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Topic Summary 

• Definition of well-mixed system. Combining well-mixed sub-processes to describe 

overall process that is not well-mixed. 
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• Dynamic equations from material & energy balance equations 
• Typical simplifications & modifications 
• Additional relationships 
 

We will show that certain dynamic relations typically come most directly from certain 
conservation equations.  These typical relationships are shown in the following table.  
 

Conservation Equation Typical Dynamic Relation 

Overall Material Balance 
Outlet volumetric flowrates vs. inlet rates 
Liquid:  Liquid level in system vs. time 
Gas: Gas pressure in system vs. time 

Component Balance 
Outlet concentration vs. time 
Outlet mole/mass fraction vs. time 

Thermal Energy Balance Outlet temperature vs. time 

Introduction 

Transient behavior of a process: 
• Start up. 
• “Steady state” — random disturbances. 
• Change of set points. 
• Shut down. 

 
Steps for math modeling: 

• Develop the relationships/equations. 
• Simplify. 
• Solve: 

 Analytical — Laplace transforms 

 Numerial — Euler, Runge-Kutte methods 
 
Needs of math model: 

• Quantities whose values describe the nature of the process.  These are the state 
variables. 

• Equations that use the quantities & describe how the variables change with 
time. 

 
For algebraic equations, where N  is the number of variables & E  is the number of 
independent equations: 

• E N , deterministic system. 
• E N , under-determined system. 
• E N , over-determined system. 
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For differential conditions, also need boundary conditions.  For transient problems, these 
are normally initial conditions.  We will mostly be working with lumped systems – i.e., 
there will be no spatial variation. Often termed as a well-mixed system. 

Conservation Equations 

We will use the basic principles of chemical engineering to guide us in our descriptions of 
our dynamic processes: conservation of mass, energy, & momentum. So, the types of 
conservation equations will be: 

• The overall mass balance. 
• Component/chemical species balance (including reaction rate terms). 
• Thermal energy/heat balance. 
• Momentum balance (though we won’t usually work with this in this class). 

 
General form of the “stuff” balance equation: 
 

 
         

            
         

Rate of Rate Rate Rate of Rate of

Accumulation In Out Generation Consumption
 

 
Basic principles of ChE:  
 

F1

F3

F4

F5

F6

Q1

Q2

Q3

F2

 
 
Summary of the balance equations: 
 

Overall Mass Balance   
: :

i j
i inlet j outlet

dm
m m

dt
 

Component Balance     A
A, A,

: : :
i j k

i inlet j outlet k rxns

dm
m m R V

dt
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    A
A, A,

: : :
i j k

i inlet j outlet k rxns

dN
N N r V

dt
 

Energy Balance        ,
: :

i j k s m
i inlet j outlet k m

dE
E E Q W

dt
 

 
Use of Intrinsic Variables 

It is useful to factor out intrinsic variables — properties that depend upon the state of the 
system (pressure, temperature, phase condition) but not the magnitude.  It is often 
convenient to use the product of the mass density and volumetric flowrate instead of the 
mass flowrate. Some of the useful relationships will be: 
 

 Cumulative Expression Rate Expression 

Mass m V  m F  

Moles   totaln V C V    totaln F C F  

Energy  ˆ ˆE mE VE   ˆ ˆE mE FE  

Enthalpy 
 

 

ˆ ˆ

total

H mH VH

nH C VH
 

 

 

ˆ ˆ

total

H mH FH

nH C FH
 

 
 
Well-Mixed Systems 

The intrinsic properties of the system at any point will be the same.  Added implication — 
every outlet stream will possess the same intrinsic properties as the system itself.  The 
intrinsic properties of the inlets can still be independent. 
 
Conservation of Total Mass: 

   
: :

i j
i inlet j outlet

dm
m m

dt
 

      
   

: :
i i j j

i inlet j outlet

d
dV F F

dt
 (use the intrinsic variable  ) 

 
 

    
: :

i i j
i inlet j outlet

d V
F F

dt
 (well-mixed system) 

 
where iF  is a volumetric flow rate (in or out).  Note that all outlet streams will have the 
same density   as the density within the system’s volume. 
 
