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S U M M A R Y
Difference geophysical tomography (e.g. radar, resistivity and seismic) is used increasingly
for imaging fluid flow and mass transport associated with natural and engineered hydrologic
phenomena, including tracer experiments, in situ remediation and aquifer storage and recov-
ery. Tomographic data are collected over time, inverted and differenced against a background
image to produce ‘snapshots’ revealing changes to the system; these snapshots readily provide
qualitative information on the location and morphology of plumes of injected tracer, remedial
amendment or stored water. In principle, geometric moments (i.e. total mass, centres of mass,
spread, etc.) calculated from difference tomograms can provide further quantitative insight
into the rates of advection, dispersion and mass transfer; however, recent work has shown
that moments calculated from tomograms are commonly biased, as they are strongly affected
by the subjective choice of regularization criteria. Conventional approaches to regularization
(Tikhonov) and parametrization (image pixels) result in tomograms which are subject to arte-
facts such as smearing or pixel estimates taking on the sign opposite to that expected for
the plume under study. Here, we demonstrate a novel parametrization for imaging plumes
associated with hydrologic phenomena. Capitalizing on the mathematical analogy between
moment-based descriptors of plumes and the moment-based parameters of probability distri-
butions, we design an inverse problem that (1) is overdetermined and computationally efficient
because the image is described by only a few parameters, (2) produces tomograms consistent
with expected plume behaviour (e.g. changes of one sign relative to the background image),
(3) yields parameter estimates that are readily interpreted for plume morphology and offer
direct insight into hydrologic processes and (4) requires comparatively few data to achieve
reasonable model estimates. We demonstrate the approach in a series of numerical examples
based on straight-ray difference-attenuation radar monitoring of the transport of an ionic tracer,
and show that the methodology outlined here is particularly effective when limited data are
available.
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1 I N T RO D U C T I O N

Recent advances in geophysical instrumentation, inversion ap-
proaches and software have enabled unprecedented insights into di-
verse, natural and engineered hydrologic processes including trans-
port of ionic tracers (e.g. Slater et al. 1997; Kemna et al. 2002;
Day-Lewis et al. 2003; Vanderborght et al. 2005; Cassiani et al.
2006; Day-Lewis et al. 2006; Singha & Gorelick 2006), infiltration
(e.g. Binley et al. 2001; Deiana et al. 2008; Looms et al. 2008a,b;
Nimmo et al. 2009), submarine groundwater discharge (Swarzen-
ski et al. 2006, 2007; Nguyen et al. 2009; Henderson et al. 2010),
aquifer storage and recovery (Singha et al. 2007) and in situ engi-

neered aquifer remediation (e.g. Lane et al. 2004; Williams et al.
2005; Lane et al. 2006; Hubbard et al. 2008; Chen et al. 2009;
Williams et al. 2009; Johnson et al. 2010). In much of this work,
difference tomographic imaging is used to produce tomograms that
are interpreted as ‘snapshots’ of changes to pore-fluid properties
through time (e.g. Kemna et al. 2006). The ability of difference
tomography to resolve a plume—or any target—depends on (1) the
physics underlying the measurements (e.g. electrical conduction or
seismic wave propagation) and approximations made in the forward
model for inversion, (2) the survey geometry and acquisition rate,
which are commonly limited in geophysical problems, (3) the mea-
surement errors, (4) the parametrization of the inverse problem, (5)
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the regularization criteria, if any, used to make the problem well
posed and (6) other prior information used in the inversion. The re-
solving power of tomography is a well-studied problem (Backus &
Gilbert 1968; Menke 1984; Friedel 2003; Sheng & Schuster 2003;
Day-Lewis & Lane 2004; Day-Lewis et al. 2005), but relatively lit-
tle attention has been paid in the literature to the particular problem
of dynamically imaging plumes.

