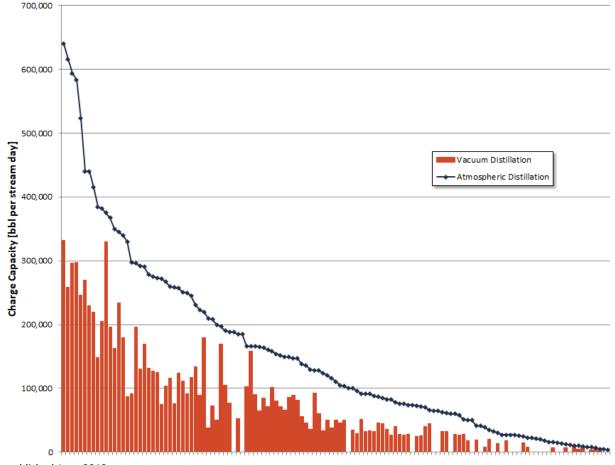

Crude Oil Distillation

Chapter 4


COLORADOSCHOOLOFMINES

Petroleum Refinery Block Flow Diagram

Updated: July 2, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu) COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Atmospheric & Vacuum Distillation in U.S.

EIA, Jan. 1, 2019 database, published June 2019 http://www.eia.gov/petroleum/refinerycapacity/

Topics

Crude Stills

- Historically the oldest refining process
- Only the first step in crude oil processing

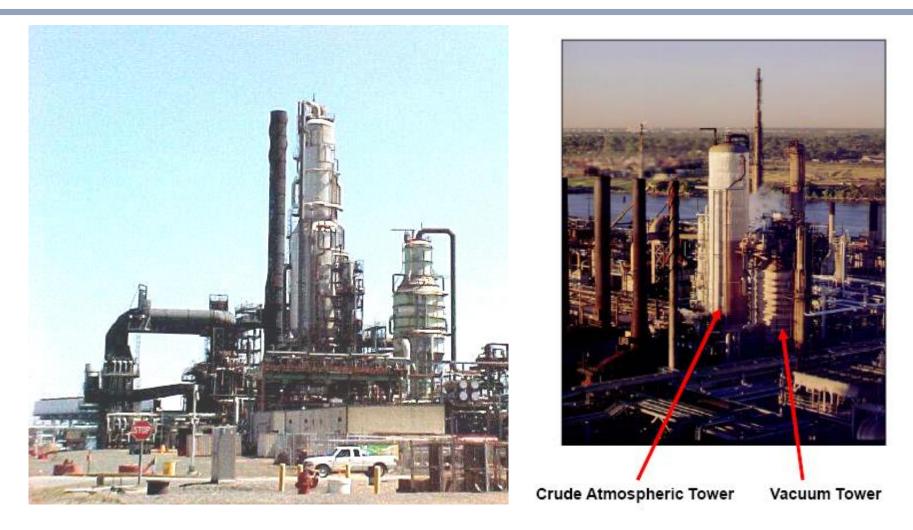
Purpose

- To recover light materials
- Fractionate into "sharp" light fractions

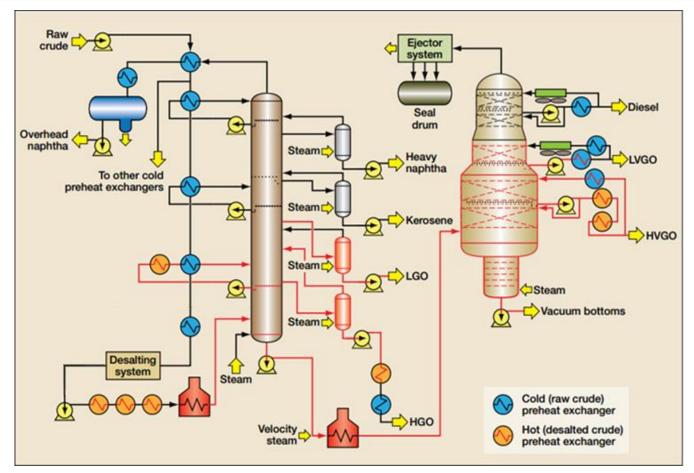
Configuration — May be as many as three columns in series

- Crude Stabilizer/Preflash Column
 - Reduce traffic in the Atmospheric Column
- Atmospheric Column
- Vacuum Column
 - Reduced pressure to keep blow cracking temperatures

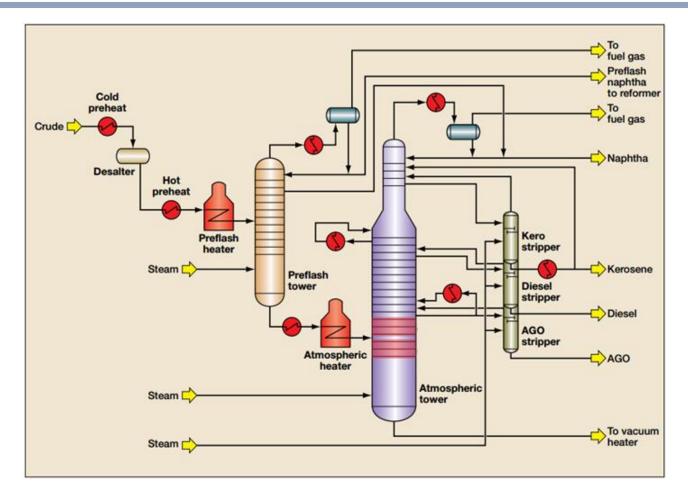
Product Yield Curves – Cut Point, Overlap, & Tails



