Overview to the Petroleum Refining Industry

COLORADOSCHOOLOFMINES

Topics

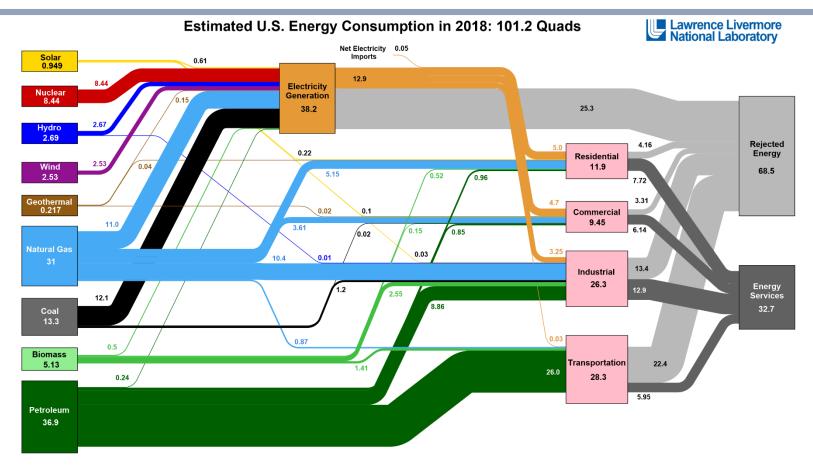
Energy consumption & petroleum's place

- Size of U.S. industry
- Major refiners

Petroleum products

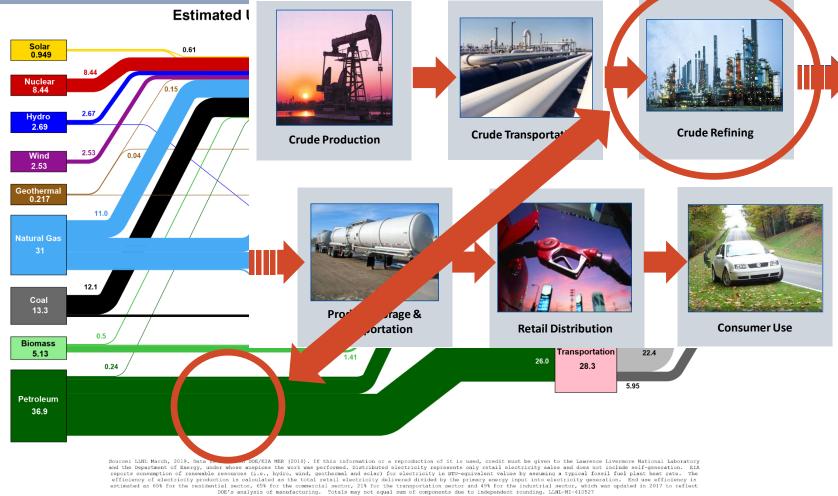
Basic petroleum economics

- Trends for crude oil & gasoline prices
- When do refiners make money?


Generalized Petroleum Refinery

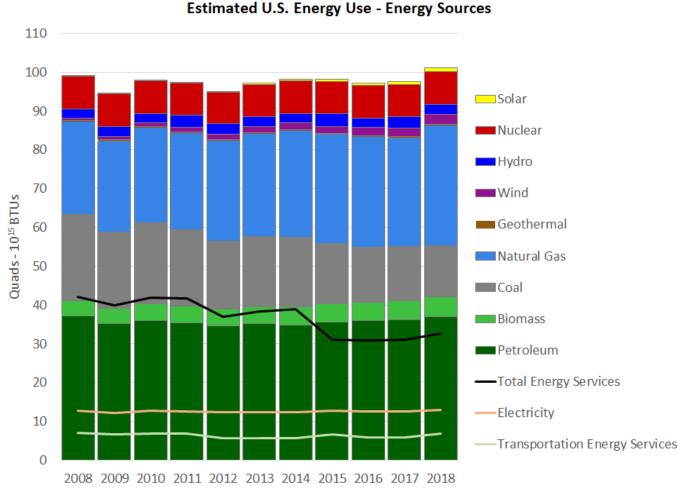
Energy consumption in the U.S. & petroleum's contribution

Energy Markets Are Interconnected



Source: LINE March, 2019. Data is based on DOE/EIA MER (2018). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auxpices the work was performed. Distributed electricity perpessions only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial actors, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect DOE's analysis of manufacturing. Totals may not equals use of components due to independent rounding. LILM-MH-10527

https://flowcharts.llnl.gov/commodities/energy


Energy Markets Are Interconnected

https://flowcharts.llnl.gov/commodities/energy

Energy Markets Over the Last Decade

https://flowcharts.llnl.gov/commodities/energy

World & U.S. Refining Capacity

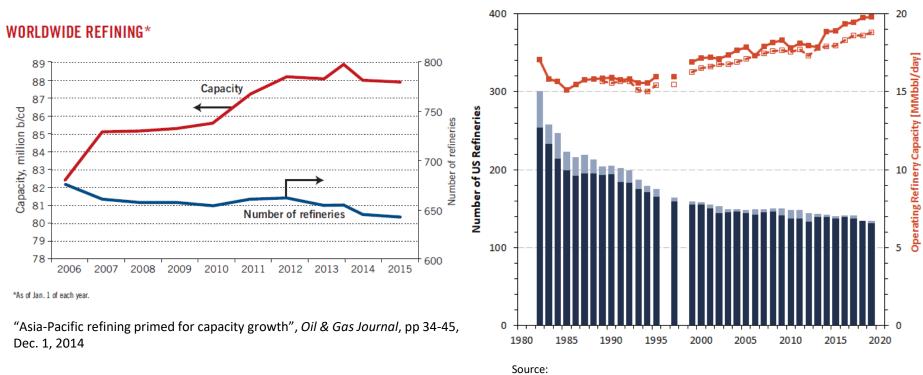
Corporations with U.S. Capacities Near 1 Million bbl per stream day


	Table		
an. 1, 2015	ank ——— Jan. 1, 2014	Company	Crude capacity, b/cd ¹
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 223 225	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 10\\ 9\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ \end{array} $	ExxonMobil Corp. Royal Dutch Shell PLC Sinopec BP PLC Saudi Aramco Valero Energy Corp. Petroleos de Venezuela SA China National Petroleum Corp. Phillips 66 Chevron Corp. ² Total SA Petroleo Brasileiro SA Marathon Petroleum Co. LP Petroleos Mexicanos National Iranian Oil Co. JX Nippon Oil & Energy Corp. Rosneft OAO Lukoil SK Innovation Repsol YPF SA Kuwait National Petroleum Co. Pertamina Agip Petroli SPA Flint Hills Resources Formosa Petrochemical Co.	5,465,500 4,184,600 3,971,000 2,858,964 2,835,500 2,675,000 2,675,000 2,675,000 2,675,000 2,523,200 2,463,600 1,997,000 1,703,000 1,451,000 1,451,000 1,217,000 1,105,500 1,085,000 988,250 904,000 582,350 540,000

¹Includes partial interests in refineries not wholly owned by the company. ²Includes holdings in Caltex Oil and GS Caltex.

