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ABSTRACT

In this thesis, we have studied the behavior of two-component dark-bright solitons in

multicomponent Bose-Einstein condensates (BECs) analytically and numerically in different

situations. We utilized various analytical methods including the variational method and

perturbation theory. By imprinting a linear phase on the bright component only, we were

able to impart a velocity relative to the dark component and thereby we obtain an internal

oscillation between the two components. We find that there are two modes of the oscillation

of the dark-bright soliton. The first one is the famous Goldstone mode. This mode represents

a moving dark-bright soliton without internal oscillation and is related to the continuous

translational symmetry of the underlying equations of motion in the uniform potential. The

second mode is the oscillation of the two components relative to each other. We compared

the results obtained from the variational method with numerical simulations and found that

the oscillation frequency range is 90 to 405 Hz and therefore observable in multicomponent

Bose-Einstein condensate experiments. Also, we studied the binding energy and found a

critical value for the breakup of the dark-bright soliton. Building on these results, we have

studied another situation where we have the dark-bright soliton oscillate in a harmonic

potential. We found for weak trapping the internal modes are nearly independent of center

of mass motion of the dark-bright soliton. In contrast, in tighter traps the internal modes

couple strongly to the center of mass motion, showing that for dark-bright solitons in a

harmonic potential the center of mass and relative degrees of freedom are not independent.

We found this result is robust against noise in the initial condition and should, therefore, be

experimentally observable. In addition, we have studied the interaction between a moving

dark-bright soliton in a uniform background with internal oscillation and a fixed impurity,

modeled by a delta function potential. The interaction excites different modes in the system.

Our analytical model capture two of these modes: the relative oscillation between the two

iii



components, as well as the in-sync oscillation of the widths. The numerical simulations

allow further internal modes like out-of-sync oscillations of the soliton widths and even shape

deformations of various kinds. We identify regions in parameter space for the transmission,

reflection and inelastic scattering of the dark-bright soliton by the potential barrier. We

have studied the velocity of dark-bright solitons described with an ansatz that uses one

center of mass variable to represent the position of the two components. We found for a

dark-bright soliton the maximum velocity is limited by the relative number of atoms in the

bright component as compared to the size of the hole or density notch created by the dark

component. Above this critical velocity the dark-bright soliton develops internal oscillations,

and eventually unbinds and breaks apart.
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CHAPTER 1

HISTORY AND FUNDAMENTAL CONCEPTS OF SOLITONS IN BOSE-EINSTEIN

CONDENSATES

A soliton is a self-supporting solitary wave that propagates without changing its shape or

velocity. It is also a solution to nonlinear partial differential equations (PDEs). Waves that

propagate according to linear PDEs encounter a known effect called dispersion of the wave

packets which cause a spreading of the wave. A wave packet is an envelope of different waves

with different frequencies that form a unit. Each component of the wave packet propagates

with different velocity due to the fact that the wave velocity depends on the frequency.

Therefore, we see the dispersion effect in linear systems. In nonlinear systems, other effects

can reverse the spread of the wave packets and therefore produce a cancelation of this action.

The balance between the nonlinear and dispersive effects produce a solitary wave. In the

literature, the term soliton is reserved for solitary waves that survive collisions. That is,

a solitary wave emerges without changing shape or velocity after interacting with another

solitary wave. Also, a soliton is known to be a nonlinear wave, that is, a solution of nonlinear

PDEs.

Nonlinear waves have been a fascinating subject since the discovery of the solitary wave

in 1834 by John Scott Russell in the Union Canal in Scotland where he observed the great

wave of translation as he called it [1]. The discovery is described here in his own words [2]:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by

a pair of horses, when the boat suddenly stopped, not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the

form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
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continued its course along the channel apparently without change of form or diminution of

speed. I followed it on horseback and overtook it still rolling on at the rate of some eight or

nine miles an hour, preserving its figure some thirty feet long and a foot to a foot and a half

in height. Its height gradually diminished and after a chase of one or two miles, I lost it in

the windings of the channel. Such, in August 1834, was my first chance interview with that

singular and beautiful phenomenon.

Russell's works on solitary waves opened the doors for more theoretical investigations

of nonlinear waves. Essential studies conducted by Stokes, Boussinesq, and Korteweg and

deVries (KdV) shed light on the mathematical models describing solitary waves [1]. The well

known KdV equation illustrates the propagation of solitary waves in shallow water surfaces.

It is considered to be the first soliton equation by experts in the field of nonlinear waves [2].