Plumes commonly are described by hydrologists in terms of their
statistical moments (e.g. Freyberg 1986; Goltz & Roberts 1987;
Adams & Gelhar 1992; Cirpka & Kitanidis 2000). Indeed, plumes
undergoing advective–dispersive transport in homogeneous media
follow a Gaussian distribution in space and time (depending on
boundary conditions), where the centres of mass are controlled by
advection and the standard deviation by dispersive spreading. De-
scription of more complicated plumes requires use of higher order
moments (e.g. skewness, kurtosis; Harvey & Gorelick 2000). Mo-
ments or probability distributions provide an appealing and natural
parametrization for inversion of difference tomograms of plumes,
in that few parameters are required to describe the distribution. In
principle, geophysical data can be used to infer plume characteris-
tics (e.g. total mass, centre of mass, spread, tailing), which in turn
provide insight into hydrologic processes (i.e. advection, dispersion,
decay and rate-limited mass transfer). For example, in laboratory
experiments, Slater et al. (2000) used time-lapse electrical resis-
tivity tomography (ERT) to estimate tracer breakthrough curves
for different pixels during saline tracer transport in a tank. In field
applications, however, attempts to calculate plume moments from
time-lapse tomograms commonly have produced spurious results.
In an application of time-lapse ERT to monitor a fluid tracer in the
unsaturated zone, Binley et al. (2002) observed a 50 per cent dis-
crepancy between the injected mass and the mass recovered by ERT;
this mass-balance error was attributed to variable ERT sensitivity
and poor resolution of tracer in portions of the tomogram. Simi-
larly, in an application of ERT to monitor a saline tracer, Singha
& Gorelick (2005) noted a similar underestimate in mass and an
overestimate in spatial variance due to regularization and inversion
artefacts.

Recently, Day-Lewis et al. (2007) derived a new ‘moment reso-
lution matrix’ to predict the moments of an image as a function of
the plume’s true moments while accounting for the measurement
physics, survey geometry and regularization criteria, as described by
the inverse problem’s conventional model resolution matrix (Menke
1984). Day-Lewis et al. (2007) demonstrated that plume moments
inferred from tomograms are strongly affected and potentially bi-
ased by the regularization employed, with the choice of regular-
ization criteria largely arbitrary and subjective. Furthermore, the
reliability of inferred moments depends on where the plume lies in
the image plane because resolving power varies over a tomogram
as a complicated function of survey geometry and measurement
physics. These problems arise from the fact that most tomographic
inverse problems in geophysics are underdetermined and require
regularization to make well posed and soluble. Regularization en-
tails additional inversion constraints to produce the simplest image
consistent with the data, where simplicity is defined variously in
terms of uniformity, flatness, or smoothness, which, respectively
are quantified by deviation from a mean value, minimization of
the first spatial derivative, or minimization of the second spatial
derivative (Tikhonov & Arsenin 1977).

We contend that common parametrizations and regularization
criteria (uniformity, flatness, smoothness) do not leverage our
a priori understanding of expected plume morphology and the
physics underlying transport processes. Although solutions using

regularization schemes, such as those described by Tikhonov & Ar-
senin (1977) for pixelated images, can result in reasonable estimates
of plume parameters, they require substantial data to do so. One ma-
jor limitation with difference geophysics is that data collection is
constrained in time by changes to the image; that is, the image is
changing during data collection yielding an unfortunate trade-off
between temporal smearing and data coverage.

Furthermore, when applied to difference tomography, regular-
ization strategies can produce images of plumes with streaks and
artefacts of opposite sign to that expected (e.g. Day-Lewis et al.
2002), where the regularization seeks to balance, for example, the
positive anomaly represented by the plume with framing, spuri-
ous negative anomalies. Although damping regularization leads
to underestimation of total mass, smoothness and flatness criteria
tend to produce plumes that are overly diffuse (Singha & Gorelick
2005; Day-Lewis et al. 2007). The shortcomings of pixel-based
parametrization and conventional regularization strategies are well
understood, particularly in the context of static imaging. A number
of alternative parametrizations have been proposed in the literature,
including natural pixels (e.g. Buonocore et al. 1981; Michelena
& Harris 1991), geometric objects (e.g. Miller et al. 2000; Lane
et al. 2004, 2006), statistical moments (e.g. Milanfar et al. 1996)
and level sets (e.g. Dorn et al. 2000). The philosophies underly-
ing these parametrizations differ, with some designed to capitalize
on the measurement configuration and physics (e.g. natural pixels),
and others to take advantage of knowledge of the imaged target
(e.g. moments, geometric objects). Underlying these efforts are ob-
jectives of (1) reducing the number of inversion parameters, thus
facilitating rapid time-lapse or 3-D imaging (e.g. reducing both ac-
quisition and inversion time), (2) matching the inversion parameters
to quantities of engineering or geological relevance (e.g. anomaly
centre of mass, magnitude and size), thus facilitating use of inver-
sion results by non-geophysicists and (3) defining parameters that
reduce the need for regularization and prevent the inversion from
producing spurious anomalies inconsistent with the structure under
study. In the context of plume imaging, the ideal parametrization
would describe plumes fully and accurately using as few param-
eters as possible; furthermore, non-physical plumes (e.g. plumes
showing mass loss in 3-D when conservation is expected) would be
excluded from the solution space by virtue of the parametrization,
obviating regularization.