Configuration: Preflash Atmospheric Vacuum

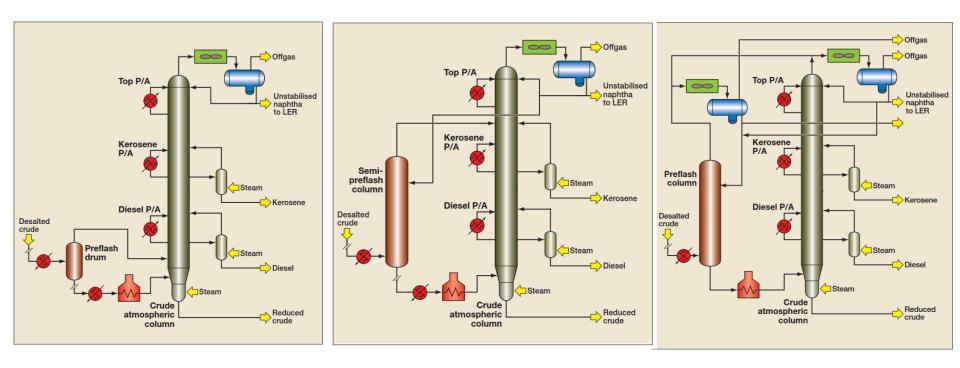


Atmospheric & Vacuum Tower Complex


Atmospheric & Vacuum Tower Complex

Modified drawing from: "Revamping crude and vacuum units to process bitumen," Sutikno, PTQ ,Q2 2015

Atmospheric Column with Preflash



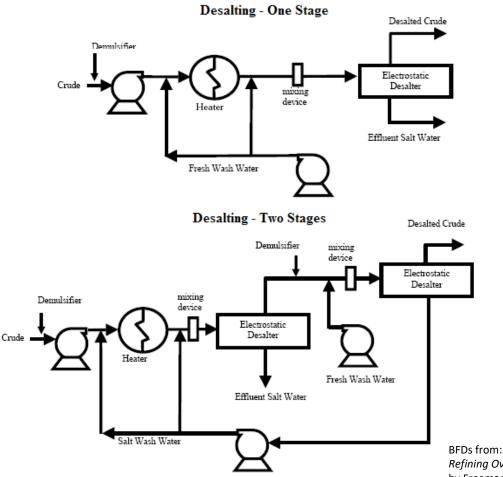
Modification of figure in "Increasing distillate production at least capital cost," Musumeci, Stupin, Olson, & Wendler, PTQ, Q2 2015

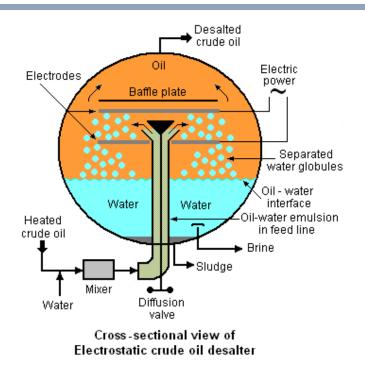
Preflash Options – Tight Oil Example with no AGO

"Optimising preflash for light tight oil processing," Lee, PTQ, Q3 2015

Feed Preheat Train & Desalter

Feed Preheat Train


- Initial heat exchange with streams from within the tower
 - Heat recovery important to distillation economics!
 - First absorb part of the overhead condensation load
 - Exchange with one or more of the liquid sides streams, beginning with the top (coldest) side stream
 - Require flexibility
 - Changes in crude slate
 - Temperature at desalter
 - Limits on two-phase flow through network
- Final heating in a direct fired heater
 - Heat enough to vaporize light portions of the crude but temperature kept low to minimize thermal cracking
 - $_{\odot}~$ Inlet typically 550°F, outlet 600 to 750°F.
 - Heavier crudes cannot be heated to the higher temperatures


Desalter

- Temperature carefully selected do not let water vaporize
 - Lighter crudes (> 40°API) @ 250°F
 - Heavier crudes (< 30°API) @ 300°F
- All crudes contain salts (NaCl, MgCl, ...)
 - Salt present in the emulsified water
 - Treated in the field with heat & chemicals to break oil water emulsions.
 - Salt can cause damage to equipment
 - Scale in heat exchangers
 - HCl formation can lead to corrosion
 - Metals can poison refinery catalysts
- Remove salts & dissolved metals & dirt
 - Oil mixed with fresh wash water & demulsifiers.
- Separation in electrostatic settling drum
- Wash water up to 10% of crude charge
 - ~ 90% of the water can be recovered
- Effluent water treated for benzene

Crude Electrostatic Desalting

Drawing by Milton Beychok http://en.citizendium.org/wiki/File:Desalter Diagram.png

Refining Overview – Petroleum Processes & Products, by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD-ROM, 2000

Crude Desalting

Breaking the crude oil/water emulsion important to minimize downstream problems

Performance of additives may be crude specific

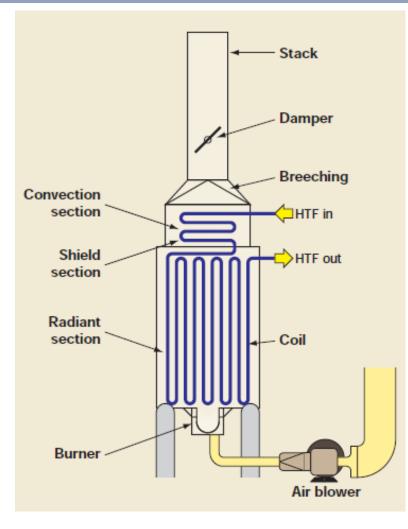
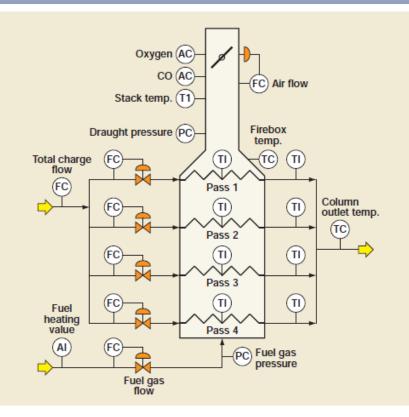


Figure 5 From left to right: an emulsion treated with caustic, no chemistry, and a standard emulsion breaker


Picture from: "Removing contaminants from crude oil" McDaniels & Olowu, PTQ Q1, 2016

Direct Fired Heater

Updated: July 2, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

Ref: "Useful tips for fired heater optimisation" Bishop & Hamilton, Petroleum Technology Quarterly, Q2 2012

Atmospheric Distillation Summary

Condenser ...

