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ILC - A Control Approach Based on Intuition

• Humans gain “skill” from doing the same thing over and over.

• ILC seeks to achieve the same effect in the case when a machine performs the same task repeatedly.

ILC: Overview - II

Standard ILC Scheme is illustrated in the figure below:

System

Memory

Learning
Controller

MemoryMemory

uk yk

yd
uk+1

• Goal is to pick next input uk+1(t) to improve next output response yk+1(t) relative to desired response
yd(t), using all past inputs and outputs.

• Assume yd(0) = yk(0) for all k, t ∈ [0, N ], and system is linear, discrete-time, and has relative degree
one.
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What Information can be Included in the ILC Update?

• Most generally, we can allow:

uk+1(t) = f{u0(t
′), u1(t

′), . . . , uk(t
′),

e1(t
′)), e2(t

′), . . . , ek(t
′),

uk+1(0), uk+1(1), . . . , uk+1(t− 1)

ek+1(1), ek+1(2), . . . , ek+1(t− 1)}

where t′ ∈ [0, N ].

• That is, in general we can update uk+1(t) using:

1. Information from all previous trials:
⇒ Call this “higher-order in iteration” if more than one-trial back is used.

2. Information from the entire time duration of any previous trial:
⇒ Call this “higher-order in time” if filtering is done rather than using a single time instance.
⇒ Note this allows non-causal signal processing – a key reason ILC works.

3. Information up to time t− 1 on the current trial:
⇒ Call this “current cycle feedback.”
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Higher-Order vs. First-Order

• Is there any reason to use higher-order ILC algorithms (in time or in iteration)?

• Maybe? Because of convergence? No, consider:

1. Classical Arimoto D-type ILC (for relative degree 1):

uk+1(t) = uk(t) + γ
d

dt
ek(t)

2. PID-type ILC:

uk+1(t) = uk(t) + kPek(t) + kI

∫ t

0
ek(τ )dτ + γ

d

dt
ek(t)
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Higher-Order vs. First-Order (cont.)

• For both, the convergence condition is that

|1− γh1| < 1

where h1 is the first Markov (non-zero) parameter. This ensures ek(t) → 0 as k →∞ ∀t.

• Note: does not involve kP , kI , or with the system matrix A, either!

• That is, first-order in time and iteration is adequate to realize convergence.

• Something must be missing ...

• The answer is: “how the convergence is achieved.”
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Two Examples

• Consider two systems, each stable, minimum phase, with the same ILC update law

uk+1(t) = uk(t) + 0.9ek(t + 1)

1. yk(t + 1) = −.2yk(t) + .0125yk(t− 1) + uk(t)− 0.9uk(t− 1)

2. yk(t + 1) = −.2yk(t) + .0125yk(t− 1) + uk(t) + 0.1uk(t− 1)

• Each is asked to track the following signal:

0 5 10 15 20 25 30 35
0
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1

1.5
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3

3.5
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4.5

5

• The convergence condition guarantees that both converge, but ...
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System 1 does not converge monotonically (in 2-norm):

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

System 2 does converge monotonically (in 2-norm):

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Question: Why do the two systems learn differently?
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Comments

• In the literature it has been shown that ILC achieves monotonic convergence for the λ-norm (time-
weighted-norm) of the tracking error.

• However, in general the ∞-norm and 2-norm will often increase to a huge value before converging.

• Such ILC transients are typically not acceptable!

• It is not enough to ensure that ek(t) → 0 as k → ∞. Rather, we would like the convergence to be
monotonic.

• And, the norm topology should be physically meaningful.
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Comments (cont.)

• Our study of convergence shows that “higher-order-in-time” algorithms, that is, proper design of the
ILC update filters or algorithms, can give monotonic convergence through:

1. Higher-order-in-time (causal) current-cycle feedback.

2. Non-causal filtering of the error from the previous trial.

3. Time-varying ILC gains.

• We study these problems using “supervector” notation and in terms of the system Markov parameters.
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Framework to Discuss Monotone Convergence

• Consider SISO discrete-time LTI system (relative degree 1):

Y (z) = H(z)U(z) = (h1z
−1 + h2z

−2 + · · · )U(z)

• Assume the standard ILC reset condition: yk(0) = yd(0) = y0 for all k.

• Define the “supervectors:”
Uk = [uk(0), uk(1), · · · , uk(N − 1)]T

Yk = [yk(1), yk(2), · · · , yk(N)]T

Yd = [yd(1), yd(2), · · · , yd(N)]T

Ek = [ek(1), ek(2), · · · , ek(N)]T
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Framework to Discuss Monotone Convergence (cont.)

• Then the system can be written as Yk = HpUk where Hp is the matrix of Markov parameters of the
plant, given by

Hp =


h1 0 0 . . . 0
h2 h1 0 . . . 0
h3 h2 h1 . . . 0
... ... ... . . . ...

hN hN−1 hN−2 . . . h1


• To simplify our presentation, introduce the operator T to map the vector h = [h1, h2, · · · , hN ]′ to a

lower triangular Toeplitz matrix Hp, i.e., Hp = T (h).
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Framework to Discuss Monotone Convergence (cont.)

• Suppose we have a general higher-order ILC algorithm of the form:

uk+1(t) = uk(t) + L(z)ek(t + 1)

where L(z) is a linear (possibly non-causal) filter.

• Then we can represent this ILC update law using supervector notation as:

Uk+1 = Uk + LEk

where L is a Toeplitz matrix of the Markov parameters of L(z).

• For instance, for the Arimoto-type discrete-time ILC algorithm given by

uk+1(t) = uk(t) + γek(t + 1)

where γ is the constant learning gain, we have L = diag(γ).
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Monotonic Convergence Condition

• For the Arimoto-update ILC algorithm, the ILC scheme converges (monotonically) if the induced
operator norm satisfies:

‖I − γHp‖i < 1.

• Likewise, a NAS for convergence is:

|1− γh1| < 1.

• Combining these, we can show that for a given gain γ, convergence implies monotonic convergence
in the ∞-norm if

|h1| >
N∑

j=2

|hj|.

