An Introduction to Iterative Learning Control

Kevin L. Moore

Center for Self-Organizing and Intelligent Systems Dept. of Electrical and Computer Engineering Utah State University

Outline

- Introduction
- Control System Design: Motivation for ILC
- Iterative Learning Control: The Basic Idea
- A Short History of ILC
- ILC Problem Formulation
- LTI ILC: Operator-Theoretic Approach
- ILC as a 2-D Problem
- Multi-Loop Control Approach to ILC
- Higher-Order ILC: A Matrix Fraction Approach
- More on the Nature of the ILC Solution: Equivalence of ILC to One-Step Ahead Control
- Conclusion

Control Design Problem

Given:	System to be controlled.
--------	--------------------------

- **Find:** Controller (using feedback).
- **Such that:** 1) Closed-loop system is stable.
 - 2) Steady-state error is acceptable.
 - 3) Transient response is acceptable.

Motivation for the Problem of Iterative Learning Control

- Transient response design is hard:
 - 1) Robustness is always an issue:
 - Modelling uncertainty.
 - Parameter variations.
 - Disturbances.

- 2) Lack of theory (design uncertainty):
 - Relation between pole/zero locations and transient response.
 - Relation between Q/R weighting matrices in optimal control and transient response.
 - Nonlinear systems.
- Many systems of interest in applications are operated in a repetitive fashion.
- Iterative Learning Control (ILC) is a methodology that tries to address the problem of transient response performance for systems that operate repetitively.

Systems that Execute the Same Trajectory Repetitively

Step 1: Robot at rest, waiting for workpiece.

Step 2: Workpiece moved into position.

Step 3: Robot moves to desired location

Step 4: Robot returns to rest and waits for next workpiece.

Errors are Repeated When Trajectories are Repeated

•A typical joint angle trajectory for the example might look like this:

- •Each time the system is operated it will see the same overshoot, rise time, settling time, and steady-state error.
- •Iterative learning control attempts to *improve the transient response* by *adjusting the input to the plant during future* system operation based on the *errors observed during past* operation.

Iterative Learning Control - 1

• Standard iterative learning control scheme:

Iterative Learning Control - 2

• A typical ILC algorithm has the form:

$$u_{k+1}(t) = u_k(t) + f(e_k(t+1))$$

• Conventional feedback control has the form:

$$u_{k+1}(t) = f(e_{k+1}(t-1))$$

- Standard ILC assumptions include:
 - Stable dynamics or some kind of Lipschitz condition.
 - System returns to the same initial conditions at the start of each trial.
 - Each trial has the same length.

(b) Conventional feedback: $u_{k+1}(t) = f(e_{k+1}(t-1))$

A Simple Linear Example - 1

• Consider the plant:

$$y(t+1) = -.7y(t) - .012y(t-1) + u(t)$$

$$y(0) = 2$$

$$y(1) = 2$$

• We wish to force the system to follow a signal y_d :

A Simple Linear Example - 2

- Use the following ILC procedure:
 - 1. Let

$$u_0(t) = y_d(t)$$

- 2. Run the system
- 3. Compute

 $e_0(t) = y_d(t) - y_0(t)$

 $4. \ Let$

$$u_1(t) = u_0(t) + 0.5e_0(t+1)$$

- 5. Iterate
- Each iteration shows an improvement in tracking performance (plot shows desired and actual output on first, 5th, and 10th trials and input on 10th trial).

Adaptive ILC for a Robotic Manipulator - 1

• Consider a simple two-link manipulator modelled by:

$$A(x_k)\ddot{x}_k + B(x_k, \dot{x}_k)\dot{x}_k + C(x_k) = u_k$$

where

$$\begin{aligned} x(t) &= (\theta_1(t), \theta_2(t))^T \\ A(x) &= \begin{pmatrix} .54 + .27 \cos \theta_2 & .135 + .135 \cos \theta_2 \\ .135 + .135 \cos \theta_2 & .135 \end{pmatrix} \\ B(x, \dot{x}) &= \begin{pmatrix} .135 \sin \theta_2 & 0 \\ -.27 \sin \theta_2 & -.135 (\sin \theta_2) \dot{\theta}_2 \end{pmatrix} \\ C(x) &= \begin{pmatrix} 13.1625 \sin \theta_1 + 4.3875 \sin (\theta_1 + \theta_2) \\ 4.3875 \sin (\theta_1 + \theta_2) \end{pmatrix} \\ u_k(t) &= \text{ vector of torques applied to the joints} \end{aligned}$$

Adaptive ILC for a Robotic Manipulator - 2

• Define the vectors:

$$\begin{aligned} y_k &= (x_k^T, \dot{x}_k^T, \ddot{x}_k^T)^T \\ y_d &= (x_d^T, \dot{x}_d^T, \ddot{x}_d^T)^T \end{aligned}$$

• The learning controller is defined by:

$$u_k = r_k - \alpha_k \Gamma y_k + C(x_d(0))$$

$$r_{k+1} = r_k + \alpha_k \Gamma e_k$$

$$\alpha_{k+1} = \alpha_k + \gamma ||e_k||^m$$

- Γ is a fixed feedback gain matrix that has been made time-varying through the multiplication by the gain α_k .
- r_k can be described as a time-varying reference input. $r_k(t)$ and adaptation of α_k are effectively the ILC part of the algorithm.
- With this algorithm we have combined conventional feedback with iterative learning control.