Of particular relevance to our current effort is the work of
Milanfar et al. (1996), who described an image in terms of or-
thogonal Legendre moments, which are related algebraically to the
conventional geometric moments (e.g. centre of mass, spread) used
to describe plumes. For the case of ray-projection data, Milanfar
et al. (1996) formulated a tomographic inverse problem as esti-
mation of spatial moments. Image moments provided a compact
parametrization resulting in an overdetermined inverse problem.
Here, we adapt this idea and propose a parametrization based on
probability-distribution descriptors; hence our inversion parame-
ters are the distribution’s parameters (e.g. mean, standard devia-
tion). This formulation is appealing for tomographic imaging of
plumes because distribution parameters provide direct insight into
the physical processes controlling plume morphology. For exam-
ple, the location of a plume’s centre of mass is controlled by
advection, and its spatial spread is controlled by dispersion. By
assuming a specific distribution, we also impose additional con-
straints (i.e. insight) on the inversion, with one important constraint
being that the image should be positive-valued. Importantly, the
method outlined here performs well in the presence of limited
data.
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2 A P P ROA C H

2.1 Distribution-based parametrization

In this work, we demonstrate the use of a distribution-based
parametrization for difference-tomography monitoring of plumes
associated with solute or mass transport. Although we demon-
strate our approach for straight-ray radar difference-attenuation
data, the inversion approach is general. The approach is based on
a distribution-based parametrization, in which the tomographic im-
age is described by eight parameters (Fig. 1): (1) the plume mass,
M ; (2, 3) centre of mass in the x and z locations in Cartesian co-
ordinates, μx and μz; (4, 5) the standard deviation in the x and
z directions, σ x and σ z; (6, 7) two windowing lengths WLx and
WLz that allow only part of the distribution to be used to describe
the plume shape and (8) a rotation angle from horizontal, θ . The
windowing lengths truncate the distribution, and are used to tailor
the shape of subsurface plumes. These provide additional flexibility
to describe plumes that take on zero values or have sharp peaks,
which cannot exist in purely Gaussian or lognormal distributions.
These lengths are particularly useful with the lognormal distribu-
tion, where adjusting either the centre of mass or spatial variance
changes the shape of the plume such that it would be more or less dis-
perse. These lengths have a magnitude between zero and one, where
one indicates minimal truncation, and zero would be entirely trun-
cated, that is, zero-valued. In contrast to the orthogonal moments of
Milanfar et al. (1996), the distribution parameters considered here
are correlated.

2.1.1 Creating a parameter field

A distribution must be assumed to use this methodology, entailing
an assumption of the target’s morphology (i.e. we invoke a pri-
ori knowledge about the problem). The framework presented here
is flexible and diverse parametric distributions (Gaussian, lognor-
mal, gamma) are possible. These types of parametrizations should
not be considered one-size-fits-all, they should be thought of as
problem-specific. For tracer transport, Gaussian distributions com-
monly cannot describe field observations adequately; most studies
of solute transport show extended tailing in concentration in space
and time as a function of heterogeneity (e.g. Grisak et al. 1980;
Becker & Shapiro 2000; Harvey & Gorelick 2000; LaBolle & Fogg
2001; Meigs & Beauheim 2001; Gorelick et al. 2005). To demon-
strate our approach, we use two distribution-based parametrizations.
The first is based on the bivariate Gaussian distribution

f (xG1, xG2) = 1

2π σG1 σG2

⎧⎨
⎩exp

− 1
2

[
(xG1−μG1)2

σ2
G1

+ (xG2−μG2)2

σ2
G2

]⎫⎬
⎭ , (1)

