Chapter 9

Iterative Learning Control

Kevin L. Moore

ABSTRACT In this paper we give an overview of the field of iterative
learning control (ILC). We begin with a detailed description of the ILC
technique, followed by two illustrative examples that give a flavor of the
nature of ILC algorithms and their performance. This is followed by a top-
ical classification of some of the literature of ILC and a discussion of the
connection between ILC and other common control paradigms, including
conventional feedback control, optimal control, adaptive control, and intel-
ligent control. Next, we give a summary of the major algorithms, results,
and applications of ILC given in the literature. This discussion also consid-
ers some emerging research topics in ILC. As an example of some of the
new directions in ILC theory, we present some of our recent results that
show how ILC can be used to force a desired periodic motion in an initially
non-repetitive process: a gas-metal arc welding system. The paper concludes
with summary comments on the past, present, and future of ILC.

9.1 Introduction

Problems in control system design may be broadly classified into two cate-
gories: stabilization and performance. In the latter category a typical prob-
lem is to force the output response of a (dynamical) system to follow a
desired trajectory as close as possible, where “close” is typically defined
relative to a specific norm or some other measure of optimality. Although
control theory provides numerous tools for attacking such problems, it is
not always possible to achieve a desired set of performance design require-
ments. This may be due to the presence of unmodelled dynamics or para-
metric uncertainties that are exhibited during actual system operation or
to the lack of suitable design techniques for a particular class of systems
(e.g., there is not a comprehensive theory of linear quadratic optimal design
technique for nonlinear systems).

Tterative learning control is a relatively new addition to the control en-
gineer’s toolkit that, for a particular class of problems, can be used to
overcome some of the traditional difficulties associated with performance
design of control systems. Specifically, iterative learning control, or ILC, is
a technique for improving the transient response and tracking performance
of processes, machines, equipment, or systems that execute the same tra-
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jectory, motion, or operation over and over. The classic example of such a
process is a robotic manipulator performing spot welding in a manufactur-
ing assembly line. For instance, such a manipulator might be programmed
to wait in its home position until a door panel is moved into place. It then
carries out a series of welds at pre-defined locations, after which it returns
to its home position until the door panel is removed. The entire process is
then repeated. Although robotic operations and manufacturing present ob-
vious examples of situations in which a machine or process must execute a
given trajectory over and over, there are numerous other problems that can
be viewed from the framework of repetitive operations. In these situations,
iterative learning control can be used to improve the system response. The
approach is motivated by the observation that if the system controller is
fixed and if the system’s operating conditions are the same each time it
executes, then any errors in the output response will be repeated during
each operation. These errors can be recorded during system operation and
can then be used to compute modifications to the input signal that will be
applied to the system during the next operation, or trial, of the system.
In iterative learning control refinements are made to the input signal after
each trial until the desired performance level is reached. Research in the
field of iterative learning control focuses on the algorithms that are used to
update the input signal. Note that in describing the technique of iterative
learning control we use the word iterative because of the recursive nature
of the system operation and we use the word learning because of the re-
finement of the input signal based on past performance in executing a task
or trajectory.

In this paper we give an overview of the field of iterative learning control.
We begin with a detailed description of the ILC technique, followed by two
illustrative examples that give a flavor of the nature of ILC algorithms and
their performance. This is followed by a topical classification of some of
the literature of ILC and a discussion of the connection between ILC and
other common control paradigms, including conventional feedback control,
optimal control, adaptive control, and intelligent control. Next, we give a
summary of the major algorithms, results, and applications of ILC given in
the literature. This discussion also considers some emerging research topics
in ILC. As an example of some of the new directions in ILC theory, we
present, some of our recent results that show how ILC can be used to forced
a desired periodic motion in an initially non-repetitive process: a gas-metal
arc welding system. The paper concludes with summary comments on the
past, present, and future of ILC.
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9.2 Generic Description of ILC

The basic idea of iterative learning control is illustrated in Figure 9.1.
All the signals shown are assumed to be defined on a finite interval ¢ €
[0,tf]. The subscript k indicates the trial or repetition number. The scheme
operates as follows: during the k-th trial an input wg(t) is applied to the
system, producing the output y (¢). These signals are stored in the memory
units until the trial is over, at which time they are processed off-line by the
ILC algorithm (actually, it is not always necessary to wait until the end of
the trial to do the processing — it depends on the ILC algorithm you are
using). Based on the error that is observed between the actual output and
the desired output (ex(t) = ya(t) — yx(t)), the ILC algorithm computes a
modified input signal uj41(t) that will be stored in memory until the next
time the system operates, at which time this new input signal is applied
to the system. This new input should be designed so that it will produce a
smaller error than the previous input.

ug
System Yk
Memory| [Memory| Memory|
Learning
Uk41 Controller Yd

FIGURE 9.1. Iterative learning control configuration.

The iterative learning control approach can be described more precisely
by introducing some additional notation. Let the nonlinear operator f :
U — Y mapping elements in the vector space U to those in the vector
space Y be written as y = f(u) where u € U and y € Y. We assume
suitably defined norms on U and Y as well as an induced norm on f(-).
Suppose we are given a system S, defined by y(t) = fs(u(t),t) (here we
assume fs(-,t) is an input-output operator and may represent a dynamical
system in the usual way). For this system we wish to drive the output to a
desired response defined by y4(t). This is equivalent to finding the optimal
input u*(t) that satisfies

r;l(ltl)l llya(t) = fs(u(®), Dl = llyaly) = Fs(u® (@), D).
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In this context, ILC is an iterative technique for finding u*(¢) for the case
in which all the signals are assumed to be defined on the finite interval
[0,¢f]. The ILC approach is to generate a sequence of inputs, ug(t) in such
a way that the sequence converges to u*. That is, we seek a sequence

Uk+1(t) = fL(Uk(t,)vyk(t,)vyd(t,)at)
= fL(uk(t,)vfS(uk(t,))ayd(tl)vt)a t’ € [07tf]7

such that
lim wg(t) =wu™(¢t) for all t € [0,t;].

k—o0

Some remarks about this problem include:

1. In a successful ILC algorithm the next input will be computed so
that the performance error will be reduced on the next trial. The
issue is usually quantified by saying that the error should converge,
with convergence measured in the sense of some norm.

2. It is worth repeating that we have defined our signals with two vari-
ables, k and ¢. The trial is indexed with the integer k, while time is
described by the variable ¢, which may be continuous or discrete.

3. The general algorithm shown introduces a new variable ¢'. This re-
flects the fact that after the trial is complete there is effectively no
causality restriction in the ILC operator fr. Thus one may use infor-
mation about what happened after the input ug (tp) was applied when
constructing the input ugy1(to). The only place this is not possible
is at t = t;. Although we can assume ¢’ € [0, ¢f], realistically we only
need t' € [t,tf] when computing wy41(2).

4. The previous remark is emphasized in Figure 9.2, which illustrates
the distinction between conventional feedback and iterative learning
control. In Figure 9.2(a) it is shown how the ILC approach preserves
information about the effect of the input at each instant during the
iteration and uses that information to compute corrections to the
control signal during the next trial. Figure 9.2(b) shows that in a
conventional feedback strategy the error from the current time step
is used by the controller to compute the input for the next time step.
However, the effect of this decision is not preserved from one trial to
the next.

5. It is usually assumed implicitly that the initial conditions of the sys-
tem are reset at the beginning of each trial (iteration) to the same
value. This has always been a key assumption in the formulation of
the ILC problem.

6. It is also usually assumed by definition that the trial length ¢ is fixed.
Note, however, that it is possible to allow t; — co. This is often done
for analysis purposes.
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FIGURE 9.2. (a) Iterative learning control; (b) conventional feedback
control.

7.

10.

Ideally, as little information as possible about the system fs should
be used in designing the learning controller system f;, (at the least it
should require minimal knowledge of the system parameters).

. Notwithstanding the previous comment, in the case of full plant

knowledge, the problem is solved if the operator fg is left invertible
and time-invariant. In this case simply let u*(t) = f5'ya(t). If the
system is not invertible and y4(t) is not in the image of fs then the
best we can hope for is to find a u*(¢) that minimizes ||yq(t) — y(¢)||
over all possible inputs u(t). The goal of the learning control algo-
rithm is to iteratively find such a u*(t).

. Ideally, the convergence properties of the ILC algorithm should not

depend on the desired response yq(t). If a new desired trajectory
is introduced, the learning controller would simply “learn” the new
optimal input, without changing any of its own algorithms.

In order to show convergence and to ensure stability in actual imple-
mentations, the system S is usually required to be stable. It has been
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noted in the literature that if we initially have an unstable plant,
then we should first stabilize it using conventional techniques. As
we discuss later in the paper, recent research has considered simul-
taneous use of conventional feedback with iterative learning control.
However, the primary role of ILC is to improve performance rather
than to stabilize. As such it is clear that the outcome of an ILC al-
gorithm is derivation of the best possible feedforward signal to input
to the system in order to achieve a desired output. In this sense the
ILC technique produces the output of an optimal prefilter for the
system relative to a given desired output and thus can be considered
a feedforward design technique.