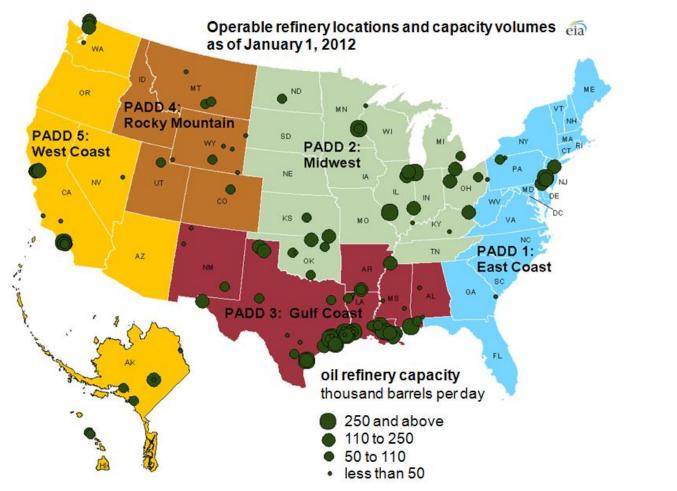
"Asia-Pacific refining primed for capacity growth", Oil & Gas Journal, pp 34-45, Dec. 1,2014

		Capacity	
	Capacity Barrels	Barrels per	
Corporation	per Stream Day	Calendar Day	Availability
Marathon Petroleum Corp	3,174,200	3,024,715	95%
Valero Energy Corp	2,307,500	2,181,300	95%
Phillips 66 Company	2,026,033	1,919,300	95%
ExxonMobil Corp	1,829,500	1,732,124	95%
Royal Dutch/Shell Group	1,082,500	967,045	89%
Chevron Corp	980,500	925,431	94%
PBF Energy Co LLC	907,400	865,000	95%
Total	19,866,258	18,723,935	94%


Capacities for LLC refineries split among the partner companies

COLORADOSCHOOLOFMINES

EIA, Jan. 1, 2019database, published June 2019 http://www.eia.gov/petroleum/refinerycapacity/


Number & Capacity of World & U.S. Refineries

EIA, Jan. 1, 2019 database, published June 2019 http://tonto.eia.doe.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm

Locations of U.S. Refineries

http://www.eia.gov/todayinenergy/detail.cfm?id=7170

RGY . ENVIRONMENT

COLORADOSCHOOLO

Individual U.S. Refinery Sizes – 10 Largest & 10 Smallest

700,000 - 650,000 - 600,000 -		Corporation	Company Name	State	Site	Atmospheric Crude Distillation Capacity (barrels per calendar day)	Atmospheric Crude Distillation Capacity (barrels per stream day)
550,000 -		Saudi Aramco	Motiva Enterprises LLC	Texas	Port Arthur	607,000	639,700
550,000		Marathon Petroleum Corp	Marathon Petroleum Co LP	Texas	Galveston Bay	585,000	616,000
	All I	Marathon Petroleum Corp	Marathon Petroleum Co LP	Louisiana	Garyville	564,000	594,000
500,000 -		ExxonMobil Corp	ExxonMobil Refining & Supply Co	Texas	Baytown	560,500	584,000
		ExxonMobil Corp	ExxonMobil Refining & Supply Co	Louisiana	Baton Rouge	502,500	523,200
450,000 -		BP plc	BP Products North America Inc	Indiana	Whiting	430,000	440,000
450,000	Allen	PDV America Inc	Citgo Petroleum Corp	Louisiana	Lake Charles	418,000	440,000
	<i>4</i> 11111,	Valero Energy Corp	Premcor Refining Group Inc	Texas	Port Arthur	335,000	415,000
400,000 -	/######	ExxonMobil Corp	ExxonMobil Refining & Supply Co	Texas	Beaumont	369,024	384,400
		Marathon Petroleum Corp	Tesoro Refining & Marketing Co	California	Carson	363,000	382,000
350,000 -		American Refining Group Inc	American Refining Group Inc	Pennsylvania	Bradford	11,000	11,800
		Greka Energy	Santa Maria Refining Company	California	Santa Maria	9,500	10,000
		World Oil Co	Lunday Thagard Co	California	South Gate	8,500	10,000
300,000 -		Calumet Specialty Products Partners, L.P.	Calumet Princeton Refining LLC	Louisiana	Princeton	8,300	8,655
		BP plc	BP Exploration Alaska Inc	Alaska	Prudhoe Bay	6,500	8,000
250,000 -		Martin Resource Management Grp	Cross Oil Refining & Marketing Inc	Arkansas	Smackover	7,500	7,700
		Valero Energy Corp	Valero Refining Co California	California	Wilmington Asphalt Plant	6,300	6,500
200.000		Foreland Refining Corp	Foreland Refining Corp	Nevada	Ely	2,000	5,000
200,000 -		Goodway Refining LLC	Goodway Refining LLC	Alabama	Atmore	4,100	5,000
		Silver Eagle Refining Inc	Silver Eagle Refining	Wyoming	Evanston	3,000	3,400
150,000 - 100,000 - 50,000 -							

EIA, Jan. 1, 2019 database, published June 2019 http://www.eia.gov/petroleum/refinerycapacity/

Charge Capacity [bbl per stream day]

World's Largest Refineries

WORLD'S LARGEST REFINERIES

Table 3

	Company	Location	Crude capa- city, b/cd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21	Paraguana Refining Center SK Innovation GS Caltex Corp. S-Oil Corp. Reliance Petroleum Ltd. ExxonMobil Refining & Supply Co. Reliance Industries Ltd. ExxonMobil Refining & Supply Co. Saudi Arabian Oil Co. (Saudi Aramco) Formosa Petrochemical Co. Marathon Petroleum Co. LLC ExxonMobil Refining & Supply Co. Kuwait National Petroleum Co. Shell Eastern Petroleum (Pte.) Ltd. Marathon Petroleum Co. LLC Citgo Petroleum Corp. Shell Nederland Raffinaderij BV Sinopec Saudi Arabian Oil Co. (Saudi Aramco) Saudi Aramco-Mobil Saudi Aramco Total Refinery & Petrochemicals Co.	Cardon/Judibana, Falcon, Venezuela Ulsan, South Korea Yeosu, South Korea Jamnagar, India Jurong/Pulau Ayer Chawan, Singapore Jamnagar, India Baytown, Tex. Ras Tanura, Saudi Arabia Mailiao, Taiwan Garyville, La. Baton Rouge, La. Mina Al-Ahmadi, Kuwait Pulau Bukom, Singapore Galveston Bay, Tex. Lake Charles, La. Pernis, Netherlands Zhenhai, China Rabigh, Saudi Arabia Yanbu, Saudi Arabia	940,000 840,000 785,000 669,000 592,500 580,000 560,500 550,000 522,000 502,500 466,000 462,000 451,000 400,000 400,000 400,000

"Asia-Pacific refining primed for capacity growth", Oil & Gas Journal, pp 34-45, Dec. 1, 2014

Recent changes to the slate of US refineries

Existing refineries getting larger

- Marathon Petroleum expanding Galveston Bay to incorporate Texas City refinery & increase capacity
 - STAR program scheduled for full commissioning in 2022

Changes in operations

- Superior Refining (Husky Energy) rebuilding Superior, WI, refinery after fire in 2018
- Philadelphia Energy Solutions will close refinery after explosion in June 2019
 - 13th largest refinery in U.S. based on bbl per stream day, 350,000 bpd
- ExxonMobil to expand Beaumont, TX, refinery, including new 250,000 bpd crude unit

Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu) Changes in ownership

- Marathon Petroleum Company purchased Andeavor (2018)
 - Tesoro purchased Dakota Prairie Refining (June 2016)
 - Tesoro bought Western Refining (June 2017) & changed name to Andeavor (August 2017)
- Shell selling Martinez Refinery (CA) to PBF Holding Company LLC

Newest Grass-Roots Refineries in U.S.?

	First			Original Capacity		2019 Capacity
Year Built	Operated	Location	Original Owner	bbl/cd	Current Owner	bbl/cd
2018	2019	Channelview, Texas	Targa Resources	35,000	Targa Resources	35,000
2016	2017	Corpus Christi, Texas	Magellan Midstream Partners	42,500	Magellan Midstream Partners	42,500
2015	2015	Corpus Christi, Texas	Buckeye Partners	46,250	Buckeye Partners	60,000
2015	2015	Houston, Texas	Petromax Refining	25,000	Petromax Refining	25,000
2014	2015	Dickinson, North Dakota	Dakota Prairie Refining	19,000	Marathon	19,000
2014	2015	Galena Park, Texas	Kinder Morgan	42,000	Kinder Morgan	84,000
1998	1998	Atmore, Alabama	Goodway	4,100	Goodway	4,100
1993	1993	Valdez, Alaska	Petro Star	26,300	Petro Star	55,000
1991	1992	Ely, Nevada	Petro Source	7,000	Foreland	2,000
1986	1987	North Pole, Alaska	Petro Star	6,700	Petro Star	19,700
1985	1986	Prudhoe Bay, Alaska	ARCO	12,000	ConocoPhillips	15,000
1979	1980	Wilmington, California	Huntway	5,400	Valero	6,300
1978	1979	Vicksburg, Mississippi	Ergon	10,000	Ergon	26,500
1978	1979	North Slope, Alaska	ARCO	13,000	BP Exploration, Alaska	6,500
1977	1978	Lake Charles, Louisiana	Calcasieu	6,500	Calcasieu	128,000
1976	1977	Garyville, Louisiana	Marathon	200,000	Marathon	564,000
1976	1977	Krotz Springs, Louisiana	Gold King	5,000	Delek	80,000
1975	1975	Corpus Christi, Texas	Saber	15,000	Valero	290,000

http://www.eia.gov/tools/faqs/faq.cfm?id=29&t=6, page last updated June 23, 2019

New Grass-Roots Refineries in U.S.?

