Comments Transient Energy Balances

General form of the "stuff" balance equation

$$\begin{cases} \mathsf{Rate of} \\ \mathsf{Accumulation} \end{cases} = \begin{cases} \mathsf{Rate} \\ \mathsf{In} \end{cases} - \begin{cases} \mathsf{Rate} \\ \mathsf{Out} \end{cases} + \begin{cases} \mathsf{Rate of} \\ \mathsf{Generation} \end{cases} - \begin{cases} \mathsf{Rate of} \\ \mathsf{Consumption} \end{cases}$$

Word form of the energy balance equation

$$\begin{cases} \mathsf{Rate of} \\ \mathsf{Accumulation} \end{cases} = \begin{cases} \mathsf{Convection} \\ \mathsf{Energy In} \end{cases} - \begin{cases} \mathsf{Convection} \\ \mathsf{Energy Out} \end{cases} \pm \begin{cases} \mathsf{Heat Across} \\ \mathsf{Bounary} \end{cases} \pm \begin{cases} \mathsf{Work Across} \\ \mathsf{Boundary} \end{cases} \end{cases}$$

Transient energy balance equation

4

Where does heat of reaction come from? Use of heat capacity for enthalpy

The enthalpy form of the energy balance is the same whether or not there is a chemical reaction, heat of mixing, heat of absorption, etc.

These effects are artifacts of describing the enthalpy of a mixture using the heat capacity.

$$\left(\frac{\partial \tilde{H}}{\partial T} \right)_{P} \equiv \tilde{C}_{P} \implies \tilde{H} - \tilde{H}_{ref} = \int_{T_{ref}}^{T} \tilde{C}_{P} dT \approx \tilde{C}_{P} \left(T - T_{ref} \right)$$
$$\hat{H} - \hat{H}_{ref} = \int_{T_{ref}}^{T} \hat{C}_{P} dT \approx \hat{C}_{P} \left(T - T_{ref} \right)$$

Where does heat of reaction come from? Use of heat capacity for enthalpy

No reaction:

$$\rho V \frac{d\hat{H}_{1}}{dt} = \rho F \hat{H}_{0} - \rho F \hat{H}_{1} + Q$$

$$\rho V \hat{C}_{\rho} \frac{dT_{1}}{dt} = \rho F \Big[\hat{C}_{\rho} \left(T_{0} - T_{ref} \right) + H_{ref} \Big] - \rho F \Big[\hat{C}_{\rho} \left(T_{1} - T_{ref} \right) + H_{ref} \Big] + Q$$

$$\rho V \hat{C}_{\rho} \frac{dT_{1}}{dt} = \rho F \hat{C}_{\rho} \left(T_{0} - T_{1} \right) + Q$$

With chemical reaction, the reference enthalpies are different:

$$\rho V \hat{C}_{\rho} \frac{dT_{1}}{dt} = \rho F \Big[\hat{C}_{\rho} \left(T_{0} - T_{ref} \right) + \hat{H}_{ref,0} \Big] - \rho F \Big[\hat{C}_{\rho} \left(T_{1} - T_{ref} \right) + \hat{H}_{ref,1} \Big] + Q$$
$$\rho V \hat{C}_{\rho} \frac{dT_{1}}{dt} = \rho F \hat{C}_{\rho} \left(T_{0} - T_{1} \right) + \rho F \Big[\hat{H}_{ref,0} - \hat{H}_{ref,1} \Big] + Q$$

Where does heat of reaction come from? Use of heat capacity for enthalpy

What if the reactants have different heat capacities then the products?

$$\rho V \frac{d(\hat{C}_{\rho 1}T_{1})}{dt} = \rho F[\hat{C}_{\rho 0}(T_{0} - T_{ref}) + \hat{H}_{ref,0}] - \rho F[\hat{C}_{\rho 1}(T_{1} - T_{ref}) + \hat{H}_{ref,1}] + Q$$
$$\rho V \frac{d(\hat{C}_{\rho 1}T_{1})}{dt} = \rho F[\hat{C}_{\rho 0}(T_{0} - T_{ref}) - \hat{C}_{\rho 1}(T_{1} - T_{ref})] + \rho F[\hat{H}_{ref,0} - \hat{H}_{ref,1}] + Q$$

Where does heat of reaction come from? Enthalpy of formation as reference enthalpy

Total enthalpy is component average of individual enthalpies (if no mixing effect)

$$H = \sum_{i=1}^{N} m_i \hat{H}_i = \sum_{i=1}^{N} n_i \tilde{H}_i \implies C_p = \sum_{i=1}^{N} m_i \hat{C}_{pi} = \sum_{i=1}^{N} n_i \tilde{C}_{pi}$$