Conservation of total moles?  NO!  When there is a chemical reaction the total number of 

moles may not necessarily be conserved. 
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Component Balances 

The component balances can be expressed either in terms of mass (and mass fraction): 

 

    
    

A
A, A,

A
: : :

i j k
i inlet j outlet k rxns

dm
m m R dV

dt
 

            
      A A , A ,

A
: : :

i i i j j j k
i inlet j outlet k rxns

d
dV F F R dV

dt
 

 
 

 
 

        
A

A , A A
: : :

i i i j k
i inlet j outlet k rxns

d V
F F R dV

dt
 

 
or in terms of moles (and molar concentration, though mole fractions could also be used): 

 

    
    , ,

A
: : :

A
A i A j k

i inlet j outlet k rxns

dN
N N r dV

dt
 

      
      A A, A,

A
: : :

i i j j k
i inlet j outlet k rxns

d
c dV c F c F r dV

dt
 

 
 

     
A

A , A A
: : :

i i j k
i inlet j outlet k rxns

d c V
c F c F r V

dt
 

 

where kR  is the mass reaction rate expression (kg A per unit time per unit volume) and kr  
is the molar reaction rate expression (moles A per unit time per unit volume).   It is usually 
easier to work with moles when there is a chemical reaction.  Note that the reaction term 
can be positive for generation & negative for consumption. 
 
Energy balance: 

        ,
: :

i j k s m
i inlet j outlet k m

dE
E E Q W

dt
 

 

  
   

     

   

   

P
,

: :

,
: :

ˆ ˆ

ˆ ˆ

i i j j k s m
i inlet j outlet k m

i i i j j j k s m
i inlet j outlet k m

d U K
w H w H Q W

dt

F H F H Q W

 

 
where ˆ

iH  is the specific enthalpy (per unit mass).  The energy balance can also be put on a 
molar basis: 
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  

      
P

,
: :

i i j j k s m
i inlet j outlet k m

d U K
N H N H Q W

dt
 

 
where iH  is the specific enthalpy per unit mole basis.   

 
There are additional assumptions normally made to the energy balance:  
 

 
  

        
P

,
: :

ˆ ˆ
i i i j j j k s m

i inlet j outlet k m

d U K
F H F H Q W

dt
 

          ,
: :

ˆ ˆ
i i i j j j k s m

i inlet j outlet k m

dU
F H F H Q W

dt
 (internal energy dominant term) 

 

For liquid systems we will generally use the assumption that U H :  
 

          ,
: :

ˆ ˆ
i i i j j j k s m

i inlet j outlet k m

dH
F H F H Q W

dt
 

        
      ,

: :

ˆ ˆ ˆ
i i i j j j k s m

i inlet j outlet k m

d
HdV F H F H Q W

dt
 

 
 

         ,
: :

ˆ
ˆ ˆ

i i i j k s m
i inlet j outlet k m

d HV
F H F H Q W

dt
 (well-mixed). 

 
For gas systems this is not necessarily the case. However, since we ultimately want a 
dynamic expression for temperature this is not a significant problem.  
 

 ,
: :

ˆ ˆ ˆ
i i i j j j k s m

i inlet j outlet k m

d
UdV F H F H Q W

dt
       
       

 
 

,
: :

ˆ
ˆ ˆ

i i i j k s m
i inlet j outlet k m

d UV
F H F H Q W

dt


          (well-mixed). 

Additional Relationships 

These are the basic equations, but now we also need relationships to the measured process 
variables. 
 
Relationship between mass & volume: 
  m V Ah  (for constant cross sectional area) 

 m F  
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Thermodynamic relationships: 

 

 

 

 
      

 

   



 ˆ ˆˆ ˆ

ref

ref

T

p ref p p ref

TP

T

ref p p ref

T

H
C H H C dT C T T

T

H H C dT C T T

 

   U H PV H   (for liquid systems) 
  U H RT   (for ideal gas systems) 
 
Equations of state relating density to pressure, temperature, & composition: 

     , ,T P x  (the equation of state).  Some simple equations of state: 

      i i
i

PM P
x M

RT RT
  (ideal gas) 

  


 
  
 

1 1i i i

i ii i

x M

M
  (ideal volume of mixing/additive volumes) 

 
Energy relationships: 

   2 21 1

2 2
K mv Vv  

        P 0 0mg h h Vg h h  (gravitational potential energy.  May be other forms) 

 
Relationship between heat transfer rate & temperature driving force: 

    aQ UA T T  (Newton’s law of heating/cooling) 

    4 4
1 1 1 12 2Q A T T  (Kirschoff’s law of radiant heat exchange) 

 
Relationship between flow through a valve & pressure driving force: 

       p vF p F A p C h  (non-linear valve flow expression) 

 
Chemical reaction rate relationships: 

   , ,A Ar r T Px  (the reaction rate function).  For example: 

      /
0

E RT
A A Ar k T c k e c   (1st order reaction) 

     2 / 2
0

E RT
A A Ar k T c k e c  or  /

0
E RT

A A Br k e c c  (2nd order reactions) 

 where    /
0

E RTk T k e  is the Arrenhius rate expression. 



