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Introduction to Feedback Control Systems 

Block diagram of generalized process & corresponding feedback control loop. 
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The process has 2 inputs, the disturbance L  (also known as the load or the process load) 
and a measurable variable M , and one output y  (the controlled variable). The disturbance 

L  changes unpredictably. Our goal is to adjust the measurable variable M  so that we keep 
the output variable y  as steady as possible. Feedback control takes the following steps: 
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• Measure the value of the output, my . 
• Compare my  to the set point, spy . Determine the deviation   sp my y . 
• Deviation processed by controller to give an output signal C  to the final control 

element. The final control element makes change to the measurable control variable 

M . 
 
The process itself is referred to as open loop as opposed to when the control is turned on 
when it is referred to as closed loop.  
 
Types of feedback control systems: 
 

• FC — flow control 
• PC — pressure control 
• LC — liquid-level control 
• TC — temperature control 
• CC — composition control 

 
Typical measuring devices:  
 

• Temperature: thermocouples 
• Pressure: pressure transducers 
• Flow: orifice plates, venturi tubes, turbine flow meters, hot-wire anemometers 
• Liquid-level: float-actuated devices 

• Composition: chromatographs, IR analyzers, UV analyzers, pH meters 
 
Final control elements are typically valves of some sort. Depending upon situation, 
specified as fail open or fail close. 
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Closed Loop Response 
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Above is a block diagram for a generalized closed-loop system. We have equations for: 
 

Process:    p Ly G M G L  

Measuring Element:   mmy G y  

Comparator:     sp my y  

Controller Output:   cC G  

Final Control Element:   aM G C  

 
We would like a set of transfer functions that relate the output y  to the two inputs 

spy  & 
L  (which is the overall box around the process & feedback control loop). The transfer 

functions should have the form: 

 

      SetPoint Loadspy G y G L . 

 
We have individual transfer functions that will make up these overall transfer functions. 
We just have to combine them using standard rules of algebra. Starting with the equation 
for the final control element: 
 

   aM G C  

 

    a cM G G  Insert equation for controller output 
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     a c sp mM G G y y  Insert equation for comparator 

 

     a c mspM G G y G y  Insert equation for measuring device 

 
and then insert this into the process equation: 
 

       p a c m Lspy G G G y G y G L . 

 
Algebraically solving for y : 
 

      p a c m p a c Lspy G G G y G G G G y G L . 

 

       m p a c p a c L1 spG G G G y G G G y G L . 

 

    
 

p a c L

m p a c m p a c1 1
sp

G G G G
y y L

G G G G G G G G
. 

 

so: 


p a c

SetPoint

m p a c1

G G G
G

G G G G
 and 



L
Load

m p a c1

G
G

G G G G
. 

 

Usually look at two types of problems: 
 

• Servo problem. No disturbance & controller acts to keep the output near the set 
point: 

  SetPoint spy G y  

 

• Regulator problem. Set point remains the same & controller acts to smooth out 
disturbances: 

  Loady G L . 

 
 



Colorado School of Mines CHEN403  Feedback Control Systems 

John Jechura (jjechura@mines.edu) - 5 - © Copyright 2017 

April 23, 2017 

Breaking Apart the Problem to Calculate the Overall Transfer Function 

+
-
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This is a lot of math. We can get the same thing by starting with a problem where there are 
THREE inputs and everything feeds in a forward direction. Consider the block flow diagram 
above. The relationship between the three inputs is: 
 

             p a c L m p a cspy G G G y G L G G G G Z . 

 
However, note that this block diagram is simply the first one we looked at with  Z y . So 
we can make this substitution & do a bit of algebra to get: 
 

             p a c L m p a cspy G G G y G L G G G G y  

 

            m p a c p a c L1 spG G G G y G G G y G L  

 

    
 

p a c L

m p a c m p a c1 1
sp

G G G G
y y L

G G G G G G G G
 

 
which is what we determined before.  
 
 
Shortcuts for Calculating Overall Transfer Functions 

Evaluating the overall transfer function between an input & output can get quite 
complicated, especially if there are several loads and loops. For a system with a single 
feedback loop, the transfer function between an input 

inY  and an output 
outY  is: 
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where  f  is the product of the transfer functions between 
inY  and 

outY ,   is the product 
of all transfer functions within the loop, and 

fn  and n  are then number of negative signs 
within the forward path & the loop, respectively. For a simple feedback control loop which 
only has a negative sign in the comparator the loop law is: 
 

 



1

fout

in

Y

Y
. 