For constant heat capacities for each chemical species

$$\begin{aligned} \frac{dH_{1}}{dt} &= \dot{H}_{0} - \dot{H}_{1} + Q \\ \frac{dH_{1}}{dt} &= \sum_{i=1}^{N} \dot{n}_{i,0} \tilde{H}_{i,0} - \sum_{i=1}^{N} \dot{n}_{i,1} \tilde{H}_{i,1} + Q \\ \frac{dH_{1}}{dt} &= \sum_{i=1}^{N} \dot{n}_{i,0} \tilde{C}_{p,i} \left(T_{0} - T_{ref} \right) - \sum_{i=1}^{N} \dot{n}_{i,1} \tilde{C}_{p,i} \left(T_{1} - T_{ref} \right) + \sum_{i=1}^{N} \left(\dot{n}_{i,0} - \dot{n}_{i,1} \right) \left(\Delta \tilde{H}_{F} \right)_{i} + Q \end{aligned}$$

Where does heat of reaction come from? Heat of formation or combustion as reference

Reference state enthalpies can be the <u>enthalpy of formation</u> or the <u>heat of combustion</u>

 Take care whether the heat of combustion is reported as a negative or positive value (positive value consistent with report as heating value)

Can separate the terms for the reacting & non-reacting species

• Written with heat of combustion as negative value

$$\frac{dH_{1}}{dt} = \sum_{i=1}^{N_{\text{Reacting}}} \dot{n}_{i,0} \tilde{C}_{\rho,i} \left(T_{0} - T_{ref}\right) - \sum_{i=1}^{N_{\text{Reacting}}} \dot{n}_{i,1} \tilde{C}_{\rho,i} \left(T_{1} - T_{ref}\right) + \sum_{i=1}^{N_{\text{Reacting}}} \left(\dot{n}_{i,0} - \dot{n}_{i,1}\right) \left(\Delta \tilde{H}_{c}\right)_{i} + \sum_{i=1}^{N_{\text{Nonreacting}}} \dot{n}_{i,0} \tilde{C}_{\rho,i} \left(T_{0} - T_{1}\right) + Q$$

Latent heat effects

There are other latent heat effects that look like "generation" terms – changes in enthalpy not due to temperature changes

Heats associated with phase change, e.g., vaporization (solidification, dissolution, absorption, etc. are similar)

$$\int_{T_0}^{T_1} dH = \int_{T_0}^{T_{vap}} \tilde{C}_{p,L} dT + (\Delta H)_{vap} + \int_{T_{vap}}^{T_1} \tilde{C}_{p,V} dT$$
$$= \tilde{C}_{p,L} (T_{vap} - T_0) + (\Delta H)_{vap} + \tilde{C}_{p,L} (T_1 - T_{vap})$$

Heat of mixing

$$\tilde{H} = \sum_{i=1}^{N} \mathbf{x}_{i} \tilde{H}_{i} + (\Delta H)_{mix} \approx \sum_{i=1}^{N} \mathbf{x}_{i} \tilde{H}_{i} + \mathbf{x}_{R} (\Delta \tilde{H})_{mix,R}$$

How to calculate the effect of heat of reaction

Heat of reaction effects are determined by the indirect path:

- Determine enthalpy change to take reactants to reference temperature
- Determine the change in enthalpy @ reference temperature
- Determine enthalpy change to take products from the reference temperature

John Jechura (jjechura@mines.edu)

Calculating heat of reaction from heats of combustion (values in Table C.8)

Use the heat of combustion as the reference

Example: Glucose \rightarrow Ethanol

 $\rm C_6H_{12}O_6~(s)\rightarrow 2~C_2H_5OH~(l)+2~CO_2~(g)$

Compound (state)	$\Delta H^{o}{}_{c}$
$C_{6}H_{12}O_{6}$ (s)	-2805.0 kJ/mol
C ₂ H ₅ OH (I)	-1366.8 kJ/mol
CO ₂ (g)	0 kJ/mol

$$\begin{split} \Delta \tilde{H}_{rxn}^{0} &= \sum_{\text{reactants}} n_{i} \Delta \tilde{H}_{c}^{0} - \sum_{\text{products}} n_{i} \Delta \tilde{H}_{c}^{0} \\ &= \left[1 \cdot \left(-2805.0 \right) \right] - \left[2 \cdot \left(-1366.8 \right) + 2 \cdot \left(0 \right) \right] \\ &= -71.4 \frac{\text{kJ}}{\text{mol glucose}} \end{split}$$

Heat of reaction with cell growth

Estimated from available electrons

$$-\Delta \tilde{H}_{c} = -q \gamma x_{c}$$
$$q \approx 111 \text{ to } 115 \frac{\text{kJ}}{\text{g.mo}}$$

Heat of reaction with oxygen as electron acceptor (aerobic, combustion))

$$\Delta \tilde{H}_{rxn} = -460 \frac{\text{kJ}}{\text{g.mol O}_2}$$

Updated: September 20, 2017 John Jechura (jjechura@mines.edu)

Bioprocess Engineering Principles, 2nd ed Pauline Doran, Elsevier Science & Technology Copyright © 2012, Elsevier Inc. All rights Reserved.