Adaptive ILC for a Robotic Manipulator - 3

- The basic idea of the algorithm:
 - Make α_k larger at each trial by adding a positive number that is linked to the norm of the error.
 - When the algorithm begins to converge, the gain α_k will eventually stop growing.
 - The convergence proof depends on a high-gain feedback result.
- To simulate this ILC algorithm for the two-joint manipulator described above we used firstorder highpass filters of the form

$$H(s) = \frac{10s}{s+10}$$

to estimate the joint accelerations $\ddot{\theta}_1$ and $\ddot{\theta}_2$ from the joint velocities $\dot{\theta}_1$ and $\dot{\theta}_2$, respectively.

• The gain matrix $\Gamma = [P \ L \ K]$ used in the feedback and learning control law was defined by:

$$P = \begin{pmatrix} 50.0 & 0 \\ 0 & 50.0 \end{pmatrix} \quad L = \begin{pmatrix} 65.0 & 0 \\ 0 & 65.0 \end{pmatrix} \quad K = \begin{pmatrix} 2.5 & 0 \\ 0 & 2.5 \end{pmatrix}$$

- The adaptive gain adjustment in the learning controller uses $\gamma = .1$ and α_0 is initialized to 0.01.
- Each iteration shows an improvement in tracking performance.

A Short Overview of ILC - 1

- *Historical Roots* of ILC go back about twenty-five years:
 - Idea of a "multipass" system studied by Owens and Rogers in mid- to late-1970's, with several resulting monographs.
 - Learning control concept introduced (in Japanese) by Uchiyama in 1978.
 - Pioneering work of Arimoto, et al. 1984-present.
 - Related research in repetitive and periodic control.
 - 1993 Springer monograph had about 90 ILC references.
 - 1997 Asian Control Conference had 30 papers on ILC (out of 600 papers presented at the meeting) and the first panel session on this topic.
 - 1998 survey paper has about 250 ILC references.
 - Web-based online, searchable bibliographic database maintained by Yangquan Chen has about 500 references (see http://cicserver.ee.nus.edu.sg/ ilc).
 - ILC Workshop and Roundtable and three devoted sessions at 1998 CDC.
 - Edited book by Bien and Xu resulting from 1997 ASCC.
 - At least four Ph.D. dissertations on ILC since 1998.
 - Springer monograph by Chen and Wen, 1999.
 - Special sessions at 2000 ASCC, ICARV 2000, and 2nd Int. Conference on nD Systems.
 - Tutorial at ICARV 200 and first CDC Tutorial Workshop; first IFAC World Congress special session.
 - ILC Summer School at Utah State University, June 2003.

A Short Overview of ILC - 2

- *Past* work in the field demonstrated the usefulness and applicability of the concept of ILC:
 - Linear systems.
 - Classes of nonlinear systems.
 - Applications to robotic systems.
- *Present* status of the field reflects the continuing efforts of researchers to:
 - Develop design tools.
 - Extend earlier results to broader classes of systems.
 - Realize a wider range of applications.
 - Understand and interpret ILC in terms of other control paradigms and in the larger context of learning in general.

A Partial Classification of ILC Research

• Systems:

- Open-loop vs. closed-loop.
- Discrete-time vs. continuous-time.
- Linear vs. nonlinear.
- Time-invariant or time-varying.
- Relative degree 1 vs. higher relative degree.
- Same initial state vs. variable initial state.
- Presence of disturbances.

• Update algorithm:

- Linear ILC vs. nonlinear ILC.
- First-order ILC vs. higher-order.
- Current cycle vs. past cycle.
- Fixed ILC or adaptive ILC.
- Time-domain vs. frequency analysis.
- Analysis vs. design.
- Assumptions on plant knowledge.
- Applications: robotics, chemical processing, mechatronic systems.

(b) Higher-Order ILC

ILC Problem Formulation - 1

• Standard iterative learning control scheme:

• Goal: Find a learning control algorithm

$$u_{k+1}(t) = f_L(u_k(t); y_k(t), y_d(t))$$

so that for all $t \in [0, t_f]$

$$\lim_{k \to \infty} y_k(t) = y_d(t)$$

ILC Problem Formulation - 2

 $\bullet~{\rm Given}$

- a system S (possibly nonlinear, time-varying), with

$$y_k(t) = f_{S_k}(u_k(t))$$

- a desired response $y_d(t)$, defined on the interval (t_0, t_f) .

• Find

- a system L (possibly unknown, non-linear, time-varying).

• So that

- the sequence of inputs produced by the iteration

$$u_{k+1}(t) = f_{L_k}(u_k, y_k, y_d) = f_{L_k}(u_k, f_{S_k}(u_k), y_d)$$

converges to a fixed point u^* .

• Such that

$$\lim_{k \to \infty} \|y_d - y_k\| = \|y_d - T_s u^*\|$$

is minimum on the interval (t_0, t_f) over all possible systems L, for a specified norm.

• Linear case: $u_{k+1} = T_u u_k + T_e (y_d - y_k)$

Some Learning Control Algorithms

• Arimoto first proposed a learning control algorithm of the form:

$$u_{k+1}(t) = u_k(t) + \Gamma \dot{e}_k(t)$$

Convergence is assured if $||I - CB\Gamma||_i < 1$.

