Part 1: Introduction to the Algebraic Approach to ILC CSOIS

IEEE ICMA 2006 Tutorial Workshop:

— Iterative Learning Control —
Algebraic Analysis and Optimal Design

Presenters:
Kevin L. Moore — Colorado School of Mines

YangQuan Chen — Utah State University

Contributor:
Hyo-Sung Ahn — ETRI, Korea

TIEEE 2006 International Conference on Mechatronics and Automation
LuoYang, China

25 June 2006

IEEE ICMA 2006 Tutorial Workshop — Iterative Learning Control: Algebraic Analysis and Optimal Design 1 el P



Part 1: Introduction to the Algebraic Approach to ILC Ccﬁmgmlf

0 N TELLGENT SYSTEMS

Outline

e Introduction

— Control System Design: Motivation for ILC
— Iterative Learning Control: The Basic Idea
— Some Comments on the History of ILC

— ILC Problem Formulation

e The “Supervector” Notation
e The w-Transform: “z-Operator” Along the Repetition Axis
e [L.C as a MIMO Control System

— Repetition-Domain Poles

— Repetition-Domain Internal Model Principle
e The Complete Framework

— Repetition-Varying Inputs and Disturbances
— Plant Model Variation Along the Repetition Axis

IEEE ICMA 2006 Tutorial Workshop — Iterative Learning Control: Algebraic Analysis and Optimal Design 2 el P



Part 1: Introduction to the Algebraic Approach to ILC

CSOIS

INTELLFGENT SyETEmS

Control Design Problem

Ref E Input Output
e erenief\ rror )| Controller npu | System to be utpu ,
\“/ controlled
Given: System to be controlled.
Find: Controller (using feedback).

Such that: 1) Closed-loop system is stable.
2) Steady-state error is acceptable.
3) Transient response is acceptable.
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AND INTELLFGENT SySTEmS

Motivation for the Problem of Iterative Learning Control

[ J . ‘ ‘ ‘ ‘ ‘
Transient response design is hard: N
1) Robustness 1s always an 1ssue:
- Modelling uncertainty.
- Parameter variations.
- Disturbances.
2) Lack of theory (design uncertainty):
- Relation between pole/zero locations and transient response.
- Relation between Q/R weighting matrices in optimal control and transient
response.
- Nonlinear systems.

e Many systems of interest in applications are operated in a repetitive fashion.

e [terative Learning Control (ILC) i1s a methodology that tries to address the
problem of transient response performance for systems that operate repetitively.
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Systems that Execute the Same Trajectory Repetitively

Step 1: Robot at rest, waiting for workpiece.

Step 2: Workpiece moved into position.

Step 3: Robot moves to desired
location

Step 4: Robot returns to rest and
waits for next workpiece.
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Errors are Repeated When
Trajectories are Repeated

*A typical joint angle trajectory for the example might look like this:

-0.5
o]

*Each time the system 1s operated 1t will see the same overshoot,
rise time, settling time, and steady-state error.

e[terative learning control attempts to improve the transient response by
adjusting the input to the plant during future system operation based
on the errors observed during past operation.
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CENTER FOR SELF-ORGANIZING
AN I TELL

Iterative Learning Control

e Standard iterative learning control scheme:

U,
System - Yk
Memory| |Memory Memory
Learning
Ukt1 Controller Yd

e A typical ILC algorithm has the form: wuy,1(t) = ui(t) + yer(t + 1).

e Standard ILC assumptions include:

— Stable dynamics or some kind of Lipschitz condition.

— System returns to the same initial conditions at the start of each trial.

— Bach trial has the same length.
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CENTER FOR SELF-ORIGANIZING

Trial (k-1) Trial k Trial (k+1)
Error
I~ I~ el
t1t t+l t1t t+l t1t t+l
Input —
e e el
t1t t+l t1t t+1 t1t t+1
(a) ILC: Uk (t) = U, (1) + f (e (t+1))
Error |
t1t t+1 t1t t+1 t1t t+1
Input \ \ | \
t-1t t+1 -1t t+l t-1t t+1

(b) Conventional feedback: Uk+1(t) = f (e .. (t —1))
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~LOLoRAPS

Example 1

e Consider the plant:

gt +1) = —7y(t) — 012yt — 1) + ul?)
y(0) = 2
y(l) = 2

e We wish to force the system to follow a signal y;:

45
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~LOLoRAPS

Example 1 (cont.)

e Use the following ILC procedure:

1. Let
Uo(t) = yd(t)

2. Run the system

3. Compute

eo(t) = yalt) — yo(t)
4. Let
5. Iterate

e Fach iteration shows an improvement in tracking performance (plot shows desired and actual output
on first, 5th, and 10th trials and input on 10th trial).
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Example 1 (cont.)
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Example 2

e For the nominal plant:

—0.8 —0.22 0.5
Liy1 — 1 0 Tk + 1 Uy,

e Track the reference trajectory:
Ya(j) = sin(8.05/100)

e We use the standard “Arimoto” algorithm:
Upr1(t) = up(t) +yer(t +1)

with four different gains: v = 0.5, v =0.85, v =1.15, y = 1.5
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~Lororpod AND INTELL FGENT SYSTEMS

Example 2 (cont.)
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e For each gain, the ILC algorithm converges, but the convergence rate depends on .

e Without knowing an accurate model of the plant, we achieve “perfect” tracking by iteratively updating
the input from trial to trail.

_l.p Plant

—
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~Lororpod AND INTiLL

Example 3

e Consider a simple two-link manipulator modelled by:

where
z(t) = (6:(t),05(1))"
Alz) = D4 + 27cosf, 135+ .135cos 0,
)= 135 4 135 cos b, 135
_ .135 sin 0, 0
Blz,2) = (—.27 sinfy —.135(sin 92)9'2)
Clz) = 13.1625sin 0y + 4.3875sin(0; + 6,)
= 4.3875sin(6; + 6s)
u,(t) = vector of torques applied to the joints
g
bomy e
sz
)61
ll = l2 =0.3m
my1 = 3.0kg
mg = 1.5kg
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Example 3 (cont.)

e Define the vectors:

Yr = (x%,xf,x%)T
Ya = (xdv §7x§>T

e The learning controller is defined by:

wp = 1 — ogl'yr + C(24(0))
T + ozkfek

T'k+1
a1 = oy + e

e ['is a fixed feedback gain matrix that has been made time-varying through the multiplication by the
gain q.

e 1, can be described as a time-varying reference input. 7,(t) and adaptation of «y, are effectively the
ILC part of the algorithm.

e With this algorithm we have combined conventional feedback with iterative learning control.
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AN I TELL SYBTEMmS

Example 3 (cont.)

Trial9, Desired

Trial 2

Trial 1
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0 N TELLGENT SYSTEMS

ILC History

e ILC surveys:
— K. L. Moore, M. Dahleh, and S. P. Bhattacharyya. Iterative learning control: a survey and new

results. J. of Robotic Systems, 9(5):563-594, 1992.

— K. L. Moore. Iterative learning control - an expository overview. Applied & Computational
Controls, Signal Processing, and Circuits, 1(1):151-241, 1999.

— H. S. Ahn, Y. Q. Chen, and K. L. Moore. Iterative learning control: brief survey and categoriza-
tion 1998 — 2004. IEEFE Trans. on Systems, Man, and Cybernetics, Accepted to appear.

— recent CSM paper by Allyene
e Pioneering work:

— United States Patent 3,555,252 — Learning Control of Actuators in Control Systems,” filed 1967,
awarded 1971, learned characteristics of actuators and used this knowledge to correct command
signals.

— J. B. Edwards. Stability problems in the control of linear multipass processes. Proc. IEFE,
121(11):1425-1431, 1974.

— M. Uchiyama. Formulation of high-speed motion pattern of a mechanical arm by trial. Trans.
SICE (Soc. Instrum. Contr. Eng.), 14(6):706-712(in Japanese), 1978.

— S. Arimoto, S. Kawamura, and F. Miyazaki. Bettering operation of robots by learning. J. of
Robotic Systems, 1(2):123-140, 1984.
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Part 1: Introduction to the Algebraic Approach to ILC

dwards, Proc. IEE (1974)

| PROCEEDINGS

OF THE INSTITUTION OF ELECTRICAL ENGINEERS
Control & Science

Stability problems in the control of multipass
processes "

J. B. Edwards, B.Sc.(Eng.), M.Sc., M.A.M.EM.E., C.Eng., M.L.E.E.

Indexing terms: ~ Control-system synthesis, Multipass processes, Process control, Stability

Abstract

The general characteristics of multipass processes are discussed and a method of process modelling is i
proposed based on the single independent variable : total distance passed. The stability of a number of
such processes, including longwall coal cutting, ploughing and metal rolling, is examined using this type
of model analysed by the inverse Nyquist technique. Important stability problems, arising from the |
multipass nature of the processes, are exposed in all cases. Transport delays and resonance in the single-
pass loops are shown to be particularly troublesome. b |
A general approach to the dynamic analysis of bidirectional systems is outlined using discrete time-

series observation.