- Partial condenser if no Stabilizer Column.
- Total condenser if Stabilizer Column to remove light ends.
- ... but no reboiler.

Feed preheat exchanger train

- All of the heat to drive the column comes from the hot feed.
 - As much as 50% of the incoming crude may be flashed.
 - "Overflash"
 - Extra amount of material vaporized to ensure reflux between flash zone & lowest side draw
 - Typically 2 vol% of feed

Pumparounds

- Move cooling down column.
- Liquid returned above draw tray

Side draws

Side strippers

"Clean up" side products

Stripping steam

- Reduce hydrocarbon partial pressure
- Condensed & removed as a second liquid phase.
 - Conditions set so it doesn't condense within the column – can lead to foaming
 - Must be treated as sour water

Atmospheric Distillation Summary

Wash Zone

- Couple trays between flash zone & gas oil draw.
- Reflux to wash resins & other heavy materials that may contaminate the products.

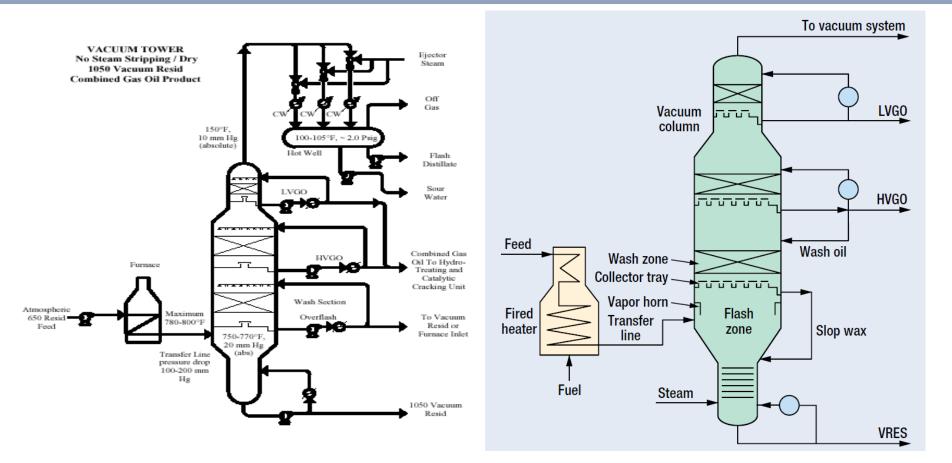
Condenser

- Typically 0.5 to 20 psig.
- Balancing act
 - Low pressures reduce compression on overhead system
 - High pressures decrease vaporization but increase flash zone temperatures & furnace duty; affects yields

Pumparounds

- Reduces overhead condenser load & achieves more uniform tower loadings
- Provides liquid reflux below liquid draws

Side Draws & Strippers


- Side strippers remove light component "tail" & return to main column
- Steam strippers traditional
 - Reboiled strippers reduce associated sour water & may reduce steam usage

Trays & Pressure Profile

- Typically 32 trays in tower
- 0.1 psi per tray for design & target for operation
 - May find as high as 0.2 psi per tray, but probably flooding!
- Condenser & accumulator
 - 3 to 10 psi across condenser
 - Liquid static head in accumulator
- Typically 6 to 16 psi across entire column.

Vacuum Distillation

Refining Overview – Petroleum Processes & Products, by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD-ROM, 2000 "Consider practical conditions for vacuum unit modeling" R. Yahyaabadi, *Hydrocarbon Processing*, March 2009

Vacuum Distillation – Trays vs. Packing

Packing used in vacuum towers instead of trays

- Lower pressure drops across the tower – vapor "slides by" liquid instead of pushing through the layer on the tray
- Packing also helps to reduce foaming problems

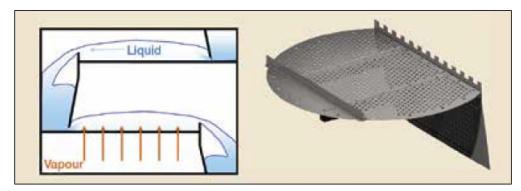


Figure 3 Vapour and liquid flows on trays

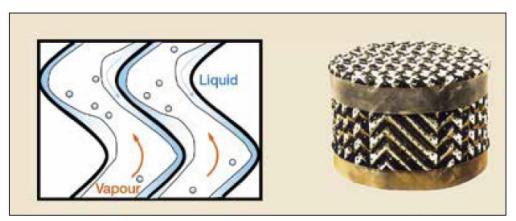


Figure 4 Vapour and liquid flows in structured packing

"Foaming in fractionation columns" M. Pilling, *PTQ*, Q4 2015

Vacuum Distillation Summary

Column Configuration

- Vacuum conditions to keep operating temperatures low
- Large diameter column
- Very low density gases
- Condenser only for water vapor
- Liquid reflux from pumparounds
- No reboiler
- Stripping steam may be used
 - Needed for deep cuts (1100°F)
- Common problem coking in fired heater & wash zone
 - Fired heater high linear velocities to minimize coke formation
 - Wash zone sufficient wash oil flow to keep the middle of the packed bed wet

Feed

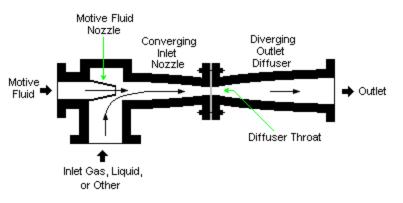
- Atmospheric residuum
- All vapor comes from the heated feed
- Under vacuum (0.4 psi)
- Separate higher boiling materials at lower temperatures
 - Minimize thermal cracking

Products

- May have multiple gas oils
 - Usually recombined downstream to FCCU after hydrotreating
- Vacuum resid
 - Blended asphalt, heavy fuel oil
 - Further processing thermal, solvent
 - Depends on products & types of crude