• Arimoto has also considered more general algorithms of the form:

$$u_{k+1} = u_k + \Phi e_k + \Gamma \dot{e}_k + \Psi \int e_k dt$$

• Various researchers have used gradient methods to optimize the gain G_k in:

$$u_{k+1}(t) = u_k(t) + G_k e_k(t+1)$$

• It is also useful for design to specify the learning control algorithm in the frequency domain, for example:

$$U_{k+1}(s) = L(s)[U_k(s) + aE_k(s)]$$

• Many schemes in the literature can be classified with one of the algorithms given above.

LTI ILC Convergence Conditions - 1

• **Theorem**: For the plant $y_k = T_s u_k$, the linear time-invariant learning control algorithm

$$u_{k+1} = T_u u_k + T_e (y_d - y_k)$$

converges to a fixed point $u^*(t)$ given by

$$u^{*}(t) = (I - T_{u} + T_{e}T_{s})^{-1}T_{e}y_{d}(t)$$

with a final error

$$e^*(t) = \lim_{k \to \infty} (y_k - y_d) = (I - T_s(I - T_u + T_e T_s)^{-1} T_e) y_d(t)$$

defined on the interval (t_0, t_f) if

$$||T_u - T_e T_s||_i < 1$$

• Observation:

- If $T_u = I$ then $||e^*(t)|| = 0$ for all $t \in [t_o, t_f]$.
- Otherwise the error will be non-zero.

LTI ILC Convergence Conditions - 2

• General linear algorithm:

$$u_{k+1}(t) = T_u u_k(t) + T_e(y_d(t) - y_k(t))$$

• Can show that, if

(i) $T_u = I$ and $||I - T_e T_s||_i < 1$, then

$$e^{*}(t) = \lim_{k \to \infty} (y_d(t) - y_k(t)) = 0$$

(ii) $T_u \neq I$ and $||T_u - T_e T_s||_i < 1$, then

$$e^{*}(t) = (I - T_{s}(I - T_{u} + T_{e}T_{s})^{-1}T_{e})y_{d}(t) \neq 0$$

• Note: The convergence condition for (i) can require system invertibility.

e.g., For convergence in the space of finite-energy signals, with a requirement that our ILC filters be causal, (i) holds only for those systems whose transfer functions are non-minimum phase and have no zeros at infinity.

LTI ILC - Convergence with Zero Error

- Let $T_u = I$ to get $e^*(t) = 0$ over the entire interval.
- Condition for convergence becomes:

$$\|I - H_e H_s\|_i < 1$$

- Unfortunately, this can be overly restrictive.
- Example:

If $u \in \mathbf{U} = \mathbf{L}_2^r(0, \infty)$ and $y \in \mathbf{Y} = \mathbf{L}_2^m(0, \infty)$ then the condition for convergence is:

$$||I - H_e(s)H_s(s)||_{\infty} < 1$$

However, we can easily show:

Theorem: There exists a proper, stable, LTI system $H_e(s) \in \mathbf{H}_{\infty}$ such that

$$\|I - H_e(s)H_s(s)\|_{\infty} < 1$$

if and only if $H_s(s)$ is invertible over the space \mathbf{H}_{∞} .

LTI Learning Control - Nature of the Solution

• Question: Given T_s , how do we pick T_u and T_e to make the final error $e^*(t)$ as "small" as possible, for the general linear ILC algorithm:

$$u_{k+1}(t) = T_u u_k(t) + T_e(y_d(t) - y_k(t))$$

• Answer: Let T_n^* solve the problem:

$$\min_{T_n} \| (I - T_s T_n) y_d \|$$

It turns out that we can specify T_u and T_e in terms of T_n^* and the resulting learning controller converges to an optimal system input given by:

$$u^*(t) = T_n^* y_d(t)$$

• Conclusion: The essential effect of a properly designed learning controller is to produce the output of the best possible inverse of the system in the direction of y_d .

LTI ILC - Convergence with Non-Zero Error

• **OPT1**: Let $u_k \in \mathbf{U}$, $y_d, y_k \in \mathbf{Y}$ and $T_s, T_u, T_e \in \mathbf{X}$. Then given y_d and T_s , find T_u^* and T_e^* that solve

$$\min_{T_u, T_e \in \mathbf{X}} \| (I - T_s (I - T_u + T_e T_s)^{-1} T_e) y_d \|$$

subject to $||T_u - T_e T_s||_i < 1.$

• **OPT2**: Let $y_d \in \mathbf{Y}$ and let $T_n, T_s \in \mathbf{X}$. Then given y_d and T_s , find T_n^* that solve

$$\min_{T_n \in \mathbf{X}} \| (I - T_s T_n) y_d \|$$

- Theorem: Let T_n^* be the solution of OPT2. Factor $T_n^* = T_m^* T_e^*$ where $T_m^{*^{-1}} \in \mathbf{X}$ and $\|I T_m^{*^{-1}}\|_i < 1$. Define $T_u^* = I T_m^{*^{-1}} + T_e^* T_s$. Then T_u^* and T_e^* are the solution of OPT1.
- If we plug these into the expression for the fixed-point of the input to the system we find:

$$u^*(t) = T_n^* y_d(t)$$

• Note: The factorization in the Theorem can always be done, with the result that $u^*(t) = T_n^* y_d(t)$.