List of symbols

@ = state variable of coal-cutter steering process (tilt)
£ = matrix of pass-length delay terms exp(—Ls), and
zeros
F, = force applied by roll setting drive
£, = roll force applied to metal strip
G = general symbol denoting open-loop transfer
function

T = various process time constants and delays (with

various suffixes appended)

vector of process inputs

ariable denoting total distance passed

as v/ (except in Section 4 where v denotes a

particular value of o)

X = displacement between process output sensor and
process tool

I

G, forfurict i Y = process output vector “
f e tenuioion Tiediche s ¥ ¥ = process output; coal thickness, distance between
J = input variable to coal-cutter JRENE process consecutive furrows, according to the process in "
kg = tilt gain of coal-cutter controller e b
I;(,, 5 la.e}ght gain of gofal-c_llt(er controvllcr‘ Yrer = reference value of y |
1 = gain of roll-positioning servomechanism iR i
ka = gain of stabilising feedback in this servo ’D" = output strip gange |
k3 = gain of outer loop of gauge-control system JU:" = screw down displacement \“
kaks = gain constants in rolling process 1714 = demanded y, i
[I z d;sstsalr:;"e :Jr]averscd by, or along, one pass S referenue‘value of y, ‘;
g P 8 z = process disturbance i
i nteser nimberiof passes )y Ay = stiffness of work rolls and their supports |
M = mass representing lumped inertia of roll servo Xa = yield coefficient of metal strip 1‘
Sysam 9 < S A = composite stiffness of strip and rolls 1
n = integer number of passes (even no. in Section 4) ¢ = damping ratio ‘
p = Laplace oper_atur‘wilh respect to time ¢ wy = undamped natural frequency !
R Wdum?“ Ll o G'(s), Gp(jw) = transfer function and Fourier transform il
R = transfer function of the operation: ‘record func- of weighting function of single-pass 3
tion and reverse its time sequence’ closed loop
R = matrix of transfer functions R, and zeros |
s = Laplace operator with respect to o' (and » where

this denotes a variable distance)
§ = speed of pass (at output in the case of the rolling
process)

Paper 7307 C, received 31st July 1974

Mr. Edwards is with the Department of Control Engineering,
University of Sheffield, Mappin Street, Sheffield S1 3/D, England,
and was formerly with the National Coal Board

PROC. IEE, Vol. 121, No. 11, NOVEMBER 1974

1 Introduction

The rolling of metal strip, the ploughing of agri-
cultural land, the longwall cutting of coal and a variety of
machining operations are processes which are similar in
+ These symbols are also used to represent the process variables
normalised with respect to their time-varying references

1425
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Formation of High-Speed Motion Pattern of a Mechanical Arm by Trial

Masaru UcHivama*

High-speed motion of a mechanical arm is
necessary to speed up a job done by the arm.
In high speed, however, the desired trajectory
of motion of the arm cannot be obtained sim-
ply by applying the trajectory function to the
servo system as the reference function because
the time lag in the servo system is not negli-
gible.

A solution to this problem is to apply dyna-
mically compensating computed torques to the
servo system. By this method, however, for
increasing the accuracy of the mathematical
model of the arm necessary to compute the
compensating torques, a very large effort would
be required. To avoid this difficulty, an alter-
native method of correcting the reference
function by trial will be useful. Repeating a
proper process of trial and correction, the
reference function which realizes the desired
pattern of trajectory may he obtained,

In this paper, correcting algorithm of a
reference function for this method is inves-
tigated theoretically from the standpoint of
stability or convergency of the process of trial
and correction, and a stable correcting algorithm
is obtained. Through the experiment using a
mechanical arm of six degrees of freedom
controlled by a digital computer, it is confirmed
that the process ol trial and correction by this
algorithm is stable and the response of the
servo system converges rapidly to the desired
pattern of traject
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First ILC paper- in English (1984)

Bettering Operation of Robots
by Learning

Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki

Facuity of Engineering Science, Osaka University, Toyonaka, Osaka,
560 Japan

Received January 26, 1984; accepted March 12, 1984

This article proposes a betterment process for the operation of a mechanical robot in a
sense that it betters the next operation of a robot by using the previous operation’s data.
The process has an iterative learning structure such that the (k + 1)th input to joint
actuators consists of the kth input plus an error increment composed of the derivative
difference between the kth motion trajectory and the given desired motion trajectory.
The convergence of the process to the desired motion trajectory is assured under some
reasonable conditions. Numerical results by computer simulation are presented to show
the effectiveness of the proposed learning scheme.