Simple refineries usually near oil production

- Dakota Prairie Refinery 20,000 bpd Bakken crude topping unit with diesel hydrotreating (2015 start up)
- Targa Resources –38,000 bpd, Channelview, TX
- Meridian Energy Group 49,500 bpd near Belfield, ND
 - Originally expected 2018 startup now 2020
- Unknown status
 - MHA Clean Fuels Refinery, 15,000 bpd refinery on the Fort Berthold Indian Reservation near Makoti, ND
 - Ground broken May 2013. No report of completion
 - Quantum Energy? History of announcing refineries & not proceeding

Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu) Complex refineries – 2 planned in mid 2000s no longer active projects

- Hyperion Energy Center, \$10 billion, 400,000 bpd refinery near Union County, SD
 - Would have included Petcoke IGCC for power & hydrogen
 - Air permit applications expired March 2013
 & released options on land May 2013
- Arizona Clean Fuels Yuma, LLC, 150,000 bpd refinery near Yuma, AZ
 - No press releases since March 2009

Nelson's Complexity Factor

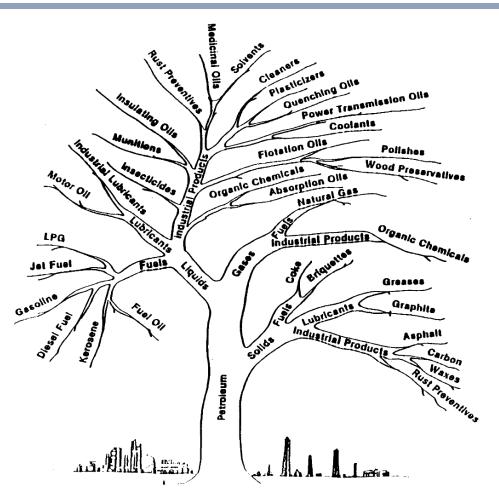
EDC: Equivalent Distillation Capacity

- Measure of downstream conversion capacity to the initial distillation
- Developed by Nelson (1960) to quantify relative costs of refining processes
 - Reflects complexity of ISBL, no OSBL considerations

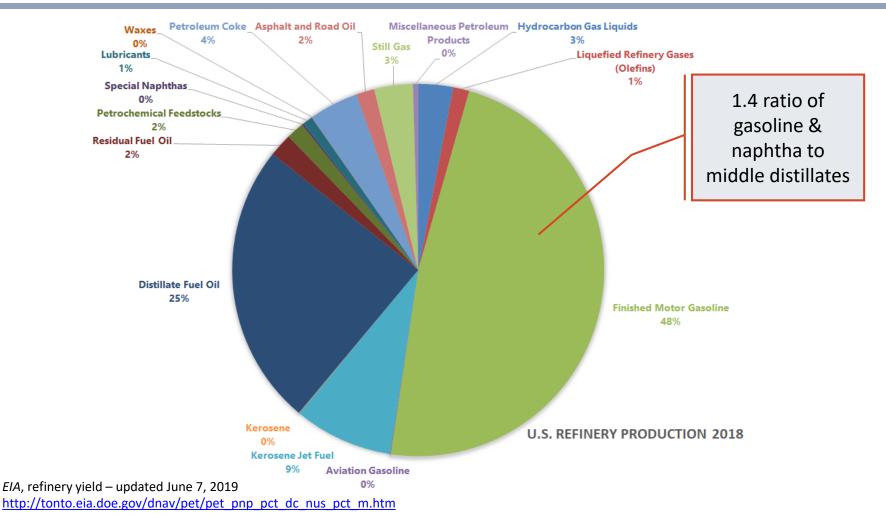
Refineries to process heavy sour crudes typically have higher complexity factors

Unit	Index	Unit	Index
Distillation Capacity	1.0	Lubes	60.0
Vacuum Distillation	2.0	Asphalt	1.5
Thermal Processes	5.0	Hydrogen (Mcfd)	1.0
Catalytic Cracking	6.0	Oxygenates (MTBE / TAME)	10.0
Catalytic Reforming	5.0	Thermal Cracking	3.0
Catalytic Hydrocracking	6.0	Visbreaking	2.5
Catalytic Hydrorefining	3.0	Fluid Coking	6.0
Alkylation / Polymerization	10.0	Delayed Coking	6.0
Aromatics / Isomerisation	15.0	Others	6.0

Ref: http://www.ril.com/downloads/pdf/business_petroleum_refiningmktg_lc_ncf.pdf


Petroleum products

Petroleum Products


- There are specifications for over 2,000 individual refinery products
- Intermediate feedstocks can be routed to various units to produce different blend stocks
 - Highly dependent on economics specific to that refinery & contractual limitations

Ref: Unknown origin. Possibly Socony-Vacuum Oil Company, Inc. (1943)

U.S. Refinery & Blender Net Production

Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu) COLORADOSCHOOLOFMINES 18 EARTH • ENERGY • ENVIRONMENT

Basic petroleum economics

Refinery Economics

When do refiners make money?

- High crude oil prices?
- Low crude oil prices?

It depends!

- Difference between the sale price of the products & purchase price of the crude oil
- Operating costs cut into this spread

Typical prices

- What is the price of crude oil?
 - Depends on location, quality, ...
- What are the product prices?

Product Economics — Crack Spread

Estimates the value added by refining (as an industry)

4 standard spreads

5-3-2

• 5 bbl crude \rightarrow 3 bbls gasoline + 2 bbls heating oil/diesel

• 3-2-1

• 3 bbl crude \rightarrow 2 bbls gasoline + 1 bbls heating oil/diesel

- 2-1-1
 - 2 bbl crude \rightarrow 1 bbls gasoline + 1 bbls heating oil/diesel
- 6-3-2-1
 - 6 bbl crude \rightarrow 3 bbls gasoline + 2 bbls heating oil/diesel + 1 bbl residual fuel oil

Rule of thumb for profitable operating environment

- Long held view greater than \$4 per bbl as strongly profitable
- Current view should be greater than \$9 per bbl to be profitable

Crack Spread Calculation

Example — Bloomberg, 6/25/2019

- Prices
 - WTI Cushing Spot \$57.81 per bbl
 - Brent \$65.00 per bbl
 RBOB Gasoline \$1.8773 per gal
 - Heating Oil \$1.9226 per gal
- 5-3-2 Spreads
 - WTI:

 $\frac{42 \times (3 \times 1.8773 + 2 \times 1.9226)}{5} - 57.81 = 21.78 per bbl

• Brent:

$$\frac{42 \times (3 \times 1.8773 + 2 \times 1.9226)}{5} - 65.00 = $14.61 \text{ per bbl}$$

Crude Oil & Natural Gas

INDEX	UNITS	PRICE
CL1:COM WTI Crude Oil (Nymex)	USD/bbl.	57.81
CO1:COM Brent Crude (ICE)	USD/bbl.	65.00
CP1:COM Crude Oil (Tokyo)	JPY/kl	40,510.00
NG1:COM Natural Gas (Nymex)	USD/MMBtu	2.29