Vacuum Distillation Summary

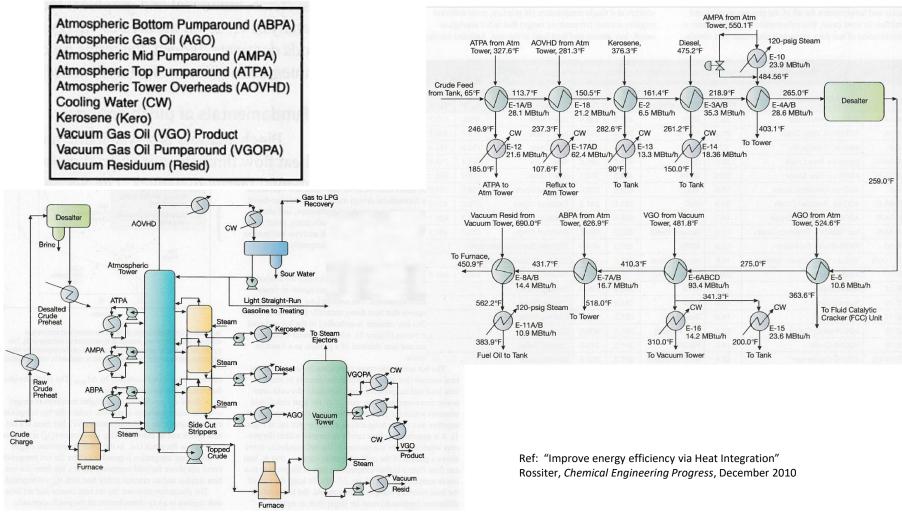
Dry System


- 1050°F+ cut temperature & no stripping steam
- Smaller tower diameters
- Reduced sour water production
- Pressure profile
 - Flash zone: 20-25 mmHg abs & 750 to 770°F.
 - Top of tower: 10 mmHg abs

Deep Cut System

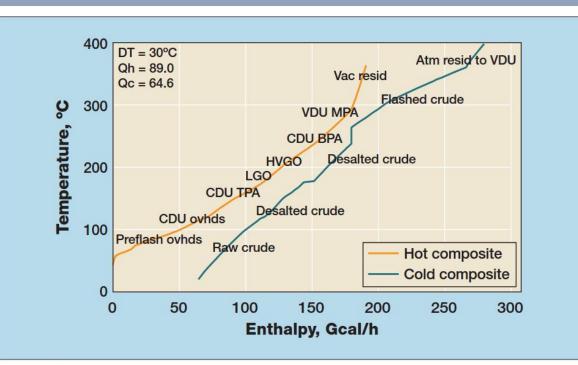
- 1100°F+ cut temperature & stripping steam
- Steam reduces hydrocarbon partial pressures
- Pressure profile
 - Flash zone: 30 mmHg abs
 - HC partial pressure 10-15 mmHg abs
 - Top of tower: 15 mmHg abs

Steam Ejectors & Vacuum Pumps


- Vacuum maintained on tower overhead
- Steam systems considered more reliable
- Waste steam is sour & must be treated
- Combinations systems Last steam stage replaced with a vacuum pump

Drawing from http://www.enotes.com/topic/Injector

Example Crude Preheat Trains


Updated: July 2, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu) COLORADOSCHOOLOFMINES 20

"Composite Curve" for Preheat Train

Compare amount of heat available & at what temperatures

Goal is to shift the hot & cold composite curves as close as possible

- "Pinch" technology
- This will reduce the amount of "excess" heat to be "thrown away" to the environment
- This will also reduce the amount of "fresh" heat added to the system

Figure 1 Composite curves

Ref: "Energy savings in preheat trains with preflash" Bealing, Gomez-Prado, & Sheldon, *PTQ*, Q2 2016

Example – Existing Preheat Train

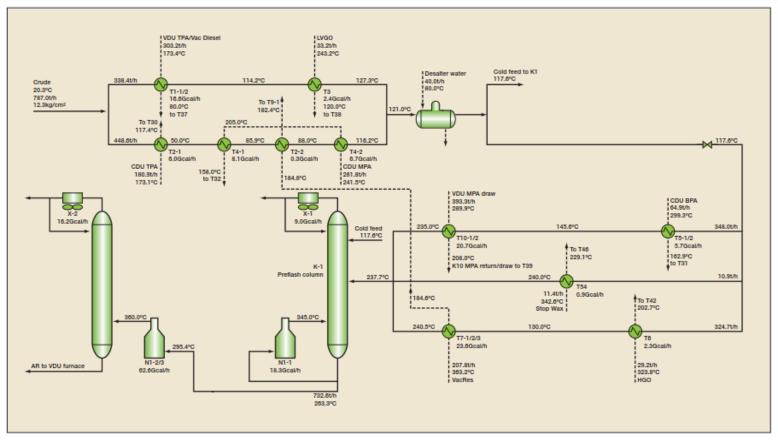
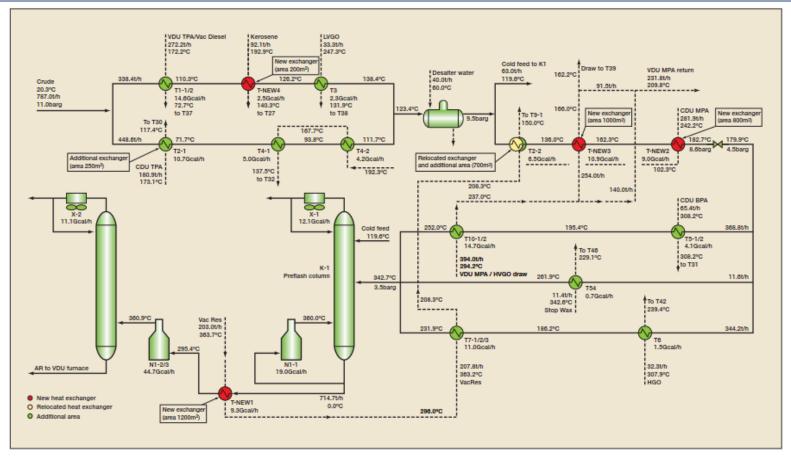



