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Description of cell mass growth

Qualitative

Quantitative

Stoichiometry (example, aerobic)
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Material Balance – Batch Reactor

Cell Balances:

Substrate Consumption & 
Product Growth:
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Material Balance – Batch Reactor

If net is constant then get exponential 
growth phase

Followed by deceleration growth (unbalanced growth) & stationary 
(growth equal to death) phases
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Material Balance – Batch Reactor

Death phase is 1st order in cell concentration 
& gives exponential decay
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Some Growth Models

Substrate-Limited Growth (Moser
equation, Monod for n=1)

Substrate-Limited Growth (Contois
equation)

Noncompetitive Substrate Inhibition

Competitive Substrate Inhibition

Noncompetitive Product Inhibition

Competitive Product Inhibition
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Monod Growth Model

Substrate-Limited Growth

 Limits:

• Constant growth rate at large 
substrate concentrations

• Proportional to substrate 
concentration at low 
concentrations

Also:

7

 
 
/

1 /
g Sm

g
S m S

S KS

K S S K


   

  


   

   
g Sm

g
S m g

KS
S

K S

Updated: September 18, 2017
Copyright © 2017 John Jechura (jjechura@mines.edu)

Material Balances – Ideal Chemostat (Section 6.3.2)
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Material Balances – Ideal Chemostat (CSTR)

Cell balance:

where:  D  F/VR

Usually feed is cell mass & product free
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Material Balances – Ideal Chemostat (CSTR)

At steady state & negligible death rate

Growth rate can be controlled by 
changing the dilution rate!
 However, if the dilution rate is too large then the cell mass is “washed out” –

the culture cannot reproduce fast enough to grow before it is removed
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Material Balances – Ideal Chemostat (CSTR)

Substrate balance

At steady state

 Linear equation of substrate consumption

• Grow cell mass

• Create product

• Provide energy to the cell mass

11

     
          

 

0
0

/ / / /

0 g gP P
s sM M

X S P S X S P S

D S Sq q
D S S m X m

Y Y X Y Y

0
/ /

g P
R R sM

X S P S

X q XdS
V FS FS V m X

dt Y Y

 
       

 

Updated: September 18, 2017
Copyright © 2017 John Jechura (jjechura@mines.edu)

Material Balances – Ideal Chemostat (CSTR)

If negligible product formation & 
maintenance, then:

Substrate (for Monod eqn):
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Material Balances – Ideal Chemostat (CSTR)

Product formation – steady state with 
introduction of cell mass (but no net growth):
 From cell balance:

 From substrate balance:

 From product yield definition:
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Other Configurations – Chemostat with Recycle
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Other Configurations – Multi-Stage Chemostat
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Other Configurations – Fed Batch
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Other Configurations – Perfusion
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Use of Batch Data in Flow Reactors

For a batch reactor

For a CSTR it makes sense that the outlet concentration is related to 
the batch reactor’s results such that:

where textent is some characteristic batch time that represents the 
extent of reaction
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Use of Batch Data in Flow Reactors

For a chemostat the dilution factor D controls the growth factor net

You can relate the two systems & show performance by
 Plot dX/dt vs X for the batch data

 Plot a straight line through X0 on the horizontal axis with a slope of D

 The intersection of the batch results curve & the chemostat performance line 
will give the value of X within the chemostat. The original batch X vs. t data 
will then give the corresponding textent.

Product composition can be determined either by:
 Find the corresponding P at textent, or

 Do a similar DP/dt vs. P analysis
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Use of Batch Data in Flow Reactors

Using data from Example 6.2, ethanol from glucose using S. 
cerevisiae 
 Time derivatives estimated from central differences
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Use of Batch Data in Flow Reactors

For a chemostat, D=0.05 h-1
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Use of Batch Data in Flow Reactors

For a batch reactor “productivity” is the time-derivative increase in 
concentration vs. time. 

For a CSTR the analogous term is the dilution factor times the 
concentration, e.g., D×P
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Details for Other Bioreactor 
Configurations
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Other Configurations – Chemostat with Recycle
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Material Balances – Chemostat with Recycle

Cell balance:

At steady state with X0=0
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Material Balances – Chemostat with Recycle

Cell balance around Cell Separator @
steady state:

Since C > 1 then X2 < X1
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Material Balances – Chemostat with Recycle

Substrate balance

At steady state & growth limited
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Other Configurations – Multi-Stage Chemostat
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Material Balances – Multi-Stage Chemostat

Cell balance – 2 reactors in series

1st reactor looks like a single reactor. Focus on the downstream 
reactor(s)

At steady state with X0=0
 Now growth rate dependent on cell mass compositions
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Material Balances – Multi-Stage Chemostat

Substrate balance – focus on 2nd reactor

At steady state with only cell mass growth:
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Material Balances – Multi-Stage Chemostat

Must simultaneously solve the 3 equations
for cell mass & substrate concentrations as
well as growth rate

For Monod eqn:
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Material Balances – Multi-Stage Chemostat

Care must be taken to specify an iteration
technique to solve this set of non-linear 
equations
 Simplest technique would be direct substitution, 

but it is doubtful that this would be a robust way to solve
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