9.3 Two Illustrative Examples of ILC Algorithms

Before discussing the literature of iterative learning control it is proba-
bly helpful to consider some examples of how the ILC algorithms work.
First we will look at a simple linear example. Then we will present a more
complicated example of an ILC algorithm for motion control of a robotic
manipulator.

9.3.1 A Linear Example

Consider the following second-order, discrete-time linear system described
by

y(t+1) = —.Ty(t)—.012y(¢t — 1) + u(t)
y(0) = 2,
y(1) = 2,

This system is stable but always exhibits an “underdamped” behavior by
virtue of the fact that its poles lie on the negative real axis. Suppose we
wish to force the system to follow a signal y; such as that shown in Figure
9.3. This might correspond to a motor velocity trajectory, for example,
where the speed is required to step up and then back down. To apply the
iterative learning control approach to this system we begin by defining
uo(t) = ya4(t). Because we assume no knowledge of the system we wish to
control this is a reasonable definition. Figure 9.4(a) shows the output signal,
denoted yo(t), that results when this input is applied to the system. (for
reference the figure also shows the desired output). From this we compute
eo(t) = ya(t) — yo(t) and a new input signal u;(t) is computed according to

Ul(t) = Uo(t) + .560(t + 1)
for t € [0,t7_1]. At the endpoint, where t = ¢;, we use
(5% (tf) = Uo(t) + .560(tf).
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FIGURE 9.3. Desired system response.

This signal is then applied to the system (which has had its initial condi-
tions reset to the same values as during the first trial) and the new output
is recorded, a new error is determined, and the next input signal us(t) is
computed. The process is then repeated until the output converges to the
desired signal. Figures 9.4(b) and 4(c) show the output signal after five and
ten trials, respectively. It is clear that the algorithm has forced the output
to the required value for each instant in the interval. Note also the result-
ing input signal, u1(t), shown in Figure 9.4(d). It can be seen that the
learning control algorithm has derived an input signal that anticipates the
dynamics of the process, including the two-step deadtime, the oscillatory
poles, and the non-unity DC-gain. Of course, it should be pointed out that
in this example we have set the initial conditions equal to the desired out-
put. Certainly one cannot affect the values of the output that occur before
an input is applied. However, for linear systems, it can be shown that the
algorithm will converge for all time after the deadtime.

9.3.2 An Adaptive ILC Algorithm for a Robotic Manipulator

Because applications of robotic manipulators usually involve some type
of repetitive motion it is natural to consider iterative learning control to
improve the performance of manipulators. In this section we present an
example of an adaptive algorithm for ILC of a robotic manipulator devel-
oped by this author (see [160], for example). Consider the simple two-link
manipulator shown in Figure 9.5. The manipulator can be modelled by

A(Cﬂk)i‘k + B(CE};,C&};)C&}; + C'(J;k) = ug,
where uy(t) is a vector of torques applied to the joints and
(61(t),62())"

Alz) = 54+ .27cosfy 1354+ .135cosb-
- 135 + .135 cos 0 135 ’

N .135sin 6, 0 .
B(z,) = (—,27sin02 —.135(Sin02)02>’

8
—~
~
~
1
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FIGURE 9.4. ILC algorithm behavior: (a) desired output and initial
output; (b) desired output and output on the 5th trial; (c) desired
output and output on 10th trial; (d) input signal on 10th trial.
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Clz) = 13.1625sin 6y + 4.3875sin(6; + 6-)
= 4.3875sin(6; + 65) '

"

ll = l2 =0.3m
my = 3.0kg
me = 1.5kg

FIGURE 9.5. Two-joint manipulator.

To describe the learning controller for this system, first define the vectors

yr = (zp,21,80)",
Ya = (xg)ilgvi'g)T;

to represent the complete system output and desired trajectory, respec-
tively at the k-th trial. The learning controller is then defined by

up = rp—aplyp + C(iL'd(O))
Th+1 = T+ aileg,
apr1 = agp+lex|™

Here T is a fixed feedback gain matrix that has been made time-varying
through the multiplication by the gain ay. The signal r; can be described as
a time-varying reference input. The adaptation of a; combines with ry ()
to form the ILC part of the algorithm. Notice that with this algorithm
we have combined conventional feedback with iterative learning control.
Beyond these definitions, the operation of the system is the same as for
any learning control system. A reference input rg and an initial gain ag are
chosen to drive the manipulator during the first trial. At the end of each
trial, the resulting output error ej is used to compute the reference 741
and the gain ay4q for the next trial. The basic idea of the algorithm is to
make aj, larger at each trial by adding a positive number that is linked to
the norm of the error so that when the algorithm begins to converge, the
gain oy, will eventually stop growing. The convergence proof depends on a
high-gain feedback result [160].
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To simulate this ILC algorithm for the two-joint manipulator described
above we used first-order highpass filters of the form

10s
s+ 10

H(s) =

to es‘pimate the joint accelerations 51 and 52 from the joint velocities 91
and 62, respectively. The gain matrix I' = [P L K] used in the feedback
and learning control law was defined by

50.0 0 65.0 0 25 0
P‘(o 50.0>’L_<0 65.0>’K_<0 2.5)'

These matrices satisfy a Hurwitz condition required for convergence. The
adaptive gain adjustment in the learning controller uses v = .1 and «y is
initialized to 0.01.

Figure 9.6 shows the resulting trajectory of 6; for several trials. It also
shows the desired trajectory. On the first trial the observed error is quite
large, as expected, given that we have no knowledge of the system dynamics,
other than the initial condition. However, only one iteration is needed to
make the output distinctly triangular and by the eighth trial the system
is tracking the desired response almost perfectly. Thus the technique has
derived the correct input signal needed to force the system to follow a
desired signal.

9.4 The Literature, Context, Terminology of ILC

9.4.1 Classifications of ILC Literature

The field of iterative learning control has a relatively small, but steadily
growing literature. Table 9.1 gives a topical classification of general re-
sults in the field and Table 9.2 lists references that are specific to robotics
and other applications. The ordering of the references in these two tables is
roughly chronological and references may be listed more than once, depend-
ing on their coverage of topics. Also, the classification of a given paper into
a particular category(ies) reflects this author’s impression of the paper and
is not necessarily the only possibility. Many of the references listed were
obtained from the Engineering Index and the INSPEC electronic databases
using a search strategy defined by: “control” AND “learning” AND “iter-
ative.” This is, of course, a very restrictive search strategy and it is quite
likely that we have missed some papers. Unfortunately, the large number of
conferences and journals available today make it impossible to be aware of
every contribution on the subject of iterative learning control, which is dis-
cussed in a large number of fields, from robotics, to artificial intelligence, to
classical control, to neural networks. Further, the phrase “iterative learning
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Category

Papers

General/tutorial

Linear systems
Adaptive/identification

Discrete-time
Direct learning

Frequency-domain

General

Multivariable
Non-minimum phase
Norm-optimal
Periodic paramters
Time-delay systems
Time-invariant

Time-varying
Two-dimensional systems

Repetitive control
General
Linear

Discrete

Nonlinear/stochastic
Convergence

Linear

High-gain/nonlinear
Robustness

Linear
Nonlinear

Initial conditions
No-reset
Current cycle feedback
Higer-order ILC
Neural networks
Nonlinear

Discrete
General

Inversion

[160, 169, 140, 162]
[96, 177, 178, 23, 145]

183, 185, 160, 191, 143]
162, 134, 72, 70]
222, 241, 202, 5, 10]
23, 190]

112, 113, 239]

244, 115, 243, 246]
87, 146, 108]

98, 153, 66, 1, 136]
103, 144, 68, 237]
229, 222, 157, 158]
83, 26, 142]

73, 184]

4, 196]

8, 7, 10]

174, 101]

217, 90, 241, 91, 181]
15, 14, 12, 17, 21]
167, 166, 163, 152, 25]
150, 179, 182]

15, 11, 89, 91, 121]
75, 126, 139, 6, 178]
9, 3, 195]

140, 145]

156, 80, 81, 223, 211, 228]
128, 98, 97, 209, 3, 203]
223, 43, 27]

151, 211, 122]

21, 88, 99]

91, 210, 130]

111, 21, 24, 168]
176, 141, 149, 148]

202, 210, 58, 61]
85, 86, 41, 247]

33, 218, 32, 31|
240, 46, 247)

200, 219]

129, 40, 39, 34]
208, 170]

242, 245, 177, 135, 41]
39, 58, 36, 170, 42]
21, 217, 64, 100, 36]
34, 100, 42]

116, 165, 234, 230]
30, 224, 51]

101, 199, 141, 44, 45]

84, 215, 154, 161, 141]

201, 104, 135, 48, 106, 238, 28]
76, 180, 49, 123, 52]

235, 221, 236, 187]

435

TABLE 9.1. Iterative Learning Control Literature: General Results
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FIGURE 9.6. System response for joint angle 0;: (a) desired output and
initial output; (b) desired output and output after 2nd trial; (c) desired
output and output after 4th trial; (d) desired output and output after
8th trial.

control” has only recently become the standard phrase used to describe the
ILC approach and many of the early papers dealing with ILC do not have
all three of these terms in their title. It is inevitable that some work will
be inadvertently omitted. Thus, the citation list has been limited to those
works with which this author is familiar. Note also that Tables 9.1 and 9.2
list only those papers dealing with the ILC approach as we have defined it.
As we discuss below, learning methods in control cover a broader spectrum
than ILC. References dealing with other learning methods and concepts
are not included.