where μG1 and μG2 are the centre of mass in the xG1 and xG2 di-
rections, and σ G1 and σ G2 are the standard deviations in xG1 and
xG2. The directions xG1 and xG2 are the principal directions of the
2-D bivariate distribution but are not necessarily aligned with the x
and z axes of the experimental pixelated grid; that is, the xG1–xG2

grid can be rotated about the experimental grid. To allow for long
tailing, we introduce a distribution that is Gaussian in one direction
(xG1), but the lognormal in the other (formerly xG2, now xLN2)

f (xG1, xLN2) = 1

2πxLN2σG1σLN2

⎧⎨
⎩exp

− 1
2

[
(xG1−μG1)2

σ2
G1

+ [log(xLN2)−μLN2]2

σ2
LN2

]⎫⎬
⎭ ,

(2)

where μG1 and μLN2 are the mean in the xG1 and xLN2 directions,
and σ G1 and σ LN2 are the standard deviations in xG1 and xLN2,
respectively. With the use of a rotation angle, we need not assume
in which direction (in x or z) the lognormal tailing should occur.

To create an initial and subsequent parameter distribution for
forward modeling, we use the following algorithm (Fig. 1):

(1) Declare a model vector, m, which is comprised of the eight
distribution parameters outlined above.

(2) Define a numerical grid from 0 to WLLN in the lognormal
direction if a lognormal distribution is used, and from −WLG to
WLG in the Gaussian direction(s). The number (and size) of the
cells in the numerical grid will be governed by the underlying for-
ward problem and will typically need to strike a balance between
computational expedience with numerical accuracy.

(3) Evaluate either eq. (1) or (2) on the grid defined in ii, as-
suming a centre of mass of 0 for the Gaussian component(s) and
a centre of mass of 0.1 for the lognormal component. Because the
shape of the lognormal distribution changes as a function of the cen-
tre of mass, we make an arbitrary decision to fix the initial estimate
at 0.1. The distribution is then translated and rotated as described
below. Other values could be used, resulting in differently shaped
distributions; multiple shapes could be considered.

(4) Interpolate the distribution onto the experimental grid to gen-
erate the image field, p, consisting of a discretized (pixelated) image
of the geophysical parameter. Rotate the resulting field as denoted
by the angle included in the model vector, and translate the plume
parametrization (by the centre of mass in x and z) as needed. Nor-
malize the image field p on the experimental grid so the total mass
of the grid is equal to the mass specified in the model vector.

The forward operator can be applied to the resulting image field,
p, to calculate the forward response of the experiment. We calculate
the moments of the parameter field directly from the discretized
distributions in the experimental grid.

2.1.2 Distribution-based inversion

We can formulate a forward problem to calculate the predicted data,
dpred, given our distribution parameters, m, which first are translated
into the image field p

Ap(m)= dpred, (3)

where A represents our forward-modeling operator and dpred is our
predicted data vector for a given m. For the straight-ray attenuation
tomography problem used here for illustration, p is difference atten-
uation, that is, αi–α0, where αi is the vector of pixelated attenuation
at time i and α0 is the vector of pixelated background attenuation
before injection of solute. The data, dobs, would be taken as ratios
of the logarithms of peak-to-peak amplitudes (or trace energy) for
data sets from time i and background (e.g. Day-Lewis et al. 2003).

It is evident from (3) that even if the forward model is described
by a linear operation on p, it will not be a linear operation on m.
Consequently, the distribution-based inversion is also non-linear.
Given (3), we seek to recover the model vector, m (which is shown
in step 1 of Fig. 1), that results in the parameter field, p, that best
describes our observed data. To do this, we formulate the following
objective function, which we minimize in the least-squares sense:

�(m) = ‖Wd [dobs − Ap(m)]‖2 , (4)

where dobs is our measured field data and Wd is a diagonal ma-
trix that contains the inverse of the standard deviation of the data.
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Figure 1. Flowchart of parametrization and inversion procedure.
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Given that this problem is well posed, we do not require regu-
larization terms in the objective function. We do, however, apply
constraints to each of the model parameters. For lower bounds, we
know that all the parameters are greater than zero, assuming the
experimental coordinate system starts at (0, 0) and that the cen-
tre of mass is within our experimental grid. For upper bounds, we
can use our understanding of our field system to estimate an upper
bound for mass, centre of mass and standard deviations. Similarly,
we know that the angle of rotation cannot exceed 2π for an asym-
metric plume, which would be the case if one of the axes in the
distribution is lognormal. Given these constraints, we solve eq. (4)
using a trust-region-reflective optimization algorithm (lsqnonlin) in
MATLAB (Coleman & Li 1996). This implementation is only suit-
able for problems with a small number of parameters, as it relies on
a perturbation approach to estimating the sensitivity matrix used in
the optimization.