Refined Products

INDEX	UNITS	PRICE
XB1:COM RBOB Gasoline (Nymex)	USd/gal.	187.73
HO1:COM Heating Oil (Nymex)	USd/gal.	192.26
QS1:COM Gasoil (Nymex)	USD/MT	588.50
JX1:COM Kerosene (Tokyo)	JPY/kl	57,430.00

http://www.bloomberg.com/energy/

Prices Are Crude Specific

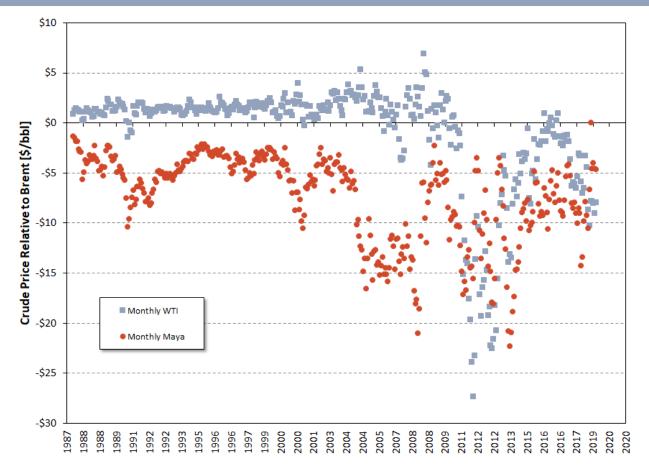
US CRUDE PRICES

5-24-19
\$/bbl*

	ψιμμι
Alaska-North Slope 27°	61.34
Light Louisiana Sweet	54.00
Light Louisiana Śweet California-Midway Sunset 13°	59.40
California-Buena Vista Hills 26°	70.43
Southwest Wyoming Sweet	54.88
Fast Texas Sweet	52.00
West Texas Sour 34°	50.25
West Texas Intermediate	55.25
Oklahoma Sweet	55.25
Texas Upper Gulf Coast	49.00
Michigan Sour	47.25
Kansas Common	54.25
North Dakota Sweet	47.25

*Current major refiner's posted prices except N. Slope lags 2 months. 40° gravity crude unless differing gravity is shown. Source: Oil & Gas Journal. Data available at PennEnergy Research Center.

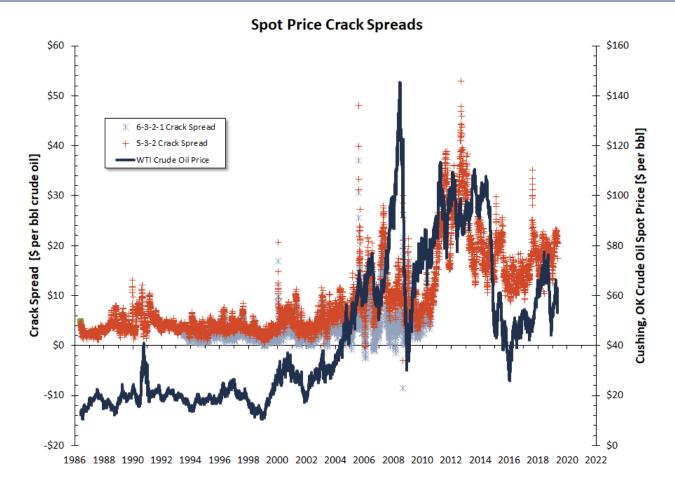
Ref: Statistics, Oil & Gas Journal, June 3, 2019


Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

OPEC reference basket Wkly. avg.	5-24-19 — Mo. avg	\$/bbl 70.23 \$/bbl
	Mar19	Apr19
OPEC reference basket	66.37	70.78
Arab light-Saudi Arabia	67.40	71.88
Basrah light-Iraq	66.05	70.45
Bonny light 37°-Nigeria	67.71	72.81
Es Sider-Libya	65.38	70.45
Girassol-Angola	67.16	72.88
Iran heavy-Iran	64.17	68.52
Kuwait export-Kuwait	66.78	71.20
Merey - Venezuela	57.75	58.95
Murban - UAE	68.01	71.51
Oriente - Ecuador	63.66	67.61
Saharan blend 44 - Algeria	66.38	71.15
Zafiro - Equatorial Guinea	67.15	72.65
Other crudes	07.10	72.00
Fateh 32°-Dubai	66.91	70.93
Minas 34°-Indonesia	59.63	67.64
Isthmus 33°-Mexico	66.53	70.34
Brent 38°-UK	66.08	71.15
Urals-Russia	66.21	71.90
Differentials	00.21	/1.50
	(7.92)	(7.28)
W1/Brent Brent/Dubai	(0.83)	0.22

Source: OPEC Monthly Oil Market Report. Data available at PennEnergy Research Center.

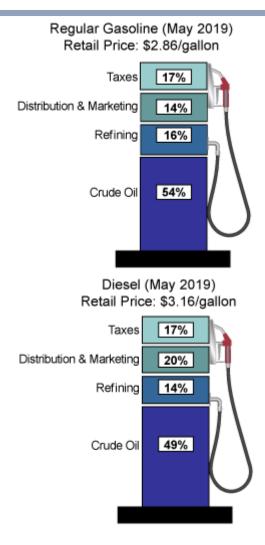
Prices Are Crude Specific



EIA published monthly production data – updated June 25, 2019 http://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm

http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=IMX2810004&f=M

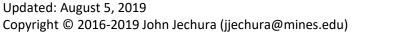
Historical Crude Prices & Crack Spreads



Updated July 12, 2018 Source: <u>http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_d.htm</u>

Price shocks?

Gasoline & Diesel Retail vs. Wholesale Prices


Gasoline Retail Cost Contributions				
Retail Price		Per Gallon \$2.86	Per Barrel \$120.12	
Taxes	17%	\$0.49	\$20.42	
Distribution & Marketing	14%	\$0.40	\$16.82	
Refining	16%	\$0.46	\$19.22	
Crude Oil	54%	\$1.54	\$64.86	
Refinery Costs / Wholesale P	Price	\$2.00	\$84.08	

Diesel Retail Cost Contributions

Retail Price		Per Gallon \$3.16	Per Barrel \$132.72	
Taxes	17%	\$0.54	\$22.56	
Distribution & Marketing	20%	\$0.63	\$26.54	
Refining	14%	\$0.44	\$18.58	
Crude Oil	49%	\$1.55	\$65.03	
Refinery Costs / Wholesale Pric	ce	\$1.99	\$83.61	
	Source: <u>http://www.eia.gov/petroleum/gasdiesel/</u> Updated June 25, 2019			

COLORADOSCHOOLOFMIN

ENERGY . ENVIRONMENT

How do energy prices compare?

						Price	Price	Relative to
	Giv	en Price	He	ating Value		[\$/MWh]	[\$/MMBtu]	Natural Gas
RBOB Gasoline - wholesale	1.9149	\$ per gallon	115,000	Btu/gal	LHV	56.82	16.65	7.4
Heating Oil - wholesale	1.9392	\$ per gallon	130,500	Btu/gal	LHV	50.70	14.86	6.6
WTI Crude Oil	58.58	\$ per bbl	5.8	MMBtu/bbl	HHV	34.46	10.10	4.5
Brent Crude Oil	64.448	\$ per bbl	5.8	MMBtu/bbl	HHV	37.91	11.11	4.9
Ethanol - Chicago	1.4930	\$ per gallon	75,700	Btu/gal	LHV	67.30	19.72	8.7
Natural Gas - Henry Hub	2.256	\$ per MMBtu			нну Г	7.70	2.26	1.0
Propane - Mt.Belvieu	0.40250	\$ per gallon	90,905	Btu/gal	HHV	15.11	4.43	2.0
Powder River Basin Coal (low sulfur)	12.25	\$ per ton	8,800	Btu/lb	HHV	2.37	0.70	0.3
Illinois Basin (high sulfur)	39.10	\$ per ton	11,800	Btu/lb	HHV	5.65	1.66	0.7
Electricity (Residential, winter season)	5.461	¢ per kWh				54.61	16.00	7.1
Electricity (Residential, summer, over 500 kWh)	9.902	¢ per kWh				99.02	29.02	12.9
Electricity (Small Commercial, winter season)	4.256	¢ per kWh				42.56	12.47	5.5
Electricity (Small Commercial, summer season)	8.512	¢ per kWh				85.12	24.95	11.1
Hydrogen dispensed cost	13.99	\$ per kg	324.2	Btu/scf	HHV	354.77	103.97	46.1

References:

Gasoline, Heating Oil, Crude Oil, Natural Gas from Blomberg (7/1/2019, Aug contract) http://www.bloomberg.com/energy/