At the risk of offending those who are left out and at the risk of appearing
to lose impartiality, it is also possible to discuss the literature by author.
Such a classification is useful, however, as it gives an idea of the level of
interest in the field. The concept of iterative learning control in the sense
of Figure 9.1 was apparently first introduced by Uchiyama in 1978 [229].
Because this was a Japanese language publication it was not widely known
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TABLE 9.2. Iterative Learning Control Literature: Robotics and Ap-
plications

Category Papers
Robotics
General 15, 13, 16, 55, 235, 11]

109, 222, 157, 158, 19, 54]
111, 112, 77, 82, 113, 164]
56, 24, 174, 155, 168, 205]
22, 95, 248, 249, 204, 146]
96, 67, 102, 242, 207]

125, 117, 194, 124, 118, 18]

Elastic joints 114, 59]
Flexible links 212, 213, 148, 57, 147]
Cartesian coordinates 225, 78]
Neural networks 230, 30, 224]
Cooperating manipulators 254, 216]
Hybrid force/position control 110, 105, 149]
Nonholonomic 175]
Applications

Vehicles 232, 231, 138]
Chemical processing 251, 29, 50]

132, 37, 133]
Machining/manufacturing 137, 119, 47, 250, 79, 120]
Mechanical systems 228, 131, 187, 188]

198, 66, 65, 68]

179, 253, 159, 189]
Miscellaneous 127, 186, 93, 74]

92, 35, 62, 38]

192, 63, 197]

Nuclear reactor 107]

Robotics demonstrations 110, 109, 19, 205, 248, 204]
146, 105, 96, 207, 59, 175]
78, 194, 30]

in the West until the idea was developed by the Japanese research group
of Arimoto, Kawamura, and Miyazaki, particularly through the middle to
late 1980’s [15, 13, 16, 14, 110, 11, 12, 17, 109, 111, 114, 112, 113, 85],

[86, 153, 18, 115]. This author was involved in several new ILC results in the
late 1980’s to early 1990’s [164, 165, 160, 167, 166, 168] [163, 161, 234, 169,
170], including the book Iterative Learning Control for Deterministic Sys-
tems [162]. Also during this period, a research group at the Dipartimento di
Infomatica, Sistemistica in Genoa, Italy, including Bondi, Lucibello, Ulivi,
Oriolo, Panzieeri and others, was quite active [24, 146, 59, 175, 147, 149,
150, 148]. Other early researchers included: Mita, et al. [156, 157, 158],
Craig, et al. [55, 54, 56], and Hideg, et al. [87, 108, 88, 89, 90, 91]. Also
of note is the work of Tomizuka, et al. in the area of repetitive control
[223, 43, 228, 105, 98, 47, 97, 209]. Other active researchers in ILC include
Horowitz, et al. [205, 154, 95, 96], Sadegh, et al. [205, 204, 203, 78], Saab
[201, 199, 202, 200], and C.H. Choi, et al. [250, 104, 48, 49]. A group at
KAIST, centered around Professor Bien, one of the pioneers in ILC re-
search, has made numerous contributions [174, 21, 22, 101, 129, 130, 181].
Another leading research group is based around Professor Longman at
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Columbia University [155, 184, 183, 185, 26, 141, 143, 134, 67, 102, 198],
[68, 142, 99, 136, 237, 103, 144, 66, 65, 140, 145] and Professor Phan of
Princeton [192, 190, 189, 187, 188, 186, 191, 70]. Recently the work of
Amann, Owens, and Rogers has produced a number of new ideas [8, 9, 7,
177,178, 5, 10, 4, 176]. Finally, we mention a very active research group in
Singapore centered around Jian-Xin Xu and Yangquan Chen [242, 245, 241,
41, 40, 239, 39, 240], [83, 36, 37, 38, 35, 62, 63, 42, 138, 219, 244, 243, 246],
[33, 34, 218, 32, 31]. It is interesting to note that at the 2nd Asian Control
Conference, held in Seoul in July 1997, over thirty papers were devoted
to iterative learning control. This was nearly five percent of all the papers
presented. Thus we see that ILC has grown from a single idea to a very
active area of research.

9.4.2 Connections to Other Control Paradigms

Before proceeding to discuss ILC algorithms that have been proposed it
is useful to consider the difference between iterative learning control and
some of the other common control paradigms. We will also clarify some of
the terminology related to ILC.

Consider Figure 9.7, which shows the configuration of a unity feedback
control system, possibly multi-input, multi-output. Here P represents the
system to be controlled and C' denotes the controller. The control system

FIGURE 9.7. Unity feedback control system.

operates by measuring Y, the output of the plant, and comparing it to
the reference input R. The error F is then input to the controller, which
computes an appropriate actuating signal U. This signal is then used to
drive the plant. A typical design problem is to specify a controller for a
given plant, so that the closed-loop system is stable and the output tracks
a desired trajectory with a prescribed set of transient performance char-
acteristics (such as overshoot, settling-time, rise-time, steady-state error,
etc.). Using this figure we may describe a number of controller design prob-
lems:

1. Feedback control via pole placement or frequency domain techniques:
These problems can be described as:
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Given P and R, find C so that the closed-loop has a pre-
scribed set of poles, frequency characteristics, or steady-
state error properties.

This problem is obviously different from the ILC approach, which, as
we have noted, is not a feedback methodology. The iterative learning
controller cannot affect the system poles.

. Optimal control: Most optimal control problems can be generally de-
scribed as:
min || E||
c

subject to: P and R given and to constraints on U.

In optimal control we conduct an a priori design, based on a model
of the system. If the plant changes relative to the model then the
optimal controller will cease to be optimal. Further, the optimal con-
troller operates in a feedback loop. Note, however, that in the case
of a stable plant it may be possible to design an ILC system that
produces the same output as an optimal controller, because both
methods are concerned with the minimization of a measure of the
error. The difference is that the ILC algorithm achieves this by in-
jecting the optimal input U* into the system, as opposed to forming
it by processing the error in real-time. This can be illuminated by
referring to Figure 9.8, which emphasizes in a different way how the
ILC scheme can be viewed as an open-loop control strategy. The key
point is that ILC is a way to derive the signal U*, using information
about past behavior of the system. Figure 9.8 points out the obvious
absence of an explicit controller in the ILC approach.

FIGURE 9.8. Another representation of the ILC approach.

. Adaptive control: On the surface one might think that ILC and adap-
tive control were very similar. The key difference however, is exactly
the difference between Figure 9.7 and Figure 9.8 — the fact that one
lacks an explicit controller. Iterative learning control is different from
conventional adaptive control in that most adaptive control schemes
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are on-line algorithms that adjust the controller’s parameters until a
steady-state equilibrium is reached. This allows such algorithms to
essentially implement some type of standard feedback controller such
as in item (1) above while dealing with parametric uncertainty or
time-varying parameters in the plant. Of course, it is true that if the
plant changes in a learning control scheme, the learning controller will
adapt by adjusting the input for the next trial, based on the mea-
sured performance error of the current trial. However, in a learning
control scheme, it is the commanded reference input that is varied
(in an off-line fashion), at the end of each trial or repetition of the
system, as opposed to the parameters of a controller.

4. Robust Control: Referring again to Figure 9.7, robust control is a
set of design tools to deal with uncertainty in the plant. With this
broad definition one could call ILC a robust control scheme, because
ideally the ILC algorithm does not require information about the
plant. Again, however, ILC is not the same as robust control in that
there is no explicit controller.

5. Intelligent Control: Recently a number of control paradigms have
developed that can be loosely gathered under the umbrella of so-
called intelligent control techniques. These include artificial neural
networks, fuzzy logic, and expert systems. One thing all these have
in common is that they usually involve learning in some form or
another. As such, the phrase “learning control” often arises and in
general ILC as we have described it here can also be classified as
a form of intelligent control. However, it should be made clear that
ILC is a very specific type of intelligent control and involves a fairly
standard system-theoretic approach to algorithms, as opposed to the
artificial intelligence- or computer science-oriented approaches often
found in neural nets, fuzzy logic, and expert system techniques.