Heat of combustion for bacteria & yeast

Can be estimated as:

$$\left(\Delta \tilde{H}_{c} \right)_{bacteria} \approx -23.2 \frac{\text{kJ}}{\text{g}}$$

$$\left(\Delta \tilde{H}_{c} \right)_{yeast} \approx -21.2 \frac{\text{kJ}}{\text{g}}$$

For general biomass (CH_{1.8}O_{0.5}N_{0.2}):

$$\left(\Delta \tilde{H}_{c}\right)_{biomass} \approx -21.3 \, \frac{kJ}{g}$$

Organism	Substrate	$\Delta h_{\rm c} \ ({\rm kJ g^{-1}})$
BACTERIA		
Escherichia coli	glucose glycerol	-23.04 ± 0.06 -22.83 ± 0.07
Enterobacter cloacae	glucose glycerol	$\begin{array}{c} -23.22 \pm 0.14 \\ -23.39 \pm 0.12 \end{array}$
Methylophilus methylotrophus	methanol	-23.82 ± 0.06
Bacillus thuringiensis	glucose	-22.08 ± 0.03
YEAST		
Candida lipolytica	glucose	-21.34 ± 0.16
Candida boidinii	glucose ethanol methanol	-20.14 ± 0.18 -20.40 ± 0.14 -21.52 ± 0.09
Kluyveromyces fragilis	lactose galactose glucose glucose	-21.54 ± 0.07 -21.78 ± 0.10 -21.66 ± 0.19 -21.07 ± 0.07 -21.30 ± 0.10
		-20.66 ± 0.26 -21.22 ± 0.14

 TABLE 5.1
 Heats of Combustion of Bacteria and Yeast

Bioprocess Engineering Principles, 2nd ed Pauline Doran, Elsevier Science & Technology Copyright © 2012, Elsevier Inc. All rights Reserved.

Calculating heat of reaction from heats of combustion (values in Table C.8)

Use the heat of combustion as the reference

Example: Glucose \rightarrow Ethanol

 $\rm C_6H_{12}O_6~(s)\rightarrow 2~C_2H_5OH~(l)+2~CO_2~(g)$

Compound (state)	$\Delta H^{o}{}_{c}$
$C_{6}H_{12}O_{6}$ (s)	-2805.0 kJ/mol
C ₂ H ₅ OH (I)	-1366.8 kJ/mol
CO ₂ (g)	0 kJ/mol

$$\begin{split} \Delta \tilde{H}_{rxn}^{0} &= \sum_{\text{reactants}} n_{i} \Delta \tilde{H}_{c}^{0} - \sum_{\text{products}} n_{i} \Delta \tilde{H}_{c}^{0} \\ &= \left[1 \cdot \left(-2805.0 \right) \right] - \left[2 \cdot \left(-1366.8 \right) + 2 \cdot \left(0 \right) \right] \\ &= -71.4 \frac{\text{kJ}}{\text{mol glucose}} \end{split}$$

Example energy balance – Continuous Ethanol Fermentation

Saccharomyces cerevisiae is grown anaerobically in continuous culture at 30°C. Glucose is used as the carbon source; ammonia is the nitrogen source. A mixture of glycerol and ethanol is produced.

Compound	In [kg/h]	Out [kg/h]	
Glucose	36.0		
NH ₃	0.40		
Cells		2.81	
Glycerol		7.94	
Ethanol		11.9	
CO ₂		13.6	
Produced H_2O		0.15	

Figure 5.9

Bioprocess Engineering Principles, 2nd ed Pauline Doran, Elsevier Science & Technology Copyright © 2012, Elsevier Inc. All rights Reserved.

What is the cooling requirement to keep @ 30°C?

Example energy balance – Continuous Ethanol Fermentation

We'll calculate the heat of reaction at the standard temperature $(25^{\circ}C)$ & assume this is close enough

For more accuracy we would need to cool reactants to 25°C, calculate heat of reaction @ 25°C, & then heat up products to 30°C

Heat of reaction:

$$\Delta H_{rxn} = -570000 - (-556025) \\ = -13,977 \text{ kJ/h}$$

Since negative this heat to be <u>removed</u>

Compound	In	Out	Mol Wt	ΔH_{c}	$\Delta \mathbf{H_c}$
	[kg/h]	[kg/h]		[kJ/mol]	[kJ/kg]
Glucose	36		180	-2805.0	-15,583
NH ₃	0.4		17	-382.6	-22,506
Cells		2.81			-21,200
Glycerol		7.94	92	-1655.4	-17,993
Ethanol		11.9	46	-1366.8	-29,713
CO ₂		13.6		0	0
Produced H_2O		0.15		0	0
TOTAL	36.4	36.4			
$\Sigma \text{ m } \Delta \text{H}_{\text{c}}$	-570,002	-556 , 025			

Other topics from supplemental text

Use of steam tables

- How much steam might be needed to heat a reactor or stream
- How much heat is carried away by evaporated water

Closing comments

Remember that the heat of reaction is <u>energy released</u> not energy generated

 Unless we are working with nuclear reactions we do not create nor destroy energy

Using heat of combustion (i.e., change in enthalpy upon combustion) is a valid reference state, just like enthalpy of formation

- Take care whether the values are reported as negative (consistent with ΔH_{rxn}) or positive (reported as heating value)
- For biological reactions make sure you choose the higher heating value (i.e., where any product water is in the <u>liquid</u> state)

Many times you can ignore the actual reactor temperature & just use the heat of reaction at standard conditions