• Note this condition is independent of γ, but instead puts restrictions on the plant.
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Higher-Order-in-Time Design for Monotone Convergence

Using the monotonic convergence condition, we have derived ILC algorithm designs using higher-order
time-domain filtering to achieve monotonic convergence three ways:

1. Higher-order-in-time (causal) current-cycle feedback .

2. Non-causal filtering of the error from the previous trial (optimal design of L for PD-type ILC).

3. Time-varying ILC gain.
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Method 1: Current-Cycle Feedback

• Case A:

+
U(w)E(w)Yd(w) Y(w)

-
C(z) H(z)+

U-ILC

• Plant seen by the ILC algorithm:

HA
cl =

H(z)

1 + C(z)H(z)
.
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Method 1 (cont.)

• Case B:

+

U (w)E(w)Yd(w) Y(w)

-

C(z) H(z)

U
ILC

• Plant seen by the ILC algorithm:

HB
cl =

C(z)H(z)

1 + C(z)H(z)
.
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FIR Approach

• Let

H(z) = h1z
−1 + h2z

−2 + · · · ,

C(z) = c0 + c1z
−1 + c2z

−2 + · · · ,

• For Case A the monotonic convergence condition can be shown to be:

|h1| >

N∑
i=2

|hi − h1

i−1∑
j=1

hjci−1−j|.

• For Case B the monotonic convergence condition can be shown to be:

|c0h1| >

N∑
i=2

|
i∑

j=1

hjci−j − h1

i−1∑
j=1

hjci−1−j|.
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FIR Approach (cont.)

• For both Case A and Case B a controller always exists to give a closed-loop system that satisfies the
monotone convergence condition.

• For example, for Case A we can pick:

|hi − h1

i−1∑
j=1

hjci−1−j| = 0,

• That is, we solve recursively the following:

0 = |h2 − h1c0|,
0 = |h3 − h1(h1c1 + h2c0)|,
0 = |h4 − h1(h1c2 + h2c1 + h3c0)|,

...

• Then the system will have monotonic ILC convergence whenever ILC converges.
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FIR Approach (cont.)

• Alternately (again for Case A), we can require:

|hi − h1

i−1∑
j=1

hjci−1−j| <
|h1|

N − 1
,

• Or, equivalently, we solve the recursive equations:

|h1|
N − 1

> |h2 − h1c0|

|h1|
N − 1

> |h3 − h1(h1c1 + h2c0)|

|h1|
N − 1

> |h4 − h1(h1c2 + h2c1 + h3c0)|
...

• This approach will be more robust than the previous case.
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IIR Approach

• Now, suppose we let C(z) be IIR:

H(z) =
nh(z)

dh(z)
=

b1z
−1 + b2z

−2 + · · · + bnz
−n

a0 + a1z−1 + a2z−2 + · · · + anz−n
,

C(z) =
nc(z)

dc(z)
=

β0 + β1z
−1 + β2z

−2 + · · · + βnz
−q

α0 + α1z−1 + α2z−2 + · · · + αnz−q
.

• Now we have:

Case A:

HA
cl =

ΓA(z)

∆(z)
=

nh(z)

nh(z)nc(z) + dh(z)dc(z)
,

=
γA

1 z−1 + · · · + γA
(q+n)z

−(q+n)

δ0 + δ1z−1 + · · · + δ(q+n)z−(q+n)
,

= hcl−A
1 z−1 + hcl−A

2 z−2 + · · · .

Case B: Similar.
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IIR Approach (cont.)

Define the following vectors:

a = (a0, a1, a2, · · · , an)
T ,

b = (0, b1, b2, · · · , bn)
T ,

α = (α0, α1, α2, · · · , αq)
T ,

β = (β0, β1, β2, · · · , βq)
T ,

γA = (0, γA
1 , γA

2 , · · · , γA
(q+n))

T ,

γB = (0, γB
1 , γB

2 , · · · , γB
(q+n))

T ,

δ = (δ0, δ1, δ2, · · · , δ(q+n))
T .

Let the appropriately-dimensioned matrices A and B be given as

A =


a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 0 a

 , B =


b 0 0 · · · 0
0 b 0 · · · 0
0 0 b · · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 0 b
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IIR Approach

Let

Hcl−A =



0 0 · · · 0
hcl−A

1 0 · · · ...
hcl−A

2 hcl−A
1

. . . ...
... ... . . . 0

hcl−B
q+n+1 hcl−A

q+n · · · hcl−A
1

... ... . . . ...
hcl−A

N hcl−A
N−1

. . . ...
... ... . . . ...


.

A similar expression can be given for Hcl−B.
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IIR Approach (cont.)

• Then we can derive

For Case A: b
0
...

 = Hcl−A[B|A]

(
β
α

)
.

For Case B: B 0
0 0
... ...

 (
β
α

)
= Hcl−A[B|A]

(
β
α

)
.
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IIR Approach (cont.)

• Hence, given

– the plant, defined by the Sylvester matrix [B|A] and

– a desired closed-loop matrix of Markov parameters, Hcl−A or Hcl−B,

we can solve for the controller, defined by β and α.

• In general the solution of these equations is not known (they are over-determined).

• But, a solution can be possible for high enough controller order, as the null space of [B|A] becomes
non-trivial.

• In particular, by forcing the closed-loop system to be deadbeat a solution may be found.
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IIR Example

• Consider the second-order system:

Yk(z) =
z − 0.9

z2 + 0.2z − 0.125
Uk(z).

• Suppose we try a third-order controller for Case B, to give a deadbeat response.
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IIR Example (cont.)

Then

δ =


1
0
0
0
0
0

 = [A|B]



β(0)
β(1)
β(2)
β(3)
α(0)
α(1)
α(2)
α(3)


where the Sylvester matrix [A|B] is given by

0 0 0 0 1 0 0 0
1 0 0 0 0.2 1 0 0
−.9 1 0 0 −0.0125 0.2 1 0
0 −.9 1 0 0 −0.0125 0.2 1
0 0 −.9 1 0 0 −0.0125 0.2
0 0 0 −.9 0 0 0 −0.0125
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IIR Example (cont.)

All solutions to this equation can be parameterized as



β(0)
β(1)
β(2)
β(3)
α(0)
α(1)
α(2)
α(3)


=



−0.0866
−0.0169
−0.0017
0.0001

1.0
−0.1134
−0.0260
−0.0097


+ w1



0.4862
−0.1418
−0.0539

0.003
0

−0.4862
0.6766
−0.2151


+ w2



0.3703
0.6366
0.1079
−0.007

0
−0.3703
−0.2292
0.5063


• The first vector on the left hand side of the equation produces the deadbeat response.