Although recently the word “learning” has become almost ubiquitous, it
is, unfortunately, often the cause of misunderstanding. In a general sense,
learning refers to the action of a system to adapt and change its behavior
based on input/output observations. We have noted in [162] that in the
cybernetics literature the term learning has been used to describe the ability
of a system to respond to changes in its environment. Many systems have
this ability at different levels. Thus, when using the term learning control,
we must define the meaning carefully. For ILC we use the word learning in
the sense of the architecture shown in Figure 9.1, where the concern is with
iteratively generating a sequence of input trajectories, ug11 — v*(t). In
addition to the word “learning,” further confusion can arise when placing
it together with the word “control.” This is because the term “learning
control” is not unique in the control literature. Researchers in the fields of
adaptive control [226], stochastic control and cybernetics [206, 172, 173],
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and optimal control [193] have all used the term learning control to describe
their work. Most of these references, however, refer to learning in the sense
of

adapting or changing controller parameters on-line, as opposed to the off-
line learning of ILC. Other authors have considered the general problems of
learning from a broader view than either ILC or adaptation of parameters.
[71, 227] are early works on the subject. [233] gives a recent mathemat-
ical perspective. Several researchers have also considered learning control
as a special case of learning in general, in the context of intelligent sys-
tems [94, 214, 53, 252]. A particularly visionary work in this regard is [2].
We mention one other area in which the phrase “learning control” arises:
reinforcement learning control. Reinforcement learning controllers are so-
phisticated stochastic search engines and are very much an ILC technique
in the sense that we have defined ILC. They work by evaluating the out-
come of an action after the action and its effect are over. The next action
is then chosen based on the outcome of the previous action. Because of the
stochastic nature of this approach we will not discuss it further, but refer
the reader to [20, 69, 220, 161]. Likewise we will not consider any explicitly
stochastic learning controllers [206, 60].

Finally, after saying what ILC is not, we should say what ILC is. Terms
used to describe the process of Figure 9.1 include “betterment process”
(Arimoto’s original description), “iterative control,” “repetitive control,”
“training,” and “iterative learning control.” As in the discussion about
the term “learning,” one must be careful to define what is meant in any
particular usage of a word or phrase. For instance, the term “repetitive
control” is used to mean ILC but is also used to describe the control of
periodic systems (see the discussion in the next section). Also, in [248]
the term “virtual reference” is introduced to describe the optimal input
signal derived by the learning controller. This emphasizes the fact that
ILC algorithms produce the output of an optimal prefilter and what we are
doing in essence is to compute a “virtual” or “not-real” input to try to fool
the system into going to where we want it to go.

9.5 ILC Algorithms and Results

In this section we will describe some of the work in the field of iterative
learning control. Our comments will roughly follow the organization of
Tables 9.1 and 9.2, although some topics will be discussed in a different
order. Also, due to space limitations we cannot individually address each
paper listed in the references and, as in the discussion of the table, the
same caveat applies: it is inevitable that some work will be inadvertently
omitted. However, the results we describe will give a reasonably complete
picture of the status of the field of iterative learning control. We also refer
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the reader to [162], [96], [177], [23], and [145], each of which contains a
significant amount of tutorial information.

9.5.1 Basic Ideas

The first learning control scheme proposed by Arimoto, et al. involved the
derivative of the error ey (t) = ya(t) — yx(t) [L5]. Specifically, the algorithm
had the form

Up+1 = up + Lég.

This is the continuous-time version of the algorithm we gave in the linear
example above:
Ut (t) = up(t) + Cep(t + 1).

For the case a linear time-invariant (LTT) system, with signals defined over
the interval [0,¢/], and with a state-space description (A,B,C), Arimoto, et
al. showed that if CB > 0 and if the induced operator norm || — C'BT|;
satisfies

Il - CBT|; <1,

and some initial condition requirements are met, then
lim yi(t) — ya(t),
k—o0

in the sense of the A\-norm, defined as

lz®)lx = sup {e™ max |z},

0<t<ty <isr
where z(t) is an r-dimensional vector. Arimoto, et al. also gave convergence
conditions for this type of learning control algorithm when it was applied to
time-varying plants and certain nonlinear models encountered in robotics.
In subsequent papers Arimoto and his co-workers proposed a variety of
different learning control algorithms. The primary differences between the
various approaches they have developed is in how the error is utilized in the
learning control algorithm. The most general linear algorithm presented is
found in [11], where the input is updated according to

Ukt+1 = up + Pey +Tég + \If/ekdt.

This algorithm essentially forms a PID-like system for processing the error
from the previous cycle, while maintaining a linear effect on the past input
signal.

Much of the early work in ILC focused on linear operators, with learning
laws of the form:

pg1 = Tuup + Te(yqa — yi),
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where T, and T, are both linear operators. This is really the most general
linear algorithm we might consider because it allows separate weighting
of both the current input and the current error. In [162] we proved the
following sufficient condition:

Theorem For the LTI plant y; = Tsuy, the proposed LTT learn-
ing control algorithm
up+1 = Tyur + Te(ya — y)
converges to a fixed point u*(t) if
1T — TeTsl; < 1.
The fixed point u* is given by
u'(t) = (I = Ty + T.T5) " Teya(t)
and the resulting fixed point of the error is given by

e*(t) = lim (g — ya) = (I = To(I = Ty + T.T) T )ya(t),

for t € [to, ty].

The gist of almost all of the ILC results is related to proper selection of
the learning operators T, and T, for specific classes of systems. In the
remainder of this section we will discuss some of these results.

Optimization-Based Approaches

One approach taken by some authors is to pick 7% so as to force the con-
vergence to follow some gradient of the error. For example, in [222] the
discrete-time learning control algorithm

up+1(t) = ug(t) + Geg(t + 1),

is used, with the gain G optimized using gradient methods to minimize the
quadratic cost of the error

J= %e{(i—l— DQer(i +1).

between successive trials. The authors consider several techniques for choos-
ing G, specifically using the steepest-descent, Gauss-Newton, and Newton-
Raphson methods. The first two result in a constant gain G, giving a learn-
ing controller with exactly the same form as Arimoto, et al. For the Newton-
Raphson method the result is a time-varying gain G, which is different for
each trial. In [73] the update algorithm has the form

*
upy1 = ug + €T e,

where T) is the adjoint operator of the system and € is a time-varying
gain computed from the error and the adjoint to provide a steepest-descent
minimization of the error at each step of the iteration. This work also
explicitly considered multivariable systems.
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Norm-Optimal ILC

A more recent approach to ILC algorithm design has been developed by
Amann, et al. [8, 7, 5, 10]. They compute the change in the input so as to
minimize the cost

Jigr = llersall® + Mluggr — uel®-

It is shown that the optimal solution produces a similar result to that of
[73]:
Upt1 = ug + G epyr,

where G* is the adjoint of the system. Note however, that in Amann’s
algorithm the error is from the current cycle (e.g., ex+1). Thus the resulting
ILC algorithm can be thought of as combining previous cycle feedback (a
feedforward effect) with current cycle feedback (a feedback effect). We will
discuss this more below. A discussion of the convergence of norm-optimal
ILC for discrete-time systems is given in [5, 10].

Frequency-Domain Approaches

Several authors have considered ILC from the frequency domain perspec-
tive. In perhaps the first of these, [157, 158], the input update law is defined
by

Uss1(s) = L(s)[Ui(s) + aBiu(s)).

Convergence is shown in the sense of the Ly norm (time or frequency),
although in [162] it was noted that this algorithm will produce a non-zero
error. Arimoto’s original algorithm is considered in the frequency domain
in [1]. In [146] ILC algorithms with completely independent operators T,
and T, are designed in the frequency domain. Hideg, et al. have considered
a number of frequency domain results for ILC [87, 108]. An interesting
approach to ILC based on the discrete Fourier transform is given in [153].
The DFT is used to get a locally linear representation of the system, which
is then inverted. The results becomes equivalent to those of this author
[162] described in the next paragraph. By far, the definitive works on the
use of frequency domain techniques in ILC have been made by Longman,
et al. See [68, 237, 103, 144], for example. A key concept introduced in
these works is the idea of phase cancellation through learning. An excellent
review of this approach can be found in [145].

Discrete-Time Systems

A number of researchers have considered ILC specifically for discrete-time
systems, primarily motivated by the fact that all practical implementations
will results in a discrete-time ILC algorithm. We have already mentioned
the early work of [222]. More recent analysis of the convergence properties of
the Arimoto-type “D-algorithms” was given in [202]. The issue of instability
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in ILC implementations due to the sampling delay has been considered in
[241, 23].

It is interesting to consider the discrete-time linear case [162]. Consider
again Figure 9.1 and define

up = (up(0),up(1), -, up(N = 1)),
yr = (ye(m),yp(m+1),-- -, yp(N — 1+ m)),
yi = (Ya(m),ya(m+1),--,ya(N —1+m)),
where k£ denotes the trial, m is the relative gain of the linear plant, and vV

is the length of the trial. We will suppose that m = 1. Also, we will use the
truncated /o,-norm, given by

[Zlloo = max |z;
1<i<N

and the corresponding induced norm for a matrix H is given by

N
1 |l: = 1H lloo = max(Y_ [hij)-

J=1

The linear plant can then be described by yi = Huy, where H is a matrix
of rank IV whose elements are the Markov parameters of the plant:

h1 0 0 ... 0
ha hi 0 ... 0
H = h3 h2 h1 0
hy hyn-1 hy—2 ...