HEAOEYT -4 2MNREOEBERBTSHREMNE, DRY FRERROKHOR
BELONTHRD, COARRREPEMELHS, WBE7IF21I-2-AOKk+ 1%
BOANE, KEBOANRCHABEHOBERBLERLOXOMETL > THES NS,
HOIRELGLHRUHOTFTCOCOSRORFHL OV TOMBFAHRL, CCTRREINK
FROENUERETHLD, Yasv-Ya/OBRERT,

. INTRODUCTION

1t is human to make mistakes, but it is also human to learn much from experi-
ence. Athletes have improved their form of body motion by learning through
repeated training, and skilled hands have mastered the operation of machines or
plants by acquiring skill in practice and gaining knowledge from experience.
Upon reflection, can machines or robots learn autonomously (without the help
of human beings) from measurement data of previous operations and make
better their performance of future operations? Is it possible to think of a way to
implement such a learning ability in the automatic operation of dynamic systems?
If there is a way, it must be applicable to affording autonomy and intelligence to
industrial robots.

Motivated by this consideration, we propose a practical approach to the prob-
lem of bettering the present operation of mechanical robots by using the data of

Journal of Robotic Systems, 1(2), 123—140 (1984)
© 1984 by John Wiley & Sons, Inc. CCC 0471-2223/84/020123-18%04.00

_l-> Plant
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ILC Research History

e [L.C has a well-established research history:

— More than 1000 papers:

[(e]
o

1| —e— Journal papers

[o]
o

—as— Conference papers 7\

I\

[\
— A\
VANV
/}\\-///’/ ™
e v

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

~
o

2]
o

()]
o

N
o

w
o

Number of publication

N
o

-
o

— At least four monographs.

— Over 20 Ph.D dissertations.
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ILC Research History (cont.)

Robots

40

35+

30+

25+ Rotary

Systems

Process
control

207 Miscellaneous

15+ Bio-applications Semiconductors

10 Actuators

1 23 4 s 6 T8 By application areas.

707 Miscellaneous
60*/ Typical

1

1

St
v Robust Mechanical ~ Neural
Optimal nonlinearity
Vv Adaptive
v

1 2 3 4 5 6 7 8 9 10

By theoretical areas.
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Selected ILC Industrial Applications

e [L.C patents in hard disk drive servo:
— YangQuan Chen’s US6,437,936 “Repeatable runout compensation using a learning algorithm
with scheduled parameters.”
— YangQuan Chen’s US6,563,663 “Repeatable runout compensation using iterative learning con-
trol in a disc storage system.”

e Robotics:

— Michael Norrlof’s patent on ABB robots. US2004093119 “Path correction for an industrial
robot.”

e Gantry motion control:

— Work by Southampton Sheffield Iterative Learning Control (SSILC) Group.
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Control Engineering - History and ILC

Prehistory of automatic
control

v

Primitive period

v

Classica control

v

Modern control

v v v v v v
Classic Nonlinear . Robust Optimal Adaptive
Estimation P ap
control control control control control
\ 7 v v \ 4 v v
. Neural
H_inf Interval Fuzzy Net ILC
_l-> Plant  s——
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ILC Problem Formulation

e Standard iterative learning control scheme:

Uf
System - Yk
Memory Memory Memory
Learning
Uk+1 Controller Yd

e Goal: Find a learning control algorithm
upy1(t) = fr(previous information)

so that for all ¢ € [0, ]
lim w.(t) = ya(t)

k—oo

e We will consider this problem primarily for discrete-time, linear systems.
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Some Learning Control Algorithms

e Arimoto first proposed a learning control algorithm of the form:
up1(t) = ug(t) + Tég(t)

Convergence is assured if ||[ — C'BT||; < 1.

e Arimoto has also considered more general algorithms of the form:
Upsr = Uy + Peg, +1'é, + W / epdt

e Various researchers have used gradient methods to optimize the gain G}, in:

e [t is also useful for design to specify the learning control algorithm in the frequency domain, for
example:

Ua(s) = L(s)|[Us(s) + aEx(s)]

e Many schemes in the literature can be classified with one of the algorithms given above.
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AN I TELL SYBTEMmS

LTI ILC Convergence Conditions

e Theorem: For the plant vy, = T,uy, the linear time-invariant learning control algorithm
Up1 = Ty + Te(Ya — Yi)
converges to a fixed point u*(¢) given by
w'(t) = (I =T, + T.T) " Tya(t)
with a final error

e*(t) = lim (yk: - yd) - ([ o Ts(] o Tu -+ TeTs)_lTe)yd(t)

k—o0

defined on the interval (o, ;) if
T, —T.T,||; < 1

e Observation:

—If T, =1 then |le*(t)|| =0 for all t € [t,, t;].
— Otherwise the error will be non-zero.
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AN I TELL SYBTEMmS

