [T W (@) 00k iy sin ) sin 6 do), (3.2.5)
0

where W (0) is the transmission coefficient, k; is the wavenumber in the second medium
(2 <0).

Although the formal solution of the reflection/transmission problem is now obtained,
the properties of the reflected and transmitted waves are hidden in the integrals (3.2.4,3.2.5).
Below we study the wavefields on both sides of the boundary by performing asymptotic
analysis of the integral solutions.

3.3 Stationary-phase method for reflected wavefields

We will use two asymptotic techniques designed for integrals of oscillatory functions:
the stationary phase method and saddle-point integration. The idea of both methods
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is essentially the same: if the integrand contains an exponential function with a large
parameter, the value of the integral is determined just by one or several relatively short
parts of the integration path.

Wave integrals (3.2.4,3.2.5) are well-suited for the application of these asymptotic
methods if the receiver is relatively far from the source (compared to the predominant
wavelength). Since in the far field the terms kzy, kz and/or kr are large, the integrand is
a rapidly oscillating function. In the near field the situation is different: kzy and kr are
relatively small, and the integrand may not oscillate rapidly enough for the asymptotic
techniques to be accurate.

The stationary-phase method (SPM) and saddle-point integration are ideologically
related to ray theory. Like the ray method, asymptotic techniques for analysis of wave
integrals provide high-frequency approximations valid in the far field. We will see that, for
instance, the geometrical-seismics solution can be directly obtained from the zero-order
approximation of the SPM.

We start out with the stationary-phase method that is more straightforward mathem-
atically although, in general, is less powerful than the saddle-point integration technique.
SPM is practically ignored in major textbooks (Aki and Richards, 1980; Brekhovskikh,
1980), so the reader will have to rely mostly on these notes and a paper by Fuchs (1971).

SPM, unlike saddle-point integration, does not require any distortions of the integra-
tion path. The goal of this technique is to find the points where the phase of the integrand
does not change rapidly (stationary points) and reduce the integral to the contributions
of the immediate vicinity of these points.

3.3.1 Zero-order approximation of the method of stationary
phase

First, we apply the SPM to the potential of the reflected field (3.2.4). It is convenient to
use an asymptotic representation of Bessel function Jy(z) valid for large arguments :

2 1 . :
Jo(x) =~ \/% cos(x —w/4) = \/% [eile=m/1) 4 g-ilem/A] (3.3.1)

In a more accurate representation, the Bessel function is decomposed into the sine
and cosine functions with coefficients in the form of infinite series in inverse powers of x.
However, formula (3.2.4) is sufficient for our purpose of studying the reflected /transmitted
waves in the far field.

Substituting formula (3.3.1) into the integral for the reflected wave (3.2.4) yields

d)refl = ” /TF/2 o0 V {ei[k(z+20)COS9+krsin977r/4]
27 rsmﬁ

+ 6 k(z+20) cos 0— kr51n0+7r/4} sin 0d0 . (332)

The initial integral can be now divided into two integrals with different phase functions.
Except for the exponentials, the integrands contain only slowly varying functions - the
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reflection coefficient V() and sin §. Therefore, the oscillations of the exponential terms
are supposed to cancel the integral everywhere except for a certain vicinity of the points
of stationary phase. As we will see later, the assumption about the slow variation in
V'(0) is not valid near the critical angle but at this time we will ignore this complication.
The variant of the stationary phase method taking into account only the phase of the
exponential function is sometimes called the zero-order approximation of the SPM (Fuchs,
1971).
The stationary-phase condition can be written as

dd
— =0 3.3.3
de ) ( )
® is the phase of the integrand.

Applying (3.3.3) to the first phase term in equation (3.3.2) we find

)
% = k[—(2+ zp)sin@ + rcosf] = 0. (3.3.4)

Note that we apply the SPM to the part of the integration path corresponding to
homogeneous plane waves (0 < ¢ < 7/2) and, therefore, cos @ is real.
From equation (3.3.4) the stationary point is

0 = tan™" jr" - (3.3.5)

We recall that 6 is the incidence angle of an elementary plane wave from the plane-
wave decomposition of point-source radiation. The SPM enabled us to single out the
plane wave that makes the most prominent contribution to the reflected wavefield. As
expected, this wave corresponds to the geometrical ray reflected in accordance with Snell’s
law.

It is easy to verify that the second exponential function in equation (3.3.2) does not
generate any stationary phase points on the integration path. Indeed, the stationary-phase
equation for the second exponential

dd,
do
does not have solutions for 0 < 6 < /2.

The second exponential corresponds to the waves coming towards the source (the so-
called in-going waves) in the horizontal direction. These waves are contained both in
the plane-wave and cylindrical-wave decompositions of point-source radiation. It is clear
from simple physical considerations that only out-going waves should contribute to the
incident and, consequently, reflected wavefields. While we have eliminated the vertically
in-going waves during the integration over k,, the horizontally in-going waves have been
retained under the integral. Thus, the stationary-phase technique makes it possible to
discriminate between in-going and out-going waves.

The next step is to find the amplitude of the geometrical reflection by evaluating the
contribution of the stationary point (3.3.5) to the integral. We expand the phase ® = @,

= k[—(z+ z) sinf —rcosf] =0 (3.3.6)
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into a Taylor series at the stationary point taking into account that the first derivative of
® is zero:

1d*® (
2 dp?

By substituting y = 6 — 0, the integral for the reflected wave near the stationary
point can be represented as

() = B(Byr) + =~ (0 — 0)°. (3.3.7)

[= / v dy (3.3.8)

where S(y) is a slowly varying function, b and d are small and positive. In accordance
with the SPM methodology, we substitute expansion (3.3.7) into (3.3.8) and take S(f)
out of the integral assuming that the variations in S(#) near 6. The contribution of the
stationary point f; (y = 0) then becomes

1d2a

d
{6} = S(0,,) /be 00 +3 5% ") gy (3.3.9)

Then we formally extend the limits of integration to infinity because the oscillations of
the integrand will cancel the contribution of any other part of the integration path except
for a certain vicinity of the stationary point:

o0 i 2
{0y} = S(0x) €' ("“)/ ezt " dp. (3.3.10)
The remaining integral reduces to the so-called Fresnel’s integral (it is assumed that
2
3 <0):
” 6%%02 df = 2m e im/4 (3.3.11)
» = | Tzs . 3.
6°

For the contribution of the stationary point (3.3.10) we now have

2 )
I{0,} = 5(0s) ™0 ée‘”/“. (3.3.12)

02

Now we apply general SPM formula (3.3.12) to calculate the contribution of the geo-
metrical stationary point to integral (3.3.2). According to equation (3.3.4), the second
derivative of the phase function in (3.3.2) is given by

d*® )
o = k[—(z + 20) cos — rsin 6].

At the stationary point 6y (3.3.5),

d*®

—az (0) = =Kl(z + 20)°/ R+ 1/ R] = —kR, (3.3.13)
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R=\/(z+ %)%+ 12
Using equations (3.3.2,3.3.12,3.3.13), we find the following contribution of the geomet-
rical stationary point to the reflected wave:

kE V(0s) sinfy 2 ,
( t) Sin tez(kR7W/4) 2 77,7r/4.

Greit =W 5 st iR

After simple algebra, the specular (geometrical) reflection takes the form

eikR

¢refl — V(est) R

We obtained a well-known geometrical seismics approximation valid for the reflected
P-wave potential both in fluid and solid models. The amplitude of the reflected wave is
determined by the spherical divergence along the geometrical raypath and the plane-wave
reflection coefficient. This means that the zero-order stationary phase approximation is
equivalent to geometrical seismics; the geometrical solution is valid at source-receiver
distances large compared to the predominant wavelength.

It is important to find out when the geometrical-seismics solution (3.3.14) becomes
inaccurate. In our derivation we ignored the higher-order terms in the asymptotic expres-
sion for the Bessel function Jy and in the Taylor series expansion of the phase function.
Brekhovskikh (1980) shows that the neglected terms depend on the derivatives of the
reflection coefficient with respect to the angle #. Therefore, the geometrical seismics is
exact for perfectly reflecting interfaces V' = +1 or for boundaries between the media with
the same velocity. In the latter case, the reflection coefficient is equal to the fractional
difference between the densities and does not depend on the angle of incidence. Although
the correction to geometrical seismics is supposed to become negligible for large source-
receiver distances, it cannot be ignored when the wavefield in the geometrical-seismics
approximation is small. For instance, when the source and receiver are close to the inter-
face, the angle of incidence approaches 90° and the reflection coefficient V' ~ —1. As a
result, the direct and reflected wave cancel each other, and the additional terms become
the principal component of the wavefield.

The corrections discussed above affect the amplitude and waveform but not the travel-
time of the reflected wave. Later in the course we will see that the geometrical seismics
and ray theory as a whole cannot account for a number of distinct arrivals generated
when the source or receiver are located near the interface.

The above analysis has been done for the part of the integration path corresponding to
homogeneous incident waves with real cosf (0 < 6 < 7/2). In the part corresponding to
inhomogeneous waves cos f is imaginary and the phase function contains only krsinf =
kr cosh a, @ = w/2—ia. The derivative of the phase function is ® = krsinh a, and it seems
that there is a stationary point at a = 0 (0 = 7/2). However, if the limit of ® is taken for
0 — m/2,0 < /2, it gives (in accordance with equation [3.3.4]) ®'(7/2) = —k(z+zy) # 0.
This means that the first derivative of the phase function at # = /2 is discontinuous, and
the SPM methodology cannot be applied at this point. The same result can be obtained
if we use the horizontal slowness (ray parameter) as an independent variable instead of 6.

(3.3.14)
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Later on, we will find out that inhomogeneous reflected waves do contribute to the
wavefield near the boundary if the incidence medium has a higher velocity. These waves
are coupled to the nongeometrical components of the transmitted wavefield, and we will
study them after examining the transmission problem. In order to single out nongeo-
metrical reflected waves, we have to apply the so-called first-order approximation of the
stationary-phase method and take the phase of the reflection coefficient into account.

3.3.2 First-order approximation of SPM

Although an asymptotic expression for the reflected wave has been derived, we have not
been able to get a complete solution in the far field. We should have obtained the head
wave in the post-critical domain but there are no more stationary points in the zero-
order SPM approximation, even when the velocity in the reflecting medium is higher than
in the incidence medium. The simplicity of the zero-order approximation is the main
advantage of the application of the SPM to wave integrals. While in the case of the
acoustic reflection the SPM has not provided us with more information than geometrical
seismics, its application to the transmitted wave is much more productive. Below we will
show that the zero-order SPM makes it possible to describe the so-called pseudospherical
wave that belongs to the class of nongeometrical waves.

In order to include the head wave into the solution, we have to use the so-called first-
order approximation of the SPM. Suppose the reflecting medium has a higher velocity than
the incidence medium (¢; > ¢). Then in the post-critical domain 6., < 6 < 7/2, 0., =
sin !(c/c1), the reflection coefficient becomes complex, and its phase should be included
in SPM treatment.

The reflection coefficient (2.4.11) can be rewritten at post-critical incidence as

9_ . B 29_ 2
vig) =TTV (3.3.15)
ocosf +1vsin“ @ — n?

o=pi/p,n=clc.
The phase of V() is given by

¢, = —

. 2 - 2
2 tan~! (—Sme"> . (3.3.16)

ocosf

The total phase of the integrand in (3.3.2) for .. < 6 < 7/2 is (only the first expo-
nential is taken into account)

Q(0) = k(2 + 2) cosO + kr sinf — w/4 + @,(0). (3.3.17)
Differentiating ®(0) yields

() = —k(z + 2) sinf + kr cosf + @ (6), (3.3.18)

with
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—20 sinf (1 — n?)

! (0) = . 3.3.19
(#) (62 — 1) cos? 0 + (1 — n2)] Vsin? 0 — n?2 ( )
The stationary-phase equation ®'(f) = 0 now is
A tan
r= (24 2)tanf + , 3.3.20
( 0) kV/sin® § — n? ( )
20 (1 —n?
A= o(l—n) (3.3.21)

(02 —1)cos? 0+ (1 —n?)’

When the frequency is high enough, the influence of ®/ is small everywhere except
for a small vicinity of the critical angle 6, = sin” ' n. Near the critical angle ® becomes
infinite and introduces a second stationary phase point corresponding to the head wave.

Assuming cos?f ~ 1 — n? near 0, = sin ! n, the coefficient A can be substantially
simplified:

N 20 (1 —n?) 2
SR PR () ) R (3.3.22)

The stationary-phase equation (3.3.20) then becomes

2 tan 0
ko+/sin? —n?’

The easiest way to analyze the solutions of equation (3.3.23) is to plot the right part
of the equation. Figure 3.3 reproduced from Fuchs (1971) shows the determination of
the stationary phase points for a solid/solid boundary. Though the model used by Fuchs
is different from ours, the structure of the stationary phase equation for fluid/fluid and
solid/solid interfaces is essentially the same.

Without the contribution of the phase of the reflection coefficient, equation (3.3.23) has
just one solution for the geometrical (specular) reflection (tanf = r/(z + zg)) discussed
above. Since the term due to the reflection coefficient is positive, the curve showing the
right part of (3.3.23) as a function of angle lies above the curve (z + zp) tanf . Due to
the term v/sin? # — n? in the denominator of ®’ the right-hand side of equation (3.3.23)
goes to infinity at the critical angle.

For sufficiently large offsets r equation (3.3.23) has two solutions, one corresponding to
the head wave (it is close to the critical angle 6,,) and another to the reflected wave. The
second stationary point is close to the angle of the geometrical reflection § = tan ! ﬁZO

Assuming that the stationary point for the head wave is at # = 6., the traveltime of
the head wave is given by

r=(z+z)tand + (3.3.23)

ty = . (3.3.24)

Ignoring the frequency-independent terms in the expression for ®(6) (3.3.17) (they
will result only in the distortion of the pulse shape), we obtain
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Figure 3.3: Graphic solution of the stationary-phase equation for the head wave and
post-critical reflection at a solid /solid boundary (after Fuchs, 1971). f,, is the frequency-
dependent critical angle (the curves are calculated for different frequencies v with a step
of 0.4 Hz). The P-wave velocity changes across the boundary from 6.4 km/s to 8.2 km/s;

h=(z + zp)/2 = 30km.
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th =r/c1 + (2 + z) cosb,,/c. (3.3.25)

The traveltime £, may be also represented as

th=1L/c1 + (2 + 2)/(c cosb) , (3.3.26)

L =r — (z+ z)tan 6., is the path traveled by the head wave along the boundary with
the velocity in the second medium ¢;. Formulas (3.3.25,3.3.26) show that the head wave
has a plane wavefront and propagates away from the boundary at the critical angle 6.