Interlude: The Two-Dimensional Nature of ILC - 1

• Let the plant be a scalar (and possibly time-varying), discrete-time dynamical system, described as:

$$y_k(t+1) = f_S[y_k(t), u_k(t), t]$$

Here:

- -k denotes a trial (or execution, repetition, pass, etc.).
- $-t \in [0, N]$ denotes time (integer-valued).
- $y_k(0) = y_d(0) = y_0$ for all k.
- Use a general form of a typical ILC algorithm for a system with relative degree one:

$$u_{k+1}(t) = f_L[u_k(t), e_k(t+1), k]$$

where

 $- e_k(t) = y_d(t) - y_k(t)$ is the error on trial k. - $y_d(t)$ is a desired output signal.

Interlude: The Two-Dimensional Nature of ILC - 2

• Combine the plant equation with the ILC update rule to get:

$$y_{k+1}(t+1) = f_S[y_k(t), u_{k+1}(t), t]$$

= $f_S[f_L[y_k(t), u_k(t), e_k(t+1), k], t]$

• By changing the notation slightly we get:

$$y(k+1,t+1) = f[y_k(t), u(k,t), e(k,t+1), k, t]$$

- Clearly this is a 2-D system:
 - Dynamic equation indexed by two variables: k and t.
 - -k defines the repetition domain (Longman/Phan terminology); t is the normal timedomain variable.
- Nevertheless, there are two basic points by which ILC differs from a complete 2-D system design problem:
 - One of the dimensions (time) is a finite, fixed interval, thus convergence in that direction (traditional stability) is always assured for linear systems.
 - In the ILC problem we admit non-causal processing in one dimension (time) but not in the other (repetition).

• Consider a discrete-time plant of the form:

$$Y(z) = H(z)U(z) = (h_m z^{-m} + h_{m+1} z^{-(m+1)} + h_{m+2} z^{-(m+2)} + \dots)U(z)$$

• Define (for m = 1):

$$U_{k} = [u_{k}(0), u_{k}(1), \cdots, u_{k}(N-1)]^{T}$$

$$Y_{k} = [y_{k}(1), y_{k}(2), \cdots, y_{k}(N)]^{T}$$

$$Y_{d} = [y_{d}(1), y_{d}(2), \cdots, y_{d}(N)]^{T}$$

• Thus the linear plant can be described by $Y_k = HU_k$ where (assuming relative degree one):

$$H = \begin{bmatrix} h_1 & 0 & 0 & \dots & 0 \\ h_2 & h_1 & 0 & \dots & 0 \\ h_3 & h_2 & h_1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_N & h_{N-1} & h_{N-2} & \dots & h_1 \end{bmatrix}$$

• For the linear, time-varying case, suppose we have the plant given by:

$$\begin{aligned} x_k(t+1) &= A(t)x_k(t) + B(t)u_k(t) \\ y_k(t) &= C(t)x_k(t) + D(t)u_k(t) \\ x_k(0) &= x_0 \end{aligned}$$

Then the same notation results in $Y_k = HU_k$, where now:

$$H = \begin{bmatrix} h_{m,0} & 0 & 0 & \dots & 0 \\ h_{m+1,0} & h_{m,1} & 0 & \dots & 0 \\ h_{m+2,0} & h_{m+1,1} & h_{m,2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{m+N-1,0} & h_{m+N-2,1} & h_{m+N-3,2} & \dots & h_{m,N-1} \end{bmatrix}$$

• Clearly this approach allows us to represent our multi-pass (Owens and Rogers terminology) dynamical system in \mathbb{R}^1 into a static system in \mathbb{R}^N .

• Suppose we have a simple ILC update equation in our R^1 representation:

$$u_{k+1}(t) = u_k(t) + \gamma e_k(t+1)$$

for $t \in [0, N]$, and where γ is a constant gain. In our \mathbb{R}^N representation, we write:

$$U_{k+1} = U_k + \Gamma E_k$$

where

$$\Gamma = \operatorname{diag}(\gamma)$$

• Suppose we filter during an ILC update, such as the following update equation in our R^1 representation:

$$u_{k+1}(t) = u_k(t) + L(z)e_k(t+1)$$

Then our \mathbb{R}^N representation would have the form:

$$U_{k+1} = U_k + LE_k$$

where, if L was time-invariant and causal, then it would have the lower-triangular form:

$$L = \begin{bmatrix} L_m & 0 & 0 & \dots & 0 \\ L_{m+1} & L_m & 0 & \dots & 0 \\ L_{m+2} & L_{m+1} & L_m & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ L_{m+N-1} & L_{m+N-2} & L_{m+N-3} & \dots & L_m \end{bmatrix}$$

• We may similarly consider time-varying and noncausal filters in the ILC update law:

$$U_{k+1} = U_k + LE_k$$

• A causal (in time), time-varying filter in the ILC update law might look like, for example:

$$L = \begin{bmatrix} n_{1,0} & 0 & 0 & \dots & 0 \\ n_{2,0} & n_{1,1} & 0 & \dots & 0 \\ n_{3,0} & n_{2,1} & n_{1,2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{N,0} & n_{N-1,1} & n_{N-2,2} & \dots & n_{1,N-1} \end{bmatrix}$$

• A non-causal (in time), time-invariant averaging filter in the ILC update law might look like, for example:

$$L = \begin{bmatrix} K & K & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & K & K & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & K & K & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & K & K & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & K & K \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & K \end{bmatrix}$$

• These issues have been described in some detail by Longman.