Presented in Fig. 1 is a workflow of our parametrization/inversion
process for the case of radar-attenuation tomography, including the
four-step algorithm outlined earlier. First, we simulate radar at-
tenuation data during a tracer transport test. Next, we choose a
distribution for our parametrization, and evaluate this model for a
starting guess m as described below (Step 1). From the eight param-
eters and the mathematical model for the distribution, we generate
our parameter field as outlined in the algorithm above (Step 2–4).
Given this field, we evaluate eq. (3) to predict the data, which are
compared to the observations. If the difference between the esti-
mated and observed data is below a given tolerance, the algorithm
has converged; otherwise, m is updated, and the system is repeated
until convergence.

2.2 Traditional least-squares inversion

To provide a basis for comparison, we also test a traditional least-
squares inversion routine to recover our parameter field. For straight-
ray difference-attenuation radar tomography, we consider the fol-
lowing forward problem:

A�α = �a, (5)

where A is a matrix that contains the length a ray traverses in each
cell, �α, is vector representing the difference amplitudes between
the k-time data set and the background data set, and �a is the
ratio of the logarithms of amplitudes (e.g. peak-to-peak) between
the k-time data set and the background data set. To recover the
attenuation vector �a, for a given time step, we solve the following
linear inverse problem:

�α = (
AT WT

d WdA + wx · WT
x Wx + wz · WT

z Wz + ws · I
)−1

× (
AT WT

d Wd�a
)
, (6)

where Wx and Wz are first-order difference operators in the x and
z directions, respectively; wx and wz are weighting parameters in
the x and z directions, with larger values promoting smoothness in
a given direction; ws is a weighting parameter to enforce model
smallness and to stabilize the inversions. For the result presented
here, values for wx and wz were 100 and 10, respectively. ws was
taken to be 0.001. These values were chosen from a suite of possible
regularization terms; the increased smoothing in the x-direction with
respect to the z-direction is because of a priori knowledge of the
plume migration in x. The smallness term was set to a minimal
value to stabilize the inversion without impacting the subsequent
inversions.

2.3 Calculating moments

After calculating the parameter field, p, that best describes
our observed data via least-squares inversion or the alternative
parametrization [i.e. p(m)] outlined above, a tomogram is recon-
structed for the tracer experiment at each time step. Once a satisfac-
tory fit to the data has been achieved, we calculate spatial moments
on the reconstructed image for interpretation of plume morphology
and transport behaviour. We estimate spatial moments from these
tomograms according to

Mi j (t) = n

∫ ∫
�

conc(x, z, t)xi z j dxdz, (7)

where Mij is the spatial moment of interest; i, j are exponents with
values from 0 to 2, whose value(s) depend on the particular moment
of interest; n is the effective porosity; conc is the concentration
[derived from either p(m) or �α] in mg L−1; x, z are Cartesian
coordinates; dx, dz are the voxel dimensions in the x and z direc-
tions, and � is the test domain within the area of interest. The
zeroth moment, M00, is the mass in the system. The first moment
(M10, M01) normalized by the mass, defines the centre of mass of
the tracer in each principal direction. The variance or covariance
of the tracer plume (spread and rotation) is related to the second
spatial moment (M20, M02, M11), centre of mass, and tracer mass as

σx =
√

M2,0

M0,0
−

(
M1,0

M0,0

)2

and (8a)

σz =
√

M0,2

M0,0
−

(
M0,1

M0,0

)2

. (8b)

It should be noted that our example problems are based on linear
difference-attenuation tomography. By analysing differences from
a background data set, we invert directly for temporal differences
associated only with the injected plume. In practice, the straight-ray
assumption may be violated by geological heterogeneity or as a re-
sult of injections, thus requiring a non-linear inversion for slowness
before (or joint with) inversion for difference attenuation. In appli-
cations to electrical resistivity tomography, our approach could be
applied to difference (or ratio) data to invert for difference electri-
cal conductivity. Alternatively, the inversion could be designed to
estimate changes from a background image produced previously by
an independent inversion.