Colorado School of Mines CHEN403  Mathematical Models 
 

John Jechura (jjechura@mines.edu) - 8 - © Copyright 2017 
April 23, 2017 

Exceptions to Well-Mixed Process Assumptions 

Processes with Dead Time 

One exception to the well-mixed assumption is when there is some piece to the process 
that introduces a significant time delay between when something happens and when this 
might be measured. One can picture the situation as being similar to plug flow through a 
pipe — the material does not change in the pipe, but there is a time difference between 
when it enters and when it reappears at the other end. For example, if we are interested in 
the temperature at the exit of a tank, oT , but the thermocouple is in a pipe a distance L  
away, then there will be a delay before the temperature can be measured. This time delay, 

ot , can be estimated from: 
 

   
0 0

distance

velocity /
c

o

c

LAL
t

F A F
 

 
where: cA  is the cross sectional area of the pipe. 
 oF  is the volumetric flow rate. 
 
If there is no heat loss in the pipe then the relationships between the outlet temperature of 
the tank at that temperature measured, mT , is: 
 

     m o oT t T t t . 

 
Flow Approximated by Combination of Well-Mixed Blocks 

Sometimes the flow patterns within a process do not produce a well-mixed system. We 
may still be able to approximate the overall process as a combination of well-mixed sub-
processes. One obvious process that is not well-mixed is an annular heat exchanger with 
counter-current flow. Though the fluids might be well-mixed across any face perpendicular 
to the flow there will be a temperature gradient along the direction of the flow. However, 
the overall process could be approximated by two series of well-mixed sub-processes that 
flow from one to another, transferring heat across the boundaries of sub-processes. 
 

Annular Heat Exchanger

Cold OutCold In

Hot Out

Hot In
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Cold In

Hot Out

Cold Out

Hot In

 
 
 

Examples 

Tank Liquid Level with Flow Through Valve 

h

A
0 0,  F 

1 1,  F 



 
 
Look at how the level in a tank changes with changes of flows in and out of a tank. 

 
State Variables: 

• Densities 
• Flow rates 

 
What are we assuming if we say that the density out is the same as the density in the 
tank? 
What are we assuming if we say that the density is not changing? 
 
Total Mass Balance Leads to a Volume Balance: 

Total mass balance: 

 
 

    
: :

i i j
i inlet j outlet

d V
F F

dt
 

 
 

  0 0 1

d Ah
F F

dt
 

 

Apply other considerations: 
• Constant cross-sectional area:  constantA  
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• Constant density:   1 0  
 
Total mass balance becomes a volume balance leading to a differential equation for the 
level in the tank with respect to time: 

 

  0 1

dh
A F F

dt
 

 
Other Tank Geometries 

The above geometry assumes that the tank is an upright cylinder.  There are other common 
geometries: 

h

r



 

Right Circular Cone 

 tan
r

h
 

    2 3 21 1
tan

3 3
V r h h  

    2 2tan
dV

h
dh

 

b

r



s = arc length

a

 

Horizontal Cylinder 

     
1

2
A sr a r b  

 s r  
 
cos

2

r b

r
 

   
22

2

a
r r b  

     
      

 

22 1 2cos
r b

A r r b r r b
r

 

Still need the volume of the cylinder with respect to level: 
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   

   





  
     

  
 

          

22 1 2

22 2 1 2

cos

cos

r h
Lr L r h r r h if h r

r
V

h r
r L Lr L h r r h r if h r

r

 

 
The amazing part is that the derivative is the same for both halves: 
 

    2 2
dV

L h r h
dh

 

 
Sphere.  Using similar definitions are for the horizontal cylinder: 
 

  
 

   


  

 
      


2

23

1
3

3

2 1
2

3 3

h r h if h r

V

r r h r h if h r

 

 
and, again, the derivative is the same for both halves: 
 

     2
dV

h r h
dh

 

 
Tank flow — Change in Inlet Concentration 

0 A ,0 B,0,  ,  ,  oF C C

1 1 A ,1 B,1,  ,  ,  F C C

A

B

,  

,  

,  

V

C

C



 
 
Look at how the concentration in a tank changes with changes of concentration into the 
tank. 
 