Multi-Loop Approach to ILC - 1

• Suppose we use the discrete-time version of Arimoto's ILC algorithm (assume relative degree m = 1):

$$u_{k+1}(t) = u_k(t) + \gamma e_k(t+1) = u_k + \gamma (y_d - Hu_k)$$

• Then the individual components of u_{k+1} are:

$$u_{k+1}(0) = u_k(0) + \gamma(y_d(1) - h_1 u_k(0))$$

$$u_{k+1}(1) = u_k(1) + \gamma(y_d(2) - h_1 u_k(1) - h_2 u_k(0))$$

$$\vdots$$

$$u_{k+1}(t) = u_k(t) + \gamma(y_d(t+1) - h_1 u_k(t) - \sum_{n=0}^{t-1} h_{t+1-n} u_k(n))$$

$$\vdots$$

Multi-Loop Approach to ILC - 2

• Introduce a new shift variable, w, with the property that:

$$w^{-1}u_k(t) = u_{k-1}(t)$$

• The individual components of the w-transform of $u_{k+1}(t)$, denoted $U_t(w)$ are:

$$wU_{0}(w) = U_{0}(w) + \gamma(Yd_{1}(w) - h_{1}U_{0}(w))$$

$$wU_{1}(w) = U_{1}(w) + \gamma(Yd_{2}(w) - h_{1}U_{1}(w) - h_{2}U_{0}(w))$$

$$\vdots$$

$$wU_{t}(w) = U_{t}(w) + \gamma(Yd_{t+1}(w) - h_{1}U_{t}(w) - \sum_{n=0}^{t-1} h_{t+1-n}U_{n}(w)$$

$$\vdots$$

• Note that:

$$U_t(w) = \frac{\gamma}{(w-1)} E_{t+1}(w)$$

Multi-Loop Interpretation of ILC

- The ILC scheme can thus be interpreted as a multi-loop control system in the w-domain.
- At each time step the closed-loop system (relative to trials) has a simple feedback structure.

• From basic systems theory it is clear that we have convergence if and only if the pole of this closed-loop system lies inside the unit disk, or, equivalently:

$$|1 - \gamma h_1| < 1$$

• Note that with suitable choice of norm this becomes equivalent to Arimoto's convergence condition indicated above for systems with relative degree one (because $h_1 = CB$).

Extensions of the Multi-Loop Approach

(1) ILC Algorithm Design

- This multi-loop interpretation suggests a new ILC algorithm (reported at 1998 CDC):
 - 1. Apply two different inputs at the same time step, $u_k(0)$ and $u_{k+1}(0)$, to the system, using a fixed gain γ of any value and keeping all other inputs fixed. Then:

$$h_1 = \frac{1 - e_{k+1}(1)/e_k(1)}{\gamma}$$

2. Then pick a new γ to give deadbeat convergence:

$$\gamma_{\text{new}} = \frac{1}{h_1}$$

3. Compute (after the second pass):

$$h_i = -\frac{e_{k+1}(i) - e_k(i)}{u_{k+1}(0) - u_k(0)}$$

Extensions (cont.)

ILC Algorithm Design (cont.)

4. Exploit the diagonal structure of the multi-loop control system and implement an uncoupled feedforward approach to the input update for the third trial:

$$u_{k+1}^{fb}(t) = u_k^{fb}(t) + \gamma e_k(t+1)$$

$$u_{k+1}^{ff}(t) = -\frac{1}{h_1} \sum_{n=0}^{t-1} h_{t+1-n} u_{k+1}(n)$$

$$u_{k+1}(t) = u_{k+1}^{fb}(t) + u_{k+1}^{ff}(t)$$

5. The system will demonstrate exact convergence on the fourth trial (the deadbeat pole location provides convergence one step (trial) after the feedforward correction has been applied).

Extensions (cont.)

(2) Adaptive Gain Adjustment

• In the ILC algorithm presented above we computed the gain according to $\gamma_{\text{new}} = 1/h_1$, where h_1 was computed by:

$$h_1 = \frac{1 - e_{k+1}(1)/e_k(1)}{\gamma}$$

- In general this will not be a very robust approach.
- Alternately, treat this as a control problem where we have an unknown (sign and magnitude) static plant with a time-varying disturbance that we wish to force to track a desired output.
- One way to solve such a problem is with a sliding mode controller (one could put a different sliding mode control law at each time step).

(3) Estimation of h_1

• For systems with measurement noise we can use parameter estimation techniques to estimate h_1 (reported at '99 CDC).

(4) Multivariable Systems

• Results can be extended to MIMO systems (reported at recent ICARV2000).

Extensions (cont.)

(5) Nonlinear and Time-Varying Systems:

• Consider the affine nonlinear system:

$$x_k(t+1) = f(x_k(t)) + g(x_k(t))u_k(t)$$

$$y_k(t) = Cx_k(t)$$

with the ILC algorithm $u_{k+1}(t) = u_k(t) + \gamma e_k(t+1)$. Then we can derive the (previously reported in the literature) convergence condition:

$$\max_{x} |1 - \gamma Cg(x)| < 1$$

• Similarly, for the time-varying system:

$$\begin{aligned} x_k(t+1) &= f(x_k(t), t) + g(x_k(t), t)u_k(t) \\ y_k(t) &= Cx_k(t) \end{aligned}$$

with the time-varying ILC algorithm $u_{k+1}(t) = u_k(t) + \gamma_t e_k(t+1)$ the multi-loop interpretation allows us to derive the convergence condition:

$$\max_{x} |1 - \gamma_t Cg(x, t)| < 1, \qquad t = 0, 1, \cdots, t_f$$

Using the same approach, with the time-invariant ILC rule $u_{k+1}(t) = u_k(t) + \gamma e_k(t+1)$ we get:

$$\max_{x,t} |1 - \gamma Cg(x,t)| < 1$$

Extensions (cont).