• The second two vectors form a basis for the null space of the Sylvester equation.

• Thus, w1 and w2 parameterize all possible deadbeat responses for the closed-loop system for Case B.
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IIR Example (cont.)

Since the response is deadbeat, the numerator coefficients become:

γB = (γ1γ2γ3γ4γ5)

= (hcl−B
1 hcl−B

2 hcl−B
3 hcl−B

4 hcl−B
5 )

=


1 0 0 0 0 0 0 0
−.9 1 0 0 0 0 0 0
0 −.9 1 0 0 0 0 0
0 0 −.9 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





β(0)
β(1)
β(2)
β(3)
α(0)
α(1)
α(2)
α(3)


Thus 

hcl−B
1

hcl−B
2

hcl−B
3

hcl−B
4

hcl−B
5

 =


−0.0866
0.0611
0.0135
0.0016
−0.0001

 + w1


0.4862
−0.5794
0.0737
0.0515
−0.0027

 + w2


0.3707
0.3033
−0.4650
−0.1041
0.0063
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IIR Example (cont.)

• If we pick w1 = w2 = 1, for example, the resulting closed-loop system seen by the ILC algorithm is

HB
cl = 0.7699z−1 − 0.2150z−2 −

0.3778z−3 − 0.0510z−4 + 0.0035−5.

It is easily checked that this system satisfies the convergence conditions.

• Unfortunately, the method is not completely developed.

• Simply changing the zero from z = −0.9 to z = −1.1 results in an example in which it is not possible
to meet the convergence conditions.

• More research is needed to understand this approach.
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Comments

• With classical Arimoto-type ILC algorithms, the equivalence of ILC convergence with monotonic ILC
convergence depends on the characteristics of the plant.

• If a plant does not have the characteristics that ensure such monotonic convergence it is possible to
“condition” the plant prior to the application of ILC using current cycle-feedback.

• Two such current-cycle feedback strategies were presented:

– FIR design (results in high-order controller; always guaranteed, but possible robustness problems)

– IIR design (solution not always guaranteed)

• Future work will focus on the IIR design approach.

33



Plant

Iterative
Learning
Controller

Plant

Iterative
Learning
Controller

IEEE ICMA 2006 Tutorial Workshop – Iterative Learning Control: Algebraic Analysis and Optimal Design

Part 2: Optimal Design of ILC Algorithms

Outline

• Iterative Learning Control (ILC)

• Monotonic Convergence via Supervector Framework

• Current-Cycle Feedback Approach

• Non-Causal Filtering ILC Design

– Examples

– Optimal PD-type ILC Scheme: How to Design
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• Time-Varying ILC Design

• LMI Approach to ILC Design
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Examples: PD-Type ILC

Simulation scenarios:

• Second order IIR models are used. All initial conditions are set to 0.

• All plants have h1 = 1, so we fix γ=0.9 such that |1− γh1| < 1.

• We fix N=60 and max number of iterations = 60.

• The desired trajectory is a triangle given by

yd(t) =

{
2t/N , i = 1, · · · , N/2
2(N − t)/N , i = N/2 + 1, · · · , N.

• We compare uk+1(t) = uk(t) + γek(t + 1) with uk+1(t) = uk(t) + γ(ek(t + 1)− β1ek(t))
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Plant 1a. Stable lightly damped. H1(z) = z−0.8
(z−0.5)(z−0.9).

uk+1(t) = uk(t) + γek(t + 1), γ = 0.9

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec.)

ou
tp

ut
 s

ig
na

ls

desired output
output at iter. #60

0 20 40 60
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time (sec.)

in
pu

t s
ig

na
l a

t i
te

r.
 #

60

0 20 40 60
0

200

400

600

800

Iterations

T
he

 R
oo

t M
ea

n 
S

qu
ar

e 
E

rr
or

0 20 40 60
0

0.2

0.4

0.6

0.8

1

t

h(
t)

|h
1
|=1 and sum

j=2
N  |h

j
| =2.995

36



Plant

Iterative
Learning
Controller

Plant

Iterative
Learning
Controller

IEEE ICMA 2006 Tutorial Workshop – Iterative Learning Control: Algebraic Analysis and Optimal Design

Part 2: Optimal Design of ILC Algorithms

Plant 1b. Stable lightly damped. H1(z) = z−0.8
(z−0.5)(z−0.9).

uk+1(t) = uk(t) + γ(ek(t + 1)− β1ek(t)) with γ = 0.9 fixed and β1 shown on the plots.
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Plant 2a. Stable oscillatory. H2(z) = z−0.8
(z−0.5)(z+0.6).

uk+1(t) = uk(t) + γek(t + 1), γ = 0.9
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Plant 2b. Stable oscillatory. H2(z) = z−0.8
(z−0.5)(z+0.6).

uk+1(t) = uk(t) + γ(ek(t + 1)− β1ek(t)) with γ = 0.9 fixed and β1 shown on the plots.
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Plant 3a. Slightly unstable. H3(z) = z−0.8
(z−0.5)(z−1.02).

uk+1(t) = uk(t) + γek(t + 1), γ = 0.9
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Plant 3b. Slightly unstable. H3(z) = z−0.8
(z−0.5)(z−1.02).

uk+1(t) = uk(t) + γ(ek(t + 1)− β1ek(t)) with γ = 0.9 fixed and β1 shown on the plots.
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Plant 4a. Unstable oscillating. H4(z) = z−0.8
(z+1.01)(z−1.01).

uk+1(t) = uk(t) + γek(t + 1), γ = 0.9
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Plant 4b. Unstable oscillating. H4(z) = z−0.8
(z+1.01)(z−1.01).

uk+1(t) = uk(t) + γ(ek(t + 1)− β1ek(t)) with γ = 0.9 fixed and β1 shown on the plots.
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Examples: PD-Type ILC (cont.)

• For uk+1(t) = uk(t) + γ(ek(t + 1)− β1ek(t)) we conclude that:

– Monotone convergence is possible for the right values of γ and β.