For this situation, consider the ILC algorithm:

upy1 = ug + Aeg,

where
a1ya(1) 0 0
2ya(2) aiyq(l) 0
A= | @3ya(3) 2ya(2) 0
anya(N) an—1ya(N —1) ... aiya(l)

In [162] it was shown that there exist gains a; such that |ey|lc — O.
Further, it is possible to rearrange this algorithm

Upt1 = up + Aey,

into the form
ug = Apyd,
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whereAy, is interpreted as an approximate inverse matrix that is updated
at the end of each trial according to

A1 = Ap + AAy,

with
arer(1) 0 0 - 0
arer(2) aser (1) 0 0
AA = | @rer(3) azer(2) asey (1) . 0
arep(N) aser(N —1) asep(N—2) ... ayer(l)

The same result in [162] that shows convergence of the error also shows
that Ay — H 1.

The preceding discussion highlights a key result in ILC: the essential
nature of ILC algorithms is to derive the output of the best possible inverse
of the system dynamics. The same result has appeared in a variety of forms
in several papers. In the case of linear systems, related continuous-time
results are found in [160, 169, 157, 156].

Various Classes of Systems

Much of the work in ILC has focused on applying the basic ILC algorithm
to different classes of systems. We have discussed discrete-time linear sys-
tems above. Other early results in ILC forlinear systems were given by
Arimoto, et al. in various papers [15, 14, 11, 12, 17]. [19] considers learn-
ing control schemes similar to Arimoto at al., with application to linear
robotic manipulator models. [152] uses a coprime factorization approach
to ILC design for linear systems. [150] formulates an ILC algorithm that
involves learning the initial conditions of the plant. A novel application
of ILC for linear systems in given in [25], which formulates a generalized
predictive controller such as often used in process control. A particularly
thorough analysis is given by Amann, et al. in [9], which gives an H, ap-
proach to the design of ILC algorithms. Many of the papers by Arimoto,
et al. also considered time-varying systems, as did the results in [174, 101].
[174] considers a class of linear time-varying plants. They use a parameter
estimator together with an inverse system model to generate the new input
for each trial. Their technique is also applied to the learning control of a
robotic manipulator which looked at periodic variation of plant parame-
ters. [89]considered general LTV multivariable systems. We also mention
specifically [162], which explored the connections between adaptive control
and ILC for linear systems. Other investigations along these lines include
[183, 185, 191, 143, 134, 72, 70] Non-minimum phase systems have been
discussed in [162, 4, 196]. The work in [196] uses the Nevanlinna algorithm
of Hy, control to design an ILC algorithm of the form

Ug11(s) = P(s)Uk(s) + Q(s)Ex(s)
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in the frequency domain. This algorithm is shown to converge, but, as
shown in the more general work of [4], the presence of the RHP zero in
the plant causes slow convergence and a non-zero error. Another class of
problems that has been considered for ILC is systems that exhibit time-
delay [217, 90, 241, 91, 181]. The approach in [90] is to include a delayed
version of the previous cycle error in the update law, resulting in an ILC
algorithm of the form

g1 (t) = ug(t) + aréx(t) + aser(t) + aser(t — 1),

where 7 is the time delay of the linear system. For this system the paper
demonstrates conditions for convergence. Another important issue is the
ability of an ILC algorithm to converge in the face of actuator saturation
constraints. Two works that have considered this problem are [141, 49].

Two-Dimensional Systems Theory

Note that when we combine the plant, expressed in dynamical form as
yp(t + 1) = Tpuk(t), with the learning controller update law wyiq(t) =
Tyug(t) + Telyq(t + 1) — yr(t + 1)] and if we change the notation slightly
we end up with the equation:

y(k+1,t+ 1) = Tp(Tyulk,t) + Te[ya(t + 1) — y(k,t + 1)])

This is a linear equation indexed by two variables: k and ¢. As such it is pos-
sible to apply two-dimensional systems theory to analyze the convergence
and stability properties of the ILC system. This has been investigated by
several researchers. For example, in [126] the problem is considered for a
standard (A4, B, C) state-space representation of linear systems. If T, = T
and T, = K, a constant gain matrix, it is shown that the ILC algorithm
converges if I — CBK is stable. A particularly in-depth discussion of this
approach is found in [75]. [139] considers robustness of ILC algorithms
from the perspective of two-dimensional system theory. Amann, et al. have
also considered two-dimensional analysis [6, 178, 9], using results based
on Lyapunov stability analysis techniques [195]. [3] present an analysis of
repetitive control (see below) using two-dimensional system theory.

Convergence and Robustness

Much of the past and recent work in ILC has focused on demonstrating
convergence of ILC algorithms and analyzing the robustness of the conver-
gence properties. Of course, convergence is implicitly considered in every
paper on ILC appearing in the references. However, some authors have ex-
plicitly considered these issues. In [99] the phenomena of initial convergence
followed by divergence is explored and techniques are given to avoid the
problem. [88] describes the fact that the actual norm used can distort the
true picture of the stability of the ILC algorithm. [91] considers convergence



448 K. L. Moore

for systems with time delay properties. In a result that parallels a number
of results about the performance of ILC, [210] proves that the there exist
no bounded operator T, such that the update law w11 = uy + Tyey, results
in exponential convergence for linear systems. However, the paper shows
that by introducing a digital controller it is possible to achieve exponential
convergence in exchange for certain non-zero residuals. Much of the most
well-developed work regarding convergence is by Amann, et al. Be careful
to note, however, that the ILC update law used in much of this work is
not the same as the one we used in most of this paper. Rather, Amann’s
work uses current cycle feedback along with previous cycle feedback. One
of the main approaches to studying convergence in ILC is to invoke high-
gain results. In the robotics example given above, the convergence proof
is based on the fact that when the adaptive gain ay, gets big enough then
the ILC algorithm will converge. Amann explores this carefully in several
papers (see [8], for example). Other references in which a high-gain condi-
tion is invoked are listed in Table 9.1. One of the new directions for the
study of convergence is to consider modification to the ILC update law.
For instance, in [21] the authors use errors from more than one previous
cycle to update the input. By doing this they show that convergence can
be improved. This is called higher-order ILC.

Associated with the question of convergence is that of robustness. Gen-
erally, the results that are available consider a convergent ILC algorithm
and study how robust its convergence properties are to various types of dis-
turbances or uncertainties. Much recent work has focused on mis-match in
initial condition from trial to trial. [86] computed error bounds due to the
effects of state and output noise as well as initial condition mis-match. In
[129] a very good analysis of this effect is given and it is shown how undesir-
able effects due to mismatch can be overcome by utilizing a previous cycle
pure error term in the learning controller. [202] considers robustness and
convergence for a “D-type” ILC algorithm. A condition is given for a class
of linear systems to ensure global robustness to state disturbances, mea-
surement noise, and initialization errors. Another approach to robustness
has been to combine current cycle feedback with previous cycle feedback
[41, 40]. In particular, in [40] a typical “D-type” ILC algorithm is com-
bined with a scheme for learning the initial condition. This information is
then used to offset the effect of the initial condition mis-match. For linear
systems, [139] shows how to use H,, theory in a two-dimensional systems
theory framework to address modelling uncertainty.

9.5.2  Nonlinear Systems

Most of the basic results described above were derived primarily for linear
systems. However, researchers have also considered the learning control
problem for different classes of nonlinear systems. Of particular interest
to many researchers are the classes of nonlinear systems representative of
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robotic manipulator models. However, ILC for nonlinear systems has also
been considered independent of robotics.
Suppose now that our system is defined by

yi(t) = fr(uk(t),t),

where fp is a nonlinear function. According to our problem statement we
seek a system f7, such that the sequence

upt1(t) = fr(ue(t), ye(t),ya(t), t) — uw*(t),

where the optimal input v*(¢) minimizes the norm of the final error

1ya(t) = fp(u™ (), 1)

To deal with this problem, we can seek a contraction requirement to develop
sufficient conditions for convergence. This is the approach of almost every
result available in the literature that deals with nonlinear learning control.
Suppose that we have uy(t) € U, where U is an appropriately defined space.
Then for the learning algorithm

Uk+1 = fL(ukafP(uk)ayd)a

we will obtain convergence if for all z,y € U there exists a constant 0 <
p < 1 so that

I fr(z, fp(x),ya) — fL(y, fr(v),ya)ll < pllz —yl|.

The question that can then be posed is the following: what conditions on
the plant and the learning controller will ensure that the iteration is a con-
traction mapping? The papers listed in Table 9.1 present various answers
to this question and are primarily distinguished by the different restrictions
that are placed on the system. Several representative examples are given
in the next few paragraphs.