Figure 2 Preheat train configuration

Ref: "Energy savings in preheat trains with preflash" Bealing, Gomez-Prado, & Sheldon, *PTQ*, Q2 2016

Example – Improved Preheat Train

Figure 4 The most cost effective solution

Ref: "Energy savings in preheat trains with preflash" Bealing, Gomez-Prado, & Sheldon, *PTQ*, Q2 2016

Product Yield Curves

Typical "Cut Point" Definitions

Cut	TBP IBP (°F)	TBP EP (°F)		
Light Naphtha (LSR Gasoline)	80 to 90	180 to 220		
Heavy Naphtha	180 to 220	330 to 380		
Middle Distillate (Kerosene)	330 to 380	420 to 520		
Diesel / AGO (Atm Gas Oil)	420 to 520	650		
LVGO (Light Vac Gas Oil)	650	800		
HVGO (Heavy Vac Gas Oil)	800	950 to 1100		
Vacuum Resid	950 to 1100			


Product Yield Curves – Cut Point, Overlap, & "Tails"

Industrial distillation columns do not provide perfectly sharp separations

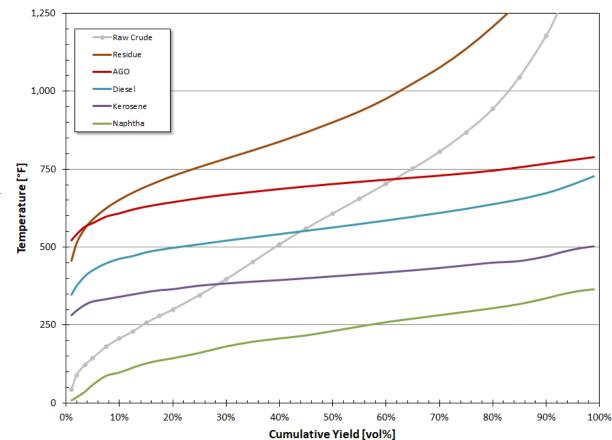
- Initial calculations using crude oil assays assume that all materials at a certain boiling point goes to one product or another
- Imperfect separations result in light-ends & heavy-ends "tails" in adjacent products
- Presence of tails complicate the definition of "cut point"

Analysis

- Scale distillation curves to represent the volume removed
- "Cut point" temperature represents the feed's TBP corresponding the cumulative volume removed
- "Tail" represents the light fraction's amount above the cut point & the heavy fraction's amount below the cut point

VOLUME PERCENT VAPORIZED

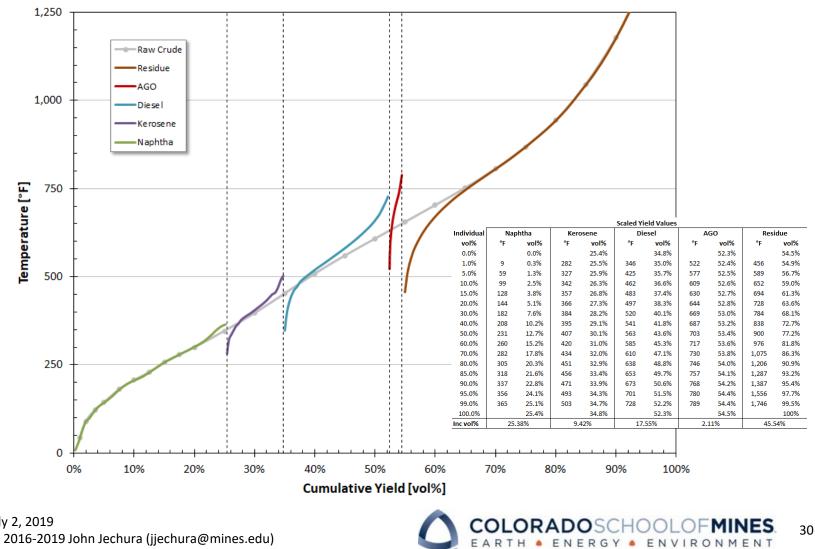
Ref: R.N. Watkins, Petroleum Refinery Distillation, 2nd ed., 1979


Example – Atmospheric Tower Products

	Raw Crude	Naphtha	Kerosene	Diesel	AGO	Residue
Yield [vol%]	100%	25.38%	9.42%	17.55%	2.11%	45.54%
TBP vol% & °	F					
1.0%	42	9	282	346	522	456
5.0%	143	59	327	425	577	589
10.0%	206	99	342	462	609	652
15.0%	257	128	357	483	630	694
20.0%	299	144	366	497	644	728
30.0%	397	182	384	520	669	784
40.0%	509	208	395	541	687	838
50.0%	608	231	407	563	703	900
60.0%	703	260	420	585	717	976
70.0%	806	282	434	610	730	1,075
80.0%	943	305	451	638	746	1,206
85.0%	1,045	318	456	653	757	1,287
90.0%	1,178	337	471	673	768	1,387
95.0%	1,364	356	493	701	780	1,556
99.0%	1,649	365	503	728	789	1,746