LTI Learning Control - Nature of the Solution

e Question: Given T}, how do we pick T, and T, to make the final error e*(¢) as “small” as possible,
for the general linear ILC algorithm:

w1 (t) = Tuur(t) + Te(ya(t) — yu(t))

e Answer: Let T solve the problem:

min (I — T.7, )yl

[t turns out that we can specify T;, and T, in terms of T and the resulting learning controller converges
to an optimal system input given by:
u'(t) = Toya(t)

e Conclusion:The essential effect of a properly designed learning controller is to produce the output
of the best possible inverse of the system in the direction of y.
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LTI ILC - Solution Details

e OPT1: Let uy € U, yg,uyr € Y and T, T,, T, € X. Then given y,; and Ty, find T and T that
solve
min_[|[(I —T,(I — T, +T.T,) 'T.)y,||

T,,T.eX

subject to |1, — T.T,||; < 1.

e OPT2: Let y, € Y and let T),, Ty € X. Then given y, and T, find 7' that solve

min [(1 =TT )yal

e Theorem: Let T* be the solution of OPT2. Factor T = T T* where T ' € X and ||[I T
Define TF = I — T ' + T*T,. Then T and T* are the solution of OPT1.

|

;< 1.

e If we plug these into the expression for the fixed-point of the input to the system we find:
u'(t) = T, ya(t)

e Note: The factorization in the Theorem can always be done, with the result that
u*(t) = Tryq(t).
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Outline

e Introduction

— Control System Design: Motivation for ILC
— Iterative Learning Control: The Basic Idea
— Some Comments on the History of ILC

— ILC Problem Formulation

e The “Supervector” Notation
e The w-Transform: *“z-Operator” Along the Repetition Axis
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ILC as a Two-Dimensional Process

e Suppose the plant is a scalar discrete-time dynamical system, described as:

Ye(t +1) = folyr(t), wi(t), ]

where

— k denotes a trial (or execution, repetition, pass, etc.).
—t € [0, N] denotes time (integer-valued).
— 41(0) = y4(0) = g, for all k.

e Use a general form of a typical ILC algorithm for a system with relative degree one:

wra(t) = frlun(t), ex(t + 1), ]

where

— ep(t) = yq(t) — yi(t) is the error on trial k.
— y4(t) is a desired output signal.
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ILC as a Two-Dimensional Process (cont.)

e Combine the plant equation with the ILC update rule to get:
Y (E+ 1) = fslyn(t), wenr (), t] = fs[fely(t), wa(?), ex(t + 1), k], ¢]
e Changing the notation slightly we get:

ylk+1,t+1) = flye(t), u(k,t),e(k, t + 1), k, ]

e Clearly this is a 2-D system:

— Dynamic equation indexed by two variables: k and .
— k defines the repetition domain (Longman/Phan terminology).

— t is the normal time-domain variable.
e But, ILC differs from a complete 2-D system design problem:

— One of the dimensions (time) is a finite, fixed interval, thus convergence in that direction (tradi-
tional stability) is always assured for linear systems.

— In the ILC problem we admit non-causal processing in one dimension (time) but not in the other
(repetition).

e We can exploit these points to turn the 2-D problem into a 1-D problem.
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The “Supervector” Framework of ILC

e Consider an SISO, LTT discrete-time plant with relative degree m:
Y(2) = H(2)U(2) = (hnz ™" + Bangrz” " + i anz™ "2 - U (2)
e By “lifting” along the time axis, for each trial k£ define:

Up = [u(0), up(1), -, up(N — 1)}T
[yk:(m)a yk(m + 1)? R 7yk(m + N — 1)]T
}/;l — [yd(m>7yd<m+2)7”' 7yd(m+N_ 1>]T

=
|

e Thus the linear plant can be described by Y, = H,U; where:

h 0 0 ... 0
hy hy 0 ... 0
Ho=|hy hy b ... 0

Ay hvey An—s ... Ry

e The lower triangular matrix H, is formed using the system’s Markov parameters.

e Notice the non-causal shift ahead in forming the vectors U, and Y.
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The “Supervector” Framework of ILC (cont.)

e For the linear, time-varying case, suppose we have the plant given by:

ot +1) = A@)z(t) + Bt)un(t)
yr(t) = C)zi(t) + D(H)ux(?)