 
If there are multiple loops, then the situation gets more complicated. If the loops are all 

embedded and do not cross boundaries then this loop formula can be applied sequentially. 
 
 

Inner Feedback Loop Example 

+
-

+
+R
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1mG
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2mG

2cG 2pG 1pG
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This block diagram is an embedded, multi-loop example (i.e., cascade control). To get the 
transfer function between R  and C  we must first replace the inner loop with an overall 
transfer function & then can take care of the outer loop. The inner loop transfer function 
will be: 
 

 


  
 

2 2

2 2 21 1

f c pout
inner

in c p m

G GY
G

Y G G G
 

 

Now, the overall transfer function will be: 
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Feedforward Example 

+
-

+
+R

C

L

mG

cG +
+

fG

vG pG

LG

 
 
This block diagram is for a situation where the load information is combined with the 
output information to give a combined feedforward-feedback control. To get the transfer 
function between L  and C  we must consider both forward paths. The output C  for the 
two separate paths involving L  will give: 
 

    
 1 1

f v pL

m c v p m c v p

G G GG
C L L

G G G G G G G G
. 

 
Now, the overall transfer function will be: 
 

 



 1

L f v p

m c v p

G G G GC

L G G G G
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Internal Feedforward Example 

+
-

+
+R

C

L

mG

cG
vG pG

-
+

cG

M 

 
This block diagram is for a situation where the information for the manipulated variable 
goes through an internal model. (See Chapter 12.) Now there are two feedback loops. We 
can split off one with the following block diagram. We’ve added a new input (well, kind of, 
since we really know that  Z C ) but we only have one feedback loop. 

+
-

+
+R

C

L

mG

cG
vG pG

-
+

cG

M 

Z 

 
 
The relationship of the output ( C ) to each of the inputs will be: 
 

        
 1 1

c v p m c v p

c v c m c v c m

G G G G G G G
C L R Z

G G G G G G G G
 

 
(Note that L  is not part of the feedback loop!) 
 

                    1 1c v c m c v c m c v p m c v pG G G G C G G G G L G G G R G G G G Z  

 
Now we take into account that  Z C : 
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                    1 1c v c m c v c m c v p m c v pG G G G C G G G G L G G G R G G G G C  

 

                1 1m c v p c v c m c v c m c v pG G G G G G G G C G G G G L G G G R  

 

  1 1m c v p c c v c m c v pG G G G G C G G G G L G G G R              
 

 

 
   

1

1 1

c v pc v c m

m c v p c m c v p c

G G GG G G G
C L R

G G G G G G G G G G

   
      

         

 

 
So, the overall transfer functions are: 
 

 
 

1

1
c v c m

load

m c v p c

G G G GC
G

L G G G G G

 
 

  
 

 

 
 1

c v p

sp

m c v p c

G G GC
G

R G G G G G


 

  
. 

 
 
Developing Block Diagram from Process Equations 

Let's draw a block diagram for level control on a single tank. As the manipulated variable 
we can use either the effluent flow rate, 1F , or in the inlet flow rate, 0F . When 0F  is the 
manipulated (i.e., control) variable then let’s use 1 1 1F C h . The overall material balance 
becomes: 
 

 


        
 



1
0 1 0 0

1

1

11

p

p

KCdh
A F C h h F F

Adt ss
C

 

 
The process itself looks like the following. 
 

h
 1

p

p

K

s


0F

 
 
If we measure the liquid level & control its value with the inlet flowrate then process looks 

like the following. Note that there is a manipulated variable but no load: 
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+
-


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cG aG
 1

p

p

K

s


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Let’s control the liquid level by manipulating the outlet flow (such as with a pump) in such 
a way as to make the outlet flow independent of the liquid level. So now 1F  is the control 
variable and 0F  will be the disturbance variable. The overall material balance becomes: 
 

 
 

            0 1 0 1 0 1

1 1 p pK Kdh
A F F h F F F F

dt As As s s
 

 
and the block diagram is: 
 

-
+

-
+

sph h


0F

mG

cG aG


pK

s


1F 

pK

s

 
 
or it can also be drawn as: 
 