Overall & Component Mass Balances: 

Total mass balance: 
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 

    
: :

i i j
i inlet j outlet

d V
F F

dt
 

 

 0 0 1

d
V F F

dt
 

 
What have we assumed here?  Constant volume overflow (& well-mixed). 
 
If we assume constant density: 
 
    0 1 1 00 F F F F . 

 
Component Material Balance: 

We can deal with multi-component mixtures with the concept of concentrations or 
mole/mass fractions.   

• Concentration gives the amount of the component per unit volume.  This is 
multiplied by the volumetric flow rate to get the flux of the component. 

• Mole/mass fraction gives the fraction of the total amount corresponding to the 
component.  This must be multiplied by the overall molar/mass density and the 
volumetric flow rate to get the flux of the component. 

 
Using Concentration 

Total mole balance using concentration: 

 
 

  
A

A, A
: :

i i j
i inlet j outlet

d N
C F C F

dt
 (no chemical reaction & well-mixed) 

 
 

 
A

A ,0 0 A 1

d C V
C F C F

dt
 

  A
A ,0 0 A 1

dC
V C F C F

dt
 (constant volume) 

 
What have we assumed here?  Well-mixed, no chemical reaction, & constant volume 
overflow. 
 
If we assume constant density: 
 

        0A A
0 A ,0 A A ,0 A

FdC dC
V F C C C C

dt dt V
 

 
Using Mass Fraction 

Total mass balance using mass fraction (A ): 
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 

  , ,
: :

A

A i A j
i inlet j outlet

d m
m m

dt
 (no chemical reaction & well-mixed) 

 
  

      ,
: :

A

A i i i A j
i inlet j outlet

d V
F F

dt
 

 
  

      ,
: :

A

A i i i A j
i inlet j outlet

d
V F F

dt
 (constant volume) 

 


    ,
: :

A
A i i A j

i inlet j outlet

d
V F F

dt
 (constant density) 

 
Tank Flow — Chemical Reaction  

Let’s assume we have an isothermal, constant volume CSTR with a chemical reaction: 
 

 1A Bk  
 
The inlet stream has no B in it. The molar balances will be: 
 

   A
0 A0 0 A 1 A

dC
V F C F C k C V

dt
 

   B
0 B 1 A

dC
V F C k C V

dt
 

 
To determine  BC t  we could first solve for  AC t  from the first equation & then plug it 
into the 2nd equation. 
 
However, if the reaction is actually  

 

 
1

2

A B
k

k
 

 
then the molar balances will be: 
 

    A
0 A0 0 A 1 A 2 B

dC
V F C F C k C V k C V

dt
 

    B
0 B 1 A 2 B

dC
V F C k C V k C V

dt
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Now the equations are coupled. Some additional manipulation must be done to separate 
the  BC t  terms from the  AC t  terms & visa versa.  From the 2nd equation: 
 

 


  0 2B
A B

1 1

1 F k VdC
C C

k dt k V
 

 
and (assuming 0F  constant): 
 

 


 
2

0 2A B B
2

1 1

1 F k VdC d C dC

dt k dt k V dt
 

 
Substituting these expressions into the 1st equation gives an expression in just BC , not AC : 
 

  
    

        
   

2
0 2 0 2B B B

0 A0 0 1 B 2 B2
1 1 1 1

1 1F k V F k Vd C dC dC
V F C F k V C k C V

k dt k V dt k dt k V
 

 
    

    
2

0 1 0 20 2 0 1B B B
0 A0 B 2 B2

1 1 1 1

F k V F k VF k V F k Vd C dC dCV
F C C k C V

k dt k dt k dt k V
 

 
      

     
   

2
0 1 0 20 1 2B B

2 B 0 A02
1 1 1

2 F k V F k VF k V k Vd C dCV
k V C q C

k dt k dt k V
 

 

Notice the system of 2 1st order ODEs has been replaced by 1 2nd order ODE & one of the 
original 1st order ODEs (for  AC t ). 
 