The most striking feature of the obtained solution is the frequency dependence of the
critical angle and critical offset r... With decreasing frequency, both the critical angle and
critical offset increase making the velocity of the head wave frequency-dependent. Indeed,
the horizontal velocity of the head wave at the critical distance is given by ¢/ sin 6,,; for
smaller frequencies, sin 6., is higher than n = ¢/c¢;, leading to a decrease in the head-
wave’s velocity. At large r, the velocity of the head wave becomes less dependent on
frequency.

It is interesting that at low frequencies there is a range of offsets (below the frequency-
dependent critical distance r) without any stationary points at all. Also note that the
stationary point for the reflected wave deviates from the geometrical-seismics value with
decreasing frequency. However, we should remember that the stationary phase method
is accurate only at high frequencies, and all dependencies on frequency obtained by the
SPM should be regarded with a certain caution.

The main problem in the stationary-phase treatment outlined above is that it properly
accounts only for post-critical incidence angles. As we will see later from exact numerical
results, sub-critical angles also make a significant contribution to the head wave. Unfor-
tunately, even the first-order approximation of the SPM cannot produce any additional
stationary points in the sub-critical domain because the phase of the reflection coefficient
at sub-critical incidence is zero. While the reflection coefficient V'(#) at sub-critical angles
(0 < sin"'n) is real and does not change the phase of the integrand, a rapid variation in
V(0) in the immediate vicinity of the critical angle makes the SPM approach inaccurate.
Therefore, we will not seek a complete first-order SPM solution for the amplitude of the
head wave; the properties of the head wave will be discussed in more detail in the next
section, after application of saddle-point integration.

Despite the above problem with the stationary phase method, it should be emphasized
that it enabled us to single out both principal components of the wavefield: the reflected
and head waves. Later on, we will apply the SPM to the integral for the transmitted
wave.

3.4 The method of steepest descent for the reflected
wavefield

Now we will proceed with the analysis of the reflected wave by means of saddle-point
integration. This section is based on the material from chapter 6 in the book by Aki

38



and Richards (1980); however, we’ll correct several mistakes and fill in some gaps in the
explanations.
The saddle-point method is designed to evaluate integrals of the type

I(z) = / F(€) e™© g, (3.4.1)

where x is assumed to be large and positive, and f is an analytic complex function.

The idea of the method is to distort the integration path so that it would go through the
saddle point of the function f(&) along the steepest descent path of Re f. Since the value
of the integral is mostly determined by e*#¢/(€) only a small part of the new integration
path near the maximum (saddle point) of Re f makes the principal contribution to the
integral. Since f(£) is analytic, contours of Re f = const and I'm f = const are orthogonal
to each other (Figure 3.4).

Therefore, the steepest descent path for the function Re f would be a line of constant
phase (I'm f = const). One can see that the stationary phase and saddle-point integration
methods have a lot in common: in both cases the integral is reduced to the contribution
of a relatively short part of the path where the phase of the integral is stationary. The
complexities of saddle-point integration are mostly associated with taking a proper care of
the poles and branch cuts of the integrand affected by the transformation of the integration
path.

Using the ray parameter p = sinf/c in the integral expression for the reflected
wave (3.2.4), we find

Grefi = iw/o V(p) g gwC(z+z0) 1 (wpr)dp, (3.4.2)

¢ =4/1/c? — p? is the vertical slowness; we recall that ¢ lies in the first quadrant Re ( >
0, Im¢ > 0.

3.4.1 Reflection from a low-velocity medium

We first assume that the incidence medium has a higher velocity: ¢ > ¢;. In order to make
the integration path symmetric with respect to the origin, the Bessel function should be
replaced with the Hankel function Hél):

Jo(x) = 5 [ (@) ~ B (~)]. (3.4.3)

Substituting equation (3.4.3) into (3.4.2) and noting that

) P 0 »
/0 —V(p) ZH(EI)(_WPT) dp = /_oo Vi(p) c Hél)(wpr) dp, (3.4.4)
we obtain
W[ )
Grefi = = . V(p) 2—) giwl(z+20) Hél)(wpr) dp . (3.4.5)
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Figure 3.4: Structure of an analytic function f near its saddle point (after Aki and
Richards, 1980). The steepest-descent path is inclined at —45° to the positive direction
of the x-axis.
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Then we assume that the horizontal source-receiver distance is large compared to the
wavelength, and replace the Hankel function with its asymptotic representation:

2 3 -7
HSP (wpr) = Vo ellerr=m/t). (3.4.6)

Clearly, the approximation (3.4.6) cannot be used near p = 0 but we will avoid this
point after deforming the integration path. The reflected wave becomes

s 12
_ im/4 / Vv p iw [pr+¢(z+20)] dp . 3.4.7
¢refl Dy € . (p) C € P ( )

Now we are ready for saddle-point integration. Before actually deforming the integra-
tion path, it is necessary to determine what sign of the square root in ¢ should be chosen.
In the complex p-plane ( is double-valued, and it is convenient to make it a single-valued
analytic function of p by means of some reasonable convention. Usually the complex
p-plane is replaced by two planes, or Riemann sheets, on which ( is unambiguously de-
termined. On the so-called top sheet, Im { > 0, on the bottom sheet I'm ( < 0; the sheets
are connected along branch cuts on which I'm { = 0. The points on the branch cuts where
¢ =0 (p = =+1/c) are called branch points.

An alternative way of introducing branch cuts is discussed by Bleistein (1984). One
should keep in mind that branch cuts represent just a convenient way to keep track of
the signs of double-valued functions in the complex plane. While the branch points are
strictly fixed, there is some flexibilty in devising branch cuts for any particular problem.

Let us find the position of the branch cuts on the complex p-plane. For the imaginary
part of ¢ to be zero, 1/¢* — p? should be real, and 1/c*> — p? > 0. Therefore,

1/¢® — (Rep)* + (Imp)* — 2i(Rep)(Imp) > 0. (3.4.8)

We have seen that the imaginary part of 1/¢? is small and positive (or zero, if there is
no attenuation). Thus,

(Rep)(Imp) =€, €>0. (3.4.9)

This determines the branch cuts as hyperbolas in the first and third quadrants. We
have to make sure that on the cuts (? is nonnegative, or

(Rep)? < Re(1/c®) + (Imp)?. (3.4.10)

When ¢ is real, the conditions (3.4.9,3.4.10) are satisfied on the whole imaginary axis
and on the part of the real axis between the branch points —1/c¢ and 1/¢ (Figure 3.5).
In an attenuative medium, the branch cuts move into hyperbolas in the first and third
quadrants limited by the branch points located close to the points p = 1/c and p = —1/ec.

The same structure of the branch cuts is valid for the vertical slowness in the reflecting
medium (;, the only difference being that the branch points are at p = £1/¢;. We will see
that the relative position of the branch points is extremely important in the evaluation of
the integral for the reflected wave.
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Figure 3.5: Branch cuts for the vertical slownesses on the complex p-plane.

The analysis of the branch cuts shows that (assuming small attenuation) our integration
path lies above the branch cuts in the left half-space (Rep < 0), and below the branch
cuts in the right half-space. We also have a branch point for p'/? on the integration path,
but we will avoid it while moving towards the path of steepest descent.

At the saddle point, the real part of the exponential function z f (&) (see equation [3.4.1])
reaches its maximum, while the imaginary part is stationary. Therefore, the first derivative
of f(&) at the saddle point is zero. In our case, z = w, £ = p, and

flp) =ilpr+{(2 + 20)], (3.4.11)
and

fl(p) =ilr —p(z+20) /], (3.4.12)

f'(p) = —i(z + 20)/ (¢*C) . (3.4.13)

The saddle point is determined by f'(p) = 0:

r=p(z+2)/(; tanf = (3.4.14)
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Therefore, the saddle point lies on the real axis to the left of both branch cuts (if ¢ >
c1). This saddle point corresponds to the same geometrical reflection we have previously
obtained by the stationary phase method. Our task now is to find the steepest descent
path from the saddle point.
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From equations (3.4.11,3.4.14) the value of f at the saddle point is iR/¢, R is the
distance along the geometrical ray. Since the imaginary part of f along the steepest-
descent path should be constant while the real part should decrease away from the saddle
point, we will look for a path satisfying

f(p) =ilpr+((z+ )] = —X* +iR/c, (3.4.15)

X is real.

Solving this equation for p leads to the path shown in Figure 3.6, which crosses the
real axis at an angle of 45°. Clearly, our goal is reached: f is an analytic function of p,
the real part of f exponentially decays away from the saddle point, while the imaginary
part remains constant, not only near the saddle point but elsewhere on the new path.
While in the stationary phase method we were dealing with stationary-phase points, in
saddle-point integration we use stationary-phase paths.
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Figure 3.6: The steepest-descent integration path for the acoustic reflection from a low-
velocity medium (after Aki and Richards, 1980).

With increasing [p| in the first quadrant, the steepest-descent path approaches a

straight line that makes an angle of tan™! ﬁZO with the positive p-axis (Figure 3.7). The
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asymptote in the second quadrant makes the same angle (equal to the incidence angle of
the geometrical reflection) with the negative p-axis. Note that the asymptotes cross the
imaginary p-axis at different points away from the origin.

Figure 3.7: The asymptotes of the steepest-descent path for the reflected wave.

One subtlety here is associated with the transition from the top to the bottom Riemann
sheet at the intersection of the path with the imaginary p-axis. This transition is necessary
to preserve the continuity of ¢ and (; (and the integrand) on the integration path. Indeed,
in the first quadrant near the imaginary axis (assuming real c)

\/1/02 + (Imp)? — 2i(Imp)|Re p|,

while in the second quadrant

(= \/1/02 + (Imp)? + 2i(Imp)|Re p|.

If we require that Im ¢ > 0, the real part of ¢ will change sign at the branch cut near
the imaginary axis. The integration path returns to the top Riemann sheet (Im { > 0) at
the saddle point ensuring an exponential decay of the integrand at the arcs at Re p = Fo00.
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Most importantly, we have not touched the branch points or poles during the trans-
formation. In addition to the pole ¢ = 0 (it is also a branch point), the poles may be
associated with the reflection coefficient V' (2.4.11). It is easy to verify that there are no
poles of V(p) on the original integration path, and the poles in the complex plane are not
affected during the transformation of the path. Physically, this means that there are no
surface waves in this model.

With increasing geometrical incidence angle (the case of r > z + z;), the steepest-
descent path tilts closer to the imaginary axis, thus causing some interference with the
branch points. The contributions of the branch points correspond to inhomogeneous
reflected waves coupled to nongeometrical transmitted waves. These waves will be ex-
amined later on, in the section devoted to the transmitted wavefield.

Therefore, the integral reduces to the contribution of a certain vicinity of the saddle
point. The methodology of evaluating the contribution of the saddle point is essentially
the same as in the stationary phase method. The function f(p) is expanded into a Taylor
series near the saddle point:

F ) = F0) + 5 ") (0~ p)? + - (3416

On the integration path the difference f(p) — f(ps) or, in other words, the term con-
taining f”(ps) is real and negative (see equation [3.4.15]), causing an exponential decay
of the integrand away from the saddle point. The degree of the decay depends on how
large the parameters wr and w(z + zq) are.

Since the integration is carried out only in the vicinity of the saddle point, the slowly
varying terms can be taken out of the integral while series (3.4.16) can be truncated after
the second term:

p [ w V(ps) p;/Q i /4 in/c/ 5w " (ps)(0—ps)® 4 (3.4.17)
refl — A —— Ps) —F—E€ € €: ° : D, o
1 2mr C(ps) c

where C covers a vicinity of the saddle point on the integration path. Let us do the
derivation of the saddle-point contribution carefully because the saddle-point formula
given in Aki and Richards (Box 6.3) is in error and does not lead to the desired result.
First, note that the integrand and the integration path are symmetric with respect to
the stationary point, so we will examine the part of the path to the right of p,. Introducing
a new variable y = |p — p,|, p — ps = ye'X, where y is the angle between the path and the
positive direction of the z-axis, the integral from equation (3.4.17) can be represented as

b 1 " 2,24 ;
[= 2/ o3 91" (X gix gy, (3.4.18)
0

b is real and positive.
Since we have established that f”(p,)e*X is a negative real number, it is convenient
to change variables once again:

v=1/—w f"(ps) e¥Xy. (3.4.19)
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Then integral (3.4.18) becomes

(3.4.20)

ix d .
I=2 ¢ . / e du,
/_w f”(ps) 621)( 0
d=0b\/—w f"(ps) e¥x.

We have arrived at the well-known normal probability integral:

2
o—2/2

/dd ety = Vo (1 - @ T ) (3.4.21)

Unlike the SPM, saddle point integration does not require the limits of the integral to
be formally extended to £00. The exponential decay of the integrand allows the limits
to remain finite, and we get the asymptotic result by retaining only the first term of the
series (3.4.21) under the assumption of a large parameter in the exponential. Substituting
equation (3.4.21) into (3.4.20) yields

5% 2
[=——2 YT (3.4.22)
—w f"(ps) e2zx

Using equation (3.4.13) for the second derivative of f and recalling that x = —45°, we
get

—im/4 ) + 2

& iR wv4 Z

I= (et =) (3.4.23)
VwcR3

Substituting this result into the expression for the reflected wave (3.4.17) gives

) 172 —i7r/4\/2_( + ) ptkR
_ kR [ W Ps'” inja € T\ET %) _ £ 4.24
¢refl V(ps) € 2y C(ps) € m V(ps) R . (3 . )

Thus, we have obtained the same geometrical-seismics solution, this time by means
of saddle-point integration. Among the approximations made during the derivation, the
crudest one is perhaps the replacement of the integrand with the quadratic Taylor series
and using the asymptotic expression for the probability integral. Depending on the value
of the large parameter in the exponential, our integration path may extend relatively
far from the saddle point making it necessary to add more terms to the expansion of
f(p). This leads to the so-called wavefront expansions, which are more accurate than the
geometrical-seismics expression. An even higher accuracy may be achieved by numerical
integration over the transformed path with the exact computation of f(p). This also
eliminates the error due to another approximation - a fixed angle between the integration
path and the real axis.