– Can relate “overshoot” in convergence for some values of β to zeros in the iteration domain.

• In fact, further, can show:

– Better convergence behavior is possible with β < 0.

– How to pick the optimal β.

• In these simulations we used a simple structure. More generally, we can show how to pick a gen-
eral lower triangular Toeplitz L (i.e, design of L(z)) to find the optimal ILC filter for monotonic
convergence.
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Outline

• Iterative Learning Control (ILC)

• Monotonic Convergence via Supervector Framework

• Current-Cycle Feedback Approach

• Non-Causal Filtering ILC Design

– Examples

– Optimal PD-type ILC Scheme: How to Design

– Optimal PD-type ILC Scheme: Averaged Derivative

– Remarks

• Time-Varying ILC Design

• LMI Approach to ILC Design
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Optimal PD-type ILC Scheme: How to Design - 1

• By using a one step backward finite difference as the approximation of the derivative (D) signal, the
PD-type ILC is given by

uk+1(t) = uk(t) + kpek(t) + kd(ek(t + 1)− ek(t)) (1)

where kp and kd are proportional and derivative learning gains respectively.

• Introduce the operator T to map the column vector h = [h1, h2, · · · , hN ]′ to a lower triangular

Toeplitz matrix Hp, i.e., Hp
4
= T (h).

• For example, let c2 = [0, 1, 0, · · · , 0]′. Then, we have

T2
4
= T (c2) =


0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 1 0

 . (2)
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Optimal PD-type ILC Scheme: How to Design - 2

• In the sequel, we shall use a more general notion Ti, similar to the definition of T2. Clearly, for i = 1,
Ti = IN .

• Using supervector representation, we can write

Uk+1 = Uk(t) + kpT2Ek + kd(IN − T2)Ek (3)

where IN = T1 is a square identity matrix of dimension N .

• Since Yk = HpUk and Ek = Yd − Yk, from (3) we have

Ek+1 = HeEk = T (he)Ek (4)

where
He = IN − (kp − kd)HpT2 − kdHp (5)

and
he = vN − [h̄2, h− h̄2][kp, kd]

′. (6)

• In the above equation, we used the following notations:

vi
4
= [1, 0, · · · , 0]′ ∈ Ri×1

and
h̄2

4
= T2h = [0, h1, h2, · · · , hN−1]

′.
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Optimal PD-type ILC Scheme: How to Design - 3

• The learning process is governed by (4) and the convergence condition is, analogous to

|h1| >
N∑

j=2

|hj|,

that
‖He‖i < 1. (7)

• Clearly, if all eigenvalues of He, denoted by λ(He) = [λ1, · · · , λN ]′, are absolutely less than one, the
learning process will converge. However, maxi|λi| < 1 does not imply (7). The consequence is that
‖Ek‖i may not converge monotonically, which is widely recognized.

• In practice, we are more concerned with the monotonic convergence of the 1-norm, ∞-norm and
2-norm of Ek. The convergence conditions are corresponding to replacing ‘i’ in (7) with ‘1’, ‘∞’ or
‘2’.
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Optimal PD-type ILC Scheme: How to Design - 4

• Note that He is a lower triangular Toeplitz matrix and

‖He‖1 = ‖He‖∞. (8)

• Furthermore, ‖He‖1 = ‖T (he)‖1 < 1 if and only if ‖he‖1 < 1.

• So, the condition ‖he‖1 < 1 is a sufficient condition for monotonic convergence of the 1-norm, ∞-
norm and 2-norm of Ek. The ILC design task becomes to optimizing ‖he‖1 < 1 with respect to kp

and kd.

• Thus we can define the following optimization problem for ILC design

J∗
PD = min

kp,kd

JPD
4
= min

kp,kd

‖he‖2
2.

Note that since ‖he‖1 <
√

N‖he‖2, when J∗
PD is small, it is possible to ensure that ‖he‖1 < 1.
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Optimal PD-type ILC Scheme: How to Design - 5

• Let H = [h̄2, h− h̄2] ∈ RN×2 and g = [kp, kd]
′. Then,

JPD = [vN −Hg]′[vN −Hg]

= 1− 2v′NHg + g′H ′Hg.

• Thus the optimal g is simply
g∗ = [k∗p, k

∗
d]
′ = (H ′H)−1H ′vN (9)

and
J∗

PD = 1− v′NHg∗ = 1− h1k
∗
d. (10)

• Hence we get the following explicit design formulae:

k∗p = − h1h̄
′
2(h− h̄2)

h̄′2h̄2(h− h̄2)′(h− h̄2)− [h̄′2(h− h̄2)]2
, (11)

k∗d =
h1h̄

′
2h̄2

h̄′2h̄2(h− h̄2)′(h− h̄2)− [h̄′2(h− h̄2)]2
(12)

and

J∗
PD = 1− h2

1h̄
′
2h̄2

h̄′2h̄2(h− h̄2)′(h− h̄2)− [h̄′2(h− h̄2)]2
. (13)
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Optimal PD-type ILC Scheme: How to Design - 6
Simple Case-A

• Set kd = 0 in PD-type ILC

uk+1(t) = uk(t) + kpek(t) + kd(ek(t + 1)− ek(t)) (14)

• Then we get the pure P-type ILC: uk+1(t) = uk(t) + kpek(t).

• Using our optimal PD design formula, J∗
PD = 1.

• So, we cannot expect monotonic convergence of ILC since J∗
PD = 1. This in turn verifies that a

correct time advance step, which corresponds to the system relative degree, is essential.

Simple Case-B:

• Arimoto D-type (kp = kd = γ), for

uk+1(t) = uk(t) + γek(t + 1). (15)

• Then using our optimal PD design formula, with he = vN − γh, gives

γ∗ = h1/(h′h), J∗
P = JP (γ∗) = 1− h2

1/(h′h). (16)

• It is expected that for a given nominally measured h, J∗
PD < J∗

P .

• This means that the optimally designed PD-type ILC can be better than the optimally designed
Arimoto D-type ILC in terms of monotonic convergence speed.
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Optimal PD-type ILC Scheme: How to Design - 7

Let’s examine two simple extreme cases.