Tank Flow — Change in Input Stream’s Temperature  

Q1

h1

1 1 1 ,1
ˆ,  ,  ,  pF T C

0 0 0 ,0
ˆ,  ,  ,  pF T C

1 ,  

,  

,  

ˆ
p

V

T

C



 
 
Look at a variable inlet temperature  0T t .  Start from steady state condition. 
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State Variables: 

• Densities 
• Temperatures 

• Flow rates 
 
Initial state: 

Steady State total mass balance: 
 

 
 

    
: :

i i j
i inlet j outlet

d V
F F

dt
 (well-mixed) 

  0 0 1 10 F F  (steady state) 

 
Note that this also implies that   0 0 1 1 0F F w  for any ( )T . 
 
Steady state energy balance: 
 

 
 

      
: :

ˆ
ˆ ˆ

i i i j s
i inlet j outlet

d HV
F H F H Q W

dt
 (well-mixed) 

    0 0 0 1 1 1 1
ˆ ˆ0 F H F H Q  (steady state) 

             
   0 0 0 0 0 1 1 1 1

ˆ ˆˆ ˆ0 p ref ref p ref refm C T T H m C T T H Q  

    0 0 1 1
ˆ0 pm C T T Q  (constant heat capacity & reference enthalpy) 

   1
1 0

0
ˆ

p

Q
T T

m C
 

 

Transient solutions 

After change, total mass balance: 
 

 
 

   
1

0 0 1 1 0 1

d V
F F m m

dt
 (well-mixed) 

 
What does this assume?  Well mixed. 
 
Energy balance: 
 

 
 

   
1 1

0 0 0 1 1 1 1

ˆ
ˆ ˆ

d VH
F H F H Q

dt
 (well-mixed) 
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 

   
1 1

1 1 0 0 0 1 1 1 1

ˆ
ˆ ˆ ˆd V dH

H V F H F H Q
dt dt

 (chain rule) 

 
 

   
1 1 1

1 1 0 0 0 1 1 1 1

1

ˆ
ˆ ˆ ˆd V dH dT

H V F H F H Q
dt dT dt

 (chain rule) 

 
 

   
1 1

1 1 0 0 0 1 1 1 1
ˆˆ ˆ ˆ

p

d V dT
H VC F H F H Q

dt dt
 (definition of heat capacity) 

 
 

   
1 1

1 1 0 0 1 1 1
ˆˆ ˆ ˆ

p

d V dT
H VC m H m H Q

dt dt
 

      1
1 0 1 1 0 0 1 1 1

ˆˆ ˆ ˆ
p

dT
H m m VC m H m H Q

dt
 (derivative from mass balance) 

     1
1 0 0 1 1

ˆ ˆ ˆ
p

dT
VC m H H Q

dt
 (mathematical manipulation) 

 
Note that this expression does not depend upon assumptions of constant volume or 
constant density! 
 

     1
1 0 0 1 1

ˆ ˆ
p p

dT
VC m C T T Q

dt
 (constant ˆ

pC  & reference state) 

 
Can do some additional math. We could normalize the form of the ODE so that the 
coefficient on the time derivative is 1; in this class, however, we will normally want the 

coefficient on the variable without the derivative to be 1: 
 

 1 1 1
0 1

0 0
ˆ

p

V dT Q
T T

m dt m C


    

 1 1 1
1 0

0 0

ˆ

ˆ ˆ
p

p p

VC dT Q
T T

dtm C m C


    

 
Notice that the term 1 0/V m  has units of time.  This can be thought of as a characteristic 
time constant for the system. 
 
Note — Even though the derivation of the ODE does not depend upon whether the system 
has constant volume and/or density, the integration with time will depend upon this! 
 
What if the heat input is described by Newton’s law? 

Let’s assume  1 sQ UA T T  .  Then the ODE becomes: 
 

    1
1 0 0 1

ˆ ˆ
p p s

dT
VC m C T T UA T T

dt
      
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  1
1 0 0 0 1

ˆ ˆ ˆ
p p s p

dT
VC m C T UAT m C UA T

dt
      

 1 01
1 0

0 0 0

ˆ ˆ

ˆ ˆ ˆ
p p

s

p p p

VC m CdT UA
T T T

dtm C UA m C UA m C UA


  

  
. 

 
The form of the solution is the same, but the characteristic time constant is now 

 1 0
ˆ ˆ/p pVC m C UA  & is dependent upon heating parameters.   