Another, often more acceptable approximation is the one for the Hankel function; it
is sometimes used in more accurate integration methods as well.
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3.4.2 Reflection from a high-velocity medium: the head wave

Now let us consider the case when the source is located in the low-velocity medium
(¢ < ¢1). Then the branch points near or on the real axis will be interchanged, and the
point p = 1/¢; will be to the left of p = 1/c. If the saddle point ps belongs to the interval
0 < ps < 1/¢q, the analysis discussed above is entirely valid. The integration path is the
same, and the integral is reduced to the contribution of a vicinity of the saddle point. In
the end, we get the same geometrical-seismics solution (3.4.24) as for the case ¢ > ¢, and
the reflection coefficient V'(p,) remains real. For the saddle point to satisfy 0 < ps < 1/¢q,
the receiver should lie in the so-called “subcritical” region corresponding to subcritical
incidence angles sinf < sinf,, = ¢/¢;.

Problems arise when the receiver is in the postcritical region sin# > sin 6., and the
saddle point is located between the branch points: 1/¢; < ps < 1/¢. While geometrically
the steepest descent path remains the same, now it lies on the lower Riemann sheet
Im (; < 0 near the saddle point. As a result, the value of (; contained in the reflection
coefficient at the saddle point would have the wrong sign.

Since the branch cut for (; ends at p = 1/¢, there is no way to return to the top
Riemann sheet for (; above the saddle point as we did in the previous case. On the other
hand, as shown above, it is impossible to stay on the same Riemann sheet while crossing
the branch cut if we are to preserve the continuity of the integrand. The solution for a
new integration path is shown in Figure 3.8. The idea is to cross the branch cut for (4
twice, thus making the integrand continuous.

The path starts on the top Riemann sheet (for both vertical slownesses) in the second
quadrant and follows along the branch cut for {; into the first quadrant. Then it crosses
the cut into the lower Riemann sheet Im{; < 0 (Im(¢ > 0 as before) into the second
quadrant and turns into the steepest descent path. The path crosses both branch cuts
and returns to the first quadrant where I'm ¢ < 0, Im (; > 0. At the saddle point the path
returns to the top Riemann sheet for (, where Im{ > 0, Im (; > 0. This path allows
us to keep the correct signs of both vertical slownesses near the saddle point and on the
ends of the real axis and, at the same time, preserve the continuity of the integrand.

If the frequency is large enough for the integrand to become negligibly small at the in-
tersection of the steepest-descent path with the imaginary axis (point F”), it is possible to
avoid the lower Riemann sheet for (; altogether by embarking on the steepest-descent path
at F' after moving up along the imaginary axis. However, in general we have to continue
the path along the imaginary axis up to point D where the integrand becomes negligible.
By doing this, we allow the oscillations of the integrand to cancel the contribution of the
path along the imaginary axis.

The distortion of the path in the second quadrant (from A to B to C') is designed to
demonstrate that the part of the original path from A to C' contributes nothing. Another
way to prove this is to apply the stationary phase method and show that there are no
stationary points for p < 0. In fact, we have done this before by decomposing the
Bessel function into two exponents and proving that the exponent containing the term
(—krsin®) (p < 0) does not produce stationary points. Physically, negative p correspond
to nonphysical waves propagating towards the source in the horizontal direction.
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Figure 3.8: The steepest-descent integration path for the case when the receiver is in the
post-critical domain (after Aki and Richards, 1980).
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Now our task is to find out which parts of the path make the principal contributions
to the integral. Arc AB does not contribute anything because the integrand is negligibly
small for large negative p due to the exponential term (I'm ¢ > 0). The same is true for
arc GH in the first quadrant. Away from real axis the integrand becomes small because
the integrand contains the term e=“/™®)"  Assuming that w is very large we neglect the
integral along the imaginary axis. Therefore, in addition to the contribution of the saddle
point, we have to take into account the integral around the branch cut near the real axis.

The saddle-point integration along the steepest-descent path leads to the same ex-
pression for the geometrical reflection discussed above. However, while the reflection
coefficient for sub-critical angles is real, it becomes complex in the post-critical domain.
The frequency-independent phase shift in the reflection coefficient distorts the shape of
the reflected wave making it different from the shape of the incident wave.

The most interesting effect in the post-critical domain is the generation of the so-called
head wave associated with the integral around the branch cut. It is important that the
sign of the real part of (; changes when the integration path turns around the branch
point and goes above the branch cut. Below the cut, on the original integration path,
Im{ > 0and Re(; > 0. Above the cut,

(o~ \/l/c% — (Rep)? —2iRepImp

Since the path stays on the upper Riemann sheet with Im {; > 0, above the cut
we have to choose the root with Re(; < 0. This means that cosf; in the reflection
coefficient (2.4.11) will be also negative.

Using equation (3.4.7) for the reflected wave, the integral below the branch cut can
be represented as

w 2 Ler p1/2 w [pr 2+
o) = Ve /4/0 V(p) N practztzol gp, (3.4.25)

v _ c1p1 cosf — cpcos by

: 3.4.26
c1p1 cos ) + cpcos by ( )

The integral above the cut has the opposite sign and the reflection coefficient is differ-
ent:

w i Ler p1/2 w [pr 2+z
62 — _ /%e /4/0 Vip) Fe lprQetao)l gy (3.4.27)

@ _ c1p1 cos B + cp cos By

ciprcost —cpcosh (3.4.28)

The integrand between p = 0 and p = 1/¢; is oscillatory, and in keeping with the
stationary phase methodology, the main contribution is made by a certain vicinity of
the point where the phase changes most slowly. There are no stationary phase points
f'(p) = 0 between p = 0 and p = 1/¢; because the only stationary point corresponds
to the geometrical reflection (it is the saddle point). However, the minimum of f'(p) is
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reached at the branch point p = 1/¢;. Expanding the exponent function near the branch
point, we get

fp) = f(1/cr) + f'(1/er)(p — 1/e1) . (3.4.29)
The terms of the second and higher order have been ignored. The phase term at the
branch point is

f(1/ey) =i[rfer+ (2 + 20/ 1/c2 =1/} =i[r/e1 + (2 + 20) cos b, /c] = it, (3.4.30)

describes the traveltime of the head wave ¢, that we obtained earlier in equation (3.3.25)
by the stationary phase method.
The first derivative of the phase function at the branch point is given by

f(1)er) =i {r — %} =ilL, (3.4.31)

L is the distance traveled by the head wave along the boundary.
In order to find an approximation for the reflection coefficient near the branch point,

we represent cos; = ¢y /1/¢2 — p?> ~ \/2¢;\/1/¢; — p, and V(p) near the branch point

below the cut (3.4.26) becomes

_ cpcoshy _cpV2a V1/ei—p
c1p1 cos i /1—02/0% ’

In the same fashion, the reflection coefficient above the cut (3.4.28) is

_1—|—x
Cl-x

14 ~1+42z.

The integrals above and below the cut (3.4.25,3.4.27) contain the constant part of the
reflection coefficients V() = V(2 = 1 and, therefore, cancel each other; only the variable
part £2z contributes to the final result. After taking the slowly varying terms out of the
integral, we obtain the following approximation for the total integral around the branch
cut:

) ) /2 cy\/1l/c
Oneas = 3V + 6@ = —4 |2 gin/arietn PV ), (asy
2mr c1p1 \/1—02/0% \/1—02/0%

1/01 R
I(L) = /0 1/l —p ee-1/e) gy, (3.4.33)
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After some small algebra,

W i g cp
paq = —4 ] — T/ AHitn I(L). 3.4.34
d)h d T € Clpl(l _ CQ/C%) ( ) ( )

In order to evaluate integral (3.4.33), it is convenient to substitute iy> = p — 1/c;.
Then dp = 2iy dy and

eiT\'/4

I(L) = —2¢€m/* /W y2e I dy . (3.4.35)
0

We assume that the path of integration over y lies in the first quadrant at 45° to the real
axis. While choosing the sign for y it is necessary to make sure that \/1/¢; — p remains
positive. Recalling that w is supposed to be large, we formally extend the integration
path to infinity. The integrand in (3.4.35) is an analytic function that does not have
poles between the path of integration and the real axis. Therefore, the integral over a
closed path including the path of integration and returning to the origin along the real
axis will give zero. This means that the integration along the 45° line in the first quadrant
in (3.4.35) may be replaced with integration along the real axis.

Using

> 2 7wLy2d — ﬁ
/0 ve YT H(wLpr

we get for I(L):
(L) = ot YT 3.4.36
(1) ==t 5 . (3.4.36)
Substituting equation (3.4.36) into (3.4.34) yields

i 202p ezwth

¢head = ; Clpl(]_ — 02/6%) 7"1/2L3/2 .
This is an asymptotic expression for the head wave valid everywhere except for some
vicinity of the critical ray 8 = 6., for which L = 0.

(3.4.37)

3.5 Properties of the head wave

Before analyzing asymptotic formula (3.4.37), let us consider some physical aspects of
the generation of the head wave. At post-critical incidence, the horizontal velocity of the
incident, reflected and transmitted waves is smaller than the velocity ¢; in the reflecting
medium, while the head wave propagates along the boundary with the constant velocity
¢1. Therefore, the head wave travels along the boundary ahead of the wavefront of the
incident wave.

This means that at the critical angle the reflected/transmitted waves split up into two
groups which propagate along the boundary independently of each other (Figure 3.9). The
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transmitted wave whose wavefront at the critical incidence angle is perpendicular to the
boundary, splits from the incidence wave and continues to travel along the boundary with
the velocity ¢;. While sliding along the boundary, this wave radiates the head wave back
into the low-velocity medium. The wavefront of the head wave in the incidence plane is a
straight line tangential to the wavefront of the reflected wave at the critical ray. Due to
the axial symmetry of the problem, the wavefront of the head wave is conical in space.

7 A

S
0 n<l — S 4

Figure 3.9: Wavefronts of the reflected /transmitted waves at a fluid/fluid boundary (after
Brekhovskikh, 1980). 1 - Direct (incident) wave; 2 - head wave; 3 - reflected wave; 4 -
transmitted homogeneous wave; 5 - transmitted inhomogeneous (evanescent) wave.

The second group that propagates along the boundary behind the first one, is rep-
resented by the incident, reflected and transmitted wave. The horizontal velocity of
the incident wave at post-critical angles is smaller than ¢;, and the transmitted wave is
inhomogeneous, exponentially decaying away from the boundary.

Asymptotic formula (3.4.37) enables us to understand some basic features of the head
wave. First, the amplitude decay with distance is given by the factor /2L 3/2. For large
r this factor becomes just 72, which means that the head wave decays with horizontal
offset much more rapidly than the incident or reflected wave. Such a rapid decay is
explained by the loss of energy due to the radiation into the low-velocity medium during
the head-wave propagation along the boundary. It is interesting that the amplitude of the
head wave even increases if the source and /or receiver are moved away from the boundary
while the horizontal distance between them is kept constant. In this case, r = const, but
L (the path traveled by the head wave along the boundary) becomes smaller leading to a
higher head-wave amplitude. Although this amplitude behavior seems unusual, it can be
easily understood by recalling that the energy loss of the head wave is mostly associated
with the path along the boundary.
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According to expression (3.4.37), in the vicinity of the critical ray the head wave
decays with 7 even more rapidly than =2 . At the critical ray itself L = 0, and the
asymptotic formula (3.4.37) is no longer valid. Brekhovskikh (1980) derives a more
accurate asymptotic expression for the head wave in the near-critical area by making
more elaborate expansions of the integrands in branch-cut integrals similar to (3.4.25)
and (3.4.27).

Furthermore, the geometrical-seismics formula (3.4.24) for the reflected wave is also
inaccurate near the critical ray. Although the expression (3.4.24) remains finite at the
critical ray, some of the expansions used to derive it become divergent. One of the main
assumptions made during the steepest-descent integration is that the reflection coeffi-
cient is a slowly-varying function of the horizontal slowness near the saddle point. This
assumption breaks down near the critical ray where dV/d0 is infinite.

The shapes of both the post-critical reflection and head wave are different from the
shape of the incident wave. Close to the critical ray, these two waves interfere with each
other giving rise to a complicated waveform that is very sensitive to the traveltimes and
shapes of both arrivals. Therefore, in spite of the existence of asymptotic solutions for
the critical ray and its vicinity (Brekhovskikh, 1980), it is preferable to use more exact
numerical methods in this area.

The solution (3.4.37) is obtained in the frequency domain. The factor €' is respons-
ible for the traveltime of the head wave; it will cause a shift of ¢ in the time domain. If
the rest of the formula were real and did not depend on frequency, the shape of the head
and incident wave would be identical. However, the asymptotic formula (3.4.37) contains
the term i/w which corresponds to integration in the time domain. Therefore, the shape
of the head wave is determined by the integral of the incident wave, and the spectrum
of the head wave is shifted towards low frequencies with respect to the spectrum of the
source pulse. However, we should remember that the above analysis is based on asymp-
totic methods. Exact numerical results discussed below give a more accurate description
of the properties of the head wave.

The most straightforward way to study the properties of the head wave is to evaluate
the exact integral (3.2.4) for the reflected wave. The results below are obtained by direct
numerical integration of (3.2.4) for the model of a fluid/solid boundary. In this case, the
integral expression remains the same but the reflection coefficient has a different form.
Integration around the branch cut yields an asymptotic formula for the head wave very
similar to expression (3.4.37), with the same phase term and dependencies on r, L, and
w; only the constant coefficient containing elastic parameters is different.

The plots in Figure 3.10 are generated by calculating the contributions of sub-critical
and post-critical incidence angles separately. The upper plot is the contribution of 8 <
sin '(¢/c;) obtained by numerical integration of (3.2.4) from 8 = 0 to 6 = sin '(¢/c;)
and subsequent application of the inverse Fourier transform. The middle plot is the result
of the same operation for post-critical incidence angles sin™'(¢/c;) < 6 < 7/2. The plot
on the bottom is the total seismogram that would be recorded by a real receiver. The
influence of inhomogeneous waves is negligible because the source is far away from the
boundary.
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Figure 3.10: Exact synthetic seismograms of the P-wave reflected from a fluid/solid
boundary. a - the incident pulse; b - the result of integration over sub-critical incid-
ence angles; ¢ - the result of integration over post-critical incidence angles; d - the total
seismogram to be recorded by a real receiver. The model parameters are: n=0.7, 0=2,
h = 2/\ =2 (2 = 2y, A is the predominant wavelength), ¥ = r/\ = 15. § (shown on the
plots) is the ratio of the P to S-velocity in the solid medium.
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The splitting of the integration path made it possible to single out two components
of the head wave, one due to sub-critical incidence angles (P,El)), and another - due to
post-critical angles (P,EQ)). We recall that the stationary phase method failed to produce
a stationary point for sub-critical angles. The distinction between the two components of
the head wave is helpful in understanding the limitations of asymptotic methods and the
properties of the head wave. However, since both components arrive practically at the
same time and cannot be separated on experimental seismograms, we should be mostly
concerned with the properties of the head wave as a whole.