Natural Gas, Propane, & Ethanol prices from NYMEX via barchart.com (7/1/2019) https://www.barchart.com/my/watchlist?viewName=main

Coal from US EIA Coal News & Markets (week ending 6/28/19). http://www.eia.gov/coal/news_markets/_

Xcel Energy electric tariff book (retrieved 4/12/2018)

http://www.xcelenergy.com/staticfiles/xe/PDF/Regulatory/CO-Rates-&-Regulations-Entire-Electric-Book.pdf

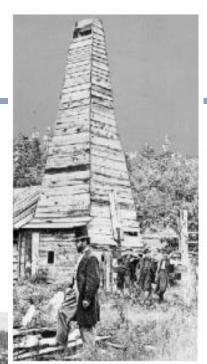
Ave. hydrogen cost, CA, from "Joint Agency Staff Report on Assembly Bill 8: Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California," Dec. 2015 (page 7)

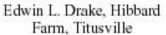
http://www.energy.ca.gov/2015publications/CEC-600-2015-016/CEC-600-2015-016.pdf

Generalized Petroleum Refinery

Early History

Commercial oil well of "Colonel" Edwin L. Drake


- August 1859, Oil Creek in northwestern Pennsylvania
- First refineries built up around Pennsylvania oil wells. Batch distillation to recover kerosene.
 - First U.S. refinery in Pittsburgh, PA, in 1853
 - Kerosene viewed as a superior replacement to whale oil for lamp oil.


Standard Oil Trust

- John D. Rockefeller acquired petroleum interests during the late 1800s. Organized as the Standard Oil Trust in 1882.
- U.S. Supreme Court dissolved in 1911.
 34 companies spun off.

Change in product demand

 In 1911, nation's kerosene output eclipsed for the 1st time by a discarded byproduct - gasoline

Oil Fields and Shipping Barges Along Oil Creek Pennsylvania, circa 1865

Implementation of Technologies

Year	Process name	Purpose	By-products, etc.
1862	Atmospheric distillation	Produce kerosene	Naphtha, tar, etc.
1870 Vacuum distillation	Lubricants (original)	Asphalt, residual	
	Cracking feedstocks (1930's)	coker feedstocks	
1913	Thermal cracking	Increase gasoline	Residual, bunker fuel
1916	Sweetening	Reduce sulfur & odor	Sulfur
1930	Thermal reforming	Improve octane number	Residual
1932	Hydrogenation	Remove sulfur	Sulfur
1932	Coking	Produce gasoline basestocks	Coke
1933	Solvent extraction	Improve lubricant viscosity index	Aromatics
1935	Solvent dewaxing	Improve pour point	Waxes
1935	Cat. polymerization	Improve gasoline yield & octane number	Petrochemical feedstocks
1937	Catalytic cracking	Higher octane gasoline	Petrochemical feedstocks
1939	Visbreaking	Reduce viscosity	Increased distillate, tar
1940	Alkylation	Increase gasoline octane & yield	High-octane aviation gasoline
1940	Isomerization	Produce alkylation feedstock	Naphtha
1942	Fluid catalytic cracking	Increase gasoline yield & octane	Petrochemical feedstocks
1950	Deasphalting	Increase cracking feedstock	Asphalt
1952	Catalytic reforming	Convert low-quality naphtha	Aromatics
1954	Hydrodesulfurization	Remove sulfur	Sulfur
1956	Inhibitor sweetening	Remove mercaptan	Disulfides
1957	Catalytic isomerization	Convert to molecules with high octane number	Alkylation feedstocks
1960	Hydrocracking	Improve quality and reduce sulfur	Alkylation feedstocks
1974	Catalytic dewaxing	Improve pour point	Wax
1975	Residual hydrocracking	Increase gasoline yield from residual	Heavy residuals

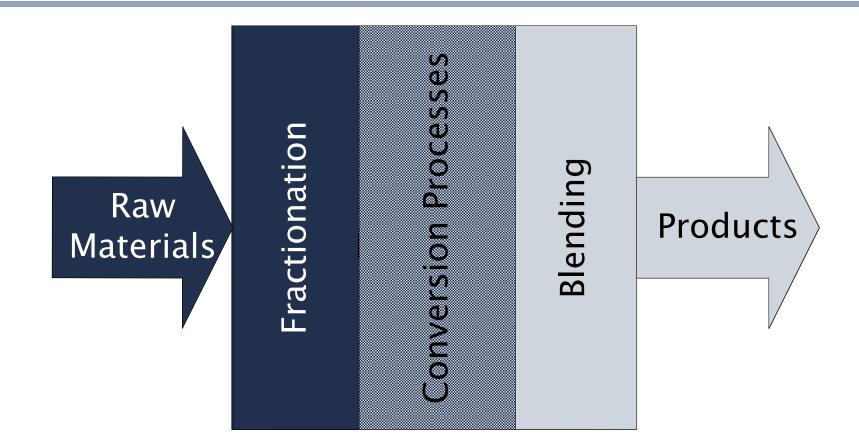
Ref: http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2.html

Description of Petroleum Refinery

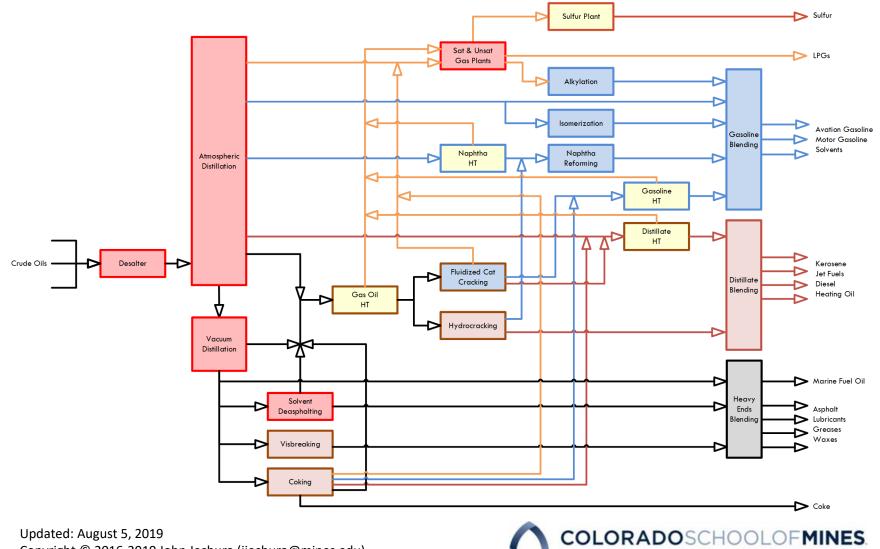
Manages hydrocarbon molecules

Organized & coordinated arrangement of manufacturing processes

- Provide physical & chemical change of crude oil
- Salable products with specifications & volumes as demanded by the marketplace

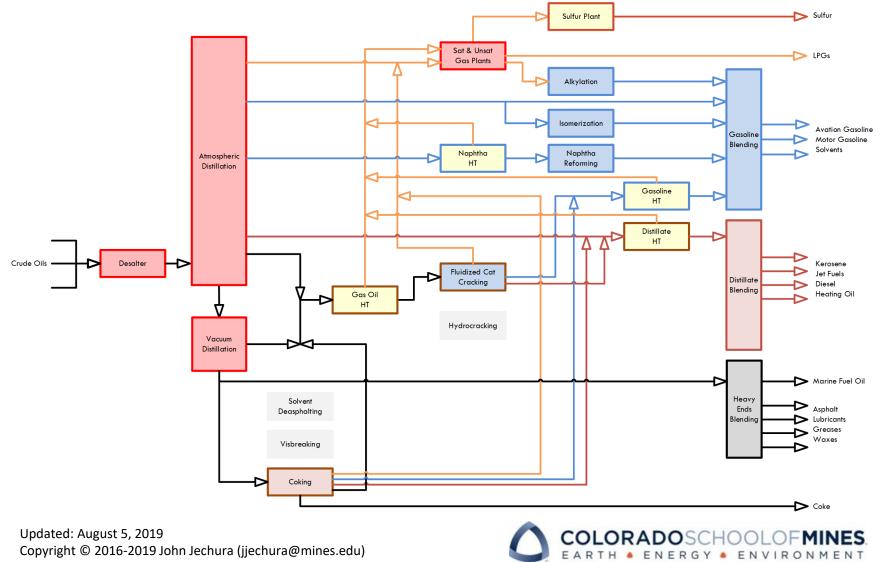

Complete refinery will include:

