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RTDC Adaptive Decentralized Scheduling

RESEARCH & TECHNOLOGY DEVELOPMENT CENTER

e This work motivated by DARPA Coordination Decision Support Assistants
(COORDINATORS) Program (BAA # 04-29)

e Interested in applications where there are

Multiple agents

Spatially distributed

Interacting through a sequence of inter-dependent tasks
That must be executed according to a prescribed schedule
With a prescribed allocation of tasks to resources

e Can typically solve such problems “up-front,” using some type of planning and
scheduling algorithm

e However, when change occurs that upsets these plans during execution,
mission plans must be adapted
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RTDC Adaptive Decentralized Scheduling

RESEARCH & TECHNOLOGY DEVELOPMENT CENTER

e Mission schedule adaptation
— In many cases the luxury to re-plan is not available

— In the “heat of battle” new schedule and contingencies must often be
determined “on-the-spot”

— Via team-to-team communications

— Usually without the benefit of advanced planning tools and global domain
knowledge

e The result is that coordination efforts can distract team members from the task
at hand and that mission success can be compromised

e Goal: develop
— Distributed computational system
— Adapt existing mission plans online, in real time
— Making changes to task timings and allocations and
— Selecting from pre-planned contingencies
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RTDC Consensus Variable Perspective

RESEARCH & TECHNOLOGY DEVELOPMENT CENTER

e Assertion:
- Multi-agent coordination requires that some information must be shared
e The idea:

— ldentify the essential information, call it the coordination or consensus
variable.

— Encode this variable in a distributed dynamical system and come to
consensus about its value

e Examples:
-~ Heading angles
— Phase of a periodic signal
— Mission timings
e In the following we build on work by Beard, et al. to use consensus variables
to solve the adaptive decentralized scheduling problem
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RT]C Consensus Variables

e Suppose we have N agents with a shared global consensus
variable f
e Each agent has a local value of the variable given as 5?,

e Each agent updates their local value based on the values of the
agents that they can communicate with

Z kij (DG (8)(E(t) — & (1))

where kij are gains and Gij defines the communication topology
graph of the system of agents

e Key result from literature: If the graph has a spanning tree then
foralli & — &°
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RTD( Example: Single Consensus Variable
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Motivating Problem: Adaptive Decentralized Scheduling
Consensus Variables

Forced and Constrained Consensus Variables

- From “Forced and Constrained Consensus Among Cooperating Agents,” K.L.
Moore and D. Lucarelli, to appear in Proceedings of 2005 IEEE International
Conference on Networking, Sensing, and Control, Tuscon, AZ, March 2005

Example: Strike Mission

Conclusion
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e [orced Consensus
- Sometimes we may like to force all the nodes to follow a hard constraint
— This can be done by injecting an input into a node as follows

g&(t ka t)Géj (t)(gz(t) gj( )) + b;ju;
- Then we use a 'reedbaCK controller as given In the tollowing

® Theorem Let 4 be a set of agents with by =1, b; = 0,Vi £ k, and

ug(t) = kp(E — &)

where £°% is a constant setpoint and k&, > 0 is a constant gain. Then the consensus
strategy achieves global asymptotic consensus for 4, with

lim £(t) = £ Vi

if and only if node & is a spanning node for the communication graph .
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DCVExtension 2 — Multiple, Constrained Consensus
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e Often we will have multiple consensus variables in a given problem

It can be useful to enforce constraints between these variables, specifically, to
have ¢ =¢;+A;

e Again we can give a feedback control strategy to achieve this type of
constrained consensus between groups of agents
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Theorem Let A% and A® be two set of agents, each negotiating locally about consensus variables
£ and £°, respectively, and each with communication graphs G% and G* defined by communication
topologles Ga and Gi’j,, respectively. Suppose

1. Each agent set updates the local values of their consensus variable by
g = —Zk 1) (&7 () — &7 (1)) + biuf

1) = =) kGGLOE®) — & ®) + buj

where b3, = 1,07 =0,Vi # k® and b?cb = 1% = BN L &

2. The two agent sets communicate to each other via the nodes k® and &k using the following
agent-to-agent consensus update law:

ufe = —(Agp— (& — &)

upy = Aoy — (€hs — &)
Then the consensus strategy achieves global asymptotic global consensus for each set A% and Ab,
with

+

£ . O
g = &
& = A

if and only if nodes k% and k% are spanning nodes for the graphs G% and G*, respectively.