The shape of the component P,El) is close to the incident pulse, while the shape of

the post-critical component P,EQ) is more distorted. For relatively large values of ¢ (the
P/S velocity ratio in the reflecting medium), the post-critical component and the head
wave as a whole are close to the integral of the incidence pulse, as we should expect from
the asymptotic formula (3.4.37). Note that for large ¢ a fluid/solid boundary approaches
the model of a fluid/fluid boundary we studied above by means of analytic methods. It
is interesting that for smaller § the shape of both components of the head wave is much
closer to the incident wave than to the integral of it.

The distortion in the shape of the post-critical reflection is rather small, although the
angle of incidence is far beyond the critical value. As shown in Aki and Richards (1980,
Box 5.6), the shape of the post-critical reflection is determined by a linear combination of
the incident pulse and its Hilbert transform with the coefficients cos € and sin € respectively,
where € is the phase shift due to the reflection coefficient. At large incidence angles, close
to 90°, the phase of the reflection coefficient (3.3.15) is close to 180° (e = 7), and the
contribution of the Hilbert transform is small. Therefore, the shape of the post-critical
reflection approaches the shape of the incidence pulse at grazing incidence angles close to
90°.

The character of the interference of the two components of the head wave is shown in
more detail in Figure 3.11. The arrow shows the traveltime ¢, given by the asymptotic
expressions (3.3.25,3.3.26). Clearly, there is a small time delay between ¢, and the first
break, mostly due to the late arrival of the second component P,EZ). This delay is developed
near the critical ray, and it does not change much with offset r once the receiver leaves
the near-critical area. Therefore, the horizontal velocity of the head wave outside the
critical region practically coincides with ¢;, but its traveltime is slightly higher than the
asymptotic value ¢;. This time delay is relatively small and varies between 0.05 T and
0.15 T, where T is the period of the source pulse, depending on the velocity ratio and
2 4+ zp. The shift of the first break of the head wave with respect to the “geometrical”
time ¢, was observed in physical modeling (Guha, 1965).

Figure 3.12 shows the amplitude curves of the head wave and its two components for
two values of the P/S velocity ratio . For both models, the first component P,El) decays
at large offsets as 1/r%, while the divergence factor for the component P,EQ) and the total
head wave is a function of §. For large r > (7 — 8) r., (7. is the critical distance) the
total head wave decays approximately as 1/r° if 1.7 < § < 2, and as 1/r? for for § > 2.

The influence of the shear-wave velocity in the reflecting medium on the spectrum and
the amplitude of the head wave is entirely associated with the post-critical component
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Figure 3.11: Interference of the two components of the head wave; the total head wave is
shown below. n=0.7, § = 2.1, 0=1.9, h =1, 7 = 25. t;, corresponds to the “geometrical”
traveltime of the head wave; t = tfy, fo is the central frequency of the source pulse.
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P,EQ) and can be explained by the shift of the stationary-phase point of P,EQ) toward the

critical angle at 6 < 2. As a result of this shift, the inhomogeneous wave excited by
P,E2) in the high-velocity medium decays more slowly away from the boundary, and its
frequency content becomes higher. Since the wave P,EZ) is generated by a “skin layer”
of a finite thickness below the boundary, the predominant frequency of P,EZ) at small ¢
becomes higher, and the shape of the head wave approaches the shape of the incident
wave.

Also, at a fluid/solid boundary the stress component 7, vanishes, and

ou,, B ou,

dz  Or

Therefore, assuming that the particle motion is relatively stable, a slower decay in the
vertical direction means a slower decay in the horizontal direction (with increasing r).
Summing up, a shift of the stationary-phase point of the component P,EQ) towards the
critical angle at 0 < 2 leads to a higher predominant frequency and a slower decay with

r of the head wave.

The shift of the stationary point discussed above is related to the contribution of ¢§
to the reflection coefficient. Physically, the influence of ¢ is associated to the excitation
of the transmitted PS wave and the PPS head wave in the high-velocity medium. The
wave propagating along the boundary with the velocity close to ¢; generates not only the
pure P head wave in the incidence medium, but also a shear head wave (PPS) of the
same nature in the high-velocity medium.

Therefore, for a wide range of elastic parameters the head wave at a fluid /solid interface
decays with distance more slowly than predicted by the term r~'/2L=3/2. However, for a
fluid/fluid boundary the amplitude decay at large offsets (r > [7 — 8] r,,) is close to 1/r2.
The rate of amplitude decay is much higher near the critical ray although, clearly, not
as high as predicted by the asymptotic expression (3.4.37). In the vicinity of the critical
ray the head wave interferes with the post-critical reflection, and it is not worthwhile to
study any of the two waves as a separate arrival.

It should be also mentioned that except for the near-critical area the head wave is
much weaker than the post-critical reflection. The main factors contributing to this are a
rapid decay in the head wave’s amplitude during its propagation along the boundary and
a large reflection coefficient at post-critical angles (|V|=1). However, it is very common
to see intensive refracted arrivals on experimental seismograms which have much higher
amplitudes compared to synthetic head waves. The reason for this discrepancy is the
presence of vertical velocity gradient below the refracting boundary. Due to the gradient,
the transmitted waves penetrate into the medium and turn back up at different depths
rather than travel as pure head waves along the boundary. As a result, refracted waves
are formed by a larger part of the incident wavefront than pure head waves, and carry
more energy.
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3.6 Asymptotic analysis of the transmitted wavefield

3.6.1 Geometrical transmitted wave

The methods of the stationary phase (SPM) and saddle-point integration discussed above
can be applied in the same fashion to the integral (3.2.5) for the transmitted wave. First,
we will obtain the geometrical-seismics solution by using the zero-order approximation of
the SPM.

Substituting an asymptotic representation of Bessel function .J; (3.3.1) into the integ-
ral (3.2.5) yields

2—
/W/ 100 W {ei[kzo cos 0+kidcos 01 +krsin0—m /4]
V o Vrsinf

+6 i[kzo cos +kidcos 61— kr51n0+7r/4]} sdeH (361)

d = —z is the distance between the receiver and the boundary.
Taking the derivative of the phase of the first exponential function

®(0) = kzgcos O + kydcosby + krsinf — /4,

we find the stationary-phase condition to be

dd(6 . dcosf
% = —kzgsinf + kid 7] L

Note that in this derivation we assume both angles (6 and ;) to be real i.e., both
the incident and reflected waves are homogeneous. Representing cos#; = v/n? — sin®6/n

(n=c¢/cy) gives

+ krcosf =0. (3.6.2)

dcosf; sin 6 cos 6

df nvn? —sin?6
Then the stationary-phase equation (3.6.2) becomes

sin 6 cos 0
—kzysinf) — kd ———= + krcosf = 0. 3.6.3
° Vn? —sin0 ( )
Taking into account that 6 and 6; are related by Snell’s law sin@/c = sinf; /¢y, we
obtain from equation (3.6.3):

r =z tanf +d tan 6, . (3.6.4)

The geometrical meaning of the stationary-phase equation (3.6.4) is clear: the most
prominent contribution to the transmitted wavefield is made by the ray from the source
to the receiver refracted in accordance with Snell’s law. This geometrical ray exists for
all source-receiver positions and velocity ratios and corresponds to real ¢ (0 < 6 < 7/2).
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For the transmission into a high-velocity medium (n < 1), the refracted geometrical ray
is due to sub-critical incidence angles 0 < 6 < sin~! n.

It can be shown in the same way as for the reflected wave that the second exponen-
tial function in equation (3.6.1), which corresponds to in-going waves in the horizontal
direction, does not generate any stationary-phase points on the integration path.

To calculate the amplitude of the geometrical refraction, it is necessary to evaluate the
contribution of the stationary point satisfying equation (3.6.4). This derivation is virtually
identical to the stationary-phase analysis performed for the reflected wave. Expanding the
phase of the first exponential function into a Taylor series at the stationary point, taking
the slowly varying terms out of the integral, and using the expression for the Fresnel
integral (3.3.11), we find

k si 95 im/4 .
¢tr = Sl:nl t W(est) ; 2P €Z¢(05t) ) (3'6'5)
462

where 0y, is the angle that satisfies the stationary-phase equation (3.6.4).
The phase ® at the stationary point is given by

O (05) = kzo/ cost + kid/costy — /4 =kR+ k1R, — /4, (3.6.6)

R and R, are the distances traveled by the geometrical ray in the source and receiver
media, respectively.

After some algebra, the second derivative of ® at the stationary point can be shown
to be

612_<I>( )__kzo _kd60520
doz VY T cos mcos3f

Substituting equations (3.6.6,3.6.7) into (3.6.5) yields (the subscript “st” is omitted)

(3.6.7)

b — W (6) GilkR+k1Ry) (3.6.8)
cos 6 \/ﬁ (coz%g + W‘slaal)

Although it is not as obvious as it was in the case of the reflected wave, the result in
the zero-order approximation of the SPM (3.6.8) is equivalent to the geometrical-seismics
solution. Indeed, the traveltime of the transmitted wave is calculated along the geometrical
ray and the amplitude depends on the transmission coefficient for the plane wave incident
on the boundary at the “geometrical” angle. The denominator, as shown in Brekhovskikh
(1980), describes the divergence of energy along the geometrical ray; this term is just
more complicated than the simple spherical divergence factor for the reflected wave.

Using formula (2.4.12) for the transmission coefficient, we obtain the transmitted wave
as an explicit function of the model parameters and incidence angle:

2 .
Gir = ikRTk ) (3.6.9)

(0(:0594—7160391)\/ r (20 +L)

sinf \ cos3 @ n cos3 61
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o= pi/p.

3.6.2 Inhomogeneous transmitted waves

In the above derivation, we searched for stationary points on the part of the integration
path corresponding to homogeneous incident and transmitted waves. This means that the
angle f was assumed to belong to the interval 0 < 6 < /2 for transmission into a low-
velocity medium (n > 1) or to an even shorter interval 0 < § < sin ' n for transmission
into a high-velocity medium. Outside of these intervals, the incident and/or transmitted
wave become inhomogeneous thus changing the stationary-phase equation.

We continue the discussion of the transmitted wavefield assuming that the incidence
medium has a lower velocity: ¢ < ¢, n < 1. First we apply the zero-order approximation
of the stationary-phase method and ignore the phase of the transmission coefficient. For
the part of the integration path corresponding to real post-critical angles sin ' n < 0 <
7/2, the phase of the integrand is given by

O(f) = kzycosf + krsinf — /4.

The term kqd cos f; becomes imaginary and drops out of the phase function.
Differentiating ®(6), we find the stationary point to be
Oy = tan™" (r/2) . (3.6.10)

In order for the stationary point to belong to the interval sin 'n < 6 < 7/2, the
projection of the receiver on the boundary should be in the post-critical domain:

Oy = tan ' (r/2p) > sin 'n.

The corresponding refraction angle is given by
. . r .
sin6y =sinfg/n = o (sin6, > 1), (3.6.11)

where R = /r2 + 22 is the distance between the source and the projection of the receiver
on the boundary.

Without performing a complete stationary-phase derivation, we can represent the in-
homogeneous transmitted wave as

i? — A esz efk1d| cos 01| ,

(3.6.12)

where A is the amplitude coefficient, and

\/sin? 0y, — n?
it Ay (3.6.13)

cosb, =1
n

We have obtained the inhomogeneous transmitted wave that was mentioned during the
analysis of the reflected wave in the post-critical region (see Figure 3.9). The traveltime
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of this transmitted wave is determined by the ray from the source to the boundary, while
the amplitude exponentially decays from the boundary into the high-velocity medium.
The rate of decay that can be deduced from equations (3.6.13,3.6.12) becomes higher
with increasing incidence angle 6.

As we have seen before, when an incident and/or transmitted wave becomes inhomo-
geneous, the reflection/transmission coefficients become complex and introduce addi-
tional terms into the stationary-phase equations. The transmission coefficient (2.4.12)
for 0 > sin"'n is

2 cos
W(0) = . 3.6.14
©) o cosf + iv/sin? 0 — n? ( )
Next we apply the first-order approximation of the SPM taking the phase of W (#)
into account. The full phase of the integrand for the transmitted wave at post-critical

incidence angles is

) 9 — .92
®(0) = kzgcos@ + krsinf — tan ! <M> —7/4. (3.6.15)
o cosf
This phase function can be represented as
1
o(0) = 3 PQrepi(0) — /8, (3.6.16)

where @,z is the phase of the reflected wave (3.3.17) for a receiver located at the
point [z, 2r] in the post-critical region in the incidence medium. From equation (3.6.16)
it is clear that that the stationary points for the reflected and transmitted waves in the
post-critical region are identical. One of the stationary points corresponds to the head
wave that slides along the boundary. More precisely, the receiver near the boundary
records the post-critical (inhomogeneous in the high-velocity medium) component of the
head wave. The second stationary point corresponds to the inhomogeneous transmitted
wave discussed above. In the first-order approximation of the SPM (equation [3.6.15]),
this stationary point is shifted with respect to its position obtained in equation (3.6.10)
in the zero-order approximation.

What do these results tell us about the physical picture of the transmitted wavefield?
For any receiver position in the high-velocity medium, we can always find a geometrical
ray from the source to the receiver refracted in accordance with Snell’s law. Therefore,
the only transmitted wave that exists for all source and receiver positions is the geomet-
rical arrival described by equations (3.6.8,3.6.9). When the projection of the receiver on
the boundary is in the post-critical region (tan=! (r/z9) = 6, > sin" ' n), the transmitted
wavefield also contains two inhomogeneous (evanescent) waves: the post-critical compon-
ent of the head wave and the inhomogeneous transmitted wave generated at the projection
of the receiver on the boundary. These waves correspond to the same incidence angles
as the head and reflected waves (respectively) in the incidence medium (Figure 3.9).
Physically, a receiver located in the high-velocity medium near the boundary picks up
the transmitted components of both wave groups propagating along the interface. As we
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have shown above, the faster group is formed by the head wave and homogeneous trans-
mitted wave, while the slower group contains the incident, reflected, and inhomogeneous
transmitted waves.