Example – Atmospheric Tower Products

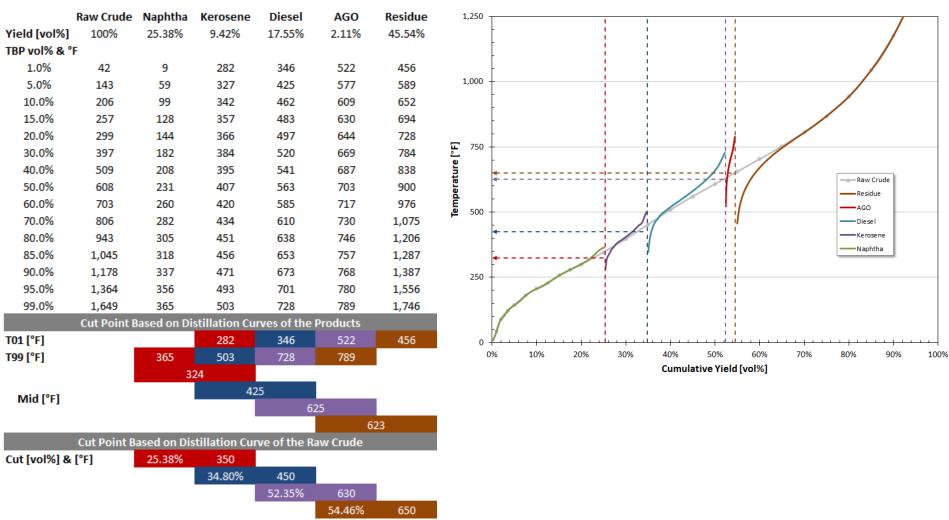
	Raw Crude	Naphtha	Kerosene	Diesel	AGO	Residue
Yield [vol%]	100%	25.38%	9.42%	17.55%	2.11%	45.54%
TBP vol% & °	F					
1.0%	42	9	282	346	522	456
5.0%	143	59	327	425	577	589
10.0%	206	99	342	462	609	652
15.0%	257	128	357	483	630	694
20.0%	299	144	366	497	644	728
30.0%	397	182	384	520	669	784
40.0%	509	208	395	541	687	838
50.0%	608	231	407	563	703	900
60.0%	703	260	420	585	717	976
70.0%	806	282	434	610	730	1,075
80.0%	943	305	451	638	746	1,206
85.0%	1,045	318	456	653	757	1,287
90.0%	1,178	337	471	673	768	1,387
95.0%	1,364	356	493	701	780	1,556
99.0%	1,649	365	503	728	789	1,746



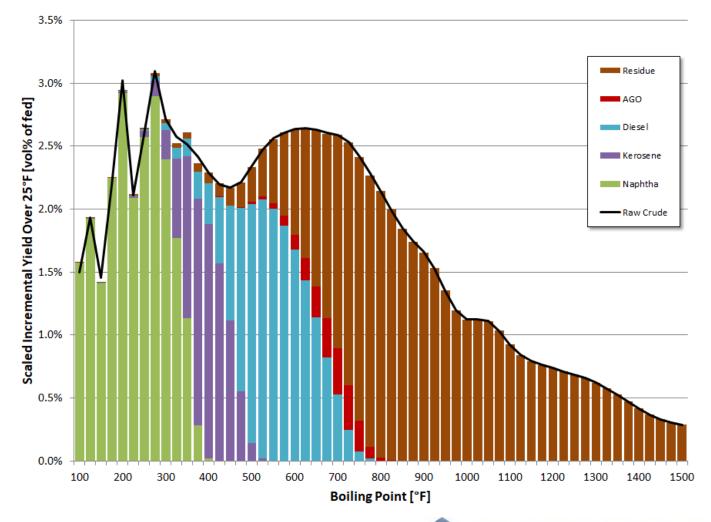
Example – Scale to Fraction of Crude Charge


Scaled Yield Values										
Individual	Nap	ohtha	Kerosene		Diesel		AGO		Residue	
vol%	°F	vol%	۴F	vol%	۴F	vol%	۴F	vol%	۴F	vol%
0.0%		0.0%		25.4%		34.8%		52.3%		54.5%
1.0%	9	0.3%	282	25.5%	346	35.0%	522	52.4%	456	54.9%
5.0%	59	1.3%	327	25.9%	425	35.7%	577	52.5%	589	56.7%
10.0%	99	2.5%	342	26.3%	462	36.6%	609	52.6%	652	59.0%
15.0%	128	3.8%	357	26.8%	483	37.4%	630	52.7%	694	61.3%
20.0%	144	5.1%	366	27.3%	497	38.3%	644	52.8%	728	63.6%
30.0%	182	7.6%	384	28.2%	520	40.1%	669	53.0%	784	68.1%
40.0%	208	10.2%	395	29.1%	541	41.8%	687	53.2%	838	72.7%
50.0%	231	12.7%	407	30.1%	563	43.6%	703	53.4%	900	77.2%
60.0%	260	15.2%	420	31.0%	585	45.3%	717	53.6%	976	81.8%
70.0%	282	17.8%	434	32.0%	610	47.1%	730	53.8%	1,075	86.3%
80.0%	305	20.3%	451	32.9%	638	48.8%	746	54.0%	1,206	90.9%
85.0%	318	21.6%	456	33.4%	653	49.7%	757	54.1%	1,287	93.2%
90.0%	337	22.8%	471	33.9%	673	50.6%	768	54.2%	1,387	95.4%
95.0%	356	24.1%	493	34.3%	701	51.5%	780	54.4%	1,556	97.7%
99.0%	365	25.1%	503	34.7%	728	52.2%	789	54.4%	1,746	99.5%
100.0%		25.4%		34.8%		52.3%		54.5%		100%
Inc vol%	25.	38%	9.4	42%	17.	55%	2.:	11%	45.	54%

Scale to Fraction of Crude Charge


Updated: July 2, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu)

Cut Points Based on Volumetrics



Cut Points Based on Volumetrics

Boiling Point Ranges for Example

EARTH

E

How Much Overlap?

		Ideal Fractions							
		LPGs + Naphtha	Kerosene	Diesel AGO		Atm Resid	Total	API Gravity	Sulfur [wt%]
	IBP [F]:		350	450	630	650			
	FBP [F]:	350	450	630	650				
Vol	umetric Rates [bpd]								
ms	LPGs + Naphtha	23,946	1,434	0	0	0	25,380	62.34	0.003
eal	Kerosene	1,064	6,522	1,833	0	0	9,419	43.03	0.041
Sti	Diesel	203	1,211	12,174	1,127	2,834	17,549	34.81	0.249
Actual Streams	AGO	0	2	321	145	1,645	2,112	29.23	0.477
Ac	Atm Resid	134	300	3,199	847	41,060	45,539	20.07	0.926
	Total	25,347	9,469	17,527	2,119	45,539	100,000		
	API Gravity	62.57	43.74	35.52	31.25	19.60			
	Sulfur [wt%]	0.003	0.032	0.206	0.385	0.945			

Summary

Summary

Reported refinery capacity tied to charge to crude distillation complex

Increase capacity with Pre-flash column

Complex column configurations

- No reboilers, heat from feed furnaces
 - Reuse heat via heat exchange between feed & internal column streams
- Side draws, pumparounds, side strippers
 - Pumparounds ensure proper liquid reflux within the column
- Stripping steam
- 3-phase condensers
 - Condensed water will have hydrocarbons & dissolved acid gases
- Pre-heat train recycles heat
 - Products & internal streams heat the feed
 - Feed cools the internal streams & products

Updated: July 2, 2019 Copyright © 2016-2019 John Jechura (jjechura@mines.edu) Vacuum column to increase the effective cut points

- Vacuum columns large diameter to keep vapor velocities low
- Vacuum gas oils recombined only separated for operating considerations

Pressure drops are important, especially in the vacuum column

Steam stripping aids in separation without cracking

Metals are undesirable. Can remove some metals via desalters.