RT DC,’ Example — Multiple, Constrained Consensus
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RTDC Example: Strike Mission
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e Three teams (each team or unit is considered an agent)

1. Airdrop team MH-J = Unit 1

2. Special Forces team SF = Unit 2

3. Seal Team and their boat MK-V = Unit 3
Each team i has a series of ordered tasks j, denoted Tij
The tasks of some teams are pre-requisite for the tasks of some other teams
For some tasks there are different contingencies for carrying out the task
Different contingencies have different costs
— In our example contingencies are parameterized by time-to-complete

e (Goal is to develop a decentralized coordination algorithm to adapt required
start and end times for specific tasks based on changes in

— Required mission end time
— Changes in individual task execution times (e.g., disturbances)
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RTDC Example: Strike Mission

Scenario:

Air Drop team deploys SF team and returns to pick up supplies
Simultaneously Seal Team moves to beach landing
SF Team moves to observation position to identify drop location

SF Team relays drop location to Air Drop team and then moves
to drop location

e When supplies are dropped and SF and Seal Team are in place,
then all teams execute
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RTDC’( Strike Mission Task Dependencies
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e Synchronized Strike Mission:

2 Task 11 Task 12 Task 13

; (MUI_'It_{ ) Drop SF Unit > Return for Supplies =y | Take Supplies to Drop
i ni f

{ SF Team Task 21 Task 22

{ (Onit2) Go to Obser dentify Supply Dr i it | GotoTar

2 o to Observe Identify Supply Drop Location — Wait o to Target Engage
; Go to Observe Identify Supply Drop Location Go to Target

i Task 31 Task 32

: MK-V and

i Qeal Team Move to Position B Drop CRRC Go to Target
i (Unit 3) Speed to Target
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RTDC Consensus Variable Definitions

RESEARCH & TECHNOLOGY DEVELOPMENT CENTER

e Key concept: consensus variables are chosen to be task intersection times
(nominal mission durations and consensus times are shown):

& & & g
MH53Js |
(Unit 1) Task 11-5 | ! Task 12 - 18 Task 13 - 12
SF Team ! .
(Unit 2) i Task 21 - 18 Task 22 — 12 ' | Engage
MK-V and .
Seal Team Task 31 - 10 | Task 32 - 25
(Unit 3) '
. ' : . 1 Timeline
| | | | | | | | | |
0 5 10 23 35
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TDE Agent Topology for Example

RESEARCH & TECHNOLOGY DEVELOPMENT CENTER

e Use forced offset to define start time and engagement setpoints and use
prescribed task durations to constrain the offset between consensus variables:

65

gb
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RTDC Agent-Level Contingency Selection

e One additional feature — adjustment of task times:

1;, Start

£

Ty = T21N + Pl D(T21 21 start )

/ Slart

J()l INS ”( P}\I\JS Mission End
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RTDC Example Adaptive Behavior
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e To describe the global system behavior, define:
fla = TllEnd
fza :lestart
53? :T21Start

C —
53 o T13Start

C —
54 - T228tart

d
fb T 51 :T32End
1 — I31 d
£ =T ) 2 =Tz,
2 — 12 d
C Start 53 :T13End
51 :leEnd

£ = MissionEnd
52(: :T21Start
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RTD( Global System Model