In order to record both inhomogeneous waves, the receiver should be close to the
boundary. When the distance between the receiver and the boundary exceeds the wavelength
(the predominant wavelength in the case of a transient pulse), the inhomogeneous waves
vanish, and the transmitted wavefield contains only the geometrical arrival. Note that the
rate of amplitude decay is higher for the inhomogeneous transmitted wave than for the
post-critical component of the head wave, because the transmitted wave corresponds to
larger incidence angles.

Since both inhomogeneous wave can exist only close to the boundary, they are similar
to surface waves. However, if we replace the high-velocity halfspace with a thin high-
velocity layer, the inhomogeneous waves can be transformed back into homogeneous waves
upon leaving the layer and be recorded far from the source. Effects of this type are usually
referred to as “tunneling” of energy.

The last part of the integration path that we have not examined yet is the one contain-
ing inhomogeneous waves from point-source radiation (complex values of #). For n < 1,
these waves remain inhomogeneous after the transmission, and both cos# and cos#; are
imaginary. Thus, the transmission coefficient becomes real again, and the phase of the
integrand contains just krsin @ — 7 /4. This phase is exactly the same as the phase of the
reflected wave for the same incidence angles. As we have shown in the section devoted to
the reflected wavefield, there are no stationary phase points corresponding to inhomogen-
eous waves in this case. This concludes our analysis for the acoustic transmission into a
high-velocity medium (n < 1).

3.6.3 Transmission into a low-velocity medium: nongeometrical
waves

Now we consider the transmitted wave for the case when the incidence medium has a
higher velocity: ¢ > ¢;, n > 1. Applying the zero-order approximation of the stationary
phase method to the interval corresponding to homogeneous incident waves (0 < 6 < 7/2),
we get the same geometrical-seismics expression (3.6.9) as for n < 1. Since n > 1,
elementary transmitted waves corresponding to 6 < 7/2 are also homogeneous, and the
transmission coefficient is real. Therefore, the first-order SPM approximation will not
produce any more stationary points on the interval corresponding to homogeneous incident
waves.

Next we examine the part of the integration path from 6 = 7/2 to § = 7/2 — ico
that contains inhomogeneous incident waves. Since n > 1, inhomogeneous waves may
be converted into homogeneous, non-decaying transmitted waves. Indeed, for the part of
the integration path below the point # = w/2 where 1 < sin 6 < n, the refraction angle is
real (sinf; = sinf/n < 1), and transmitted waves are homogeneous. The phase of the
exponential function in the integral for the transmitted wave (3.6.1) can be written on the
interval 1 < sinf < n as follows (the second, nonphysical, exponent in equation [3.6.1] is
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ignored):
®(f) = kydcosby + krsinf — /4.

Note that the term kzycos# is imaginary and does not contribute to the stationary-
phase equation. Replacing krsinf with kirsinf; and taking the derivative of ® with
respect to 0, we find the stationary point to satisfy

0, =tan ' (r/d). (3.6.17)

The refraction angle from equation (3.6.17) corresponds to the transmitted wave
propagating from the projection of the source on the boundary. This wave is usually
called “pseudospherical” because its wavefront, like the wavefront of the incident wave,
has a spherical shape but with the center moved from the source to its projection on the
interface. For the pseudospherical wave to exist, the stationary point (3.6.17) should lie
on the interval 1 < sinf < n or 1/n < sinf; < 1. Therefore, in order to record the
pseudospherical wave, the receiver should be located between the interface (sin#; = 1)
and the critical ray in the refracting medium (sin ¢, = 1/n). Calculation of the amplitude
of the pseudospherical wave in the zero-order approximation of the SPM is suggested as
an exercise for the students. The discussion of the properties of the transmitted wavefield
will be continued after application of the first-order approximation of the SPM.

Since cosf on the interval 1 < sinf < n is real while cos is imaginary, the trans-
mission coefficient is given by

2i| cos 0|
W = 3.6.18
io|cos@| +ncosb,’ ( )
o=pi/p, n=c/c.
The phase of the transmission coefficient is

By = /2 — tan-! (227 (3.6.19)

w=T — . .0.

n cos 0,

Using #, as the variable, ®,, can be represented as

o /2 — tan~! (m/nZSin201—1>
w=T/2— tan

n cos

or, introducing ny = 1/n =c¢;/c and oy =1/0 = p/p,
[ 2 2
sin” 0, — nj
®, =m/2 —tan" | F———0m | . 3.6.20
m/ an ( o1 cos by ) ( )

The total phase of the integrand in the expression for the transmitted wave (3.6.1) for
1 <sinf <n (1/n < sinf; < 1) becomes (only the first exponent is taken into account)
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_ B ( sin201—n%)
®y = kyd cos @y + kyr sinf) +7/4 —tan P | o | . (3.6.21)
o1 costhy
In principle, we can proceed with the stationary-phase analysis by taking the derivative
of the phase function and solving the equation for the stationary points. However, instead
of doing this we can notice that the phase (3.6.21) virtually coincides with the phase
of the integrand for the post-critical transmission into a high-velocity medium given by
equation (3.6.15).
Let us switch the source and receiver positions and put the source at point R and re-
ceiver at point S (Figure 3.13). Rewriting the phase function (3.6.15) for the transmission
from R to S at post-critical incidence angles yields

Py (R — S) = kydcosfy + kirsinf, — /4 — tan ! ( (3.6.22)

sin? 0, — n%)

o, cos 0,

Sq r r R

Figure 3.13: To the discussion of the kinematic equivalence of the transmitted wavefields
from point S to R, from R to S, and the reflected wavefield from S; to R.

The difference between the two phase functions (3.6.21, 3.6.22) is just a constant (7/2),
and the stationary-phase points would be identical. Essentially, this conclusion follows
from the principle of reciprocity: the traveltimes (and, consequently, the stationary points)
should remain the same when we exchange the positions of the source and receiver.

Therefore, it was not necessary to do the full-scale stationary-phase analysis for the
transmitted wave on the interval 1/n < sin#; < 1. The stationary points #; for the
transmitted homogeneous waves formed by incident inhomogeneous waves (Figure 3.14)
are the same as the stationary points #; for the wavefield transmitted into the high-velocity
medium at post-critical incidence angles.
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Figure 3.14: Stationary phase points corresponding to nongeometrical waves generated at
a fluid /fluid boundary during the transmission into the low-velocity medium. 6, - leaking
wave; 0] - pseudospherical wave. Model parameters are n = 2 (61, = 30°), 0=0.8.
Geometrical parameters are normalized by the wavelength: 7 =r/\, d = d/\.
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Below we discuss the physical nature of the transmitted waves associated with the
stationary points in Figure 3.14. We will call these waves “nongeometrical” because they
cannot be described within the framework of the standard ray theory. Both nongeomet-
rical waves exist only in the post-critical domain in the low-velocity medium; the condition
to be satisfied by the receiver coordinates is tan~!(r/d) > 6., = sin"'(c;/c). Since the
value of sin # for the nongeometrical waves is greater than unity, they are inhomogeneous
in the incidence medium and decay exponentially when the source moves away from the
boundary. This feature of nongeometrical waves makes them similar to surface waves.
However, in the low-velocity medium both nongeometrical waves become homogeneous
(sinf; < 1) and can be recorded far from the boundary. By their nature, nongeometrical
waves can be classified as being somewhere in between conventional body waves and
surface waves.

The pseudospherical wave associated with point 67 in Figure 3.14 has been briefly
discussed above; it is kinematically analogous to the inhomogeneous wave transmitted at
post-critical angles. The stationary point 67 ~ tan~'(r/d) for this wave is close to its
position in the zero-order approximation of the SPM.

The second nongeometrical wave, analogous to the post-critical component of the head
wave (point #), in Figure 3.14), is usually called “leaking” because it “leaks” energy into
the low-velocity medium while propagating along the boundary. The stationary point for
this wave is close to the critical angle: #; ~ sin *(1/n).

Application of reciprocity is helpful in developing a better understanding of the phys-
ical nature of the nongeometrical waves. The stationary points in the case of the post-
critical transmission into the high-velocity medium (from R to S, Figure 3.13) represent
inhomogeneous waves formed due to the refraction of homogeneous waves incident on
the boundary at post-critical angles. When the wavefield is transmitted in the opposite
direction, into the low-velocity medium (from S to R), this situation is reversed: inhomo-
geneous waves excited by the source are transformed into homogeneous waves propagating
at post-critical refraction angles.

Nongeometrical waves can exist only when the source-boundary distance z is relat-
ively small. When the source is moved away from the boundary, the amplitude of nongeo-
metrical waves exponentially decreases and the predominant frequency becomes lower.
We may say that source-generated inhomogeneous waves “tunnel” through the boundary,
become homogeneous in the low-velocity medium, and give rise to nongeometrical wave
components.

Further generalizing our discussion of the kinematic relations between the wavefields
excited in both halfspaces, it is possible to show that the transmitted wavefield at point
R formed by inhomogeneous incident waves excited at S is kinematically equivalent to
the post-critical reflected wavefield in the low-velocity medium. In order to illustrate this,
we move the source S into the halfspace with the receiver and put it at point S at the
distance d from the boundary and 2r from the receiver R (Figure 3.13). We have already
proved that the stationary phase points are identical for the post-critical reflection from R
to Sy (or Sy to R) and post-critical transmission from R to S. Also, we have shown that
the stationary phase points remain the same for the transmission from S to R or from R
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to S. Therefore, the head wave (post-critical component) and the post-critical reflection
for the propagation from S; to R should be kinematically equivalent to the leaking and
pseudospherical waves respectively.

Indeed, let us write down the phase of the integrand in the expression for the post-
critical reflected wavefield ®,.y when the source is located at point S; and the receiver is
at point R (Figure 3.13). ®,.f is given by equations (3.3.16),(3.3.17); the only change to
be made is to assign index “1” to the incidence medium instead of the reflecting medium.
Then for the interval 1/n < sinf; < 1 we have

sin® 0, — n?

PQrepi (S1 — R) = 2k1d cos 0y + 2kyr sinfy — /4 — 2tan (
o, cos 6,

) . (3.6.23)

Comparison with equations (3.6.20),(3.6.21) shows that

3
2(1)“«(5 — R) = <I>refl(51 — R) + Zﬂ-’ (3624)

and the stationary-phase points at post-critical angles f; > sin~'(1/n) defined by ® =0
are identical for the wavefields at point R from the sources at S and S;. Equation (3.6.24)
proves that for the geometry from Figure 3.13 the traveltimes of the post-critical reflec-
ted wave and the head wave (post-critical component) are twice the traveltimes of the
pseudospherical and leaking waves respectively.

Let us now discuss the properties of the nongeometrical waves in greater detail. The
pseudospherical wave kinematically analogous to the post-critical transmission into the
high-velocity medium will be denoted as P*. Ignoring the shift of the stationary point
due to the transmission coefficient, P* can be represented as

¢* — A*eik1R1 e—kzo \/sinZ 6 —1 , (3625)

where Ry = /172 + d? is the distance traveled by the wave in the low-velocity medium,
A* is the amplitude coefficient, and

Sin0* = nsinf = ——r (3.6.26)

V14 (d/r)?

Equation (3.6.25) explicitly demonstrates one of the major features of the pseudo-
spherical wave already mentioned above - its spherical wavefront with the center at the
projection of the source on the boundary (Figure 3.15).

In the incidence medium, P* is inhomogeneous with the rate of amplitude decay
dependent on the receiver position in the refracting medium. For the receiver at the
critical ray, sin #* = 1, and the decay factor in equation (3.6.25) is zero. With increasing
refraction angle 07 the wave P* decays faster due to larger sin *. If the receiver is located
close to the boundary, 87 approaches 90°, sin #* is close to n, and the decay factor reaches
its maximum value. Therefore, we may expect that the energy distribution along the
spherical wavefront of P* is very uneven with the highest amplitude near the critical ray
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Figure 3.15: Asymptotic “raypaths” of the pseudospherical wave P* and leaking wave P.

and a minimum near the boundary. A more rigorous proof of this assertion requires the
calculation of the amplitude factor A*; we have left it out as an exercise for the students.

It should be also mentioned that the frequency content of P* changes along the wave-
front because the decay factor contains the frequency as a multiplier. Essentially, for
inhomogeneous waves the incidence medium acts as a low-pass filter with the paramet-
ers depending on the source-receiver geometry and elastic coefficients. From the analysis
given above it follows that the wave P* loses high frequencies as the receiver moves along
the wavefront from the critical ray towards the boundary.

The nongeometrical arrival associated with the stationary point 0, ~ sin~*(1/n) is
usually called the “leaking” wave and denoted as P. In the stationary-phase approxima-
tion, the potential of the leaking wave is

d; — A ei(kL—l—kld/ cos 0) e—kzo \/sinZ 0—1 , (3627)

L =r —dtan#, is the distance traveled by the leaking wave along the boundary. Unlike
the pseudospherical wave, P has a fixed refraction angle 6, close to the critical angle in
the low-velocity medium. Therefore, sin f is close to unity, and the decay factor for P is
smaller than for P* and does not depend on the receiver position.

Like a head wave, the leaking wave propagates along the boundary with the velocity
close to the higher P-wave velocity (¢) and radiates (leaks) a conical wave into the low-
velocity halfspace. The wavefront of the leaking wave in the incidence plane is a straight
line that makes an angle of 6. with the boundary. However, while the head wave is
generated by the refraction at the critical angle, the wave P is excited directly in the
high-velocity medium by inhomogeneous waves contained in the point-source radiation.

It should be emphasized that the “raypaths” of the nongeometrical waves have a
different meaning than the raypaths of conventional body waves. The paths shown in
Figure 3.15 represent a convenient way to explain analytic formulas for the nongeometrical
waves rather than the actual directions of energy propagation. For instance, it is clear
that there is no traveltime associated with the segment from the source to the boundary;
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both nongeometrical waves experience an exponential decay in the incidence medium
but there is no corresponding frequency-dependent phase shift. Since propagation of the
nongeometrical waves cannot be described in terms of ray theory, there are no geometrical
rays to be associated with waves like P* and P. We can say that nongeometrical waves
“tunnel” through the boundary to give rise to homogeneous, non-decaying waves in the
low-velocity halfspace.

Aki and Richards (1980) in their discussion of surface waves point out that since the
amplitude and phase spectra of inhomogeneous waves are independent of each other, these
waves are not causal and may in principle appear at negative times (if the source was
initiated at ¢ = 0). The important point to make is that the waves P* and P do have some
phase shift and an approximate “geometrical” traveltime associated with the propagation
along the boundary (for P) and in the low-velocity medium. These geometrical traveltimes
should be computed along the solid lines in Figure 3.15). While the actual arrival times
of both waves P* and P may be smaller than the geometrical values, the causality is not
violated since P* and P do not appear at negative times.