 
Example – Tank Flow Controlled by Valve 

h

1 ,  F 

0 ,  F 

,  A 

 
 
Look at flow in valve at outlet of tank. 
 
Bernoulli’s Law: 

 


    


21

2
f

p
v g h w  

 
What do the terms represent?  
  
Let’s apply Bernoulli’s law from the surface in the tank to the entrance of the pipe. We 
will neglect entrance effects & other friction: 
 

    2 2
1

1
0 0

2
e s

e s

p p
v v g h


    


 

 
Assume the surface is open to the atmosphere, so s atmp p . Because the pipe has a much 
smaller cross-sectional area than the tank e sv v  and 2 2 2

e s ev v v   so: 
 

  2
1

1
0

2
e atm

e

p p
v gh


  


. 

 

If the kinetic energy effect is small compared to the potential energy effect then: 
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  2
1 1 1

1
0

2
e atm e atm

e e atm

p p p p
v gh gh p p gh

 
       

 
. 

 
It is normally assumed that at the valve outlet the kinetic energy effect is what creates 

the pressure drop, so: 
 

    
 2 2 2 2 21 1

0
2 2

e vv e v e
v e v v

p pp p p p
v v v v

 
      

  
 

 
If v atmp p , then: 
 

 
 

   


2
1 1

2
2 2e atm

v v

p p
v gh v gh  

 
The flow rate through a valve is v v vF A v  which means that: 
 

 1 12v v vF A gh C h    where 2v vC A g . 

 
Opening and closing the valve will change vA  and hence vC .   
 
Total mass balance reduces to volume balance for constant density: 

 
 

    0 1 0 1

d V dV
F F F F

dt dt
 

  0 v

dh
A F C h

dt
 

 
This is a non-linear ODE.  Sometimes we can get an analytical solution for this particular 
ODE. For example, for a step change in flow such that   0inF t F  from *

0F : 
 

 


 
0 0

0

h t

h
v

A
dh dt

F C h
 

   


0

2

0

y

y
v

A
d y t

F C y
 

 


0
0

2y

y
v

Ay
dy t

F C y
 

 
 
    
 

0

0
02

2 ln

y

v

v v y

Fy
A F C y t

C C
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  
   

  

0 0 0
2

0 0

2 ln v

v v v

y y F F C y
A t

C C F C y
 

 
  
   

  

0 0 0
2

0 0

2 ln v

v v v

h h F F C h
A t

C C F C h
 

 
If the inlet flow is more complicated or if this equation is part of a larger set of equations, 
there is no guarantee that an analytical solution exists. 
 
Example: Chemical Reaction 

F0

F1

Tcoil

 
 
In the main section we started to analyze a CSTR with a first order reaction A B .  To 
start setting up the equations lets only make a couple assumptions: 
 

• Well-mixed system within the reactor. 
• There is a constant liquid volume within the reactor. 

• A heat transfer fluid is used within the coils to control the temperature. A phase 
change occurs to provide the heating or cooling (e.g., steam condensation for 
heating or refrigerant boiling for cooling). This will keep the temperature uniform 
throughout the coil.  

• Pure A is fed to the reactor. 
• The reaction has elementary fist order kinetics: 

 

   /
A 0 A

E RTr kC k e C  

 
Total mass balance: 
 

 
 

 
1

0 0 1 1

d V
F F

dt
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

    1
0 0 1 1 0 1

d
V F F m m

dt
 (Constant volume) 

 

Mole balance on A: 
 

 
 

   
A1A

A0 0 A1 1

d C VdN
C F C F rV

dt dt
 

 

 
   1/A1

A0 0 A1 1 0 A1

E RTdC
V C F C F k e C V

dt
 (Kinetic expression) 

 
Mole balance on B: 
 

 
 

   
B1B

B1 1

d C VdN
C F rV

dt dt
 

 

 
   1/B1

B1 1 0 A1

E RTdC
V C F k e C V

dt
 (Kinetic expression) 

 
Energy balance: 
 

 
 

 


   
1 1

0 0 0 1 1 1 1

ˆ
ˆ ˆ

coil

d VH
F H F H UA T T

dt
 

 

 
 

 


    
1 1

0 0 0 1 1 1 1

ˆ
ˆ ˆ

coil

d H
V F H F H UA T T

dt
 (Constant volume) 

 

  


     1 1
1 1 0 0 0 1 1 1 1

ˆ
ˆ ˆ ˆ

coil

dH d
V H V F H F H UA T T

dt dt
 (Chain rule) 