- Conversion units
- Tankage for storage
 - Typically 28 to 32 days of storage
- Dependable source for electric power
- Waste disposal & treatment facilities
- Product blending facilities
- Around the clock operations



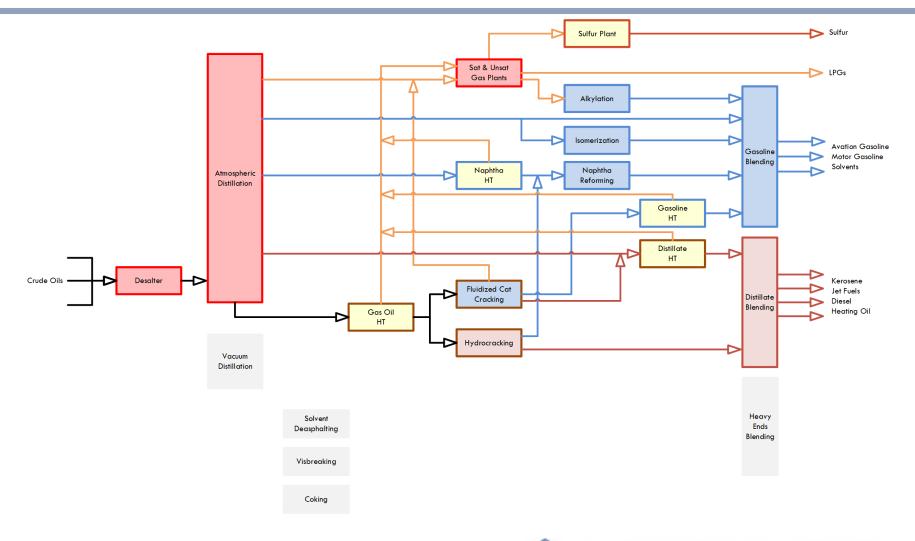
Petroleum Refinery Block Flow Diagram

Petroleum Refinery Block Flow Diagram



Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

ENERGY . ENVIRONMENT


EARTH

1990s Heavy Oil Refinery

Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

Light Crudes, no Vacuum Processing

Summary

Summary

Energy consumption in the U.S. & petroleum's contribution

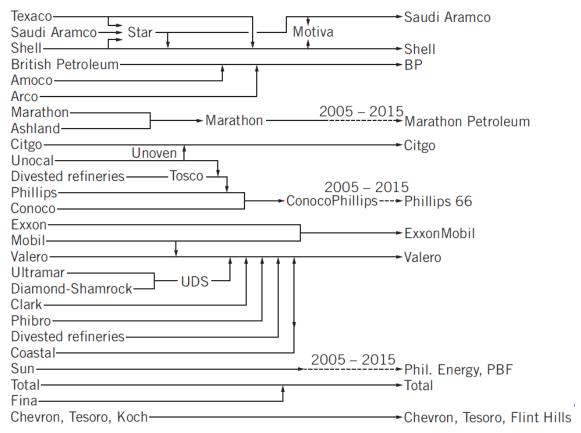
- In the U.S. petroleum accounts for just over 35% of the nation's energy source
- Over 70% of petroleum is directed toward the transportation sector & accounts for 90% of the energy used in this sector
- Currently about 150 refineries in the U.S. & ownership changes to meet strategic needs of the companies' portfolios
- About 50% of the output of U.S. refineries is gasoline

Basic refining economics

 Refinery profits are based on the spread between product prices & crude oil costs

Generalized Petroleum Refinery

 Refineries may be simple or complex depending on the strategy of product production from particular crude oils


Supplemental Slides

Refiner's Realignment

REFINERS' REALIGNMENT, 1995 – 2015

"US refiners continue consolidation, restructuring efforts", Leffler, Oil & Gas Journal, Aug. 3, 2015

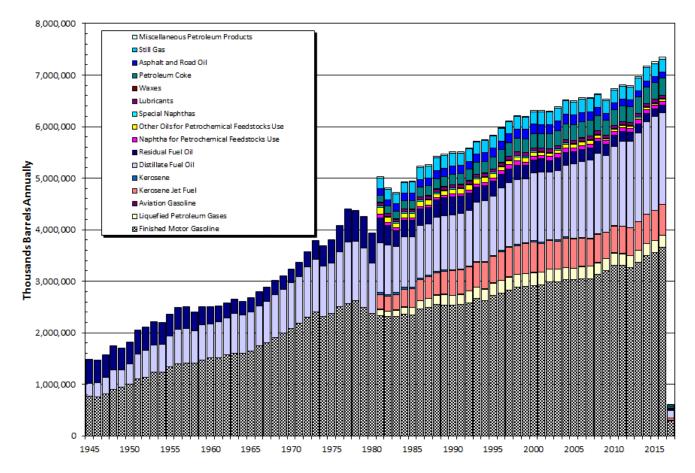
Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

FIG. 1

Recent Refinery Closures

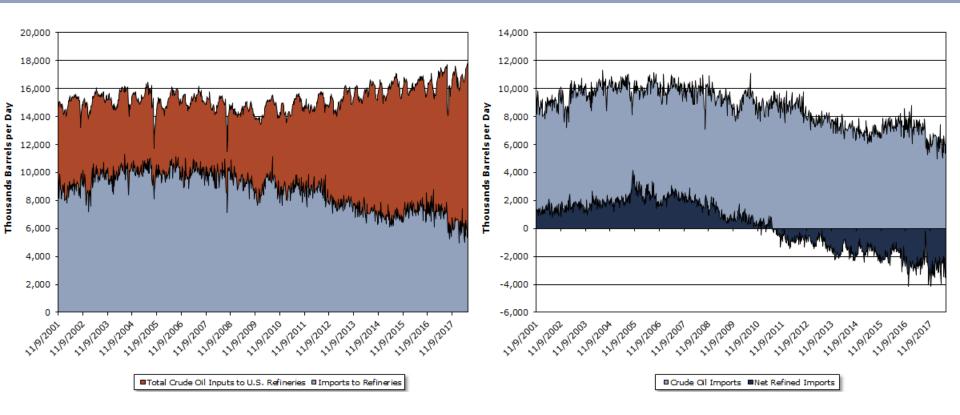
		CDU Capacity Closed	Year			CDU Capacity Closed	Year
Location	Owner	(MBPD)	Closed	Location	Owner	(MBPD)	Closed
Perth Amboy, NJ	Chevron	80	2008	Keihin Ohgimachi, Japan	Showa Shell	120	2011
Bakersfield,CA	Big West	65	2008	Clyde, Australia	Shell	75	2011
Westville, NJ	Sunoco	145	2009	Porto Marghera, Italy	ENI	70	2011
Bloomfield, NM	Western	17	2009	Marcus Hook, PA	Sunoco	175	2011
Teesside, UK	Petroplus	117	2009	Harburg, Germany	Shell	107	2012
Gonfreville, France*	Total	100	2009	Berre, France	LyondellBassel	105	2012
Dunkirk, France	Total	140	2009	Coryton, U.K.	Petroplus	220	2012
Japan*	Nippon Oil	205	2009	Petit Couronne, France ¹	Petroplus	160	2012
Toyama, Japan	Nihonkai Oil	57	2009	St. Croix, U.S.V.I	Hovensa	350	2012
Arpechim, Romania *	Petrom	70	2009	Aruba	Valero	235	2012
Cartagena*	REPSOL	100	2009	Rome, Italy	TotalErg	82	2012
Bilboa*	REPSOL	100	2009	Fawley, U.K.*	ExxonMobil	80	2012
Arpechim, Romania	OMV	70	2010	Trecate, Italy*	ExxonMobil	70	2012
Japan*	Cosmo	94	2010	Paramo, Czech Republic	Unipetrol	20	2012
Nadvornaja, Ukraine	Privat Group	50	2010	Lisichansk, Ukraine	TNK-BP	175	2012
Montreal, Canada ¹	Shell	130	2010	Bakersfield/Paramount, CA	Alon	90	2012
Yorktown, Virginia	Western	65	2010	Ewa Beach, Hawaii	Tesoro	94	2013
Reichstett, France	Petroplus	85	2010	Port Reading, NJ	Hess	N/A	2013
Wilhemshaven, Germany	Phillips 66	260	2010	Venice, Italy	ENI	80	2013
Ingolstadt, Germany	Bayernoil	90	2010	Sakaide, Japan	Cosmo Oil	140	2013
Cremona, Italy	Tamoil	94	2011	Japan	Indemitsu Kosan	100	2014
St. Croix, U.S.V.I,*	Hovensa	150	2011	Japan	Nippon	200	2014
Funshun, China	PetroChina	70	2011	Kurnell, Australia	Caltex	135	2014
				Kawasaki, Japan	Tonen- General	105	2014