From a practical point of view it is essential that at small source-boundary distances,
when the exponential decay is relatively weak and the nongeometrical arrivals are still
well-defined, the traveltimes of the nongeometrical waves are close to the values calculated
along the “raypaths” in Figure 3.15. Although the traveltimes of the waves P* and
P do not formally depend on the distance between the source and the boundary, the
source elevation does affect the waveform and, therefore, may change the arrival time
corresponding, for example, to the first peak.

We should also keep in mind that our analytic expressions have been derived in
the high-frequency stationary-phase approximation. If the source moves away from the
boundary, our asymptotics becomes less accurate due to a more rapid change in the de-
caying exponent that may shift the positions of the stationary points for the waves P*
and P.

3.7 Numerical analysis of nongeometrical waves

The transmitted wavefield for a receiver located in the post-critical domain in the low-
velocity medium is shown in Figure 3.16. The seismograms were calculated by numerical
integration of the exact expression (3.2.5) for the transmitted wave. The contributions of
homogeneous waves (0 < § < /2, upper trace) and inhomogeneous waves (middle trace)
from the point-source radiation were calculated separately and summed up in the bottom
trace that represents the total response that would be recorded by a real receiver.

Since the source is close to the boundary, the leaking wave P arrives almost at the
same time as the conventional transmitted wave and substantially changes the amplitude
and shape (but not the traveltime) of the first arrival. Therefore, when the source is close
to the boundary the first arrival (denoted as Ps in Figure 3.16) is made up of two wave
components of different nature.

Near the critical angle the two nongeometrical waves interfere with each other like
the head and reflected waves in the same area. Away from the critical ray in the low-
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Figure 3.16: Exact synthetic seismograms of the wavefield transmitted into the low-
velocity medium; the receiver is located in the post-critical region. The upper trace (a) is
the contribution of homogeneous incident waves, the middle trace (b) is the contribution
of inhomogeneous incident waves, the lower trace (c) is the total seismogram. Model
parameters are n=1.5, 0=0.8, 7=0.1, d=0.25, 7=4. %, d, 7 are the distances normalized
by the predominant wavelength in the high-velocity halfspace.
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velocity medium the pseudospherical wave P* forms a separate arrival that can dominate
the seismogram if the distance between the source and the boundary is small compared
to the predominant wavelength. Hence, unlike surface waves, nongeometrical waves span
a wide range of traveltimes starting with the first arrival.

It is interesting to compare the transmitted wavefield in Figure 3.16 with the wavefield
reflected from a high-velocity halfspace in the post-critical domain (Figure 3.10). We have
already proved that for the geometry of Figure 3.13 the traveltimes of the leaking wave P
and the pseudospherical wave P* are two times smaller than the traveltimes of the post-
critical component of the head wave (PfEQ)) and the post-critical reflection respectively.
Since the conventional transmitted wave for small 2z, propagates practically along the
interface, its traveltime is roughly a half of the traveltime of the sub-critical component
of the head wave P,El). Therefore, from the kinematic standpoint the seismograms in
Figure 3.16 represent scaled versions of the seismograms in Figure 3.10. We conclude
that the wavefield transmitted into the post-critical domain of the low-velocity medium
is kinematically equivalent to the reflected wavefield in the same region.

The critical model parameter for the nongeometrical waves is the distance between
the source and the boundary (zg). The influence of zy on the transmitted waves is shown
in Figure 3.17. Since the receiver is far from the critical ray )., = sin™'(1/n), the wave
P* decays with increasing 7, much faster than P and practically vanishes for z, > 0.3.
However, the dependence of the amplitude of P* on the source elevation becomes much
less pronounced when the receiver is closer to the critical ray.

It should be emphasized that the influence of Z, on the amplitude of P is relatively
weak, and this nongeometrical wave affects the amplitude and the frequency content of
the first arrival up to zp = 0.5 — 0.8. While the nongeometrical waves decay when the
source is moved away from the boundary, the amplitude of the geometrical transmitted
wave and the first arrival Ps;, as a whole increases due to higher values of the transmission
coefficient.

The distance between the receiver and the boundary (d) also has a considerable influ-
ence on the dynamics of the nongeometrical waves, especially the pseudospherical wave
P* (Figure 3.18). The factors responsible for the increase in the amplitude of P* with d
are a weaker exponential decay in the incidence medium and larger values of the amp-
litude coefficient A* in equation (3.6.25). The leaking wave, as a head wave, rapidly
loses energy on its way along the boundary and, therefore, becomes more intensive with
increasing d. However, the amplitude of P is not as sensitive to d as the amplitude of the
pseudospherical wave P*.

The amplitude trends in Figure 3.18 continue within the area where the pseudospher-
ical wave can be separated from the wave Pys. For relatively large d corresponding to a
vicinity of the critical ray, the waves P* and Ps begin to interfere with each other.

The dependence of the amplitudes on the horizontal offset r is well-approximated (far
from the critical ray) by the law 1/r% with o ~ 2 — 2.2 for the waves P* and Pyg. It is
interesting that both components of the interference wave Ps decay with » much slower,
with o =~ 1.5.

A rapid decrease in the amplitude of P* with r is due to a lower energy level in the part
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Figure 3.17: Dependence of the amplitudes of the transmitted waves on the normal-
ized distance between the source and the boundary. Model parameters are n=3, 0=1.4,
d=0.66, 7=1.8.
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of the wavefront corresponding to larger refraction angles ;. Note that the amplitude of
P* has a spherical divergence factor (1/v/72? + d?) at a fixed refraction angle. Therefore,
the peculiar dependence on r is explained by a sharply uneven distribution of energy along
the wavefront of the pseudospherical wave.

In practice, we are mostly interested in the relative amplitudes of the waves P* and
Ps. From the analysis above it follows that the amplitude ratio P*/Ps increases when
the source is moved closer to the boundary and/or the receiver is moved away from
the boundary (within the post-critical domain). The presence of attenuation in the low-
velocity medium leads to smaller relative amplitudes of the wave P* but does not change
the wavefield drastically unless the attenuation coefficient is very large.

After having studied the transmitted wavefield we can finish our analysis of the reflec-
ted wavefield formed by incident inhomogeneous waves. While there are no stationary-
phase points at complex # when n < 1, the situation changes for the case n > 1. If
we apply the first-order approximation of the SPM on the interval 1 < sinf < n, we
obtain two stationary points with sin # slightly larger than unity and slightly smaller than
n. The corresponding waves are inhomogeneous and propagate along the boundary with
horizontal velocities close to ¢ and ¢; respectively. The first wave is excited by the leaking
wave P that travels along the boundary with the velocity a little bit smaller than ¢ and
generates an exponentially decaying wave in the incidence medium. The second wave is
due to the horizontally propagating “ray” of the pseudospherical wave P* that travels
along the boundary in the reflecting medium with the velocity ¢; and also generates an
inhomogeneous wave in the incidence medium. Both reflected inhomogeneous waves exist
only in the immediate vicinity of the boundary and decay exponentially with increasing
source-boundary and/or receiver-boundary distance. In the saddle-point integration these
waves should be taken into account when the saddle point approaches the branch point
p = 1/c at large incidence angles.

We have discussed the properties of the nongeometrical waves for the simplest model
- a fluid/fluid boundary. In the following chapter we will analyze complete wavefields
including nongeometrical waves for more complicated elastic media.
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Chapter 4

Point-source radiation in elastic media

4.1 Reflection/transmission of a spherical wave at a
solid /solid boundary

After having treated the acoustic reflection/transmission problem, we continue the discus-
sion of point-source radiation by considering reflection/transmission of spherical waves
at a boundary between two elastic halfspaces.

As before, a point explosive source is located at distance zy above a plane interface
z = 0. The P-wave velocity, S-wave velocity and density in the incidence medium are
denoted as ¢, b, and p respectively; the same parameters of the second medium will have
subscript “1.” The potential of the spherical wave radiated by the source is still given by
equation (3.1.2) and may be decomposed into plane or cylindrical waves exactly as in a
fluid medium. We will represent the potential of the incident wave as the Weyl integral
over plane waves (3.1.10):

Bine = % GilkR—wt) _ ;_"7 it / o / T gilkertbukGo—) gin 0dfdg . (A.1.1)
T 0 0

The factor ¢! will be omitted in the following. The derivation of the integral ex-
pressions for the reflected /transmitted wavefield at a solid/solid interface is in principle
similar to the acoustic case; the differences are associated with the treatment of shear
waves. Below we will obtain integral expressions for the transmitted wavefield; the cor-
responding expressions for the reflected wavefield can be derived in the same fashion.

We begin with the potential of the transmitted P-wave. Taking into account the
vertical phase shift and the transmission coefficient, an elementary transmitted P-wave
from the decomposition (4.1.1) can be written as

U T (4.1.2)

The value of the transmission coefficient W), is known from the solution of the plane-
wave problem. Integrating over the transmitted plane waves, we get
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Applying formula (3.1.12) for the Bessel function, we find the potential of the trans-
mitted P-wave to be

w[2—ic0 21 .
L7 [ Wapl0) ettt sing g (4.1.3)
0 0

w/2—i00 .
S = ik / W, eilkzocos0=kizcosn) Jo (e i 9 sin 0 d6. (4.1.4)
0

We have obtained a Sommerfeld-type integral identical to the expression (3.2.5) for
the wavefield transmitted through a fluid/fluid boundary; the difference is only in the
value of the transmission coefficient.

Since the model is now elastic, each incident plane P-wave also generates a transmitted
SV-wave with the potential ¢ given by

wtr ;= Wps (9) ei(lczx-l—kyy-i-kzo cos0—ks12cosvy1) : (415)

where kg and v, are the S-wave’s wavenumber and the refraction angle in the second
(refracting) medium. SH-waves are not excited because an explosive source generates
only P-waves and there is no coupling between P and SH-waves at the boundary.

Unlike the P-wave potential, the S-wave potential @/;f,{ is a vector that lies in the
horizontal plane perpendicular to the wave vectors of the incident and transmitted plane
waves. This property of z;f,f was established when we discussed the potentials of P and S
plane waves in 1-D layered models (see equations [2.2.3 - 2.2.5]). Formula (4.1.5) gives
the scalar value of the S-wave’s potential along the horizontal y-axis perpendicular to the
wave vectors k and Esl. Therefore, when we sum up the elementary transmitted S-waves,
we have to perform a vector summation of the potentials instead of the scalar summation
we have just done for the P-wave.

It is convenient to find the projections of the S-wave potential on the directions parallel
and perpendicular to the receiver azimuth o (z = 7 cos r, y = rsin «). Since the horizontal
component of the wave vector ksl makes the angle ¢ with the z-axis, the angle between
the corresponding S-wave potential wtr and the z-axis is ¢ + 90°. The angle between wtr
and the receiver azimuth is then ¢ + 90° — «, and the projection of the S-wave potential
on the source-receiver direction is

@/}H = P cos(d — o+ 90°) = — ¥ sin(¢ — a) . (4.1.6)

The projection of q/)f, on the normal to the source-receiver direction is (the positive
direction of the normal is counterclockwise from the z-axis):

PP = P cos(p — @) . (4.1.7)

In order to find the total S-wave potential in the refracting medium due to the incident
spherical wave, we perform the summation over the plane waves’ potentials projected on
the above two directions. Using equations (4.1.5,4.1.6), we get for the S-wave potential
in the source-receiver direction
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Representing k,z + k,y = krsin 6 cos(¢ — «), the integral over ¢ can be written as

2r
[‘T _ /0 ezkrsmﬁcos(dwa) sin(qﬁ . Oé) d¢ ] (419)

Due to the combination of the even and uneven functions (the exponent and the term
sin(¢—a), the integral (4.1.9) is zero and, consequently, the whole component 1)) vanishes.

Similarly, from equation (4.1.7) the S-wave potential projected on the normal to the
source-receiver direction is

ik

"o

w/[2—ico p2m .
(1 / / Wy (8) eketthyythzocosf-kazcosm) coq(gh — ) sin § dfdg. (4.1.10)
0 0

The integral over ¢ in this case takes the form

2T . )
19 = / eikrsinfeos(é=a) cog(h — o) dgp . (4.1.11)
0
Using the expression for the first-order Bessel function
—1 2 .
Ji(z) = — / TSt cos ¢t (4.1.12)
2m Jo
we obtain
19 = 2mi Jy(krsin6) . (4.1.13)

The integral for the S-wave’s potential becomes

/2—i00 .
¥y = —k / W,y (8) eilkzocos0=kaazcosn) 1 (kpsin §) sin§df . (4.1.14)
0

Thus, the potential of the transmitted S-wave lies in the horizontal plane normal to
the source-receiver direction.

From this point on it is more convenient to use a cylindrical coordinate system
[r, a, z]. This choice of the coordinate system is natural since our problem is axially
symmetric, and there should be no dependence on the angle a. Also, equation (4.1.14)
that we have just derived gives the a-component of the S-wave potential (¢, = 1),).
Although we have obtained this result without explicitly applying any symmetry consid-
erations, it is obvious that the SV-wave motion is confined to the incidence plane (the
vertical plane through the source and receiver) and, therefore, the corresponding shear-
wave potential should be perpendicular to this plane. In other words, the SV-wave motion
has only r and z-components, so the potential should point in the a-direction.

While in the acoustic problem we studied the P-wave potential (or pressure) only,
in elastic media we are dealing both with P- and S-waves, and it is necessary to obtain

79



the displacement @ = grad ¢ + curl 1; Due to the symmetry of the problem the dis-
placement vector has only the horizontal radial (u,) and vertical components (u,); the
horizontal transverse component (u,) is zero. Using the expressions for gradient and curl
in cylindrical coordinates yields

00 O
= — — 4.1.1
e T T ( )
09 | O | ta
u, = az+ B + ot (4.1.16)

Substituting the expressions for the potentials (4.1.4,4.1.14) into equations (4.1.15,4.1.16)
and using the relations between the Bessel functions

Jo(z) = —i(),

Tx) = dfa) ~ 2

we obtain the final formulas for the displacement of the transmitted wave:

w/2—i00 .
Uy = —ik / P, ¢®heos? J (kr sin ) sin 6 d6, (4.1.17)
0
P, = ksingW,, gtkrdeost 4 p 1 cos vy, Wps glhsrdeosm
/2—i00 .
u, =k / P, etkhcost Jo(krsin @) sinfdf , (4.1.18)
0

P, = ky cos 0 Wy, €190 — L sin W, etfsrdeosn

where h = 25, d = —z.