It is also an integrable equation, a criterion that implies a system has an infinite number

of degrees of freedom and therefore it exhibits an infinite number of conserved quantities

such as energy, momentum, number of particles, etc. This equation was the starting point

for renewed interest in the theory of nonlinear waves in the twentieth century when Enrico

Fermi, John Pasta, Stanislaw Ulam, and Mary Tsingou conducted computer simulations

of a vibrating string that included a nonlinear term which is well known as the FPUT

experiment [2]. In this experiment an initial mode of vibration on one end of the string did

not fade away after many iterations, a process known as thermalization. Instead the system

exhibits a quasi-periodic behavior. The continuum limit of the mathematical model used in

FPUT experiment is the KdV equation. Another milestone in the theory of solitons is when

Kruskal and Zabusky revisited the FPUT experiment and performed a numerical simulation

for collisions of two solitary waves. The result was that the two solitons were not affected

by the collision and they only gained a phase shift. Kruskal and Zabusky invented the word

soliton to describe these solitary waves [2]. A few years later Gardner, Greene, Kruskal,

and Miura discovered the Inverse scattering transform (IST) method to obtain a solution
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to the KdV equation. This technique also used to find soliton solutions to the nonlinear

Schrodinger equation (NLSE) by Zakharov and Shabat [2].

The NLSE has been the focus of many theoretical and experimental studies since Za-

kharov and Shabat published their work in 1972. Although the NLSE is a nonlinear varia-

tion of the Schrodinger equation, it is a classical field equation that is used to describe the

evolution of a classical complex wave function [1]. It had been studied in the context of

optical systems at that time to explain the propagation of light in nonlinear optical fibers

and other optical systems. Hasegawa suggested, in 1973, that the realization of a solitary

wave is possible in fiber optics when a pulse-narrowing nonlinear effect balances the effect of

dispersive spreading of the light pulse [3]. His work led to the first experimental observation

of solitons in optical fibers in 1980 by Mollenhauer, Stolen, and Gordon [4]. Another impor-

tant discovery in the story of the theory of solitons was in 1988 when Weiner and Heritage

demonstrated for the first time the creation of dark solitons in optical fibers [5].

In the second half of the nineties, solitary waves entered a new era with the discovery of

the Bose–Einstein condensate (BEC). Since in this thesis, we work mainly with the NLSE,

in the context of BEC we use the name Gross–Pitaevskii equation (GPE), which is the

NLSE when we add a potential trap. To study the interaction between two types of soliton

solutions in a two–component BEC it is useful to introduce the concept of BEC first before

illustrating significant discoveries in soliton theory in BEC systems.

BEC was predicted theoretically by Satyendra Nath Bose and Albert Einstein in 1925 and

created experimentally by Eric Cornell, Carl Wieman, Randy Hulet and Wolfgang Ketterle

in 1995 [6]. It is a state of matter made of a dilute gas of bosons cooled to a temperature that

is very close to absolute zero. A significant fraction of bosons at this temperature occupy the

lowest single-particle state (ground state of the system). Consequently, microscopic quantum

phenomena become manifest. These gases are typically 10-100 µm in size with a number of

atoms ranging from 103 to 109 and the temperature range is 1 to 100nK. Usually the BEC

experiments are conducted with 87Rb and 23Na atoms, in addition to many other atomic
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species.

The development of laser cooling and magnetic trapping allowed for the creation of the

BEC. Laser cooling, developed in the 1980s, used a well-known phenomenon called the

Doppler effect [7] where a moving atom toward a light source (i.e., a laser beam) experiences

a change in the frequency of the light beam and thereby absorbs a photon which places the

atom in an excited state. When the atom releases the photon, it usually does so in the

direction of the light beam: it loses momentum in the direction of the beam, and therefore

slows down. Applying laser beams in the three perpendicular directions will slow down

the velocity of the atoms in all direction and consequently cools the gas significantly. This

method alone is not enough to cool down the gas below the critical temperature needed to

observe the BEC.

An evaporation technique is used to allow a small fraction of the excited atoms to escape

the trap in order to form a condensate with a very low temperature. In the early days

of the creation of BEC, harmonic potentials were used to hold the condensate gases but

nowadays different trap shapes can be designed to sustain and study trap BECs [6]. For

example, box-like or double-well traps are regularly formulated to explore various features

of the condensate gases. As mentioned above, magnetic traps are one way to hold the

condensates [6]. There are other types of traps that can be used to hold the condensate like

optical traps. The advantage of optical traps is that we can study the particle spin since

in magnetic traps the spin is locked up due to the interaction with the magnetic field of

the trap. This advancement in modifying the shape, strength, and type of the trap allows

probing of the condensate properties with a high degree of flexibility. Also, by choosing the

trap type, one can select some particular internal degrees of freedom of the particles as one

wishes. BECs can also be formed from multiple components with different atomic species or