(6) <u>Higher-Order ILC</u>:

- The term $\gamma/(w-1)$ is effectively the controller of the system (in the repetition domain).
- This can be replaced with a more general expression C(w).
- For example, a "higher-order" ILC algorithm could have the form:

$$u_{k+1}(t) = k_1 u_k(t) + k_2 u_{k-1}(t) + \gamma e_k(t+1)$$

which corresponds to:

$$C(w) = \frac{\gamma w}{w^2 - k_1 w - k_2}$$

- It has been suggested in the literature that such schemes can give faster convergence.
- We see this may be due to more freedom in placing the poles (in the *w*-plane).
- However, we have shown dead-beat control using the zero-order ILC scheme. Thus, higherorder ILC is not required to speed up convergence.
- But, there can be a benefit to the higher-order ILC schemes:
 - -C(w) can implement a Kalman filter/parameter estimator to determine the Markov parameter h_1 and $E\{y(t)\}$ when the system is subject to noise.
 - -C(w) can be used to implement a robust controller in the repetition domain.
 - A matrix fraction approach to ILC filter design can be developed from these ideas (presented at 2nd Int. Workshop on nD Systems).

Repetition-Domain Frequency Representation of Higher-Order ILC: Filtering in the Repetition Domain

• The generalized higher-order ILC algorithm has been considered in the time-domain by various researchers (see Phan, Longman, and Moore):

$$U_{k+1} = \bar{D}_n U_k + \bar{D}_{n-1} U_{k-1} + \dots + \bar{D}_1 U_{k-n+1} + \bar{D}_0 U_{k-n} + N_n E_k + N_{n-1} E_{k-1} + \dots + N_1 E_{k-n+1} + N_0 E_{k-n}$$

• Here, we apply the shift variable, w introduced above, to get $\overline{D}_c(w)U(w) = N_c(w)E(w)$, where

$$\bar{D}_c(w) = Iw^{n+1} - \bar{D}_{n-1}w^n - \dots - \bar{D}_1w - \bar{D}_0 N_c(w) = N_nw^n + N_{n-1}w^{n-1} + \dots + N_1w + N_0$$

This can be written in a matrix fraction as U(w) = C(w)E(w), where $C(w) = \overline{D}_c^{-1}(w)N_c(w)$.

- Thus, through the addition of higher-order terms in the update algorithm, the ILC problem has been converted from a static multivariable representation to a dynamic (in the repetition domain) multivariable representation.
- Note that we will always get a linear, time-invariant system like this, even if the actual plant is time-varying or affine nonlinear.
- Also because $\overline{D}_c(w)$ is of degree n+1 and $N_c(w)$ is of degree n, we have relative degree one in the repetition-domain.

Convergence and Error Analysis

Convergence

• From the figure we see that in the repetition-domain the closed-loop dynamics are defined by:

$$G_{cl}(w) = H[I + C(w)H]^{-1}C(w)$$

= $H[(w - 1)\bar{D}_c(w) + N_c(w)H]^{-1}N_c(w)$

- Thus the ILC algorithm will converge (i.e., $E_k \rightarrow a \text{ constant}$) if G_{cl} is stable.
- Determining the stability of this feedback system may not be trivial:

- It is a multivariable feedback system of dimension N, where N could be very large.

• But, the problem may be simplified due to the fact that the plant H is a constant, lower-triangular matrix.

Convergence and Error Analysis (cont.)

Convergence with Zero Error

- Because Y_d is a constant and our "plant" is type zero (e.g., H is a constant matrix), the internal model principle applied in the repetition domain requires that C(w) should have an integrator effect to cause $E_k \to 0$.
- Thus, we modify the ILC update algorithm as:

$$U_{k+1} = (I - D_{n-1})U_k + (D_{n-1} - D_{n-2})U_{k-1} + \cdots + (D_2 - D_1)U_{k-n+2} + (D_1 - D_0)U_{k-n+1} + D_0U_{k-n} + N_nE_k + N_{n-1}E_{k-1} + \cdots + N_1E_{k-n+1} + N_0E_{k-n}$$

• Taking the "w-transform" of the ILC update equation, combining terms, and simplifying gives:

$$(w-1)D_c(w)U(w) = N_c(w)E(w)$$

where

$$D_{c}(w) = w^{n} + D_{n-1}w^{n-1} + \dots + D_{1}w + D_{0}$$

$$N_{c}(w) = N_{n}w^{n} + N_{n-1}w^{n-1} + \dots + N_{1}w + N_{0}$$

Convergence and Error Analysis (cont.)

Convergence with Zero Error (cont.)