Then the same notation again results in Y, = H,U}, where now:

Ao 0 0 .0
P10 P 0 .. 0
Hy,= | hmi2o  hsin P2 0

v 10 Panv—21 Pmgn-32 o+ Dl vo1d
e The lifting operation over a finite interval allows us to:

— Represent our dynamical system in R! into a static system in RY.
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The Update Law Using Supervector Notation

e Suppose we have a simple “Arimoto-style” ILC update equation with a constant gain ~:

— In our R! representation, we write:
U (t) = ug(t) + ver(t +1)
— In our RY representation, we write:
U1 = Uy + TE}

where

o o2
2 OO
o
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The Update Law Using Supervector Notation (cont.)

e Suppose we filter with an LTI filter during the ILC update:

— In our R! representation we would have the form:
w1 (t) = wg(t) + L(2)ex(t + 1)
— In our R representation we would have the form:
Uis1 = Uy + LE,

where L is a Topelitz matrix of the Markov parameters of L(z), given, in the case of a “causal,”
LTI update law, by:

- L, 0 0 oo 07
Lm—|—1 Lm O O
0

L= Lm+2 Lm+1 Lm

_Lm—i-N—l Lm+N—2 Lm+N—3 Lm_
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The Update Law Using Supervector Notation (cont.)
e We may similarly consider time-varying and noncausal filters in the ILC update law:

Uis1 = U, + LE}

e A causal (in time), time-varying filter in the ILC update law might look like, for example:

_n170 0 0 R 0 7

nao 3N 0 cen 0

L = n3o UDH ni2 c. 0
[ NMno MN-11 NMy—22 ... M1 N-1]

e A non-causal (in time), time-invariant averaging filter in the ILC update law might look like, for

example:
K K 0 0 0 0 0
O K K 0 --- 0 0 O
0O 0 K K --- 0 0 0
L = P : .
0O 0 0 0 - K K 0
0O 0 0 0 - 0 K K
0 0 0 0 -0 0 K |
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The Update Law Using Supervector Notation (cont.)

e The supervector notation can also be applied to other ILC update schemes. For example:

— The Q-filter often introduced for stability (along the iteration domain) has the R* representation:

ura(t) = Q(2)(ux(t) + L(2)ex(t + 1))

— The equivalent R representation is:

U1 = QUi + LE})

where @ is a Toeplitz matrix formed using the Markov parameters of the filter Q(z).
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The ILC Design Problem

e The design of an ILC controller can be thought of as the selection of the matrix L:

— For a causal ILC updating law, L will be in lower-triangular Toeplitz form.
— For a noncausal ILC updating law, L will be in upper-triangular Toeplitz form.
— For the popular zero-phase learning filter, L will be in a symmetrical band diagonal form.

— L can also be fully populated.

e Motivated by these comments, we will refer to the “causal” and “non-causal” elements of a general
matrix I" as follows:

Y1 Y12 M3 ce NN
Yo1 Y22 723 nhoncausal yan
I'= |71 732 733 . YaN
t causal E :
LYN1 YN2  TYN3 ce INN

The diagonal elements of I" are referred to as “Arimoto” gains.
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w-Transform: the “z-Operator” in the Iteration Domain

e Introduce a new shift variable, w, with the property that, for each fixed integer t:
w g (t) = wy_y (1)

e For a scalar x;(t), combining the lifting operation to get the supervector X with the shift operation
gives what we call the w-transform of x;(¢), which we denote by X (w)

e Then the ILC update algorithm:
ur1(t) = ur(t) + L(z)ex(t + 1)
which, using our supervector notation, can be written as U, = U, + LE), can also be written as:
wU(w) = U(w) + LE(w)
where U(w) and E(w) are the w-transforms of Uy and E}, respectively.

e Note that we can also write this as

where
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ILC as a MIMO Control System

e The term |

w_1)"

C(w) =

is effectively the controller of the system (in the repetition domain). This can be depicted as:

Ydmw Emw Uw
aw) @ W) S Cw) )

A

Y(w)
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Higher-Order ILC in the Iteration Domain

e We can use these ideas to develop more general expressions ILC algorithms.

e For example, a “higher-order” ILC algorithm could have the form:

uk—i—l(t) = kluk(t) + kguk_l(t) + ’yek(t + 1)

which corresponds to:

Clw) = ——

w? — klw — k’g

e Next we show how to extend these notions to develop an algebraic (matrix fraction) description of
the ILC problem.
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A Matrix Fraction Formulation

e Suppose we consider a more general ILC update equation given by (for relative degree m = 1):

up1(t) = Du(2)ug(t) + Dpr(2)up-1(t) + -+ - + Di(2)ttg-ni1(t) + Do(2)us-n(t)
+N,(2)en(t+ 14+ N, q(2)ep1(t+ 14+ Ni(2)ep_nii(t + 1)+ No(2)ep_n(t + 1)

which has the supervector expression

Ui = DU+ D, Ui+ + DUy + DUy,
+NnEk‘ + Nn—lEk—l Tt NlEk—n—l—l + NOEk'—n

e Aside: note that there are a couple of variations on the theme that people sometimes consider:

— Up1 = Uy + LE 4
—Upp1 = Up + L1 B + LoEy i

These can be accomodated by adding a term N, .;FE},; in the expression above, resulting in the
so-called “current iteration feedback,” or CITE.
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A Matrix Fraction Formulation (cont.)

e Applying the shift variable w we get:

where

D,(w) = Iw"™ — D, yw" — -+ — Dyw — D,
NC(’U}) = ann + Nn_lw”_l + T le + N()

e This can be written in a matrix fraction as U(w) = C(w)E(w) where:

C(w) = D (w)N(w)
e Thus, through the addition of higher-order terms in the update algorithm, the ILC problem has
been converted from a static multivariable representation to a dynamic (in the repetition domain)
multivariable representation.

e Note that we will always get a linear, time-invariant system like this, even if the actual plant is
time-varying.

e Also, because D.(w) is of degree n + 1 and N.(w) is of degree n, we have relative degree one in the
repetition-domain, unless some of the gain matrices are set to zero.
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ILC Convergence via Repetition-Domain Poles

Ydw) ) Ew) Cow) Uw) - Yw)

e From the figure we see that in the repetition-domain the closed-loop dynamics are defined by:
Gulw) = HyI +Clw)H,]"C(w)
= HP[DC(w) + NC(w)Hp]_lNC(w)
e Thus the ILC algorithm will converge (i.e., Fy — a constant) if G, is stable.
e Determining the stability of this feedback system may not be trivial:

— It is a multivariable feedback system of dimension N, where N could be very large.

— But, the problem is simplified due to the fact that the plant H, is a constant, lower-triangular
matrix.
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Repetition-Domain Internal Model Principle

e Because Yj is a constant and our “plant” is type zero (e.g., H, is a constant matrix), the internal
model principle applied in the repetition domain requires that C'(w) should have an integrator effect
to cause F, — 0.

e Thus, we modify the ILC update algorithm as:

U1 = (I = Dyp1)Up + (Dyoy — Dyg)Upq + -+
+(Dy — D1)Ui o+ (D1 — Do)Uy_pi1 + DoUy_,
+N. B+ Ny 1By g+ -+ N Ej_i1 + NoEj—,

e Taking the “w-transform” of the ILC update equation, combining terms, and simplifying gives:
(w = 1)De(w)U(w) = Ne(w)E(w)

where

S
E
|

= w"+ D, qw" '+ -+ Dyw+ D,
N.(w) = Nyw" + N,_jw" ' +--- 4+ Nyw + N,
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Repetition-Domain Internal Model Principle (cont.)

e This can also be written in a matrix fraction as:

but where we now have:
C(w) = (w—1)""D; (w)Ne(w)
e For this update law the repetition-domain closed-loop dynamics become:

I g
<w—1>0(“’>H> 1)

= H[(w —1)D.(w) + Ne(w)H] "' N(w)

Gu(w) = H <1+ C(w),

e Thus, we now have an integrator in the feedback loop (a discrete integrator, in the repetition domain)
and, applying the final value theorem to G, we get E;, — 0 as long as the ILC algorithm converges
(i.e., as long as G is stable).
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Higher-Order ILC in the Iteration Domain, Revisited

e A key feature of our matrix fraction, algebraic framework is that it assumes use of higher-order ILC.

e At the 02 IFAC World Congress a special session explored the value that could be obtained from
such algorithms:

— One possible benefit could be due to more freedom in placing the poles (in the w-plane).
— It has been suggested in the literature that such schemes can give faster convergence.

— However, we can show dead-beat convergence using any order ILC. Thus, higher-order ILC can
be no faster than first-order.

e One conclusion from the '02 IFAC special sessions is that higher-order ILC is primarily beneficial
when there is repetition-domain uncertainty.

e Several such possibilities arise:

— Iteration-to-iteration reference variation.
— Iteration-to-iteration disturbances and noise.

— Plant model variation from repetition-to-repetition.

e The matrix fraction, or algebraic, approach can help in these cases.
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Iteration-Varying Disturbances

e In ILC, it is assumed that desired trajectory y,(t) and external disturbance are invariant with respect
to iterations.

e When these assumptions are not valid, conventional integral-type, first-order ILC will no longer work
well.

e In such a case, ILC schemes that are higher-order along the iteration direction will help.

e Consider a stable plant
z—0.8

(z — 0.55)(z — 0.75)

H,(z) =
e Let the plant be subject to an additive output disturbance
d(k,t) = 0.01(—1)""

e This is an iteration-varying, alternating disturbance. If the iteration number k is odd, the disturbance
is a positive constant in iteration k£ while when £ is even, the disturbance jumps to a negative constant.