different atomic hyperfine states for the same particle type, where the angular momentum

of the hyperfine state for the usual alkali metal atoms being Bose condensed is composed of

a sum between the unpaired electron spin outside the closed shell and the nuclear spin [6].
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In multiple component BEC systems, the mutual interaction between the particles in

different components adds more interesting phenomena. In one component there is only one

scattering length variable, a quantity used in atomic physics to characterize the interactions

of atoms in the low–energy limit. Whereas in multiple components we have 1
2
n(n+ 1) scat-

tering lengths for n mixed components. For example, when we have two-component BECs,

like the case we are exploring in this thesis, there are three scattering lengths that describe

the interactions: the scattering length between the same particles in one component (a11

and a22), and the scattering length between the different components, a12, where a12 = a21.

Examples of two-component BECs include 87Rb–23Na, different isotopes such as 87Rb–85Rb,

or different hyperfine states of the same particles such as (F=2,mF =2) and (F=1,mF=1)

states of 87Rb.

In BECs, one can control to a high accuracy the interaction between the particles through

a phenomenon known as Feshbach resonance. Also, by using this technique, we can change

the sign of the interaction from repulsive to attractive interaction. Another significant aspect

of low density dilute gases is the nature of the interaction between particles. At low tem-

perature, the dominant interaction is of binary type, and therefore one can approximate the

interaction potential to be represented by a delta function. This means that the interaction

takes a nonlinear form. In chapter 2 we explain the role of the delta function and derive the

associated nonlinear term. The fact that we can introduce and control a nonlinear effect in

BECs allows us to create conditions to support the propagation of solitary waves. Indeed,

by changing the interaction sign to be attractive between the particles in a BEC one can

produce a bright soliton, a localized hump. In the case of a dark soliton, a localized dip on a

continuous constant background, two conditions are needed. The first one is that the inter-

action should be of a repulsive type. The second is that there must be a π–phase difference

between the two sides of the dark soliton. This can be done by shining light for a small time

interval on one side of the condensate until it acquires the desired phase difference, and/or

by digging a hole through removal of atoms with a laser, together with a quick phase imprint
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on the condensate to one side of the hole. The latter technique is known as phase-density

engineering [8].

These two types of soliton solutions are fundamentally different. One way to illustrate

the difference between them is their maximum velocity. In the case of the dark soliton

described by the GPE, there is a maximum limit of the velocity, the speed of sound in the

BEC. Whereas in the case of the bright soliton, the velocity is not bounded by the sound

speed, and has no upper limit. A moving dark soliton experiences two effects as it increases

its speed. The width goes to infinity, and the depth goes to zero. Basically, we end up with

plane wave for an accelerated dark soliton. It is noteworthy to mention that a moving dark

soliton with a depth that is less than the maximum depth is called a gray soliton. Another

aspect of the difference between the bright soliton and the dark one is that the bright soliton

is the ground state of a system with an attractive interaction coefficient in the GPE. But

the dark soliton is an excited state for a repulsively interacting system, orthogonal to the

ground state as the dark soliton has a single node. One last piece of information needed to

form a general picture of the basics of the soliton solution is how to move a soliton. We do

this by applying a phase on the complex wave function solution of the GPE. This is done by

multiplying the wave function by eif(x), where f(x) is a real wave function with a step-like

form smoothed out to avoid exciting additional phonons in the background BEC around the

dark or grey soliton. The physics behind this is that in the hydrodynamics approach for the

BEC the velocity of the condensate can be obtained by taking the gradient of the phase.

Note that a Madelung transformation maps the complex wave function onto the density and

phase of the condensate.

BECs are considered to be an ideal place to study the nonlinear excitations for the

properties mentioned above [6, 9]. Many studies focus on exploring soliton dynamics in

one or multiple component BECs. To model solitons in such systems, one needs to have a

number of coupled scalar GPEs equal to the number of BEC components. These types of

systems are called vector solitons where one can modify the interaction in each component
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independently, and the equation governing them is known as the vector NLSE or vector GPE

in our case. A particular structure of a coupled dark-bright vector soliton may exist in two-

component BECs with repulsive interatomic interactions in all components, where a dark

soliton in one component creates a potential well that traps a bright soliton in the second

component [10–15]. Although a bright soliton does not exist in a scalar or single-component

system with repulsive interactions [16], it can be supported in a binary two-component

system due to the nonlinear interaction with the dark soliton component. These solitons

can be referred to as symbiotic [17]. A dark-bright soliton is a bound state of a bright

component with a positive kinetic energy and a dark component with a negative kinetic

energy. A dark soliton is an excited state which when accelerated connects continuously

to the ground state through the complex plane. Thus a dark soliton can be thought of as

having a negative mass: as the velocity goes up, the energy goes down [18]. We can think

of the exciton as an analogy to the dark-bright system where we have a bound state of an

electron and a hole which are attracted to each other by the electrostatic Coulomb force.