• Extreme Case 1. Let h = [1,−1, 1,−1, · · · , 1,−1]′, i.e., the system is z/(1 + z) which is an
extreme case for highly oscillatory systems.

– When P-type ILC is considered, the optimal values from (16) are γ∗ = 1/N and J∗
P = (N−1)/N .

– With a PD-type ILC (14), the optimal values via (11), (12) and (13) are k∗p = 2, k∗d = 1 and
J∗

PD = 0.

– Clearly, J∗
PD < J∗

P .

• Extreme Case 2. Let h = [1, 1, 1, 1, · · · , 1, 1]′, i.e., the system is z/(−1 + z) which is an extreme
case for very lightly damped systems.

– For the P-type ILC, the optimal values are the same as in Case 1.

– With a PD-type ILC (14), the optimal values are k∗p = 0, k∗d = 1 and J∗
PD = 0.

– Again, J∗
PD < J∗

P .
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Outline

• Iterative Learning Control (ILC)

• Monotonic Convergence via Supervector Framework

• Current-Cycle Feedback Approach

• Non-Causal Filtering ILC Design

– Examples

– Optimal PD-type ILC Scheme: How to Design

– Optimal PD-type ILC Scheme: Averaged Derivative

– Remarks

• Time-Varying ILC Design

• LMI Approach to ILC Design
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Optimal PD-type ILC Scheme: Averaged Derivative - 1

• For better noise suppression, it is a common practice to use a central difference formula.

• In this case, (14) becomes

uk+1(t) = uk(t) + kpek(t) + kd(ek(t + 1)− ek(t− 1))/2. (17)

• The derivative estimate (ek(t + 1) − ek(t − 1))/2 can be regarded as an averaged value from two
derivative estimates:

– ek(t + 1)− ek(t)

– ek(t)− ek(t− 1)

• For a more general averaged formula, we consider the following PD-type ILC scheme

uk+1(t) = uk(t) + kpek(t) +
kd

m
(ek(t + 1)− ek(t−m + 1)) (18)

where m > 0 is the number of averaging points.

• Clearly, (14) is a special case of (18) when m = 1. The value of m depends on the noise suppression
requirement. In practice, m can be chosen between 1 to 4.
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Optimal PD-type ILC Scheme: Averaged Derivative - 2

• Starting from (4), using (18), we now have

He = IN − kpHpT2 − kdHp/m + kdHpTm/m (19)

and
he = vN − [h̄2, (h− ĥm)/m][kp, kd]

′ (20)

where ĥm = [01×m, h1, h2, · · · , hN−m]′. Similarly, we can get

g∗ =

[
h̄′2h̄2 h̄′2(h− ĥm)/m

h̄′
2(h−ĥm)

m

(h−ĥm)′(h−ĥm)
m2

]−1 [
0
h1

m

]
. (21)

• The explicit design formulae using the averaged derivative:

k∗p = − h1h̄
′
2(h− ĥm)

h̄′2h̄2(h− ĥm)′(h− ĥm)− [h̄′2(h− ĥm)]2
, (22)

k∗d =
mh1h̄

′
2h̄2

h̄′2h̄2(h− ĥm)′(h− ĥm)− [h̄′2(h− ĥm)]2
(23)

and from J∗
PD = 1− [0, h1/m]g∗,

J∗
PD = 1− h2

1h̄
′
2h̄2

h̄′2h̄2(h− ĥm)′(h− ĥm)− [h̄′2(h− ĥm)]2
. (24)
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Optimal PD-type ILC Scheme: Averaged Derivative - 3

• There is a trade-off between noise suppression and the rate of monotonic convergence of the ILC
process. Consider m = 2:

– Extreme Case 1 : The optimal values via (22), (23) and (24) are k∗p = 1/(2N − 3), k∗d =
(2N − 2)/(2N − 3) and J∗

PD = (N − 2)/(2N − 3).

– Extreme Case 2. k∗p = −1/(2N − 3); k∗d and J∗
PD are the same as Extreme Case 1. Recall

that J∗
PD when m = 1 is 0.

• Clearly, the smoothing or averaging scheme for noise suppression is at the expense of slowing down
the best achievable ILC monotonic convergence rate.

• This trade-off should be taken into account during ILC applications.
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Remarks

• We gave presented an optimal design procedure for the commonly used PD-type ILC updating law.

• Monotonic convergence in a suitable norm topology other than the exponentially weighted sup-norm
is emphasized.

• For practical reasons, an averaged difference formula for the numerical derivative estimate is preferred
over the conventional one-step backward difference method, as it helps in smoothing out the high
frequency noise.

• Via analysis, we showed a trade-off between noise suppression and the rate of monotonic convergence
of ILC process.
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Outline

• Iterative Learning Control (ILC)

• Monotonic Convergence via Supervector Framework

• Current-Cycle Feedback Approach

• Non-Causal Filtering ILC Design

• Time-Varying ILC Design

• LMI Approach to ILC Design
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Time-Varying ILC Gain

• Suppose we let

uk+1(t) = uk(t) + λ(t)ek(t + 1)

with

λ(t) = γe−α(t−1)

• We can show that there always exists α and γ so that ‖Ek‖∞ and ‖Ek‖2 converge monotonically.

• The result also works with any general non-increasing function λ(t).

• Example: Consider the stable, lightly-damped plant

H1(z) =
z − 0.8

(z − 0.5)(z − 0.9)
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Normal ILC

γ = 0.9, α = 0
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ILC with a Time-Varying Gain

γ = 0.9, α = 1.5/N
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Asymptotic Stability with a Time-Varying Learning Gain

• Using a time-varying learning gain λ(t), the learning updating law becomes

uk+1(t) = uk(t) + λ(t)ek(t + 1).

• Let the varying learning gain λ(t) be defined as follows:

λ(t) = γe−α(t−1)

where α is a suitably chosen positive real number.

• Define the N ×N matrix Γ by

Γ = γdiag{1, e−α, e−2α, · · · , e−(N−1)α}.

• Theorem 1 For the system Yk = HUk and the learning control algorithm Uk+1 = Uk + ΓEk,
the learning process converges iff

ρ1
4
= |1− γh1| < 1.
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Recall: Monotonic Convergence Condition

• For the Arimoto-update ILC algorithm, the ILC scheme converges (monotonically) if the induced
operator norm satisfies:

‖I − γHp‖i < 1.