*Partial closure of refinery captured in capacity Note: This data represents refineries currently closed, ownership may choose to restart or sell listed refinery Sources: Industry and Consultant reports and Valero estimates

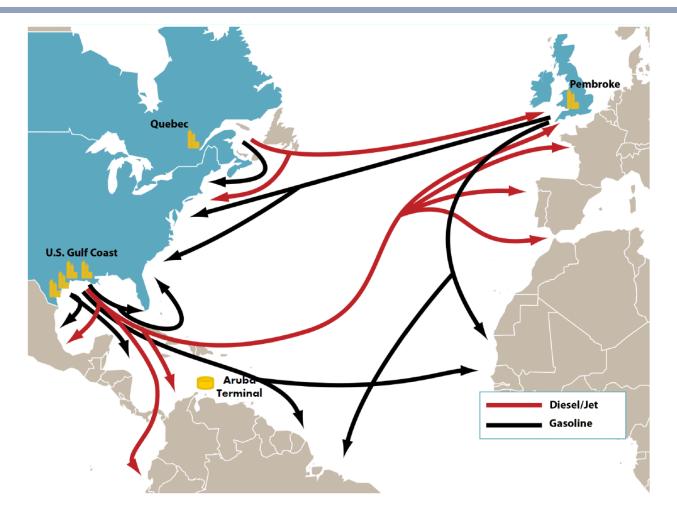

¹The Petit Couronne refinery has shut completely when processing deal with Shell ended in December 2012

²Alon announced the closure of these refineries for economic reasons, may restart

Ref: Valero, UBS Global Oil and Gas Conference, May 21-22, 2013


U.S. Refinery & Blender Net Production

Includes production to January 2017 – updated April 7, 2017 Source: <u>http://tonto.eia.doe.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm</u>


U.S. Oil from Imports

EIA published data used for charts – updated July 12, 2018 http://www.eia.gov/dnav/pet/pet_move_wkly_dc_nus-z00_mbblpd_w.htm http://www.eia.gov/dnav/pet/pet_pnp_wiup_dcu_nus_w.htm

Import/Export Refined Products – Valero Example

Ref: Valero, UBS Global Oil and Gas Conference, May 21-22, 2013

Prices Are Crude Specific – Historical Example

US CRUDE PRICES

1-17-14

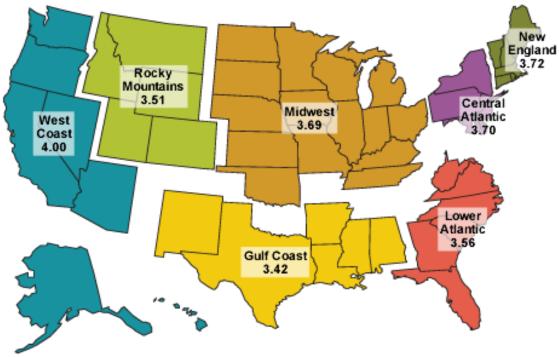
	\$/bbl*
Alaska-North Slope 27°	93.40
Light Louisiana Śweet	89.74
California-Midway Sunset 13°	93.85
California Buena Vista Hills 26°	101.63
Wyoming Sweet	85.87
East Texas Sweet	88.00
West Texas Sour 34°	85.75
West Texas Intermediate	90.75
Oklahoma Sweet	90.75
Texas Upper Gulf Coast Michigan Sour	84.50
Michigan Sour	82.75
Kansas Common	89.75
North Dakota Sweet	74.94

*Current major refiner's posted prices except N. Slope lags 2 months. 40° gravity crude unless differing gravity is shown. Source: Oil & Gas Journal. Data available at PennEnergy Research Center.

Ref: Statistics, Oil & Gas Journal, January 27, 2014

Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

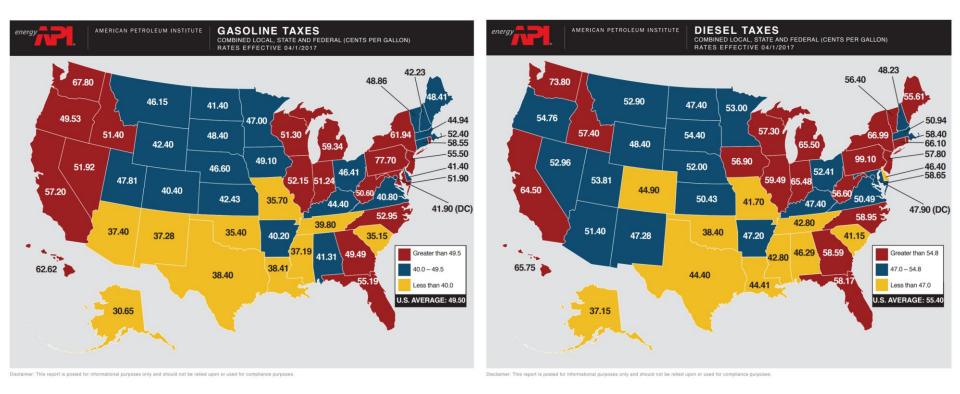
WORLD CRUDE PRICES


OPEC reference basket Wkly. avg.	1-17-14 — Mo. avg Oct13	\$/bbl 104.17 ., \$/bbl Nov13
OPEC reference basket	106.69	104.97
Arab light-Saudi Arabia	107.14	104.84
Basrah light-Iraq	103.69	101.63
Bonny light 37°-Nigeria	112.44	111.47
Es Sider-Libya	108.74	107.57
Girassol-Angola	110.20	108.83
Iran heavy-Iran	107.69	106.87
Kuwait export-Kuwait	106.13	104.73
Marine-Qatar	106.61	105.83
Merey-Venezuela	96.80	94.83
Murban-UAE	110.13	109.36
Oriente-Ecuador	95.16	89.72
Saharan blend 44°-Algeria	111.04	109.27
Other crudes		
Minas 34°-Indonesia	106.98	104.28
Fateh 32°-Dubai	106.70	105.95
Isthmus 33°-Mexico	99.84	93.83
Tia Juana light 31°-Venezuela	NA	NA
Brent 38°-UK	109.04	107.97
Urals-Russia	108.28	107.73
Differentials	(0.00)	
WTI/Brent	(8.63)	(14.21)
Brent/Dubai	2.34	2.02

Source: OPEC Monthly Oil Market Report. Data available at PennEnergy Research Center.

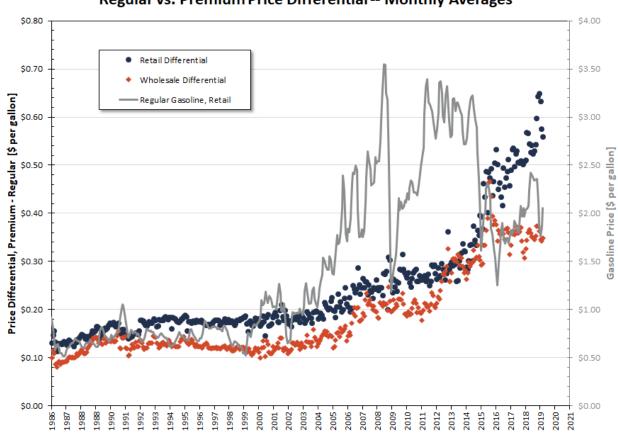
Pump prices are not the same across U.S.