Supplemental Slides

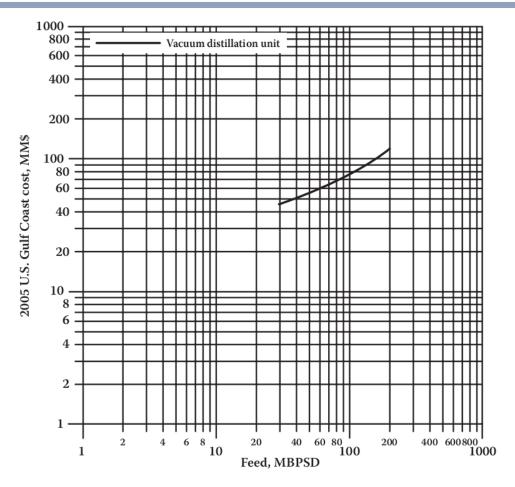


Crude Distillation Unit Costs

Atmospheric column includes

- Side cuts with strippers
- All battery limits process facilities
- Heat exchange to cool products to ambient temperature
- Central control system

Petroleum Refining Technology & Economics, 5th ed. Gary, Handwerk, & Kaiser CRC Press, 2007


FIGURE 4.9 Atmospheric crude distillation units investment cost: 2005 U.S. Gulf Coast (see Table 4.4).

Crude Distillation Unit Costs

Vacuum column includes

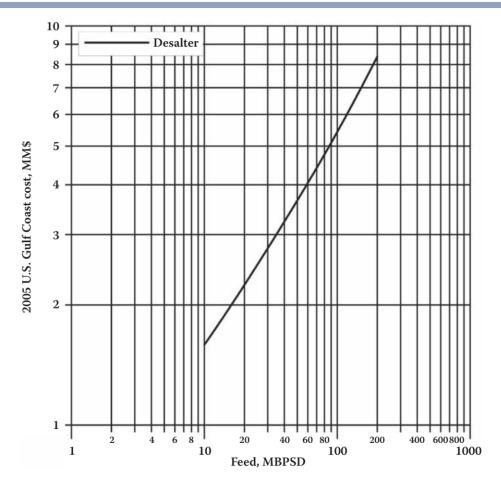
- Facilities for single vacuum gas oil
- 3-stage vacuum jet system at 30 – 40 mmHg
- Heat exchange to cool VGO to ambient temperature

Petroleum Refining Technology & Economics, 5th ed. Gary, Handwerk, & Kaiser CRC Press, 2007

FIGURE 4.11 Vacuum distillation units investment cost: 2005 U.S. Gulf Coast (see Table 4.5).

COLORADOSCHOOLOFMINES 39

Crude Distillation Unit Costs

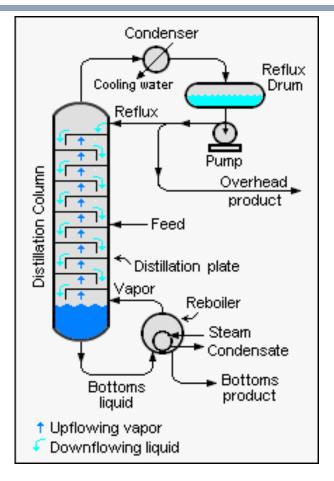

Desalter includes

- Conventional electrostatic desalting unit
- Water injection
- Caustic injection
- Water preheating and cooling

Costs not included

- Wastewater treating and disposal
- Cooling water and power supply

Petroleum Refining Technology & Economics, 5th ed. Gary, Handwerk, & Kaiser CRC Press, 2007


FIGURE 4.7 Crude oil desalting units investment cost: 2005 U.S. Gulf Coast (see Table 4.3).

Crude Distillation Technologies

Provider	Features			
Foster Wheeler				
Shell Global Solutions	Complex of atmospheric & vacuum distillation for initial separation of crude oil. May include pre-flash column.			
TECHNIP				
Uhde GmbH	Vacuum distillation			

"Typical" Distillation Column

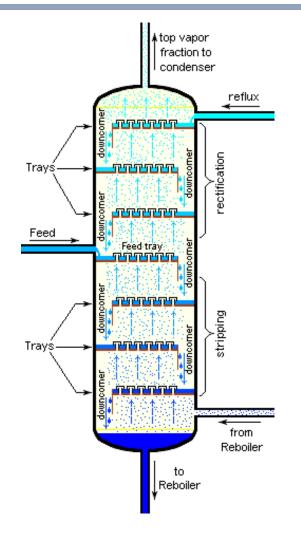
Top of column – condenser to remove heat

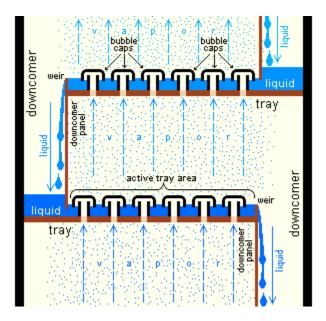
- Provides liquid reflux through top of column
- Partial condenser may have vapor but no liquid distillate product
- Coldest temperature cooling media must be even colder
- Lowest pressure
- Top section strips heavy components from the rising vapors

Feed

- Vapor, liquid, or intermediate quality
- Introduced in vapor space between trays

Internals

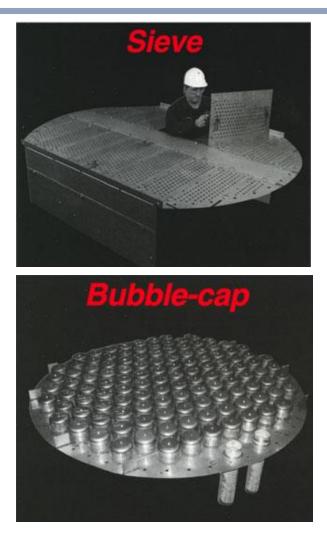

- Trays to contact rising vapors with falling liquids
- Pressure drop across trays overcome static head of liquid on tray, ...