• Likewise, a NAS for convergence is:

|1− γh1| < 1.

• Combining these, we can show that for a given gain γ, convergence implies monotonic convergence
in the ∞-norm if

|h1| >
N∑

j=2

|hj|.

• Note this condition is independent of γ, but instead puts restrictions on the plant.
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Monotonic Convergence with a Time-Varying Learning Gain

• As in the case of an Arimoto-type learning gain, the previous theorem cannot guarantee the monotonic
convergence of the system with the time-varying learning gain.

• Here we will show there exists a choice of α such that the monotonic convergence is achievable.

• First, let ȳk(t) = e−α(t−1)yk(t), ȳd(t) = e−α(t−1)yd(t) and ēk(t) = e−α(t−1)ek(t). The corresponding
“supervectors” are denoted by Ȳk = [ȳk(1), ȳk(2), · · · , ȳk(N)]T , Ȳd = [ȳd(1), ȳd(2), · · · , ȳd(N)]T ,
Ēk = [ēk(1), ēk(2), · · · , ēk(N)]T .

• Then the transformed system can be written as

Ȳk = H̄Uk,

where H̄ is its matrix of Markov parameters given by

H̄ =


h1 0 0 . . . 0

e−αh2 e−αh1 0 . . . 0
e−2αh3 e−2αh2 e−2ah1 . . . 0

... ... ... . . . ...
e−(N−1)αhN e−(N−1)αhN−1 e−(N−1)αhN−2 . . . e−(N−1)αh1


and ILC update rule becomes Uk+1 = Uk + ΓEk = Uk + γĒk.
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Monotonic Convergence (cont.)

• Simple manipulations yield
Ēk+1 = (1− γH̄)Ēk.

We can then derive the following theorem:

• Theorem 2 For the system Ȳk = H̄Uk and the learning control algorithm Uk+1 = Uk + γĒk,
there exist a γ and an α > 0 such that

N∑
j=2

e−(j−1)α|hj| < |h1|,

and
γh1 ∈ (0, 1).

Thus, the monotonic convergence of ‖Ēk‖∞ is guaranteed.
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Monotonic Convergence (Cont.)

• Remark Note that ēk(t) = e−α(t−1)ek(t). From the fact that maxt∈[1,N ] |ēk+1(t)| < maxt∈[1,N ] |ēk(t)|
for all k, one cannot conclude that maxt∈[1,N ] e

α(t−1)|ēk+1(t)| < maxt∈[1,N ] e
α(t−1)|ēk(t)|. There-

fore, the previous theorem does not guarantee the monotone convergence of ‖Ek‖∞. Moreover,
monotone convergence of ‖Ēk‖∞ does not, in general, imply monotone convergence of ‖Ēk‖1
and ‖Ēk‖2.

• However, we can show that there exists an α such that monotone convergence of ‖Ēk‖1 and ‖Ēk‖2
can be ensured.

• First, however, we need the following intermediate result.

Theorem 3 There exists an α such that for all k and t

|ēk+1(t)| ≤ |ēk(t)|.
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Monotonic Convergence (cont.)

• With Theorem 3, we can immediately conclude that there exists an α such that the convergence of
‖Ēk‖1 and ‖Ēk‖2 can be ensured to be monotonic, i.e.,

N∑
t=1

|ēk+1(t)| −
N∑

t=1

|ēk(t)| ≤ 0,

N∑
t=1

|ēk+1(t)|2 ≤
N∑

t=1

|ēk(t)|2 and

√√√√ N∑
t=1

|ēk+1(t)|2 −

√√√√ N∑
t=1

|ēk(t)|2 ≤ 0.

• Finally, from the monotonicity of ‖Ēk‖1 and ‖Ēk‖2 we can conclude the monotonicity of ‖Ek‖1 and
‖Ek‖2:

‖Ek+1‖1 − ‖Ek‖1 =

N∑
t=1

eα(t−1)|ēk+1(t)| −
N∑

t=1

eα(t−1)|ēk(t)|

=

N∑
t=1

eα(t−1) (|ēk+1(t)| − |ēk(t)|) ≤ 0,

‖Ek+1‖2
2 − ‖Ek‖2

2 =

N∑
t=1

e2α(t−1)
(
|ēk+1(t)|2 − |ēk(t)|2

)
≤ 0.
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Outline

• Iterative Learning Control (ILC)

• Monotonic Convergence via Supervector Framework

• Current-Cycle Feedback Approach

• Non-Causal Filtering ILC Design

• Time-Varying ILC Design

• LMI Approach to ILC Design
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LMI Approach to ILC Design

• Consider again the SISO discrete-time system Yk(z) = H(z)Uk(z) with transfer function

H(z) = h1z
−1 + h2z

−2 + · · ·

• For trial length N and desired output yd(t), lift the time-domain signals to form the super-vectors:

Uk = (uk(0), uk(1), · · · , uk(N − 1))

Yk = (yk(1), yk(2), · · · , yk(N))

Yd = (yd(1), yd(2), · · · , yd(N))

• Then write Yk = HUk, where H is given by:

H =


h1 0 · · · 0
h2 h1 · · · 0

... ... . . . ...
hN hN−1 · · · h1


• Also, let the ILC update law be given as uk+1(t) = uk(t) + L(z)(yd(t + 1) − yk(t + 1)), which can

also be written as Uk+1 = Uk + ΓEk, where Γ could be upper- or lower-triangular (Toeplitz or not),
band-diagonal, or fully-populated, depending on the algorithm.
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LMI Approach to ILC Design (cont.)

• Define “bands” in Γ as follows:
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• In this section we use LMI techniques to design Γ for different band sizes and structure in Γ.

• Recall, the LMI techniques solves the problem of minimizing or maximizing a convex objective func-
tion J(x) subject to the constraint

F (x) ≡ F0 +

m∑
i=1

xiFi ≥ 0,

where x ∈ <m is the decision variable, Fi = F T
i , i = 1, · · · , m, are given symmetric matrices, and

the constraint ≥ 0 means positive semidefinite (i.e., nonnegative eigenvalues).
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Definitions

• Γ is a linear time-invariant (LTI) ILC gain matrix if all the learning gain components in each
diagonal are fixed as the same value.