[235, 221, 236] apply the idea of learning control to the problem of de-
termining the inverse dynamics of an unknown nonlinear system. In [221]
the following ILC algorithm is proposed:

g1 = Uk + (Ya — Yr)-

This is a simple linear learning control algorithm, with unity weighting on
both the current input and the current error. If y, (t) = fp(ug), where fp(-)
is continuous on the interval of interest, then convergence is guaranteed if

1= fp)l <1

for all inputs u € S, where S is convex subset of the space of continuous
function and fp(u) is the derivative of fp with respect to its argument
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w. This result gives a class of systems for which the ILC algorithm will
converge.

However, the previous result is very general and is not always easily
checked. Less general results can be obtained by restricting the plant and
the ILC algorithms to have a more specific structure. Let the plant be
described by

T = a(xk,t)+bp(t)uk,
yr = c(zp,t) +dp(t)ur,

with a(z,t) and c(x,t) Lipschitz in their arguments. Let the ILC update
law be

Vp = Ac(t)’l)k + Bc(t)ek,
Uk+1 = Cc(t)l'k + Dc(t)ek + ug.

For this setup, convergence can be shown if [215]
I = dp(t)De(®)]| < 1.

Notice that this result depends only on the direct transmission terms from
the plant and the learning controller.
A similar results was given in [84]. For the system

Ty = f(zp,t) + Bz, t)ug,
ye(t) = gz, t),

with a learning algorithm given by
up+1 = up + L(yx) (Ga — Un),

it is shown that convergence is obtained if f(-) and B(-) are Lipschitz and
L(-) satisfies

We can see that this convergence condition has the same form as in the
other examples.

An alternative to applying contraction mapping conditions is to use Lya-
punov analysis. This is typical in the analysis of learning in neural networks,
which can be considered a type of learning control problem. This is also
the approach taken in the convergence analysis of a novel learning control
scheme proposed in [154]. The technique is based upon a new method of
nonlinear function identification. As in the case of contraction mapping
techniques, however, the use of Lyapunov analysis techniques requires that
we place varying levels of assumptions on the plant and the learning con-
troller in order to obtain useful convergence conditions. The three examples
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above give an idea of the types of analysis and results available for nonlin-
ear ILC. Interested readers can consult the references listed in Table 9.1 for
additional information. We have previously noted in [162] that there is not
a unifying theory of iterative learning control for nonlinear systems. This
does not seem to have changed as of this writing. Results from contraction
mapping or Lyapunov techniques usually provide sufficient, but general
conditions for convergence, which must be applied on a case-by-case basis.
To obtain more useful results it is often necessary to restrict our attention
to more specific systems, as in the examples above. One example of this is
the problem of learning control for robotic manipulators. By assuming that
the nonlinear system has the standard functional form typical of a manip-
ulator, researchers have been able to establish specific learning controllers
that will converge. We mention as a final comment that many researchers
have begun to use neural networks as one tool for nonlinear ILC. In most
papers, for instance [234], by this author, the results show an approach
that works, but there is little analysis to say why it works. Consequently,
it is our view that the more general problem of ILC for nonlinear systems
is still an open area of research.

9.5.3 Robotics and Other Applications

We have noted several times that robotics is the natural application area
for ILC. Arimoto, et al.’s original work included a discussion of learning
control for robotics and others have independently proposed similar learn-
ing and adaptive, motivated by robotic control problems [55, 56, 54]. It is
beyond the scope of this single paper to discuss ILC for robotics in any
suitable detail. The interested reader can refer to the references in Table
9.2 to identify papers dealing with different aspects of ILC and robotics.
In particular, we recommend [96], which contains a good summary of ILC
for robotics. Also, to get a flavor for the types of algorithms that are used,
the reader may refer back to the representative example of an ILC algo-
rithm applied to a simulated two-joint manipulator that was given earlier
in the paper. See also [24], which first gave the high-gain feedback, model-
reference approach to learning control that motivated the adaptive result
presented in the example. It should be clear from Table 9.2 that researchers
have considered a wide-variety of problems in robotics. It is also interest-
ing to point out the large number of actual demonstrations of ILC using
robots. Indeed, in [248] an incredible demonstration of an ILC algorithms
is reported in which a robot arm iteratively learns to catch a ball in a cup
(the Japanese Kendama game).

In addition to robotics, iterative learning control has been applied to an
increasing number of applications, as shown in Table 9.2. Most of these
have been to problems that involve repetitive or iterative operations. For
instance, in chemical processing, ILC has been applied to batch reactor
control problems, which is inherently an iterative activity [251, 50, 132].
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Other applications emphasize learning on-line based on rejection of peri-
odic or repeatable errors that occur during normal step changes or other
operational procedures [232, 231, 127, 107]. Many of these consider periodic
systems and apply ILC to solve disturbance rejection or tracking problems,
including applications for controlling peristaltic pump used in dialysis [93],
coil-to-coil control in a rolling mill [74], vibration suppression [92], and a
nonlinear chemical process [29]. Motion control of non-robotic systems has
also attracted a significant amount of research effort for ILC applications,
including a scanner driver for a plain paper copier [253], a servo system
for a VCR [131], a hydraulic servo for a machining system [47], an in-
verted pendulum [179], a cylindrical cutting tool [79], CNC machine tools
[228, 119, 250, 120], and an optical disk drive [159]. [137] also describes an
application to self-tuning a piezo-actuator. Following the next section we
apply some new approaches to learning control to a gas-metal arc welding
problem [170].

9.5.4 Some New Approaches to ILC Algorithms

In this section we will discuss three specific emerging areas in ILC research.
The first is the intersection between repetitive control and ILC, which has
led to the idea of “no-reset” or “continuous” ILC. The second area is the
development of ILC algorithms that do not fit the standard form of ug4; =
Tyuy + Teer. We end with what has been called “direct learning control.”

Repetitive Control and No-Reset/Continuous ILC

Strictly speaking, repetitive control is concerned with cancelling an un-
known periodic disturbance or tracking an unknown periodic reference sig-
nal [96]. The solutions that have been developed in the literature tend to
focus on the internal model principle to produce a periodic controller [80].
As such, the repetitive controller is a feedback controller as opposed to
the ILC scheme, which ultimately acts as a feedforward controller. Other
differences include the fact that the ILC algorithms act on a finite hori-
zon whereas the repetitive controllers are continuous and the fact that the
typical assumption of ILC is that each trial starts over at the same initial
condition whereas the repetitive control system does not start with such
an assumption. Despite these differences however, it is instructive to con-
sider the repetitive control strategy (a good summary of repetitive control
design is found in [128]), because the intersection between the strict defi-
nitions of repetitive control and ILC is a fertile ground for research. It is
also interesting to note that the topical breakdown between the two fields
is very similar, with progress reported in the field of repetitive control for
linear systems [156, 80, 81], multivariable systems [203], based on model-
matching and 2-D systems theory [3], for discrete-time systems explicitly
[97, 223, 43, 27], using frequency domain results [98, 211], nonlinear sys-
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tems [151], and stochastic systems [43, 122]. Also note that the connections
between ILC and repetitive control are not new. In particular, see many
of the works by Longman, et al. ([145], for example), which make it clear
that ILC and repetitive control are really the same beast.

To illustrate how ILC and repetitive control are similar, we consider a
simulated vibration suppression problem. Consider a simple system defined
by

y(t) = Kp(u(t) + Tad(t))
where we define
Kde—Tds

Ta=Gals) = 2 37

Thus the system consists of a constant gain plant with an additive distur-
bance that is delayed and attenuated before it is applied to the plant. We
suppose d(t) is periodic (sinusoidal) with a known frequency. Suppose we
wish to drive the output of the system to zero. It is clear that after all
transients have died away the output will be periodic with the same period
as the disturbance. This suggests a way to apply an ILC-like algorithm to
the problem. We simply view each cycle of the output as a trial and apply
the standard ILC algorithm. Because the output is periodic we can expect
to have no problem with initial conditions at the beginning of each “trial.”
The typical ILC update would be:

’U,k+1(t) = Uk(t) + T.ey, (t)

However, assuming a period of N, we know that w11 (t) = ug(t+ N) (after
the transients have died out). Thus the update law is effectively:

u(t + N) = u(t) + Tee(t)

or, alternately,
u(t) =u(t — N) + Tee(t — N).

But, this is simply a delay factor, as depicted in Figure 9.9, and this last
equation is what has been called “... the familiar repetitive control law...” in
[203]. Thus our ILC algorithm reduces in this case to a repetitive controller.
Regardless of the implementation of the algorithm, the resulting controller
easily suppresses the disturbance from the output, as shown in Figure 9.10.

From this example one can see that ILC applied to a periodic, continuous-
time situation is equivalent to repetitive control. This has been addressed
recently by several researchers. The idea is called “no-reset” ILC in [208]
because the system never actually starts, stops, resets, and then repeats.
Rather, the operation is continuous. This suggests calling an ILC approach
to such a control system to be a “continuous” iterative learning controller.
Below we give an example of an extended version of the idea for a system
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FIGURE 9.9. A periodic representation of the ILC algorithm.

that is not periodic, but rather is chaotic. As we comment in the conclu-
sions, the study of continuous ILC algorithms is a very promising research
area.