Bottom of column - reboiler to add heat

- Provides vapor traffic in bottom of column
- Highest temperature heating media must be even hotter
- Highest pressure
- Bottom section strips light components from the falling liquid

Drawing by Henry Padleckas & modifed by Milton Beychok: http://en.wikipedia.org/wiki/File:Continuous_Binary_Fractional_Distillation.PNG

Fractionation Columns & Trays





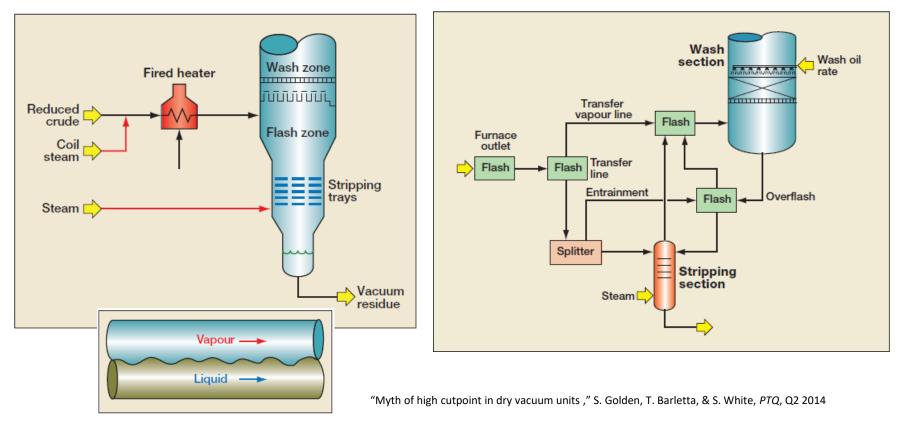
Drawings by Henry Padleckas http://en.wikipedia.org/wiki/Fractionating_column

Fractionation Tray Types

http://www.termoconsult.com/empresas/acs/fractionation_trays.htm

Trays & Packing

http://www.ec21.com/product-details/Tower-Internals--3942077.html



Typical Overall Efficiencies

Column Service	Typical No. of Actual Trays	Typical Overall Efficiency	Typical No. of Theoretical Trays	Viscosity	Maxwell	Drickamer & Bradford in Ludwig	Rules of Thumb for Chemical Engineers, 4th ed. Carl Branan, Gulf Professional Publishing, 2005
Simple Absorber/Stripper	20 - 30	20 - 30			Ave Viscosity of	Molal Ave	
Steam Side Stripper	5 – 7		2	сP	liquid on plates	Viscosity of	
Reboiled Side Stripper	7 – 10		3 – 4		iiquiu on plates	Feed	
Reboiled Absorber	20 - 40	40 – 50		0.05		98	
Deethanizer	25 – 35	65 – 75		0.10	104	79	4
Depropanizer	35 – 40	70 – 80		0.15	86	70	4
Debutanizer	38 – 45	85 – 90		0.20	76	60	4
Alky DeiC4 (reflux)	75 – 90	85 – 90		0.30	63 56	50 42	4
Alky DeiC4 (no reflux)	55 – 70	55 – 65		0.40	50	36	4
Naphtha Splitter	25 – 35	70 – 75		0.60	46	31	
C2 Splitter	110 - 130	95 - 100		0.70	43	27	
C3 Splitter	200 – 250	95 - 100		0.80	40	23	Engineering Data Book, 12th ed.
C4 Splitter	70 – 80	85 – 90		0.90	38	19	Gas Processors Association, 2004
Amine Contactor	20 – 24		4 - 5	1.00	36	17	
Amine Stripper	20 – 24	45 - 55	9 - 12	1.50	30	7	COMMERCIAL HYDROCARBON FRACTIONATION COLUMN.
Crude Distillation	35 – 50	50 - 60	20 - 30	1.70	28	5	COMMERCIAL CHLORINATED HYDRO-
Stripping Zone	5 – 7	30	2				100 CARBON FRACTIONATION COLUMN. + - COMMERCIAL ALCOHOL E OD
Flash Zone – 1 st draw	3 – 7	30	1-2				
1 st Draw – 2 nd Draw	7 – 10	45 – 50	3 – 5				THE ALCONOL.
2 nd Draw – 3 rd Draw	7 – 10	50 – 55	3 – 5				
Top Draw – Reflux	10 - 12	60 – 70	6 - 8				
Vacuum Column (G.O. Operation)							
Stripping	2 – 4		1				
Flash Zone – HGO Draw	2-3		1 – 2				
HGO Section	3 – 5		2				
LGO Section	3 – 5		2				
FCC Main Fractionator	24 – 35	50 - 60	13 – 17				0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10
Quench Zone	5 – 7		2				RELATIVE VOLATILITY OF KEY COMPONENT TIMES VISCOSITY OF FEED, CP (AT AVERAGE COLUMN CONDITIONS)
Quench – HGO Draw	3 – 5		2 – 3				
HGO – LCGO	6 – 8		3 – 5		ocess Modeling		
LCGO – Top	7 – 10		5 – 7	Gerald Kaes	s, Athens Printing	g Company, 20	000, pg. 32

Vacuum Tower Transfer Lines

Mass transfer effects in the transfer line complicate the effects at the bottom of the Vacuum Tower