• Γ is a linear time-varying (LTV) ILC gain matrix if the learning gain components in each diagonal
are different from each other.

• The system is asymptotically stable if every finite initial state excites a bounded response, and the
error ultimately approaches 0 as k →∞.

• The system is monotonically convergent if ‖ek+1‖ < ‖ek‖, and ultimately approaches 0 as k →∞.
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Basic Results

• When Arimoto or causal-only gains are used, the asymptotic stability condition is defined as:

|1− γiih1| < 1, i = 1, · · · , n

• When non-causal gains are used in the ILC learning gain matrix the asymptotic stability condition
becomes:

ρ(I −HΓ) < 1

where ρ represents the spectral radius of (I −HΓ).

• The condition for monotonic convergence is the same for all types of gain and requires:

‖I −HΓ‖i < 1

where ‖ · ‖i represents the induced operator norm in the topology of interest.

• In this section we will consider the standard l1 and l∞ norm topologies.
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Basic Results (cont.)

Consider four different cases:

1. Arimoto gains with causal LTI gains.

2. Arimoto gains with causal LTV gains.

3. Arimoto gains with both causal and non-causal LTI gains.

4. Arimoto gains with causal and non-causal LTV gains.

• Lemma 1: In Case 1, the minimum of ‖ I−HΓ‖1 and ‖ I−HΓ‖∞ occurs if and only if Γ is exactly
equal to the inverse of H .

• Lemma 2: In Case 2, Case 3, and Case 4, the minimum of ‖ I − HΓ‖1 and the minimum of
‖ I −HΓ‖∞ are zero if and only if Γ is exactly equal to the inverse of H .

• Thus, we conclude that the best structure of Γ is the inverse of H . This is a necessary and sufficient
condition.

• However, it is unrealistic to assume that we know H exactly and it is not advisable to use the inverse
of H as it can be ill-conditioned.

• Therefore, we seek to optimize Γ when it has a fixed structure.
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More Definitions and Basic Results

• An LTI learning gain matrix with fixed band size is denoted as ΓLTI , and an LTV learning gain matrix
with the same band size as ΓLTI is denoted as ΓLTV .

• When Γ is fixed as ΓLTI , the minimum of ‖ I −HΓLTI ‖ is denoted by J∗
I ; and when Γ is fixed as

ΓLTV , the minimum of ‖ I −HΓLTV ‖ is denoted by J∗
V .

• Theorem: If the same band size ILC gain matrices are used in ΓLTI and ΓLTV , the following inequality
is satisfied:

J∗
V ≤ J∗

I

• Corollary: If the same band size is used in causal ILC and non-causal/causal ILC, then

J∗
N ≤ J∗

C,

where J∗
N is the minimum value using causal, Arimoto, and non-causal learning gains; and J∗

C is the
minimum value using only causal and Arimoto gains.

• In summary, we conclude that

– The best gain matrix is just the inverse of H with respect to convergence in the l1 and l∞ norms.

– When the band size is fixed, LTV is better than LTI

– Including non-causal terms is more optimal than using Arimoto- or causal-only terms.
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LMI Design Technique

• We wish to satisfy the monotonic convergence condition min[σ(I−HΓ)] < 1 (i.e., we wish to minimize
the maximum (indicated by the overbar notation) singular value of the map (I −HΓ)).

• Now, because
σ[I −HΓ] ≡ λ([I −HΓ][I −HΓ]T )

(where σ denotes singular value and λ denotes eigenvalue) and because:

λ([I −HΓ][I −HΓ]T ) ≤‖ [I −HΓ][I −HΓ]T ‖

then by minimizing ‖ [I −HΓ][I −HΓ]T ‖, we can limit the upper bound of σ(I −HΓ).

• Thus, because
min(‖ [I −HΓ][I −HΓ]T ‖)

is a typical matrix inequality problem, the ILC design problem can be solved by an LMI.
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LMI Design for General Γ

• By minimizing ‖[I −HΓ][I −HΓ]T‖, we can limit the upper bound of σ(I −HΓ).

• The optimization problem, min(‖[I − HΓ][I − HΓ]T‖), can be changed to an matrix inequality
problem given by:

min{x2
1}

subject to
x2

1I > [I −HΓ][I −HΓ]T .

• Then, to express the learning gain matrix Γ in a linear form, we convert this to the following inequality:[
x1I [I −HΓ]

[I −HΓ]T x1IN×N

]
> 02N×2N

leading to the following:

• Suggestion Design a general Γ by solving the LMI

max{−x2
1}

subject to

−x2
1I2N×2N −

[
0− I
I 0−

]
+

[
H
0−

]
Γ

[
0− I

]
+

[
0−
I

]
ΓT

[
HT 0−

]
< 02N×2N

where 0− is N ×N zero matrix.
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LMI Design for Fixed Band-Size LTI Γ

• Consider a structure-fixed learning gain matrix such as:

Γ =


γp γ1

N γ2
N · · · γN−1

N

γ1
C γp γ1

N · · · γN−2
N

γ2
C γ1

C γp · · · γN−3
N

... ... ... . . . ...
γN−1

C γN−2
C γN−3

C · · · γp

 ,

where subscript N denotes the noncausal gains, C denotes the causal gains, and the diagonal terms
are fixed at a same value, (e.g., Toeplitz gain matrix denoting LTI learning algorithm).).

• The algorithm for this case is described by:

Table 1: Markov matrices for LTI ILC

for j = 1 : 1 : N − 1

Hj
C(:, 1 : N − j) = H(:, j + 1 : N)

Hj
C(:, N − j + 1 : N) = 0−

Hj
N (:, j + 1 : N) = H(j, 1 : N − j)

Hj
N (:, 1 : j) = 0−

end
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LMI Design for Fixed Band-Size LTI Γ (cont.)