3 N U M E R I C A L E X A M P L E S

We demonstrate our methodology for two cases: (1) a base case with
advective–dispersive transport and (2) a highly advective case with
low dispersion. In both cases, we use a heterogeneous hydraulic
conductivity field built from a binary system of 10 and 100 m d−1

with a constant porosity of 0.1, representative of a fluvial wash.
Steady-state groundwater flow is simulated on a 32 pixel × 36 pixel
grid with pixels 0.5 m on a side in the area of interest using
MODFLOW-2000 (Harbaugh et al. 2000) and transient transport is
simulated using MT3DMS (Zheng & Wang 1999). We assume no-
flow/no-flux boundaries at the top and bottom and fixed-head/fixed-
concentration boundaries on the left and right sides such that a
lateral head gradient of 0.02 is produced and the concentration is
fixed to the background value of 100 mg L−1. A 1000 mg L−1 tracer
is injected within a well 3 m long located on the left side of the grid.
A dispersivity of 2 m is assumed in the longitudinal direction. In the
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high-advection case, the dispersivity in the longitudinal direction is
dropped to 0.1 m. The tracer is monitored over 8 d.

Concentration data are converted to electrical conductivity at
each time step using Archie’s law (Archie 1942),

sb = 1/Fsf , (9)

where sb is the bulk electrical conductivity (S m−1), sf is the fluid
electrical conductivity (S m−1) and F is the formation factor, which
is a function of the effective porosity and connectivity of the pore
space (Guyod 1944), and here assumed to be equal to five. Con-
centration data are converted to attenuation values using the high-
frequency approximation where

�α = 1.68 × 103�sb
v

c
, (10)

where �α is the attenuation in dB, v is the EM-wave propagation
velocity in the medium, assumed to be 6 × 107 m s−1 and c is the
speed of light in a vacuum. Given the estimated attenuation, we
simulate straight-ray radar tomography with borehole radar wells
on the boundary of the grid. We run forward models with 1600
and 100 data (we refer to these as the ‘dense’ and ‘sparse’ data
options, respectively; see Fig. 2) to demonstrate how the alternative
distribution-based parametrization performs with limited data in
comparison to a standard overparametrized least-squares inversion.
We assume Gaussian random errors with a standard deviation of
3 per cent of the measurements, as could arise from picking error
and minor errors in well-assumed deviations. Here, we explore the
accuracy of the distribution-based parametrization described above
with respect to classical least-squares inversion for three different
cases with varying amounts of data.

For the cases presented, we assume a starting model where the
centre of mass is at the centre of the experimental grid. The initial
standard deviation is assumed to be half the grid width, meaning
that the entire grid would be spanned within one standard deviation.
The rotation angle is initially estimated to be 0, but is free to vary
between 0 and 2π .

Figure 2. Data coverage for (a) 100 and (b) 1600 measurement cases.

Figure 3. (a) The true concentration plume for Case 1 (the base case) from a
time 2 d after injection and associated reconstructed images given 1600 radar
traveltime data for the (b) standard least-squares inversion, (c) alternative
parametrization based on a Gaussian plume, (d) alternative parametrization
based on a plume defined by a Gaussian distribution in one direction and a
lognormal distribution in the other. The mean and variance of the plumes
are shown on each subplot in white lines.

3.1 Case 1: advection–dispersion

The inversion of attenuation data based on an advecting, dispersing
conductive tracer, given 1600 measurements, is shown in Fig. 3.
In the case of many data, the least-squares inversion (Fig. 3b)
qualitatively maps the true case (Fig. 3a) closely, although streak-
ing and smearing of the estimated plume is apparent in the tomo-
gram. In addition, some negative values appear in the reconstruction.
The tomograms based on our alternative parametrization, including
that based on a Gaussian distribution (Fig. 3c) and the combined
lognormal-Gaussian distribution (Fig. 3d), do not show the same
artefacts or negative values, although are limited by their simpler
parametrization so they cannot map the plume irregularities exactly.
The strength of alternative parameterizations becomes clearer with
limited data (Fig. 4). When we reduce from 1600 measurements
to 100, the least-squares inversion performs notably more poorly,
especially with respect to capturing the high-attenuation areas of
the tomogram (Fig. 4b), whereas the alternative parametrizations
are still able to map the magnitude of tracer plume reasonably accu-
rately. The shape and mass of the tracer plume remains well captured
when compared to the least-squares case, although the models are
too simple to describe the distribution exactly.