-
+

-
+

sph h


0F

mG

cG aG


1F 
pK

s
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Before we go any further, notice the sign change at the comparator. Normally we define 

   R mh h , but here we have changed the sign! This is because using 1F  to control the 
liquid level gives what can be thought of as an inverse control type. Normally, if the 

measured variable is too small, then the manipulated variable must be increased (e.g., if the 
temperature in a tank is too low, then the heat to the tank is increased). For the 1st case, 
control using 0F , if the level is too high, then the flow in must be decreased; if the level is 
too low, then flow in must be increased. However, here we must go in the opposite 
direction. If the level is too high, then the flow out must be increased; if the level is too low, 
then flow out must be decreased. In the block diagram, this logic can be accommodated 
either by making the control transfer function negative or by changing the signs at the 
comparator.  
 
For the 1st case, using the inlet flow as the manipulated variable, the overall transfer 
function between the set point and the liquid level will be: 
 

 
 

  
    


 

1

1 1
1

1

p

c v

c v p p c v p

pR c v p m p p c v m
c v m

p

K
G G

G G G s G G Kh

Kh G G G G s K G G G
G G G

s

 

 
For the 2nd case, using the outlet flow as the manipulated variable, the overall transfer 

function will be: 
 

 




  

  


1
1

p

c v
c v p c v p

pR c v p m p c v m
c v m

K
G GG G G G G Kh s

Kh G G G G K G G G s
G G G

s

 

 
Notice that the positions of the negative signs have changed. The other major difference is 
the form of the process transfer function, pG .  

Typical controller strategies 

Typical controller strategies and parameter values (SEM pg. 197): 
 

• Proportional (P) control. Controller output will be: 

          c s cP t K E t P P t K E t  
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where cK  is the controller gain and sP  is the controller bias. The gain is 
sometimes referred to as proportional band PB where 100/ cPB K  and 
typically kept in range  1 1000PB . This controller’s transfer function is: 

  c cG s K  

• Proportional-integral (PI) control. Controller output will be: 

                      
  

0 0

t t

c c
c s c

I I

K K
P t K E t E d P P t K E t E d  

where I  is the integral time constant or reset time. This is typically set within 
the range   0.02 20 minI . This controller’s transfer function is: 

 
 

  
 

1
1c c

I

G s K
s

 

• Proportional-integral-derivative (PID) control. Controller output will be: 

          
 

0

t

c
c c D s

I

K dE
P t K E t E d K P

dt
 

where D  is the derivative time constant. The derivative portion of the control 
anticipates what the error will be in the immediate future — sometimes referred 
to as anticipatory control. This is typically set within the range   0.1 10 minD . 
This controller’s transfer function is: 

 
 

    
 

1
1c c D

I

G s K s
s

. 

Derivative control can give a sudden “kick” when step changes are introduced. 
To get around this, industrial controllers will actually implement derivative 
control in an approximate manner: 

 
 

   
   

1
1

1
D

c c

I D

s
G s K

s s
 

where   is a constant between 0.05 and 0.2, most typically 0.1. 

Another way to eliminate the derivative kick is to apply the derivative action to 
the measured value of the output, not the error. In this case the signal out of the 
controller will be: 

   
        

     

1
1

1
D

c c m

I D

s
C K K y

s s
. 
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The closed loop block diagram for this type of controller can be expressed like 
that in the following diagram. 

+
-

+
+

spy y

L

mG

 
 
 

c

1
1

I

K
s

aG pG

LG

 C M


my



 1
D

c

D

s
K

s

+
+

 
  
Sometimes, especially with pneumatic transmission lines, there may be a time delay due to 
signal transmission. This will normally be ignored. However, if the time delay is large 
enough, then the time delay transfer function will be: 
 

 
 
 




 

0

1

d s

i p

P s e

P s s
. 