• Suggestion: For a fixed band-size, LTI update law, the following LMI can be used to find Γ:

max{−x2
1}

subject to

−x2
1I2N×2N −

[
0− I
I 0−

]
+ M1 + M2 + M3 < 02N×2N , (25)

with

M1 =

[
0− Hp

0− 0−

]
γp + γp

[
0− 0−
HT

p 0N×N

]
,

M2 =

[
0− H1

C

0− 0−

]
γ1

C + γ1
C

[
0− 0−

(H1
C)T 0−

]
+ · · · +

[
0− HN−1

C

0− 0−

]
γN−1

C + γN−1
C

[
0− 0−

(HN−1
C )T 0−

]
,

M3 =

[
0− H1

N

0− 0−

]
γ1

N + γ1
N

[
0− 0−

(H1
N)T 0−

]
+ · · · +

[
0− HN−1

N

0− 0−

]
γN−1

N + γN−1
N

[
0− 0−

(HN−1
N )T 0−

]
,

where Hp = H, and H i
C and H i

N are calculated from the algorithms in Table 1.
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LMI Design for Fixed Band-Size LTI Γ (cont.)

• Proof:

– Expand I −HΓ as

I − [γN−1
C HN−1

C + · · · + γ1
CH1

C + γpHp + γ1
NH1

N + · · · + γN−1
N HN−1

N ], (26)

where Hk
C, k = 1, · · · , N − 1 are Markov matrices corresponding to causal gains; Hp is a Markov

matrix corresponding to Arimoto-like gains; and Hk
N , k = 1, · · · , N − 1 are Markov matrices

corresponding to non-causal gains.

– These Markov matrices can be calculated by expanding I −HΓ as shown in Table 1.

– The matrix inequality problem is then changed to the optimization problem:

min{x2
1}

subject to [
x1I [I −HΓ]

[I −HΓ]T x1IN×N

]
> 02N×2N . (27)

– By inserting (26) into (27), we have (25).

– Therefore, since each learning gains are expressed in a linear form, LMI optimization can be used.
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LMI Design for Fixed Band-Size LTV Γ

• Now consider the LTV case. The following learning gain matrix is used, assuming a fixed band size:

Γ = [γij]

• Suggestion The optimization problem is designed as

max{−x2
1}

subject to

− x2
1I2N×2N −

[
0− I
I0−

]
+

N∑
j=1

N∑
i=1

[Huγij + γijHl] < 02N×2N ,

where

Hu =

[
0− Hij

0− 0−

]
; Hl =

[
0− 0−
HT

ij 0−

]
.
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LMI Design for Fixed Band-Size LTV Γ (cont.)

• Hij are Markov matrices corresponding to γij, which is calculated by expanding I −HΓ as:

I − [H11γ11 + · · · + H1Nγ1N
...

HN1γN1 + · · · + HNNγNN ],

where Hkl is a matrix composed of one column vector beginning from kth row and lth column such
as:

Hkl =


110 . . . 1l0 . . . 1N0
... ... ... ... ...

k10 . . . klh1 . . . kN0
... ... ... ... ...

N10 . . . NlhN−k . . . NN0

 ,

where left superscript represent kth row and lth element of matrix Hkl;
ij0 means zero at ith row and

jth column; and hi are Markov parameters.

• When the band size is fixed as m, the algorithms in Table 2 and Table 3 are used, where Σ1 Σ2 are
summed to make LMI constraints given by

−x2
1I2N×2N −

[
0− I
I 0−

]
+

∑
1
+

∑
2
< 02N×2N .
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Table 2: : Markov matrices for LTV ILC

for i = 1 : 1 : m
for j = 1 : 1 : i

for k = 1 : 1 : N − j + 1
l = k + j − 1
γ′ = γkl

R(1 : N, 1 : N) = 0−
R(1 : N, l) = H(1 : N, k)

Σ1 = Σ1 +

[
0− R
0− 0−

]
γ′ + γ′

[
0− 0−
RT 0−

]
end

end
end

Table 3: Markov matrices for LTI ILC (cont.)

for i = 1 : 1 : m
for j = 1 : 1 : i− 1

for k = j + 1 : 1 : N
l = k − j
γ′ = γkl

R(1 : N, 1 : N) = 0−
R(1 : N, l) = H(1 : N, k)

Σ2 = Σ2 +

[
0− R
0− 0−

]
γ′ + γ′

[
0− 0−
RT 0−

]
end

end
end
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Simulation Illustration

• Consider the following unstable system:

xk+1 =

−0.50 0.00 0.00
1.00 2.04 −1.20
0.00 1.20 0.00

xk +

1.0
0.0
0.0


yk =

[
1.0 2.5 −1.5

]
xk,

• A sinusoidal reference signal was used, with a trial length of ten time steps.

• For LMI solutions, the free online Matlab software SeDuMi and SeDuMiInt were used.

• We consider six cases:

1. Arimoto only gain, fixed at γ = 0.5

2. Unstructured learning gain matrix

3. Causal LTI ILC with fixed band size

4. Noncausal LTI ILC with fixed band size

5. Causal LTV ILC with fixed band size

6. Noncausal LTV ILC with fixed band size

• It is interesting to note that the LMI solution for Case 2 was in fact H−1.

• Also, we see that monotonic convergence was improved by the use of non-causal gains.
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Simulation Illustration (cont.)

Upper-left: no LMI; Upper-right: using H−1

Middle-left: causal LTI with band size = 3; Middle-right: causal LTV with band size = 3
Bottom-left: non-causal LTI with band size = 3; Bottom-right: non-causal LTV with band size = 3
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Comments about Monotonic ILC

• Guaranteeing monotonic convergence of an ILC system is practically important and is theoretically
desirable.

• Both higher-order-in-time and first-order-in-iteration have been analyzed with respect to monotonic
convergence.

• We found that time-varying learning gains could be used for monotonic convergence. This is practi-
cally important because without using causal and noncausal bands, the monotonic convergence can
be achieved.

• If we just consider the time domain, it is very difficult to guarantee the monotonic condition, while
in the iteration domain, the monotonic condition can be achieved relatively easily.

• Various monotonic convergence conditions under various ILC algorithms have been studied. In par-
ticular, we have shown that the LMI tool box can be used to design monotonically-convergent ILC
algorithms.
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Outline

• Iterative Learning Control (ILC)

• Monotonic Convergence via Supervector Framework

• Current-Cycle Feedback Approach

• Non-Causal Filtering ILC Design

– Examples

– Optimal PD-type ILC Scheme: How to Design

– Optimal PD-type ILC Scheme: Averaged Derivative

– Remarks

• Time-Varying ILC Design

• LMI Approach to ILC Design
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