When we consider spatial moments, we find that the alternative
parametrizations shown here generally better identify properties,
especially in the case of limited data (Fig. 5). The Gaussian and
lognormal-Gaussian models perform similarly well in most cases,
except when estimating the variance in the x-direction, where the
Gaussian model does not perform as well; we attribute this to the
model’s inability to capture any tailing behaviour with this simpli-
fied parametrization.

Because of negative values of attenuation, calculating moments
on the traditional least-squares case is problematic; whereas the
estimate of total mass and centre of masses are accurate when sum-
ming over the plane, high values are countered by negative values in
portions of the tomogram produced from traditional least squares.
Negative mass, which is clearly non-physical, can result in negative
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Figure 4. (a) The true concentration plume for Case 1 (the base case) from a
time 2 d after injection and associated reconstructed images given 100 radar
traveltime data for the (b) standard least-squares inversion, (c) alternative
parametrization based on a Gaussian plume, (d) alternative parametrization
based on a plume defined by a Gaussian distribution in one direction and a
lognormal distribution in the other. The mean and variance of the plumes
are shown on each subplot in white lines.

spatial variance when using eq. (8). With fewer data we find that at
all times for all moments, the alternative parametrizations perform
as well, if not better than the standard least-squares inversion. These
tomograms are not affected by streaking and related artefacts.

3.2 Case 2: highly advective case

We consider one additional test case, where the dispersivity is no-
tably less than in the first case (0.1 m in the longitudinal direction, as
compared to 2 m). This creates a less diffuse plume that shows some
fingering as a function of the heterogeneity in hydraulic conductiv-
ity (Fig. 6a); this shape is particularly hard for geophysical imaging
to capture due to the high contrast and small size. This shape is not
well described by either a Gaussian or lognormal-Gaussian distri-
bution; parametrizations based on these shapes do not capture the
shape well (Figs 6c and d).

With 1600 data, the least-squares inversion is able to capture the
general shape (Fig. 6b), but with notable artefacts and streaking in
the tomogram. As in the previous cases, the examples with 100 data
indicate the strength of the methodology considered here: although
the tomograms themselves do not capture the correct shape with
any of the parametrizations shown (Figs 7c and d), the least-squares
inversion is particularly impacted by streaks and negative attenua-
tion values, and does a poor job of mapping the areas of highest
attenuation (Fig. 7b). Regardless of data, the moments show that
the least-squares inversion performs slightly better than the alter-
native parametrizations with respect to μz and σ z

2 (Fig. 8). The
tracer moves more quickly in this case than in the previous one,
so after 3.5 d, the tracer is largely absent from the 2-D simulation
plane; moments after this time are not meaningful as they are more
sensitive to the presence of noise in the system than data. With
sparse data, all parametrizations provide poor representations of the
true system. The alternative parametrizations still capture mass and
centre of mass reasonably well, especially at early time, but errors
in spatial variance and skewness are high in all cases. F
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Figure 6. (a) The true concentration plume for Case 2 (the highly advective
case) from a time 1-d after injection and associated reconstructed images
given 1600 radar traveltime data for the (b) standard least-squares inversion,
(c) alternative parametrization based on a Gaussian plume, (d) alternative
parametrization based on a plume defined by a Gaussian distribution in one
direction and a lognormal distribution in the other. The mean and variance
of the plumes are shown on each subplot in white lines. The white area in
the least-square tomogram has attenuation values less than −0.1 dB.

Figure 7. (a) The true concentration plume for Case 2 (the highly advective
case) from a time 1-d after injection and associated reconstructed images
given 100 radar traveltime data for the (b) standard least-squares inversion,
(c) alternative parametrization based on a Gaussian plume, (d) alternative
parametrization based on a plume defined by a Gaussian distribution in one
direction and a lognormal distribution in the other. The mean and variance
of the plumes are shown on each subplot in white lines.

