

 Topics Fundamentals of heat transfer & exchange Heat transfer across boundaries Conduction Convection Radiation Coupled with internal energy changes Sensible heat effects Phase change 	Equipment – heat exchangers Combines information about fluid flow & heat transfer across internal boundaries Considerations When do I need to know the specifics of the heat exchange configuration?		
	 How is the heat transfer area related to the outlet temperatures? What is the difference between in-tank heat exchange & an external heat exchanger? 		
Updated: November 13, 2017 John Jechura (ijechura@mines.edu)	COLORADOSCHOOLOFMINES		

Heat Exchangers – Some Basics

Focus is on the <u>system</u> to have heat flow from the hot fluid(s) to the cold fluid(s) usually <u>without direct contact</u>

- Use bulk flow parameters to relate the heat conduction across the flow barrier to the change in energy of the hot & cold fluids
- Account for the series of resistances to heat transfer between the hot & cold fluids

Heat exchangers

- Heat to & from flowing fluids through impermeable barrier(s)
- Driving force for heat through barriers is the temperature difference between the two fluids on opposite sides of the barrier
- Relate the heat effects in the <u>flowing</u> fluids to the <u>change in enthalpy</u>
 - Often this can be related to the difference in the inlet & outlet temperatures for the fluids

COLORADOSCHOOLOF**MINES**

6

$$\dot{\mathbf{Q}}_{H} = \dot{m}_{H} \left(\hat{H}_{H,in} - \hat{H}_{H,out} \right) \implies \dot{\mathbf{Q}}_{H} = \dot{m}_{H} \hat{\mathbf{C}}_{p,H} \left(\mathbf{T}_{H,in} - \mathbf{T}_{H,out} \right) \text{ for constant } \hat{\mathbf{C}}_{p,H}$$

$$\dot{\mathbf{Q}}_{C} = \dot{m}_{C} \left(\hat{H}_{C,out} - \hat{H}_{C,in} \right) \implies \dot{\mathbf{Q}}_{C} = \dot{m}_{C} \hat{\mathbf{C}}_{n,C} \left(\mathbf{T}_{C,out} - \mathbf{T}_{C,in} \right) \text{ for constant } \hat{\mathbf{C}}_{n,C}$$

Updated: November 13, 2017 John Jechura (jjechura@mines.edu)

If there is only phase change then the LMTD is still the appropriate areaaveraged temperature difference

• If there is superheating and/or subcooling the situation is more complicated

For a pure component only with phase change ...

- The temperature will remain constant
- The heat released/absorbed will be related to the enthalpy of phase change at the exchanger conditions (pressure & temperature)

$$\dot{Q}_{H} = \dot{m}_{H} \left(\Delta \hat{H}_{yap} \right)$$

Since the temperature vs. heat released/absorbed curve is a straight line then the LMTD is appropriate for the area-averaged temperature difference

COLORADOSCHOOLOFMINES 17

Updated: November 13, 2017 John Jechura (jjechura@mines.edu)

	TABLE 9.3 Fouling Factors for Sca	TABLE 9.3 Fouling Factors for Scale Deposits			
	the states of th	Foulin	g factor		
	Source of deposit	(W m ⁻² °C ⁻¹)	(Btu h ⁻¹ ft ⁻² °F ⁻¹)		
	Water (temperatures up to 52°C, veloc River water	ities over 1 m s ⁻¹) 2800	500		
	City or well water	5700	1000		
	Hard water	1900	330		
	Brackish water	5700	1000		
	Untreated cooling tower water	1900	330		
	Seawater	11,400	2000		
	Steam Good quality, oil free	11,400	2000		
	Liquids Industrial organic	5700	1000		
	Caustic solutions	2800	500		
	Vegetable oil	1900	330		
	Fuel oil	1100	200		
	Gases Compressed air	2800	500		
	Solvent vapour	5700	1000		
Bioprocess Engineering	Note: To convert from W m ⁻³ ·C ⁻¹ to Btu k ⁻⁴ Data from A.C. Mueller, 1985, Process heat era 2mt el., W.M. Robsenow, J.P. Hartnett, and EJ Principles, 2 nd ed Science & Technology	ft ⁻² °F ⁻¹ , multiply by 0.176. hungers. In: Handbook of Heat N. Ganic (Eds.), pp. 4-78–4-173,	Transfer Applications, McGraw-Hill, New York.		
Convright © 2012 Flag	vier Inc. All rights Reserved				

<text><text><text><equation-block><text><text><text>

Air-Cooled Exchangers – Types

vs.

Forced Draft

Induced Draft

Advantages:

- Slightly lower horsepower
- Better maintenance accessibility
- Easily adaptable for warm air recirculation
- Most common in gas industry
- Advantages Better distribution of air
 - Less possibility of air recirculation
 - Less effect of sun, rain, or hail
 - Increased capacity in the event of fan failure

Heat Exchanger – Example S-1

Exchanger duty & hot fluid outlet temperature determined from energy balance around exchanger

$$Q = \dot{m}_{c}\hat{C}_{p,c}(T_{c,out} - T_{c,in}) = (291800)(0.704)(145 - 80) = 13,353,000 \text{ Btu/hr}$$
$$T_{h,out} = T_{h,in} - \frac{Q}{\dot{m}_{h}\hat{C}_{p,h}} = 240 - \frac{13353000}{(191600)(0.828)} = 155.8^{\circ}\text{F}$$

Determination of UA requires configuration information

• 1-1 counter-current flow

$$(\Delta T)_{LMTD} = \frac{(240 - 145) - (155.8 - 80)}{\ln\left(\frac{240 - 145}{155.8 - 80}\right)} = 85.1^{\circ}F$$

$$(\Delta T)_{LMTD} = \frac{(240 - 80) - (155.8 - 145)}{\ln\left(\frac{240 - 80}{207.7 - 105}\right)} = 55.4^{\circ}F$$

$$UA = \frac{Q}{(\Delta T)_{LMTD}} = \frac{13353000}{85.1} = 157,000 \frac{Btu}{hr^{\circ}F}$$

$$UA = \frac{Q}{(\Delta T)_{LMTD}} = \frac{13353000}{55.4} = 241,000 \frac{Btu}{hr^{\circ}F}$$

$$Updated: November 13, 2017$$
John Jechura (ijiechura@mines.edu)