RESEARCH & TECHNOLOGY DEVELOPMENT CENTER

: £ = —kip(6) — &) — k158 — £3) + (T — &)
e The resulting overall e (e g0
system equations have £8 3 (RS — %) — ROS(Thy + £2 — £9)
Incorporated: P — -
D = —k31< &) — ka1(Toa + & — £7)
— Initial condition 1 N _kz?’( ) . - .
offsets 2 = —kgg (€3 — &) — kay(s — &) + k?(&;(T21+£3 %)
5 o= —h5 (&5 — &) — K5a(&5 — &) — kas(Ths + &5 — £5)
- Task-length e _je e g0y
constraints between 4 gl (g gdy | Ty, 4 b gt
consensus variables g _kff( ) -
2 — 24
- Task-length = k(&5 — &) + kSE(Ths + &5 — £D)
adjustment to respond  &¢ — g, (¢f - ¢f) - ka(ed — £9) — ka(e] — &) + PIDESP — &)
to changes Ty = Pt +pID(£4_ &5
T5r = D51, 00 ,+ PID(&5 — &)
Tso = T, 0. 1+PID(§4—§1)
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RTDC Example Adaptive Behavior

e Consider the resulting consensus variable values as the system
adapts to two events:

1. Change in Engagement Deadline
Represented by a change in the setpoint for 3
2. Change in Task time for Task T,

Represented by a change in T

13Nominal
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(Unit 2)
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(Unit 3)
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1 - Engagement Time Change

Adapting to Two Events

40 T
~ |
35 .
éd > , ” 12 - “Disturbance”
\v ) Occurs in Task 13 25
A - s}
0/ ] \
/ /\ L 22
£° 523 22 | 2
18
2 k 19 wi?
= il e 14 ]
b 10 10 10 12 13
f 10 —\~ \ 10
5 il
é:a ] 5 5
% 55 160 150 2(‘10 2‘30 30 % 55 150 1.130 2(‘10 2150 30

(a) Consensus Variable Values
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RT DC, Where the Variables Live
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- é—a _  _}o L& é— é-a 4 T _é-a
e Values of the various s _ _k;E % bl s ey
consensus variables 8 = S (£9— %) — kSS(Tyy + £° — £9)
actually evolve in b = R+ (T - &)
different places: s —k{il( &) — k3 (Tso + £ — £
— Unit1 i = —ki3(&1 —&3)
_ Unit 2: s = kG —8) k(G -4+ ké‘g(%ﬁsg ﬁg)
A 5= —h5 (&5 — &) — K5a(&5 — &) — kas(Ths + &5 — £5)
- Unlt 3 e 1.2 ( )
A L
- Central Command: gl (g8 e k(T - 85— £
- S = k(5 - £
We also think about - -y
) computations as beln\<gg - 6 T+ -
P I VE o rhe -8 k(e - &) — k(e - &) + PIDEP — &)
- Global Tis = Tituume +PID(£4—53)
-~ Local Tt = B ¢ PIDEE — &)
T = Tso, .00 1+PID(§4—§1)
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RTDC Concluding Comments - 1

e \We have presented a consensus variable approach to adaptive
decentralized scheduling

— Introduced the ideas of forced and constrained consensus

— Applied these ideas by defining task start and stop times in a
mission to be the consensus variables to be negotiated by
cooperating teams

— Showed an architecture for implementing the ideas

e Our approach Is differentiated from classical approaches to
schedule adaptation:

— It is provable and, we believe, scalable
— Global communication is not required
— We do not do re-planning
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Concluding Comments - 2

e Future work aims to extend these ideas In several ways
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Uncertainties in constraints and communications can be
handled explicitly and algorithmically using a Kalman
filtering approach

We are exploring the effect of structural changes, such as
node loss, and how to handle them using re-configurable
control ideas

We are applying the approach to handle other variables, such
as resources, and to explicitly handle the trade off between
local and global cost functions during consensus
negotiations

We are considering how to include probabilistic
considerations, making it possible to place confidence
Intervals on contingency options
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