Effect of Controller Strategies on First Order Process 

The controller strategies will have different characteristic effects on a process. A first order 
process with one manipulated variable and one load will be used to show these effects. 
Both transfer functions will use the same time constant, p , but different process gains. The 
underlying ODE and resulting transfer functions will be: 
 

 1 1

p L
p p L

p p

p L

K Kdy
y K M K L y M L

dt s s

G M G L


           

   

  

 

 
Another simplification used here will be to neglect appreciable dynmics from the 
measuring device & the final control elelment, i.e., 1m aG G  . 
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Effect of Proportional Control 

For proportional (P) control: 
 

   c cG s K  

 
And the overall transfer function will be: 
 

 

1 1

1 1
1 1

1 1

1 1

1 1

1 1
1 1

1

p L
c

p c p pL
sp sp

p pp c p c
c c

p p

p c L
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p p c p p c

p c L

p c p c
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p p

p c p c

p

p

K K
K

G K s sG
y y L y L

K KG K G K
K K

s s

K K K
y L

s K K s K K

K K K

K K K K
y L

s s
K K K K

K
y

s

   
       

 
 
   

  
     

   
            

    
           




  1
L

sp

p

K
L

s




 

 

where: 


 
1

p

p

p cK K
 

  
1

p c

p

p c

K K
K

K K
 

  
1

L
L

p c

K
K

K K
 

 
What are the implications of this? 
 

• The response of the system remains 1st order. 
• The time constant has been decreased (   p p ) meaning that the response of 

the system is faster. 
• The process gains have decreased. 
• There will be an offset at the new ultimate value of the response. 
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The last item is not immediately obvious from the response expression. First, let us define 
the offset as the difference between a steady state response, y


, and the corresponding set 

point: 
 

    * *Offset sp sp sp sp spy y y y y y y y
  

            

 
where the expression can be put in terms of deviation variables if the initial steady state is 
at the initial set point. For a change in the set point and/or the load we can determine the 
new steady state value by applying the Final Value Thereom.  
 

• For a step change in the set point of sp spy y    then the set point’s dynamic function 
will be: 
 

  sp

sp

y
y

s


  , 

 
the dynamic response of the output will be: 
 

 
1 1

p p sp

sp

p p

K K y
y y

s s s

  
  

    
, 

 
the ultimate value will be: 

 

    
0 0

lim lim lim
1

p sp

p sp
t s s

p

K y
y y s y s K y

s s


  

  
          

   

, 

 
and the offset will be: 
 

 

 Offset 1

1
1

1 1

sp p sp p sp

p c

sp sp

p c p c

y K y K y

K K
y y

K K K K

       

   
              

. 

 
We would like the offset to be zero, but this is not possible unless cK .  

 
• For a step change in the load without a change in set point then  0sp spy y     and 

L L   . The load’s dynamic function will be: 
 

  
L

L
s


  , 
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the dynamic response of the output will be: 
 

 
1 1

L L

p p

K K L
y L

s s s

  
  

    
, 

 
the ultimate value will be: 
 

    
0 0

lim lim lim
1

L
L

t s s
p

K L
y y s y s K L

s s


  

  
          

   

, 

 
and the offset will be: 

 

 Offset
1

L
L

p c

K
K L L

K K

 
       

. 

 
Again, we would like the offset to be zero, but again this is not possible unless 

cK .  
 
The offset is characteristic of P control. The only time when there will be no offset is when 
the process transfer function has an integrating factor (i.e., a 1/ s  factor). For example, if 

the first order process is actually a pure integrator, then /p pG K s , the transfer function 
between the set point & the output will be: 
 

 
1

1

p

c
p c p c

sp sp sp
pp c p c

c

K
KG K K Ksy y y y

KG K s K K
K

s




     

  


, 

 
and the ultimate value of the response to a step change in the set point will be: 
 

  
0 0

lim lim p c sp p c

sp sp
s s

p c p c

K K y K K
y s y s y y

s K K s K K


 

   
           

   

 

 
which leads to a zero offset. 
 
 
Effect of PI Control 

For proportional-integral (PI) control: 
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  
1

1c c

I

G s K
s

 
  

 
 

 

then: 
 

 

 

       

 

   2 2

1
1

1 1

1 1
1 1 1 1

1 1

1

1 1 1 1

1

1 1

p L
c

p I p

sp

p p

c c

p I p I

p c I L I
sp

I p p c I I p p c I

p c I L I
sp

p I I p c p c p I I p c

K K
K

s s s
y y L

K K
K K

s s s s

K K s K s
y L

s s K K s s s K K s

K K s K s
y

s K K s K K s K K s

 
 

        
   

      
        

  
  

           

  
 

           

2 2

1

1 1
1 1 1 1

p c

L I

p cI
sp

p I p I

I I

p c p c p c p c

L
K K

K
s

K Ks
y L

s s s s
K K K K K K K K



 
       

          
                     

       

 

 

Note the transfer functions have increased by an order of 1 (from 1st order to 2nd order).  
The parameters for the 2nd order system are: 
 

 p I

p cK K

 
   

 
11 1

1
2 2

p c p cI I

p c p I pp c

K K K K

K K K K

   
         

 

 
so the transfer functions could also be expressed as: 
 

 
   

2 22 2

1

2 1 2 1

L I

p cI
sp

K
s

K Ks
y y L

s s s s

 
        

              
. 