• This can also be written in a matrix fraction as:

$$U(w) = C(w)E(w)$$

but where we now have:

$$C(w) = (w-1)^{-1}D_c^{-1}(w)N_c(w)$$

• Thus, we now have an integrator in the feedback loop (a discrete integrator, in the repetition domain) and, applying the final value theorem to G_{cl} , we get $E_k \to 0$ as long as the ILC algorithm converges (i.e., as long as G_{cl} is stable).

ILC and One-Step-Ahead Minimum Error Control Input Sequence Resulting from ILC

• As above, let the plant to be controlled be of the form:

$$Y(z) = H(z)U(z) = (h_1 z^{-1} + h_2 z^{-2} + h_3 z^{-3} + \dots)U(z)$$

and let:

$$u_k = [u_k(0), u_k(1), \cdots, u_k(N-1)]^T$$

$$y_k = [y_k(1), y_k(2), \cdots, y_k(N)]^T$$

$$y_d = [y_d(1), y_d(2), \cdots, y_d(N)]^T$$

so that we can write:

$$y_k = Hu_k$$

where H is the matrix of the system's Markov parameters.

ILC and One-Step-Ahead Minimum Error Control Input Sequence Resulting from ILC (cont.)

• Then using a standard Arimoto-type ILC update equation we can compute the final (steadystate in trial) values of each component (in time) of the input sequence. For each t let:

$$u^*(t) = \lim_{k \to \infty} u_k(t)$$

Then:

$$u^{*}(0) = \frac{1}{h_{1}}y_{d}(1)$$

$$u^{*}(1) = \frac{1}{h_{1}}[y_{d}(2) - h_{2}u^{*}(0)]$$

$$u^{*}(2) = \frac{1}{h_{1}}[y_{d}(3) - h_{2}u^{*}(1) - h_{3}u^{*}(0)]$$

:

ILC and One-Step-Ahead Minimum Error Control Input Sequence Resulting from One-Step-Ahead Predictor

• Consider the transfer function form of the plant:

$$Y(z) = H(z)U_{OSA}(z) = z^{-1}\frac{b_0 + b_1 z^{-1} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}}U_{OSA}(z)$$

• Using a one-step-ahead minimum error predictor to minimize:

$$J_1(t+1) = \frac{1}{2}[y(t+1) - y_d(t+1)]^2$$

produces the input defined by:

$$u_{OSA}(t) = \frac{1}{b_0} [y_d(t+1) + a_1 y(t) + a_2 y(t-1) + \dots + a_n y(t-n+1) - b_1 u_{OSA}(t-1) - b_2 u_{OSA}(t-2) - \dots - b_n u_{OSA}(t-n)]$$

• This feedback control law results in (for all $t \ge 1$):

$$y(t) = y_d(t)$$

ILC and One-Step-Ahead Minimum Error Control Relationship Between $u^*(t)$ and $u_{OSA}(t)$

• Carry out a long-division process on the plant to compute find:

$$h_{1} = b_{0}$$

$$h_{2} = b_{1} - a_{1}b_{0}$$

$$b_{1} - a_{1}h_{1}$$

$$h_{3} = b_{2} - a_{2}b_{0} - a_{1}(b_{1} - a_{1}b_{0})$$

$$b_{2} - a_{2}h_{1} - a_{1}h_{2}$$

- Consider the expressions for $u_{OSA}(t)$ for t = 0, 1, 2, ..., assuming:
 - All initial conditions on the input are equal to zero for t < 0.
 - All initial conditions on the output are zero for $t \leq 0$.
 - $y_d(0) = y(0) = 0.$

For t = 0 (using the fact that $b_0 = h_1$):

$$u_{OSA}(0) = \frac{1}{b_0} y_d(1) \\ = \frac{1}{h_1} y_d(1) \\ = u^*(0)$$

For t = 1: We can write $u_{OSA}(1) = \frac{1}{b_0}[y_d(2) + a_1y(1) - b_1u_{OSA}(0)]$. But, because we can express the plant output in terms of the Markov parameters, we have $y(1) = h_1u_{OSA}(0)$. Combining this with the fact that $b_0 = h_1$ and that (as just derived above) $u_{OSA}(0) = u^*(0)$, we have

$$u_{OSA}(1) = \frac{1}{h_1} [y_d(2) + a_1 h_1 u^*(0) - b_1 u^*(0)]$$

= $\frac{1}{h_1} [y_d(2) - (b_1 - a_1 h_1) u^*(0)]$
= $\frac{1}{h_1} [y_d(2) - h_2 u^*(0)]$
= $u^*(1)$

For t = 2: Similarly, using the additional fact that $y(2) = h_2 u_{OSA}(0) + h_1 u_{OSA}(1)$, it is easy to compute:

$$\begin{aligned} u_{OSA}(2) &= \frac{1}{b_0} [y_d(3) + a_1 y(2) + a_2 y(1) - b_1 u_{OSA}(1) - b_2 u_{OSA}(0)] \\ &= \frac{1}{b_0} [y_d(3) - a_1 (h_2 u_{OSA}(0) + h_1 u_{OSA}(1)) + a_2 h_1 u_{OSA}(0) \\ &- b_1 u_{OSA}(1) - b_2 u_{OSA}(0)] \\ &= \frac{1}{b_0} [y_d(3) - (b_1 - a_1 h_1) u_{OSA}(1) - (b_2 - a_2 h_1 - a_1 h_2) u_{OSA}(0)] \\ &= \frac{1}{h_1} [y_d(3) - (b_1 - a_1 h_1) u^*(1) - (b_2 - a_2 h_1 - a_1 h_2) u^*(0)] \\ &= \frac{1}{h_1} [y_d(3) - h_2 u^*(1) - h_3 u^*(0)] \\ &= u^*(2) \end{aligned}$$

Relationship Between $u^*(t)$ and $u_{OSA}(t)$ (cont.)