 

           1
1 1 0 0 1 1 0 0 0 1 1 1 1

ˆ
ˆ ˆ ˆ

coil

dH
V H F F F H F H UA T T

dt
 (Mass balance) 

 

      1
1 0 0 1 0 0 0 1

ˆ
ˆ ˆ

coil

dH
V F H F H UA T T

dt
 (Cancel like terms) 

 

        1
1 0 0 0 1 1

ˆ
ˆ ˆ

coil

dH
V F H H UA T T

dt
 (A little algebra) 
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         1
1 1 0 0 0 1 1

ˆ ˆ ˆ
p coil

dT
VC F H H UA T T

dt
 (Chain rule & ˆ

pC  definition) 

 

This energy balance equation is general and has the same form whether there is a heat of 
reaction or not.  So, where is the heat of reaction? (Or heats of mixing, or temperature 
dependent heat capacities, or composition dependent heat capacities for that matter.) It 
was noted before that the heat of reaction is embedded in the difference in the enthalpies, 

0 1
ˆ ˆH H ; this is all well and good to say, but it doesn’t really help in the practical matter of 

setting up the energy balance equation to relate all of the relevant temperatures. 
 
To simplify the math, let’s make two other assumptions: 

• The heat capacity is constant with respect to temperature (though not necessarily 
with respect to composition).  

• The enthalpies mix ideally (i.e., no heat of mixing effects). 
 
With these assumptions the enthalpies can be expressed as: 
 

    0 0 0 0
ˆˆ ˆ

p ref refH C T T H  

    1 1 1 1
ˆˆ ˆ

p ref refH C T T H  

 
and the energy balance is: 

 

                
 

1
1 1 0 0 0 0 0 1 1 1 1

ˆ ˆ ˆˆ ˆ
p p ref ref p ref ref coil

dT
VC F C T T H C T T H UA T T

dt
 

 

                  
  

1
1 1 0 0 0 0 1 1 0 0 0 1 1

ˆ ˆ ˆ ˆ ˆ
p p ref p ref ref ref coil

dT
VC F C T T C T T F H H UA T T

dt
. 

 
The heat of reaction is still embedded in the term relating the specific enthalpy values at 
the reference conditions of temperature ( refT ) and composition. Notice that assuming the 
heat capacity is not composition dependent does not affect this reference state term, it only 
simplifies the first term relating the net flow of enthalpy to the system; if we assume no 
composition dependency then   0 1

ˆ ˆ ˆ
p p pC C C  and: 

 

                  
  

1
1 0 0 0 1 0 0 0 1 1

ˆ ˆ ˆ ˆ ˆ
p p ref p ref ref ref coil

dT
VC F C T T C T T F H H UA T T

dt
 

 

            
 

1
1 0 0 0 1 0 0 0 1 1

ˆ ˆ ˆ ˆ
p p ref ref coil

dT
VC F C T T F H H UA T T

dt
. 
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Couple things to note about the reference state term that has the heat of reaction 
embedded in it: 

• The units on the term are energy/time, such as cal/min. In this particular 
formulation the bracketed term is energy/mass & the leading term is mass/time; 

the two terms could just as easily be split in molar units. 
• The heat of a reaction is usually calculated by determining the differences between 

the heats of formation of the reactants and the products. Heat of formation is simply 
a reference enthalpy – there is little difference between what we’ve done in thermo 
class & what we want to do here. 

• The change in the reference state enthalpy term only comes from that portion of the 
stream that reacts. We can express the term reference state enthalpy term as: 

      
 0 0 0 1

ˆ ˆ
ref ref rxnF H H rV H . 

 
Using this expression in the energy balance equation: 
 

                  
 

1
1 1 0 0 0 0 1 1 1

ˆ ˆ ˆ
p p ref p ref rxn coil

dT
VC F C T T C T T rV H UA T T

dt
 

 
For the specific rate expression considered here: 
 

                  
 

1/1
1 1 0 0 0 0 1 1 0 A1 1

ˆ ˆ ˆ E RT

p p ref p ref rxn coil

dT
VC F C T T C T T k e C V H UA T T

dt
 

 
or if the heat capacity is not composition dependent: 
 

      
       1/1

1 0 0 0 1 0 A1 1
ˆ ˆ E RT

p p rxn coil

dT
VC F C T T k e C V H UA T T

dt
. 

 