Current Cycle Feedback and Higher-Order ILC

The standard ILC algorithm that we have described generally has the form:

Uk41 (t) = Tuuk (t,) + Teek (t’),

where t' € [t,tf] and where we will assume for now that T, and T, are
general operators and could possibly be nonlinear. There have been two
distinct modifications to this equations that have been presented in the
literature:

1. Higher-Order ILC: This was first suggested in [21] and has also been

called “multi-period” ILC in [242, 245]. The algorithm has the form:
wpr1(t) = Tyup(t) + Teyep(t) + Tepep_1 (F') + -

That is, our update law is now looking back past the most recent
previous cycle to bring in more data about the past performance of
the system. In [21] it is noted that this modification can improve the
rate of convergence. Note that this is also a natural algorithm when
viewing the ILC process from the perspective of two-dimensional
systems theory. Other works that consider higher-order ILC include
[217, 64, 100, 36, 34, 100, 42].

Current Cycle Feedback: An idea that goes back at least as far as
1987 [83] is to combine iterative learning control with conventional
feedback control. This has been done in a couple of different ways.
Algorithms in [242, 245, 135, 41, 39, 58] and others update the input
according to

U}H_l(t) =T,ug (t’) + Teffek (t/) + Tefl,ek+1(t)-
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FIGURE 9.10. System response for continuous ILC example: (a) dis-
turbance input; (b) output signal; (¢) ILC produced input signal.

Thus we have simply added the error from the current cycle to the
ILC algorithm. In such a scheme it is easy to show for a plant T}, and
with T\, = I the sufficient condition for convergence becomes:

||(I+TpTefb)71(I_TpTeff)” <1

Thus we see a combination of the normal ILC convergence condition
with a more common feedback control type expression. Amann, et
al. have given a slightly different form of the current error feedback
algorithm:
U41 (t) =T, ug (t’) + Teek+1 (t,).

This expression does not explicitly use past cycle error information,
but does keep track of the previous inputs. Most of the results on
norm-optimal ILC by Amann, et al. use this form of an update algo-
rithm. An obvious advantage of either of these current error feedback
algorithms is that it is possible to ensure stability in both trial con-
vergence and with respect to time relative to the closed-loop system.
Others to consider current cycle feedback include [36, 170, 42].
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Figure 9.11 gives a graphical representation of these two different strategies
that shows pictorially where in time the values that are used in the update
equation are taken from. Notice also that these two major modifications

Trial (k-1)
Error
]
-1 tt+l
Input
~| | L]
1t t+1
@
Error
LI T tm \:1 Ut
Input | \ /\*\
I"'||||"' I“'||||"' "'|||| :
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(b)

FIGURE 9.11. Two new ILC strategies: (a) higher-order learning con-
trol; (b) current cycle feedback.

can be combined to give what may be the most general form of an ILC
algorithm:

ugpr1(t) = Tryer+1 (t) + Tyus (tl) + Telek(t’) + Tegek—l(t,) + -

This algorithm was considered by Xu in [36, 42]. With such an algorithm
it may be possible to take exploit the advantages of both the current error
feedback and the higher-order elements. This will certainly be an important
area for additional research.

Direct Learning

One final category that we would like to address is what has recently been
called “direct learning” [239]. The concern in this area of study is that
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once an ILC algorithm has converged and is then presented with a new
trajectory to follow it will lose any memory of the previous trajectory, so
that if it is presented again it will have to re-learn. Of course, in practice we
may keep track of the optimal input U* corresponding to different desired
outputs, but at a more fundamental level, this represents a shortcoming of
the ILC approach. Arimoto, et al. considered this in some earlier papers
[112, 113]. Also, in [162] an approach was given for “learning with memory.”
Recently, however, the problem was posed in two interesting ways:

1. Can we generate the optimal inputs for signals that have the same
shape and magnitude, but different time scales by learning only one
signal [239, 243]?

2. Can we generate the optimal inputs for signals that have the same
shape and time scales, but different magnitudes [246]?

At this time there are no definitive conclusions that can be drawn, but this
will be an important research area in the future (see also [244, 115]).

9.6 Example: Combining Some New ILC
Approaches

In the previous section we ended by describing a number of new approaches
to ILC. In this section we given an example of an ILC algorithm that com-
bines the ideas of current cycle feedback and continuous ILC to develop
a controller for a nonlinear, chaotic system in which the goal is to force
a prescribed periodic motion. We have noted that two of the fundamen-
tal assumptions associated with iterative learning control are that (1) each
trial has the same length and (2) after each trial the system is reset to
the same value. The learning controller we illustrate here does not require
these assumptions. Our design is motivated by the problem of controlling
a gas-metal arc welding process. In this process the time interval between
detachments of mass droplets from the end of a consumable electrode is
considered to be a trial. This interval, as well as the mass that detaches,
is deterministically unpredictable for some operating points. Our control
objective is to force the mass to detach at regular intervals with a uni-
form amount of mass in each detached droplet. Thus our problem can be
cast in an iterative learning control framework where both the trial length
and the initial conditions at the beginning of each trial are non-uniform.
However, by careful consideration of when the trial ends, relative to when
we desire the trial to end, it is possible to force the time of the trial to
the desired value, using a cascaded, two-level iterative learning controller
combined with a current error feedback algorithm that performs an ap-
proximate feedback linearization relative to one of the input-output pairs.
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9.6.1 GMAW Model

In [171] the following simplified model of the gas-metal arc welding process
(GMAW) is given:

5&1 = I3

1
iy = ——(—2.52; —107° F+1I?
) m(t)( I1 Tro + + )
m = kQI + k5[2Ls

Reset condition:

P m(t) if m <25
m(t) = m(1 — 0.8(+—1m5) +0.125) otherwise

Tfe 10o2

Here z; denotes the position of a droplet of molten metal growing on the
end of the welding wire, x5 is its velocity, and the mass of the droplet is
m. The system is forced by F' = 1, which represents various gravitational
and aerodynamic forces, and two other inputs: I, which is the current
from the welding power supply, and Lg, which denotes the distance the
wire protrudes from the contact tube of the welding system (simply called
stickout). The other feature of the model is the “reset” condition, reflecting
the fact that after the droplet grows to a certain size it detaches. In this
example we simply use a fixed constraint for detachment, although in reality
the condition is variable. After detachment some mass remains attached to
the end of the wire, resulting in a new droplet that begins growing until it
detaches. The amount of mass that remains behind is a key to the dynamic
behavior of the process. In the model above we have made the mass that
detaches proportional to a sigmoidal function of droplet velocity. We also
reset the velocity and position to zero whenever the mass detaches. This
produces a model that in fact closely emulates a real GMAW process in
what is called the globular mode. Figure 9.12 gives a typical uncontrolled
response of the mass for this model, where I =1 and Ls = 0.1.

9.6.2 ILC-Based Control Strategy

As noted above, our control objective is to force the mass to detach at
regular intervals with a uniform amount of mass in each detached droplet.
This implies the desired waveform for the mass of the droplet as shown in
Figure 9.13. This waveform has a maximum equal to the value at which the
GMAW model resets. This is a simplification that we will relax in future
work.

In considering ways to control the GMAW process, one idea was to con-
sider a droplet detachment as an event. This in turn led to the idea of
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FIGURE 9.12. Uncontrolled response of the GMAW model.

FIGURE 9.13. Desired mass waveform.

viewing each detachment event as a trial, which then motivated us to con-
sider an ILC approach. Specifically, the time interval between detachments
of mass droplets from the end of the consumable electrode is considered to
be a trial. Because this interval and the amount of mass that detaches is
deterministically unpredictable for some operating points one would think
that we could not use ILC because of having violated the basic ILC as-
sumptions of requiring both the trial length and the initial conditions at
the beginning of each trial to be uniform. Nevertheless, as we show below
it is possible to control the process to follow the desired mass waveform
using an ILC approach.

A standard ILC-type algorithm for updating the control inputs for the
GMAW system dynamics without the reset condition, and with a fixed trial
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length might have the form:

Ty ()
L1 ()

I (t) + kpek(t +1)
L (t) + kaer(t +1)

where k denotes the trial and e = my(t) — m(t) is the mass error. The
difficulty with direct application of such an algorithm in the case of the
GMAW system is that in general each trial (i.e., time between detachments)
may have a different length. A second difficulty is that the mass may not
always reset to the same value. A third difficulty is that the system is
unstable. These problems are addressed separately in our ILC algorithm:

1. Unstable Dynamics: First, the fact that our system is unstable leads
us to introduce what is often called current cycle feedback [23]. For
this system we assume both mass and velocity can be measured. We
then use an approximate feedback linearization controller to control
the droplet velocity by adjusting the current. This controller com-
pensates for the division by m(¢) in the velocity dynamics by mul-
tiplying the current by the square root of the mass (using physical
information about the process that allows us to know the functional
form through which current influences the dynamics). Notice that it
is necessary with this model to assume measurement of velocity. A
scheme based only on mass will not work because the velocity state
is not, observable from mass measurements.