4 D I S C U S S I O N A N D C O N C LU S I O N S

We presented a novel parametrization for difference tomographic
imaging of hydrologic processes based on a simple analogy
between plume morphology and probability distributions. Numeri-
cal examples demonstrated the advantages of our distribution-based
parametrization over conventional pixel-based parametrization us-
ing smoothness-based regularization, especially in the presence of
limited data. Although the conventional approach yielded biased F
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estimates of plume moments in many cases (i.e. underprediction of
total mass, overprediction of spreading) and was greatly impacted
by artefacts, our approach yielded reliable moment estimates and
was robust in the presence of sparse data. The negative values of
attenuation estimated from least-squares inversion often lead to ac-
curate estimates of total mass or centre of mass when summing over
the plane, but this was because high values are countered by negative
values. In addition, spatial variances calculated on the least-squares
inversion were frequently negative as a result of the least-squares
inversion’s indication of negative concentration (i.e. decrease in
attenuation from background). These problems were negated with
the alternative parametrizations described here. The fact that our
alternative parametrization cannot include these negative values, or
artefacts, highlights another potential advantage of this approach or
a non-linear least-squares inversion (e.g. curved ray), in that we are
not faced with the challenge of choosing when to stop an inversion.
With the parametrization-based approach we can iterate until the
model no longer changes; because the model has no capacity to
include artefacts, there is no penalty for overiteration unlike with
a non-linear least-squares approach. We also note that the problem
considered here represents an ideal scenario with respect to inver-
sion using standard least squares, in so much as our model space is
small and, therefore, better determined than would normally be the
case; moreover, we use the same computational grid for the forward
and inverse solutions.

The distributions considered here are described by only a few
parameters, so the resulting inverse problems are overdetermined
and computationally efficient to solve. Extension of our 2-D
parametrization to 3-D or 4-D (3-D plus time) is possible and should
allow for application to large time-lapse problems. Importantly,
the inverse problem for our parametrization scales efficiently with
dimensionality, with 8 parameters for 2-D, 13 parameters for
3-D and 19 parameters for 4-D (assuming parameters that describe
migration and spreading in three principal directions). For compar-
ison, pixel-based inverse problems would require N2, N3 and N3T
parameters for 2-D, 3-D and 4-D, respectively, assuming N pixels
in each direction and T time steps. We note, that the extension to
the 4-D problem is different from the 2-D plus time formulation we
have presented here. In an explicit 4-D parametrization, the time
variance of the system can be included in the formulation of the
model, as such. We solve the problem simultaneously for all time
steps. Also of importance is that for the cases outlined here, the
final model parameters are largely insensitive to the starting model.
We explored multiple starting guesses, and found for the case of at-
tenuation tomography, convergence is minimally sensitive to these
initial guesses. Although synthetic cases are demonstrated here, ap-
plication to field data should be straightforward, and complicated
only by a non-constant background fluid conductivity. In the exam-
ples presented, we analyse differences from a background data set,
meaning that we focus on changes and, therefore, should be sensitive
only to the injected plume. The major limitation to the work pre-
sented here is the straight-ray assumption, which may be violated
by geological heterogeneity or as a result of injections; however,
this can be easily handled by including another iteration loop in the
inversion that updates the ray paths in A, based on the new m, as is
performed on inversions considering fat rays (e.g. Day-Lewis et al.
2005; Johnson et al. 2005, 2007) or full-waveform inversion (e.g.
Ernst et al. 2007). Alternatively, the inversion could be designed to
estimate changes from a background image produced previously by
conventional least-squares inversion as a starting point.

Although we considered only Gaussian and lognormal distribu-
tions, consideration of other probability distributions, or modifi-

cations to the distributions presented here (e.g. changing of the
windowing approach), is possible. Other models may lead to im-
proved recovery of the properties describing plume transport. Con-
sideration of, for example, gamma distributions may allow for de-
scription of more complicated plumes that exhibit strong tailing
behaviour. Extension of the framework here to other distribution
types—possibly with more parameters and capable of describing
complex plumes—is straightforward. The methodology presented
here should be widely applicable to mapping tracer plume locations
in 2-D and 3-D, and useful for mapping the behaviour of plume
transport in field settings.
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