The integrals for the displacement components have essentially the same structure as
the expressions for the wavefields reflected and transmitted at a fluid/fluid boundary.
Clearly, the main difference between the solid and fluid models is the presence of the
PS component in integrals (4.1.17,4.1.18). One of the advantages of the plane-wave
decomposition technique is the ability to separate wavefields of different types e.g., PP
and PS-waves.

It should be emphasized that the integral solutions for any layered elastic model (in-
cluding the reflection of a spherical wave from a free surface) are very similar to formu-
las (4.1.17,4.1.18). This point will be developed in more detail below, in the discussion
of the reflectivity method.
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4.2 Analysis of the reflected /transmitted wavefield

The similarity between the integral solutions for a solid/solid and fluid/fluid boundar-
ies makes it easier for us to understand the basic features of the transmitted wavefield
hidden in formulas (4.1.17,4.1.18). Any displacement component for each of the waves
has practically the same structure as the integrals for the reflected/transmitted P-wave
at a fluid/fluid boundary. The first-order Bessel function J; can be represented for large
arguments as

2 1 ) )
Ji(z) ~ ‘/ﬁ cos(w —37/4) = |/ 5— [e@37/4) 4 omile=3n/4)] (4.2.1)

™

The difference between this expression and a similar asymptotic formula for the zero-
order Bessel function Jy (3.3.1) is just a constant (7/2). Therefore, the phases of the
integrands (not including the reflection/transmission coefficients) in formulas (4.1.17-
4.1.18) are identical to the phase functions we have considered for the acoustic reflec-
tion/transmission problem. For instance, the phase of the integrand in the expression for
the transmitted PS-wave for large krsin @ is

®,s = khcos + kg dcosy, + krsinf + const . (4.2.2)

Clearly, ®,, virtually coincides with the phase function for the P-wave transmitted
across a fluid/fluid boundary in formula (3.6.1); the only difference is in the value of the
wavenumber in the refracting medium.

Therefore, there are many similarities between the contour integration for the waves
scattered by a solid/solid and a fluid /fluid boundary. The saddle points and the steepest-
descent paths are determined by the same equations with the appropriate wavenumbers
and reflection/refraction angles. As in our analysis for the acoustic case, the saddle
points for a solid model correspond to the geometrical arrivals reflected and transmitted
in accordance with Snell’s law. The contour integration for a solid /solid boundary is much
more involved technically due to more complicated reflection/transmission coefficients and
the presence of four radicals (instead of two in the acoustic case) for the vertical slownesses
of P- and S-waves in both media. However, the principal features of the analysis performed
above for the acoustic case remain valid in elastic media. For example, integration along
the branch cuts yields asymptotic expressions for the head waves; more branch cuts just
mean that the solid model generates more head waves.

Our analysis for the acoustic model has shown that there are no surface waves at an
interface between two fluid halfspaces. One of the important properties of a solid/solid
boundary is the potential existence of a surface wave (the so-called Stoneley wave). For
certain velocity and density ratios the denominator of the reflection/transmission coef-
ficients can become zero, and this pole is responsible for the generation of the Stoneley
wave. Aki and Richards (1980) show how the contribution of the surface-wave pole can
be picked up by an appropriate deformation of the integration path. It should be emphas-
ized, however, that the conditions necessary for the excitation of the Stoneley wave are
not typically encountered in the Earth (Sezawa and Kanai, 1939; Ginzburg and Strick,
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1958). By contrast, the surface wave at a free surface of a solid halfspace (the Rayleigh
wave) does exist for any combination of elastic parameters.

The other high-frequency asymptotic technique we have used - the stationary phase
method (SPM) - also works for a solid/solid interface essentially in the same way as
in the acoustic problem. Since the phases of the integrands in the expressions for the
reflected /transmitted waves have the same structure for the two boundaries,; there is
no substantial difference between the application of the zero-order approximation of the
SPM in the acoustic and elastic case. For instance, if we take the derivative of the
expression (4.2.2) to find the stationary phase points for the transmitted PS-wave, we
will obtain the equation for the geometrically transmitted ray.

If the S-wave velocity in the refracting medium is smaller than the P-wave velocity
in the incidence medium, the zero-order approximation of the SPM would also yield the
stationary point for the pseudospherical wave (S7). Indeed, the phase function (4.2.2) for
inhomogeneous incident P-waves and homogeneous transmitted S-waves becomes

Q.5 = ksidcosyy + krsin @ + const = kgdcosy, + kgirsiny; + const, (4.2.3)

and for the stationary point we get v, = tan~*(r/d).

It seems that the difference between the acoustic and elastic problems should be more
pronounced if the first-order approximation of the stationary phase method is applied.
Indeed, the expressions for the reflection/transmission coefficients and, therefore, the
corresponding phase functions are much more complicated in the elastic case. However,
the “big picture” of the stationary points in the first-order approximation of the SPM
remains essentially the same. Actually, Figure 3.3, which we used to illustrate the solution
of the stationary-phase equation for a fluid/fluid boundary, corresponds to a boundary
between two solids. Our analysis for the fluid model has shown that the phase functions
of the reflection/transmission coefficients generate stationary points only near the critical
angles. This conclusion remains valid for the elastic model as well. When the vertical
slownesses of the reflected/transmitted waves go to zero, the derivative of the phase
functions of the reflection/transmission coefficients becomes infinite leading to stationary
phase points in the vicinity of the critical angles. Depending on the velocity ratios and
the type of the incident wave, these stationary points correspond either to head waves or
to leaking waves. The physical properties of the head and leaking waves at a fluid/fluid
and solid/solid boundaries are also similar.

For instance, if the P-wave is reflected from a high-velocity medium and b < b; <
¢ < ¢y, the only possible head wave has the horizontal velocity c;. Propagating along the
boundary, this wave generates conical P (PP, P) and S (PP,S)-waves in the incidence
medium and a shear conical wave (PP;S;) in the reflecting medium. Physically, the
generation of the head waves has exactly the same character as at a fluid/fluid boundary.
The leaking and pseudospherical waves at a solid/solid boundary are discussed in more
detail in the next section.
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4.3 Nongeometrical waves in elastic media

We begin with the case of a single boundary between two solids and then outline some
implications of our results for stratified models. As we have proved for the acoustic
model, nongeometrical waves are generated by the transition of inhomogeneous waves
contained in point-source radiation into homogeneous, non-decaying waves during the
reflection/transmission at a boundary. In order to understand what types of nongeo-
metrical waves are excited for a specific model, we recall that this transition requires a
decrease in velocity. For instance, for nongeometrical transmitted PS-waves to occur, the
S-wave velocity in the refracting medium should be smaller than the P-wave velocity in
the incidence medium.

Let us consider in more detail the case of a point source located in the high-velocity
medium close to the boundary; the velocities in the model satisfy ¢ > b > ¢; > by.
Excitation from the high-velocity halfspace allows us to observe all nongeometrical waves
that can be generated at an interface between two solids.

The horizontal velocity of the inhomogeneous waves from the plane-wave (or cylindrical-
wave) decomposition of point-source radiation decreases from ¢ to zero along the integ-
ration path. The inhomogeneous waves with the horizontal velocity V}, greater than b
(¢ > Vi, > b) are transformed into homogeneous reflected S-waves and, therefore, give
rise to the leaking wave PS with the horizontal velocity slightly smaller than ¢ and the
pseudospherical wave S*. These nongeometrical waves are excited in the incidence me-
dium and have essentially the same properties as the nongeometrical waves at a fluid /fluid
boundary.

Several more nongeometrical arrivals are generated in the refracting (low-velocity)
medium (Figure 4.1). The leaking wave propagating along the boundary with the velocity
close to ¢ radiates two conical transmitted waves: the P-wave PP, with the refraction
angle close to sin™"(¢;/c) and the S-wave PS| with the angle close to sin™" (b, /¢). Since the
horizontal velocities of the incident inhomogeneous waves cover the whole range V;, < c,
two more leaking waves are excited. One of them, with the horizontal velocity slightly
smaller than b, “leaks” two conical waves into the low-velocity medium: SP; and SS;.
The horizontal velocity of the third leaking wave is close to c¢; therefore, it excites only
one (transmitted) conical wave P;S;.

Since ¢ > ¢; and ¢ > by, a point source located in the high-velocity halfspace also
generates two pseudospherical waves (P and S) in the low-velocity medium denoted as
Py and ST. The resulting transmitted wavefield is very complicated due to the interference
of many nongeometrical arrivals with different waveforms and polarizations.

Figure 4.1 shows the vertical component of the displacement vector near the boundary,
where the refraction angles of both pseudospherical waves are relatively large. Since the
nongeometrical waves have almost linear polarization, the wave P;" is much more intensive
for this geometry on the horizontal displacement component. Being one of the most
intensive waves even on the vertical component, P; virtually dominates the horizontal
displacement. Computations for a wide range of elastic models have shown that the
pseudospherical wave P is usually the most prominent nongeometrical arrival in the
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Figure 4.1: Exact synthetic seismograms of the wavefield transmitted through a solid /solid
boundary (vertical displacement). a - source pulse, b - the contribution of homogeneous
incident waves, ¢ - the contribution of inhomogeneous incident waves (nongeometrical
waves), d - the total seismogram. Note false arrivals at ¢ > 20 that vanish on the total
seismogram. Model parameters are n = ¢/c1=2, 0 = p;/p=0.8, ¢/b = ¢1/by = 1.73,
h=0.1, d=1.5, 7=7. h, d, 7 are the distances normalized by the predominant wavelength
in the high-velocity halfspace.
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transmitted wavefield.

The nongeometrical waves vanish if the source is moved away from the boundary with
the degree of decay becoming higher with decreasing horizontal velocity. For instance,
the fastest-decaying leaking wave is P;, followed by S and P. The distribution of en-
ergy along the wavefronts of the pseudospherical waves is essentially the same as in the
acoustic model, with much higher amplitudes near the critical ray and almost no energy
propagating along the boundary.

It should be emphasized that the geometrical seismics predicts only two (PP; and
PS}) conventional transmitted waves on trace b in Figure 4.1. A large number of intensive
nongeometrical arrivals in a very simple model suggests that nongeometrical waves may
be often misinterpreted on real data. If a seismogram like the one in Figure 4.1 were
recorded in a cross-hole experiment, it would be natural for the interpreter to attribute
the complexities of the observed wavefield to the influence of non-existent boundaries.

An important feature of the wavefield in Figure 4.1 is a significant amount of shear en-
ergy generated by a pure explosive source due to the nongeometrical effects. For instance,
note that one of the leaking waves propagates along the boundary with the shear velocity
in the incidence medium. By contrast, there are no conventional S-waves excited directly
by the source in the high-velocity medium (although, of course, the reflected PS-wave
does exist).

The experimental example below shows how we can take advantage of nongeometrical
shear waves in cross-hole surveys. Cross-borehole geometry is especially favorable for
nongeometrical waves to be generated because a downhole source is often located close
to one of the internal boundaries. The experiment has been carried out by Moscow Uni-
versity in Crimea, former USSR (now a disputed territory between Russia and Ukraine).
A source (electrical sparker) and a receiver (pressure recorder) were placed in two water-
filled boreholes near the boundary between sandstone and clay layers (Figure 4.2).

.| Source
Cb[s| b(Vs) Sandstone (C = 3.5km/s)
C1b1 b1\ {Water Clay (C1= 2km/s)
 Receiver

Figure 4.2: Scheme of the experiment in Crimea. The source is located in sandstone, the
receiver is in clay. The distance between the boreholes is 18.5 m, the receiver is 1 m under
the boundary. The leaking wave S propagates along the boundary with the shear-wave
velocity in the sandstone (b).

The wavefield for this model (Figure 4.3) is much simpler than the one displayed in
Figure 4.1. Since the borehole has not been included in the model, it was assumed that the
horizontal displacement for this geometry gives the closest approximation to the pressure
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inside the hole. Numerical modeling shows that the only intensive nongeometrical wave
that forms a separate arrival is the leaking wave propagating along the boundary with the
shear-wave velocity in the sandstone (b). The nature of this wave can be identified by the
rapid amplitude decay with the increasing distance between the source and the boundary.
Note that a small distance between the receiver and the boundary makes the contribution
of the pseudospherical waves negligible.

The overall match between the experimental and synthetic data is satisfactory. Some
differences in the waveforms and amplitudes are most possibly caused by the influence of
the borehole ignored in the modeling. This experiment made it possible to determine the
value of the shear-wave velocity in the sandstone (1960 m/s) that was confirmed later by
tube-wave measurements.

In the marine environment, pronounced nongeometrical effects can be expected in
shallow water, when a source and a receiver are close to the sea bottom. The model
in Figure 4.4 has been encountered by an expedition of Moscow University in one of
the shallow Baltic Sea bays. An underwater layer composed of low-velocity tough silt
(¢1=300-800 m/s) overlaid a relatively thick layer of sand with the velocity co=1800-2200
m/s.

In this model, the pseudospherical wave P formed at the sea bottom excites a very
strong head wave in the sand (P;S2P;") that propagates with the horizontal velocity bo
and generates a P-wave back into the silt layer. Reverberations of the pseudospherical
wave P;" inside the layer produce a number of multiples with the amplitudes far exceeding
the amplitude of the primary Pj-reflection. Such high amplitudes of head waves and
multiple reflections are quite unusual for conventional body waves but very typical for
nongeometrical waves. The reason for this effect is the uneven distribution of energy along
the wavefront of the pseudospherical wave P} incident on the top of the sand layer. While
the “secondary” head wave and the multiples are formed by the most intensive part of
the wavefront that is close to the critical ray 0., = sin™'(c; /c), the primary reflection P;
at relatively large horizontal offsets is due to the low-amplitude section of the wavefront
adjacent to the sea bottom. It is interesting that the multiples in the underwater layer
are very intensive in spite of a very large value of the attenuation coefficient.

When the source is close to the sea bottom, the seismograms are almost entirely
composed of the nongeometrical waves (Figure 4.5). The most prominent arrival in a
wide range of offsets is the secondary head wave P;"SeP;. These synthetic traces closely
match the experimental data. The traveltimes of nongeometrical waves made it possible
not only to map the thickness and and the P-wave velocity of the silt layer, but also to
estimate the shear-wave velocity in the sand.

Possible applications of nongeometrical waves are not limited to the examples dis-
cussed above. Explosive sources often produce shear waves of uncertain nature (Lash,
1985), which are likely to be caused by nongeometrical effects at the free surface or shallow
boundaries. With the advent of multicomponent seismology, these waves will definitely
attract more attention.