Regular grade gasoline prices at retail outlets by region for June 9, 2014 (dollars per gallon, including taxes)



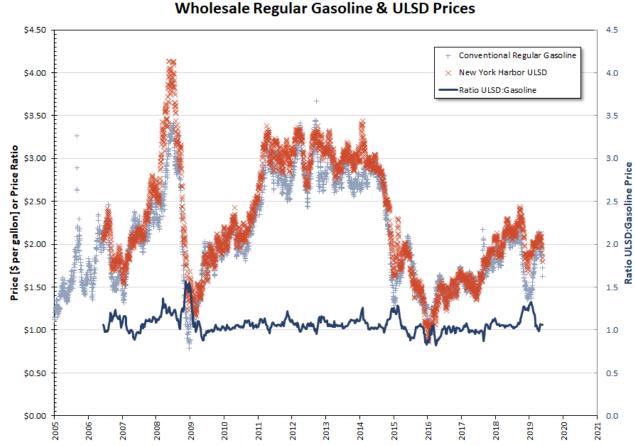
Source: U.S. Energy Information Administration, EIA-878, Motor Gasoline Price Survey.

Source: <u>http://www.eia.gov/petroleum/images/gasoline_prices_map_375.png</u> Downloaded August 4, 2016


Gasoline & Diesel Taxes not the same across U.S.

Source: http://www.api.org/oil-and-natural-gas-overview/industry-economics/fuel-taxes Downloaded July 5, 2017

Differential Between Regular & Premium Gasolines



Regular vs. Premium Price Differential -- Monthly Averages

Updated June 25, 2019 Source: http://www.eia.gov/dnav/pet/pet_pri_refmg_dcu_nus_m.htm

Comparison Wholesale Regular Gasoline & ULSD

Updated June 25, 2019 Source: http://www.eia.gov/dnav/pet/pet_pri_refmg_dcu_nus_m.htm

Process Cost Estimates

Accounts for size impact on installed cost

Developed from reported final costs & supplemented with engineering estimates

Meant to represent "typical" values – no better than $\pm 25\%$

Not included:

- Working capital
- Inventories
- Start-up expenses
- Cost of land
- Site preparation
- Taxes
- Licenses
- Permits
- Duties

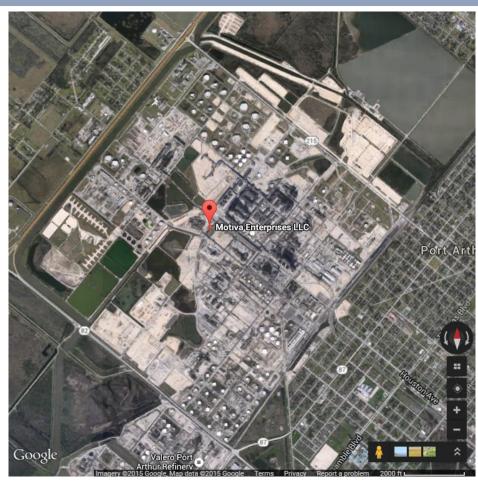
Kaiser & Gary, "Study updates refinery investment cost curves", *Oil & Gas Journal*, Apr. 23, 2007, pp 84-94.

(Delayed coking curves may have been switched)

Updated: August 5, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

PROCESS COST FUNCTIONS	Cost, \$ mi	llion	Tabl	
	= a , * capa	Units of		
Process Unit	= 0. * capa 0.	B B	Units of Capacity	
Desalter	0.44	0.555	1,000 b/sd	
Atmospheric distillation	8.20	0.510	1,000 b/sd	
Vacuum distillation	8.34	0.493	1,000 b/sd	
Delayed coking			-,,	
30 bbl feed/ton coke	17.56	0.657	1,000 b/sd	
10 bbl feed/ton coke	24.42	0.644	1,000 b/sd	
Visbreaking	5.80	0.741	1,000 b/sd	
Fluid catalytic cracking				
Distillate feed	24.67	0.461	1,000 b/sd	
Resid feed	32.98	0.510	1,000 b/sd	
Catalytic hydrocracking				
1,000 scf/bbl H ₂	15.65	0.719	1,000 b/sd	
3,000 scf/bbl H ₂	26.18	0.714	1,000 b/sd	
Catalytic hydrotreating	20.20	0.721	1,000 0,00	
Naphtha desulfurization	4,96	0.524	1,000 b/sd	
Distillate desulfurization	8.62	0.576	1,000 b/sd	
Resid desulfurization	8.61	0.834	1,000 b/sd	
Catalytic reforming	0.01	0.001	1,000 0,00	
Semiregenerative	7.96	0.572	1,000 b/sd	
Continuous	12.19	0.547	1,000 b/sd	
Isomerization			-,,	
Butane	9.57	0.514	1,000 b/sd	
Pentane/hexane; once through	3.11	0.565	1,000 b/sd	
Pentane/hexane; recycle	6.17	0.599	1,000 b/sd	
Alkylation	12.19	0.606	1,000 b/sd	
Hydrogen production			-,,	
Steam methane reforming	3.35	0.599	MMscfd	
Partial oxidation	5.44	0.601	MMscfd	
Gas processing				
1 gal/Mscf	1.91	0.627	MMscfd	
10 gal/Mscf	4.38	0.593	MMscfd	
20 gal/Mscf	5.83	0.610	MMscfd	
Amine gas treating	0.064	0.746	gpm	
Sulfur recovery	2.64	0.412	long ton/da	
Sulfur removal				
S-zorb, gasoline	4.77	0.602	1,000 b/sd	
S·zorb, diesel	4.62	0.553	1,000 b/sd	
Dewaxing	5.82	0.598	1,000 b/sd	
Ether production	8.96	0.472	1,000 b/sd	

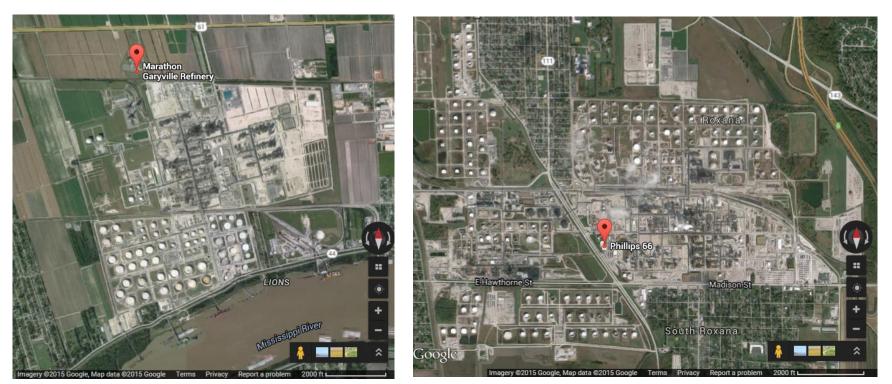
Table 9


2005 U.S. Gulf Coast Cost Yeat Basis

BROCESS COST FUNCTIONS

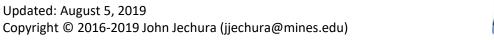
Delayed Coking curves modified to match Gary, et. al., textbook

Satellite View of Selected U.S. Refineries

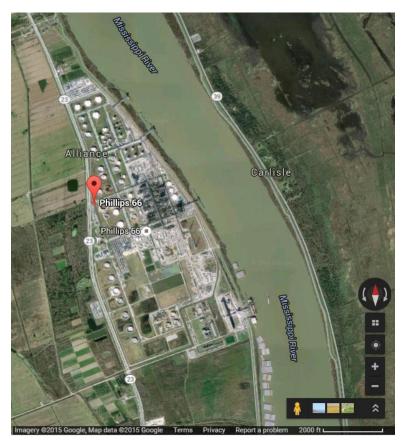


Dakota Prairie Refinery, Dickinson, ND 19,000 bbl per calendar day

Motiva Enterprises LLC, Port Arthur, TX 603,000 bbl per calendar day



Satellite View of Selected U.S. Refineries


Marathon Garyville Refinery, Garyville, LA 451,000 bbl per calendar day

Wood River Refinery, Roxanna, IL 336,000 bbl per calendar day

Satellite View of Selected U.S. Refineries

Phillips 66 Alliance Refinery, Belle Chasse, LA 247,000 bbl per calendar day

Suncor Refinery, Commerce City, CO 103,000 bbl per calendar day