 
Both of the transfer functions have an “s” term in the numerator so they are more 
complicated than what we have been dealing with up to now. But these terms lead to the 
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property that PI control has zero offset for changes in both the set point and the load. For 
example, for a step change in the set point of sp spy y    then the dynamic response of the 
output will be: 
 

 
 

2 2

1

2 1

spI
ys

y
ss s

 
  

      
, 

 
the ultimate value will be: 
 

    
 

2 20 0

1
lim lim lim

2 1

spI
sp

t s s

ys
y y s y s y

ss s


  

  
           

        

, 

 
and the offset will be: 
 
 Offset 0sp spy y   . 

 
The an “s” terms in the numerators will change the expected form of the response curves 
from “standard” 2nd order system responses. 

• For the load, the response will be the derivative of the standard 2nd order response 
to the driving function. For a ramp change to the load, the response will look like the 
standard response to a step-change driving function. For a step change in the load, 

the response will look like the standard response to an impulse driving function: 
 

 
 

 

 
2 22 22 1 2 1

L I L I

p c p c

K K
s L

K K K KL
y

ss s s s

    
           

              
. 

 
• For the set point, the response have two parts: the standard response with a gain of 

one & the derivative of the standard 2nd order response to the driving function. The 
derivative part will die out after a short period of time leaving the standard 
response as the long-time solution. For a step change in the set point this will look 
like a step-change response plus an impulse response: 
 

 
   

 
 

2 2 22 2 2

1 1

2 1 2 1 2 1

I spsp spI
yy ys

y
s ss s s s s s

   
     

                      
. 
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Depending upon the combination of c pK K  and /I p   the system will be overdamped, 
underdamped, or critically damped. The following figure shows the relationship of the 
damping factor   to these parameters. Note that for a given I  value there is a minimum 
  for an adjustment of cK . 
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Effect of PID Control 

For proportional-integral-derivative (PID) control: 
 

  
1

1c c D

I

G s K s
s

 
    
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then: 
 



Colorado School of Mines CHEN403  Feedback Control Systems 

John Jechura (jjechura@mines.edu) - 20 - © Copyright 2017 

April 23, 2017 

 

 
       

 

2

2 2

2

1
1

1 1

1 1
1 1 1 1

1 1

1

1 1 1 1

1

p L
c c D

p I p

sp

p p

c c D c c D

p I p I

p c I I D L I
sp

I p p c I I D I p p c I I D

p c I D I

p

K K
K K s

s s s
y y L

K K
K K s K K s

s s s s

K K s s K s
y L

s s K K s s s s K K s s

K K s s

 
   

        
   

          
        

     
  

                 

    


       2 2

2

2 2

1 1

1

1 1
1 1 1

L I
sp

I I D p c I p c p c p I I D p c I p c p c

L I

p cI D I
sp

p I I D p c p I I D p c

I I

p c p c p c p c

K s
y L

K K s K K s K K K K s K K s K K

K
s

K Ks s
y

K K K K
s s s s

K K K K K K K K


 

                

 
         

                
                     

       

1
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Note that the integral action has increased the order of the transfer functions by 1 (from 1st 
order to 2nd order); the derivative action does not affect this.  The parameters for the 2nd 
order system are: 
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so the transfer functions could also be expressed as: 
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s

K Ks s
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           

              
. 

 
The derivative action will increase the characteristic time   but decrease the damping 
factor  . The first action will slow down the response but the second will speed it up. Both 
affects must be combined to determine the overall affect. 
 
Both of the transfer functions have “s” terms in the numerator that lead to zero offsets 
(primarily from the integral action). The form of the response curve to a load change will 

be identical to that for PI control. The response for a set point change, however, has an 
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additional short-time contribution that looks like the 2nd derivative of the forcing funciton’s 
response. For example, for a step change in the set point of sp spy y    the dynamic response 
of the output can be determined from: 
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