Nongeometrical waves also make a prominent contribution to seismological earthquake
records because the wave propagation from buried sources toward the surface usually in-
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Figure 4.3: Field data (pressure) and synthetic seismograms (horizontal displacement) for
the Crimea experiment. The synthetic traces are scaled to match the experimental seis-
mograms, which do not give the correct absolute amplitudes. h = h/\ is the normalized
source-boundary distance, A = 5 m is the predominant wavelength.
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FREE SURFACE

C, by P2

Figure 4.4: Reflection from a low-velocity underwater layer. The velocities in the model
satisfy ¢; < by < ¢ < ¢;. Conventional P-waves: 1 - head wave; 2 - reflected wave.
Nongeometrical waves: 3 - leaking wave (P); 4 - secondary head wave (P;S,Py); 5 -
reflected pseudospherical wave (Fy).

volves transmission from high-velocity into low-velocity layers with generation of a con-
siderable amount of nongeometrical energy. For instance, the presence of nongeometrical
waves may seriously affect the recovery of the source moment tensor.

4.4 'Wave phenomena due to additional terms of the
ray series

It is important to make a distinction between geometrical seismics and a general ray
theory. The geometrical seismics approximation represents just the leading term of the
ray series expansion. Therefore, some effects incompatible with geometrical seismics can
still be explained by ray theory if additional terms of the ray series expansion are taken
into account. By contrast, the nongeometrical waves discussed above cannot be described
within the framework of the ray theory as a whole.

In the so-called “space-time” version of the ray method the displacement is represented
as follows:

U(R,t) = UO(R) fO1 — 7) + UDVR) fO¢t - 7) + ..., (4.4.1)
where 7(R) is the traveltime along the geometrical ray, and
t
o) = [ 1O)dy. (44.2)
0

U© is the displacement vector in the geometrical seismics approximation, UM de-
termines the displacement of the first additional term of the ray series. While the leading
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Figure 4.5: Synthetic traces (potential) at different offsets for the model from Figure 4.4.
High-frequency reverberations in the water have been filtered out. 1 - primary arrivals,
2,3 - multiples inside the layer. The subscript “H” denotes the secondary head wave
(PySaPy), “R” stands for the reflected pseudospherical wave (P;). Model parameters
are c/c1=5, ¢ /cy=0.15, ¢3/by=2, p1/p=1.4, p/p1=1.3, h=0.1, d=1 (d is the thickness
of the layer), H=0.375 (H is the thickness of the water). Attenuation coefficients are

ap; = 5107% s/m (underwater layer), aps = 107" s/m (P-waves in the lower halfspace),
asy = 107° s/m (S-waves in the lower halfspace).
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term is rather easy to derive, the first-order one has a complicated structure specific to
each particular problem. Among the general properties of the first-order term is its lower
frequency content compared with the leading term (this is evident from formula [4.4.2])
and a more rapid amplitude decay along the ray.

The polarization of the first-order term is generally different from the polarization
in the geometrical-seismics approximation. Therefore, if the contribution of the first-
order term is significant, the particle motion becomes nonlinear due to the differences in
polarization and waveform between the two leading terms of the series.

In general, deviations from the geometrical seismics are substantial in the areas where
the leading term of the ray series is small or rapidly varies with spatial coordinates (due to
the dependence of UW on the spatial derivatives of U ()). For instance, in a homogeneous
medium the influence of the first-order term is most significant near minima of radiation
patterns.

As an example of a wave phenomenon that needs at least two terms of the ray series
expansion to be adequately described, we consider the PS arrival generated by a spherical
P-wave at a solid/solid boundary (Figure 4.6).

.

n

.0, £,

s B

Y
F

Figure 4.6: Source-receiver geometry in the analysis of the anomalous PS-wave. 7 is the
ray direction for the transmitted PS arrival.

Geometrical seismics predicts no PS converted wave at normal incidence since the
plane-wave PS-conversion coefficient is zero. However, exact modeling shows that zero-
offset seismograms of the wvertical displacement contain (in addition to the PP reflec-
ted/transmitted waves) a wave that propagates with the shear-wave velocity after the
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reflection or transmission (Figure 4.7). Note that the amplitude of this anomalous wave
may reach 50% of the amplitude of the PP-reflection.

The anomalous PS arrival, although being formally denoted as a shear wave, has a
pure longitudinal polarization. In fact, from the symmetry of the problem it is clear
that the particle motion at zero offset should be strictly vertical. Indeed, the horizontal
component of the displacement vector given by equation (4.1.17) vanish at r = 0 because
J1(0) =0.

In order to explain the properties of the PS-wave with the anomalous polarization, we
have to take into account the first additional term of the ray series (UM (R) fO(t — 7)).
At the vertical the leading (geometrical) term for the PS-wave is identically zero, and
the anomalous PS arrival is entirely formed by the next, first-order term. While U for
the PS-wave is polarized like a conventional SV-wave (perpendicular to the ray direction
in the incidence plane), the first-order term UM has a component polarized like a P-
wave, parallel to the ray. At normal incidence this “longitudinal” component forms the
first-order term and, consequently, the PS-wave as a whole.

In principle, the PS-wave at the vertical can be influenced by several higher-order
terms of the ray series. However, it can be proved that the first two terms are usually
sufficient to describe the anomalous PS-wave formed at a solid/solid boundary or at a
free surface of an elastic halfspace. The dominant contribution of the first-order term
manifests itself in the shape of the anomalous PS-wave: it is close to the integral of the
source pulse, as predicted by formulas (4.4.1,4.4.2).

Physically, the generation of the anomalous PS-wave is related to the high curvature of
the wavefront of the incident P-wave. If the source is located far from the boundary, the
incident wavefront at any point is well-approximated by a plane wave, and the reflected
and transmitted waves can be accurately described by geometrical seismics (the leading
term of the ray series). In this case, the PS-wave at the vertical is very weak compared to
the PP-wave. However, if the source-boundary distance is relatively small, the wavefront
curvature at the reflection/transmission point is large, and the influence of the first-order
term may be substantial.

Evidently, the PS/PP amplitude ratio at the vertical decreases if the source is moved
away from the boundary (Figure 4.7). However, it should be emphasized that the an-
omalous PS-wave does not decay with increasing distance between the source and the
boundary as rapidly as “pure” nongeometrical waves. Since the PS-wave is not related to
the inhomogeneous waves contained in the point-source radiation, its amplitude decay is
not exponential. From Figure 4.7 it is clear that the contribution of the PS-wave remains
significant even if the distance between the source and the boundary exceeds the predom-
inant wavelength. Another difference between the PS-wave and “pure” nongeometrical
waves is in the dependence of the PS amplitude on the distance between the receiver and
the boundary: the PS-wave decays as the receiver moves away from the boundary.

While at the vertical the PS-wave is entirely described by the first-order term of the ray
series, the influence of the leading (zero-order) term rapidly increases with the horizontal
offset (Figure 4.8). From the shape of the horizontal displacement it is clear that it is
mostly formed by the geometrical-seismics term. However, the contribution of the first-
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Figure 4.7: Zero-offset reflected wavefield (vertical displacement) excited by a point ex-
plosive source located near a solid/solid boundary. The horizontal displacement at r =0
is zero. On the left: a - the incident pulse; b - the wavefield at the vertical including the dir-
ect wave (P), PP-reflection, and PS-conversion. Model parameters are n = ¢/¢; = 0.71,
§=c/b=1.73,6 = c1 /by = 1.73, 0 = p/p = 1.25, h=1, d=3, ¥=0. On the right:
seismograms of the reflected wave for different distances h between the source and the
boundary. All the parameters except for h are the same as on the left.
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order term to the vertical displacement and to the PS-wave as a whole remains substantial
up to r &~ d/2. From Figure 4.8 it is clear that even away from the vertical the first-order
term of the ray series is polarized virtually like a compressional wave.

A detailed discussion of the area of validity of ray theory in the description of the an-
omalous PS-wave can be found in Kiselev and Tsvankin (1989). Unless both the source
and the receiver are very close to the boundary, the accuracy of the double-term ray series
(consisting of the first two terms) is sufficiently high. Ray theory breaks down only at rel-
atively large horizontal offsets beyond the critical point of the pure nongeometrical waves
(Figure 4.9). Even an infinite ray series expansion (4.4.1) is based on the geometrical
raypath and, therefore, cannot account for leaking or pseudospherical waves. It is inter-
esting that by changing one geometrical parameter (the horizontal offset) in Figure 4.9,
we move through three areas with a completely different character of the PS-wave. While
in the area near the vertical (r ~ 0) the PS-wave is described by the first additional term
of the ray series, at intermediate offsets both the leading and the first-order terms are
needed and, finally, at larger offsets the wavefield becomes purely nongeometrical and
cannot be described by ray theory at all.

4.5 Comparison of modeling methods for stratified
isotropic media

The Sommerfeld-type integrals for point-source radiation derived above provide the basis
for a popular modeling technique for horizontally homogeneous media called the “re-
flectivity” method. This method has been widely used in global seismology and seismic
exploration, especially in crustal studies in the interpretation of long (regional) reflection
profiles.

Suppose we are interested in the exact response of a stack of horizontal homogen-
eous isotropic layers to an incident spherical P-wave. Then, repeating the derivation of

formulas (3.2.4,4.1.4), we find the potential of the reflected P-wave to be

7 /2—i00 .
Grept = 1k / V,p(0) e 20008t g sin 6) sin §df (4.5.1)
0

where z and zy are the distances from the source and receiver respectively to the top of
the first layer, V,, is the response of the layered medium to an incident plane P-wave.
The form of V,,, depends on whether we would like to compute the total wavefield gen-
erated by the layered medium or just one or several wave components. In the former case
we should use the matrix propagator for the reflected plane P-wave that takes all multiples
and conversions into account. This matrix expression can be derived in a straightforward
fashion from formula (2.7.18). If only a particular wave component (say, PSP conversion
in the top layer) is desired, V,, should be composed of the reflection/transmission coeffi-
cients and the vertical phase shifts for the corresponding plane wave. Also, it is possible
to decompose the wavefield even further by calculating the contributions of different parts
of the integration path separately. Therefore, the reflectivity method provides a sufficient
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Figure 4.8: Synthetic seismograms of the transmitted PS-wave for different source-receiver
offsets. The left column is the vertical displacement, the right column is the horizontal

one (the horizontal component at 7 = 0 is zero). Elastic parameters are the same as in
Figure 4.7; h=0.25, d=3.
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Figure 4.9: Comparison between the exact PS-waveform (solid line) and the first two
terms of the ray series (dashed line). The traces represent the vertical component of

the transmitted PS-wave for h=0.25, d=0.25. Elastic parameters are the same as in the
previous plots.
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flexibility in decomposing the wavefield and selecting only the components of interest in
any particular problem.

To generate synthetic seismograms, integral (4.5.1) is evaluated numerically for a set
of frequencies with the subsequent application of the inverse Fourier Transform (Fuchs
and Mueller, 1971). Since for realistic multilayered models the method is time-consuming,
the practical implementation of the reflectivity modeling usually involves several simplific-
ations. The full matrix propagator for an elementary plane wave is often calculated only
in the lower part of the section, called the “reflection zone,” while the wave propagation
in the overburden is described using the “generalized” ray method. Here by generalized
ray method we mean a simplified version of the reflectivity integral in which V), for the
overburden contains the expression for the plane P-wave propagating down to the reflec-
tion zone and and then back up to the surface, with no allowance for multiples or PS
conversions.

Another common simplification is to restrict the integration in formula (4.5.1) to real
incidence angles which correspond to homogeneous incident waves (0 < ¢ < 7/2) and,
in some cases, integrate over an even more narrow range of angles that corresponds to
the range of horizontal slownesses believed to be of interest in the problem at hand. A
combination of the generalized ray theory for the overburden with the slowness windowing
makes it possible to consider different structures of the overburden beneath the source
and receiver (Kennett, 1983). This trick makes the upper part of the model “quasi-two-
dimensional” although, clearly, there should be no lateral changes in the reflectivity zone
where the full matrix propagator is computed.

While the reflectivity method can generate the complete wavefield in 1-D media and
provide enough flexibility in choosing particular wave types, it experiences difficulties in
treating vertical velocity gradients. In reflectivity modeling gradient zones are usually
approximated by step-wise velocity functions containing many thin layers. If the gradient
is pronounced, the number of layers becomes very large, making the calculation of the
matrix propagator extremely time-consuming. One of the ways to get around this prob-
lem is to replace the standard reflectivity technique in the gradient zones by the WKBJ
approximation (Mallick and Frazer, 1987).

The computational speed of the reflectivity modeling is mostly determined by the
number of layers, the frequency band and the range of offsets. For complicated models
that contain dozens of layers it is often more economical to use finite-difference or finite-
element methods. One especially efficient modeling technique based on a combination of
partial separation of variables and finite-difference methods was developed by Alekseev
and Mikhailenko (1980). The main disadvantages of finite-difference methods are the high
computational cost and the inability to decompose the wavefield into the individual wave
components.

Another modeling approach that has certain advantages for simple models is the
Cagniard-de-Hoop method. Unlike the reflectivity method that uses the Fourier transform
over time and Fourier-Bessel integrals in the frequency domain, the approach developed
by Cagniard and de-Hoop is based on a Laplace transform. In the Cagniard-de-Hoop
method, the possibility to get a relatively simple solution in the time domain is ensured
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by a particular choice of the integration path in the complex ray-parameter plane (the
so-called C'agniard path). While providing concise time-domain solutions for line sources
and simple, one- or two-layer models, the Cagniard-de-Hoop method is much less efficient
for realistic multilayered media. First of all, the Cagniard path has to be found for each
generalized ray separately which is not practical when it is necessary to sum up a large
number of different waves. Second, the analytic advantages of the Cagniard-de-Hoop
method cannot be exploited in attenuative media and in models with a combination of
velocity gradients and discontinuities.

A computationally cheap alternative to the methods discussed above is ray tracing.
Most ray-theory modeling algorithms use the geometrical-seismics approximation i.e., the
leading term of the ray series expansion. Therefore, ray tracing becomes inaccurate in the
areas where additional terms of the ray series cannot be ignored. An improvement over the
conventional ray tracing in these areas can be achieved by applying more accurate high-
frequency approximations, such as Gaussian beam modeling or Maslov asymptotic theory.
Still, all versions of ray theory do not produce reliable amplitudes if deviations from
geometrical seismics are pronounced. Another principal problem in the application of
ray-theory algorithms is the difficulty in accounting for all individual waves in complicated
layered models.
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