• The key fact is that, for all t:

 $u^*(t) = u_{OSA}(t)$

- Recall that the one-step-ahead minimum prediction error controller effectively inverts the plant (after discounting the time delay).
- Thus, we have reinforced the concept that the ILC technique effectively inverts the plant, as noted above.
- The one-step-ahead minimum prediction error controller is a feedback controller.
- The ILC technique is an open-loop control scheme that converges to the same input sequence as the one-step-ahead minimum prediction error controller.
- Control energy considerations:
 - A common objection to ILC is that it is often applied without regard to control energy.
 - This same objection applies to the one-step-ahead minimum prediction error controller.
 - However, the weighted one-step-ahead controller can be introduced to minimize the cost function

$$J_1(t+1) = \frac{1}{2} [y(t+1) - y_d(t+1)]^2 + \frac{\lambda}{2} u_{OSA}^2(t)$$

– This concept can also be applied to ILC design.

Illustration

- Plant: $y_k(t+1) = 0.4y_k(t) + 0.7u_k(t)$
- Resulting ILC input sequence $(u^*(t))$:

• Resulting one-step-ahead minimum error predictor $output(u_{OSA}(t))$:

• Actual and desired outputs from each control technique:

Concluding Comments - 1

- ILC is a control methodology that can be applied to improve the transient response of systems that operate repetitively.
- An operator-theoretic analysis shows that the essential effect of an ILC scheme is to produce the output of the best possible inverse of the system.
- We noted that ILC is fundamentally a special case of a two-dimensional system.
- A multi-loop control interpretation of the signal flow in ILC can be used to:
 - Derive convergence conditions.
 - Develop an iterative learning control algorithm that can converge in as few as four trials.
 - Apply ILC to the case when the plant to be controlled is subject to measurement noise.
 - Apply ILC to nonlinear and time-varying systems.
 - Develop an adaptive gain adjustment ILC technique.

Concluding Comments - 2

- We have presented a matrix fraction approach to iterative learning control:
 - We showed how "filtering" in the repetition domain can be interpreted as transforming the two-dimensional system design problem into a one-dimensional multivariable design problem.
 - Conditions for ILC convergence in terms of the ILC gain filters were derived using a matrix fraction approach and the final value theorem.
- We have shown that the control input resulting from a convergent ILC scheme is identical to that resulting from a standard one-step-ahead controller acting to produce minimum prediction error when there is full plant knowledge:
 - This result reinforces the notion that the effect of an ILC system is to invert the plant.
 - This result shows that the ILC process, which is fundamentally open-loop in time, is equivalent (in its final result) to a closed-loop control system

Related References

- 1. "Iterative Learning Control for Multivariable Systems with an Application to Mobile Robot Path Tracking Control," Kevin L. Moore and Vikas Bahl, in *Proceedings of the 2000 International Conference on Automation, Robotics, and Control*, Singapore, December 2000.
- "A Non-Standard Iterative Learning Control Approach to Tracking Periodic Signals in Discrete-Time Nonlinear Systems," Kevin L. Moore, *International Journal of Control*, Vol. 73, No. 10, 955-967, July 2000.
- "On the Relationship Between Iterative Learning Control and One-Step-Ahead Minimum Prediction Error Control," Kevin L. Moore, in *Proceedings of the 3rd Asian Control Confer*ence, p. 1861-1865, Shanghai, China, July 2000.
- 4. "A Matrix-Fraction Approach to Higher-Order Iterative Learning Control: 2-D Dynamics through Repetition-Domain Filtering," Kevin L. Moore, in *Proceedings of 2nd International Workshop on Multidimensional (nD) Systems*, pp. 99-104, Lower Selesia, Poland, June 2000.
- 5. "Unified Formulation of Linear Iterative Learning Control," Minh Q. Phan, Richard W. Longman, and Kevin L. Moore, in *Proceedings of AAS/AIAA Flight Mechanics Meeting*, Clearwater Florida, January 2000.

Related References (cont.)

- "An Iterative learning Control Algorithm for Systems with Measurement Noise," Kevin L. Moore, in *Proceedings of the 1999 Conference on Decision and Control*, pp. 270-275Phoenix, AZ, Dec. 1999.
- "Iterative Learning Control An Expository Overview," Kevin L. Moore, invited paper in Applied and Computational Controls, Signal Processing, and Circuits, vol. 1, pp. 151-214, 1999.
- "Multi-Loop Control Approach to Designing Iterative Learning Controllers," Kevin L. Moore, in *Proceedings of the 37th IEEE Conference on Decision and Control*, pp. 666-671, Tampa, FL, December 1998.
- 9. Iterative Learning Control for Deterministic Systems, Springer-Verlag Series on Advances in Industrial Control, Springer-Verlag, London, January 1993.
- "Iterative Learning Control: A Survey and New Results," Kevin L. Moore, Mohammed Dahleh, and S.P. Bhattacharyya, *Journal of Robotic Systems*, vol. 9, no. 5, pp. 563-594, July 1992.