e In the simulation, we wish to track a ramp up and down on a finite interval.
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Example: First-Order ILC

15 5

©

S4t
[2) 2
< 1r 5

]

5 £3)
] (O]
— <
: -+

& B 27
305} £

—— desired output =
output at iter. #60 &

0 ' ' 0 : :
0 20 40 60 0 20 40 60
time (sec.) Iteration number
1.2
- N -
1k| & |hl|—1 and sum._, |hj| =0.97995 | |

h(t)

0 20 40 60 0 20 40 60
Iteration number t

(w=1)
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Example: Second-Order, Internal Model ILC

1 5
©
[72]
” 5
S
506 £3f
0 (3]
El =
= 0.4 — desired output S 2f
S output at iter. #60 %
0.2 : s 1rL
N
0 - - 0 - ;
0 20 40 60 0 20 40 60
time (sec.) Iteration number
0.7 1.2
= _ N -
L% 0.6 1| © |h1|—1 and sumj:2 |hj| =0.97995 | |
(0]
5 0.5
>
o
0.4 =
g =
(]
203
802
x
201
}_
0 2000x ) -0.2 i i
0 20 40 60 0 20 40 60
Iteration number t

Upy1(t) = up_1(t) + ver 1 (t+ 1) with v = 0.9 = C(w) = ——L

(w?—1)
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Example 2 - Iteration-Domain Ramp Disturbance

e Consider a stable plant
z—0.8

(z —0.55)(z — 0.75)

H,(z) =

e Assume that y,(t) does not vary w.r.t. iterations.
e However, we add a disturbance d(k,t) at the output y(t).

e In iteration k, the disturbance is a constant w.r.t. time but its value is proportional to k. Thus
d(k,t) = cok

e In the simulation, we set ¢y = 0.01.
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Example 2: First-Order ILC

1.4 ; 20
— desired output _
1.2 output at iter. #60 |1 o
. (o2}
— 15 L
g 5
Q.
20.8 £
g 210
206 5
>
o £
0.4 =
2 5|
0.2 &
0Y 0
0 20 40 60 0 20 40 60

time (sec.) Iteration number

— N -
1| € |hl|—1 and sumj:2 |h].| =0.97995

h(t)

0 20 40 60 0 20 40 60
Iteration number t

up+1(t) = ug(t) +yer(t +1),7=0.9
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Example 2: Second-Order, Internal Model ILC
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S — N o
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201t
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0 TaTava ) _02 L L
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Iteration number t

U1 (1) = 2up(t) — w1 (t) + y(2er(t+ 1) — ep1(t+1)),7 = 0.9
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A Complete Design Framework

e We have presented several important facts about ILC:

— The supervector notation lets us write the ILC system as a matrix fraction, introducing an
algebraic framework.

— In this framework we are able to discuss convergence in terms of pole in the iteration-domain.

— In this framework we can consider rejection of iteration-dependent disturbances and noise as well
as the tracking of iteration-dependent reference signals (by virtue of the internal model principle).

e In the same line of thought, we can next introduce the idea of iteration-varying models.
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Iteration-Varying Plants

e Can view the classic multi-pass (Owens and Edwards) and linear repetitive systems (Owens and
Rogers) as a generalization of the static MIMO system Y, = H, U} into a dynamic (in iteration)
MIMO system, so that

Yir1 = AoYy + BoUy,

becomes

H(w) = (wl — Ay) "' By

e Introduce iteration-varying plant uncertainty, so the static MIMO system Y, = H,U, becomes a
dynamic (in iteration) and uncertain MIMO system, such as

H, = Hy(I + AH)

or L
H, € [H, H]
or
H, = Hy+ AH(w)
or

H,(w) = Ho(w)(I + AH(w))

- ete. .-
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Complete Framework

D(w) N (w)
Y,w)  EW) A B N S
W eeon [ w2 e |-
CClTE (W) AH (W)

e Y,(w), D(w) and N(w) describe, respectively, the iteration-varying reference, disturbance, and noise

signals. H,(w) denotes the (possibly iteration varying) plant.

e AH,(w) represents the uncertainty in plant model, which may also be iteration-dependent.

e Chc(w) denotes the ILC update law.

e Corre(w) denotes any current iteration feedback that might be employed.

1

e The term —— denotes the natural one-iteration delay inherent in ILC.

(w=1)
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Categorization of Problems

S
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-
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-
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&
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N
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N

>

Time-domain H., problem

N

TN~ O | O O

S

[teration-domain H., ILC

N

[teration-varying uncertainty and control

N

N
S— | — | —— | ~— | ~— [ ~— | ~— | ~—

o O

Intermittent measurement problem
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N
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