2. Non-uniform reset value: Again using knowledge of the physics of the
process, at each trial we use a simple ILC routine to adjust the set-
point of velocity based on the error in the reset value at the beginning
of the trial.

3. Non-uniform trial length: There are four cases that might arise in
trying to control the detachment interval in the GMAW system:

(a) The actual mass resets before the desired waveform resets.

(b) The actual mass resets after the desired waveform resets.

(c) Both the actual and the desired mass waveform reset simulta-
neously.

(d) Neither the actual or the desired mass waveform have reset.

Here the term reset refers to a trial completing (i.e., the mass drops
off and the system resets). Space limitations prohibit a complete ex-
planation of the reasoning behind the approach we have developed
to handle the non-uniform trial length. Basically, the approach is as
follows:
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(a) If the actual mass resets before the desired mass, then reset the
desired mass and continue, using a typical ILC update algo-
rithm.

(b) If the desired mass resets before the actual mass, then (1) set
the inputs and the desired mass to some fixed waveform (e.g., a
nominal constant); (2) continue until the actual mass resets; (3)
reset the desired mass when the actual mass resets and continue
using a typical ILC update algorithm.

(c) If the actual mass on previous trials has always reset at a time
less that the desired reset time, then the first time the system
goes past the longest time the system had ever previously run
the ILC algorithm will not have an error signal to use. To handle
this all errors should be initialized at zero and updated only as
data becomes available.

What is happening in item (b) is that if the actual system has not
reset by the time we want it to, we simply suspend the ILC algorithm.
That is, it should not be doing anything at time greater than the
period of the desired output waveform. Thus, we just provide the
system a nominal input and wait until the actual mass resets. We
then continue, computing the errors for our ILC algorithm from the
beginning of the past trial. Likewise, in item (c) we wish to ensure
that, if the duration of the previous trial was shorter than desired,
but the current trial’s length is longer than the previous trial’s length,
then we do not compute changes to the input for times greater than
the previous trial (because then you would actually be in the current
trial).

4. ILC algorithm to adjust the slope: The final piece of our controller is
the use of a standard ILC algorithm to update the stickout based on
errors from the previous trial. We do not adjust the current, which
is dedicated to controlling the velocity using current (present) error
feedback.

Algorithmically, the ILC procedure can be represented in terms of a new
quantity, called the “duration.” The duration, denoted as t4;,, is the length
of trial k. Using this notation, and defining the desired mass to be mg(t),
the desired trial length to be t44, and the starting time of each trial to be
tsy, the ILC algorithm can be written as:

~N

—~

o~

=
|

(IFP(t = 1) = ks (Vspr, — v(t — 1))
+ha(Vspr — v(t)))*/?
Vspr = Vspr—1 —ks(ma(tsy)) —m(tsy))
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I(t) = It)(m(t)"?
Ls(t —tag—1)
+ka(rha(t —tar— +1)
Ls(t) = =1t = tag—1 +1))  if (¢ —tsp)
< tag—1
Ly(t-1) otherwise

It should be emphasized again that the desired mass waveform is defined
according to when the actual trial ends relative to the desired trial length.
If the actual trial ends then the desired mass is reset to its initial value as
the next trial begins. If the trial lasts longer than the desired length then
the desired mass is set as follows (and, the ILC algorithm for stickout is
discontinued until the next trial begins):

ma(ty = § Malt=te) A (£ = ta) <tag
‘ Mdmax otherwise

Figure 9.14 shows a sample simulation of the ILC algorithm applied to
the same open-loop system shown in Figure 9.12. It can be seen that the
frequency of the system is locked into the desired frequency within less than
ten trials (detachments events). Note that for our algorithm and desired
mass waveform it is essential that both the error between the actual and
desired mass waveform and the derivative of the error go to zero. This is
because we are resetting the desired waveform to its initial value each time
a detachment event occurs.

The results we have presented here are very promising, especially from
a theoretical perspective. The idea of a variable trial is novel in the area
of iterative learning control, as is the idea of a variable initial condition
at the beginning of each trial. There are a number of things that we are
planning as a follow-on to this work. We are currently working to relax
the assumption of a fixed reset criteria. We have also begun to develop a
theoretical explanation for the effectiveness of our algorithms. This includes
establishing the class of systems to which the technique can be applied as
well as studying convergence. Finally, we are considering application of
these ideas to develop the notion of a generalized phase-locked, frequency-
locked loop for nonlinear systems.

9.7 Conclusion: The Past, Present, and Future of
ILC

In this paper we have given an overview of the field of iterative learning
control. We have illustrated the essential nature of the approach using sev-
eral examples, discussions of descriptive figures, and through a discussion
of the connection between ILC and other common control paradigms. We
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FIGURE 9.14. System response using the iterative learning control
algorithm: (a) mass; (b) velocity; (c) error; (d) derivative of error; (e)
current; (f) stickout.

have given a comprehensive introduction to the literature, including a top-
ical classification of some of the literature and a summary of the major
algorithms, results, applications, and emerging areas of ILC.

Because ILC as a distinct field is perhaps less than fifteen years old, it
is difficult to assess its past history, its present value, and the potential fu-
ture impact it may have in the world of control systems. Regarding the past
of ILC, it is clear that the pioneering work of Arimoto and his colleagues
stimulated a new approach to controlling certain types of repetitive sys-
tems. The concept of iterative learning is quite natural, but had not been
expressed in the algorithmic form of ILC until the early 1980’s. As we have
described in this paper, early work in the field demonstrated the useful-
ness and applicability of the concept of ILC, particularly for linear systems,
some classes of nonlinear systems, and the well-defined dynamics of robotic
systems. The present status of the field reflects the continuing efforts of re-
searchers to extend the earlier results to broader classes of systems, to apply
these results to a wider range of applications, and to understand and inter-
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pret ILC in terms of other control paradigms and in the larger context of
learning in general. Looking to the future, it seems clear to this author that
there a number of areas of research in ILC that promise to be important.
These include:

1.

Integrated Higher-Order ILC/Current-Cycle Feedback: We have noted
that by including current-cycle feedback together with higher-order
past-cycle feedback it is possible to simultaneously stabilize and achie-
ve the desired performance, including possible improvements in con-
vergence rates from the system. However, more work is needed to
understand this approach.

Continuous ILC/Repetitive Control: This is one of the most impor-
tant areas for future research. The last example presented above
shows the value of such an approach. What is needed now is to under-
stand how the technique can be made more general. Also it must also
be reconciled with the more strict definitions of repetitive and peri-
odic control. However, a particular vision of this author is that ILC
can be used in a continuous situation when the goal is to produce
a periodic response so as to produce what can be called a nonlin-
ear, phase-locked, frequency-locked loop. This can lead to significant
applications in motor control (pulse-width modulated systems) and
communications.

Robustness and Convergence Analysis: What is still needed is more
rigorous and more conclusive results on when algorithms will converge
and how robust this convergence will be. Such information can be
used to develop comprehensive theories of ILC algorithm design.

System-Theoretic Analysis: In the same vein as robustness and con-
vergence, more work is needed to characterize the capabilities of ILC
algorithms. One such analysis is extend the 2-D analysis that some
authors have applied to linear systems to the nonlinear case in order
to provide combined global convergence and stability results. Another
is to explore the connections with other optimal control methodolo-
gies. As an example, if one poses the problem of Ly minimization of
error on a fixed interval [0,¢f] and solves it using ILC, one would
expect the resulting u*(¢) to be the same as the u*(¢) that results
from solving a standard linear quadratic regulator problem on the
same interval. It would also be interesting to consider the same type
of comparison for mixed-sensitivity problems that do not have an-
alytical solutions to see if it is possible in such cases to derive the
optimal input using ILC. These same comments also apply to ILC
for nonlinear systems.

Connections to More General Learning Paradigms: One of the im-
portant areas of research for ILC in the future will be developing
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ways to make it more general and understanding ways to connect it
to other learning methodologies. The ILC methodology described in
this paper can be described as “trajectory learning.” Unfortunately, if
a new trajectory is introduced, the algorithms typically “forget” what
was learned in previous learning cycles. As we have noted, some re-
searchers have considered this problem [112, 113, 239] but there is
much more work to be done. Of particular importance is to connect
ILC with some of the object-oriented approaches to learning that are
being developed in the artificial intelligence community.

6. Wider Variety of Applications: There will almost certainly be a wider-
variety of applications of ILC in the future, particularly as more re-
sults are developed related to continuous and current-cycle ILC.

In short, iterative learning control is an interesting approach to control
based on the idea of iterative refinement of the input to a system based
on errors recorded during past trials. It has had a stimulating period of
development up to its present state-of-the art and it has a promising future,
with numerous areas open for continued research and application.
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