A similar possibility for such a mechanism was proposed early in the literature in terms of

a Bose-Fermi mixture where bosons and fermions attract each other, but the interaction

between the bosons themselves is repulsive [19]. Vector solitons also exist in fiber optics [20–

22] including bright-bright vector solitons [23] and dark-bright vector solitons [24]. Different

types of vector solitons in multi-component BECs, such as pseudo-spinor BECs or three-

and higher-component spinor BECs [25, 26], can be created and transformed into each other

by tuning the inter-component interaction via Feshbach resonances [14, 27, 28]. Examples of

these vector solitons in two-component BECs include bright-bright vector solitons [29] and

dark-dark vector solitons [15], which exhibit rich dynamical far-from-equilibrium phenomena

such as beating dark-dark vector solitons [30]. Among the techniques to create dark-bright

solitons in a binary mixture of BECs are phase imprinting [10] and counter-flowing of two

binary BEC mixtures [31].
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The theory of solitons has its own history when it comes to studying the nonlinear

excitations in BECs. Since the early days of the discovery of BECs, there were intense

efforts to create solitons. As mentioned above, the freedom to control the interaction between

atoms in the condensate allows creating dark and bright solitons to be much easier. But

there are always difficulties when dealing with attractive interactions in the BECs which is

known as the collapse of the condensate when the number of atoms exceeds a critical value.

The relative ease to work with a condensate where the interaction is repulsive manifest

itself by creating the dark soliton first in the BECs. The pioneering work of Burger, et al.

[32], in 1999, and Denschlag, et al. [33], in 2000, lead to the realization of dark solitons in

BECs. Soon after, Strecker, et al. [34] and Khaykovich, et al. [35], in 2002, were able to

overcome the difficulties with collapsing condensates for attractive interactions and create

one or more bright solitons in BECs. Another breakthrough in the theory of soliton in BECs

happened when Anderson, et al. [36], in 2000, constructed the first dark-bright soliton in

two-component BECs following the theoretical work of Busch and Anglin, et al. [11].

In this Ph.D. thesis, consisting of three distinct projects, we investigate different aspects of

the behavior of the dark-bright vector solitons. In the first project, we study the oscillations

of the two components when we imprint a phase on one of the components, namely the bright

soliton, and find the oscillation frequency. Our calculations explore observable eigenmodes,

namely, the internal oscillation eigenmode and the Goldstone eigenmode. Also, we study the

binding energy between the two components and obtain a critical value for the phase kick

on the bright component that breaks the dark-bright solitons to its constituents. Both these

studies were performed analytically and numerically.

Building on these results, we then implement the harmonic trap, investigating the internal

oscillation of dark-bright (DB) solitons in employing the variational method. The oscillation

of one component soliton has been investigated intensively in the literature. Many studies

show that the one component bright soliton behaves as a classical particle and oscillate with

the same frequency of the harmonic potential, ω. On the other hand, the oscillation of a
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one-component dark soliton in a harmonic potential takes a universal value of ω/
√

2. The

next natural step is to investigate the behavior of a two-component dark-bright soliton in

a harmonic potential and see if the universal behavior of the one component dark soliton

oscillation in a harmonic potential will be affected by the presence of the bright component.

Finally, having addressed both the basic modes of oscillation, internal and external, of

the dark-bright soliton, we turn to the question of scattering. The third project focuses on

the behavior of dark-bright soliton when interacting with a delta potential barrier, modeling

a fixed impurity. We study various aspects of the scattering process and interaction with the

impurity, for example, the binding energy. The existence of the delta function modifies the

background of the dark soliton, and therefore we need to include this effect where we utilize

the perturbation method to do so. In this case, we use the well-known variational approach

analytically but with a modified Euler-Lagrange equation to include the disturbance caused

by the delta function. Also, we examine the velocity of the two components dark-bright

soliton. It is well-known that the maximum velocity of the one component dark soliton is

the speed of sound, c, where the depth of the dark soliton goes to zero, and the width goes

to infinity as we get closer to c. We study the behavior of the dark soliton velocity when

interacting with a bright soliton in the second component.

We end this chapter with a list of papers representing the main projects conducted in

this thesis:

• “Dynamics of dark-bright vector solitons in Bose-Einstein condensates.” M. O. D.

Alotaibi and L. D. Carr, Physical Review A 96, 13601 (2017).

• “Scattering of dark-bright soliton by an impurity.” M. O. D. Alotaibi and L. D. Carr,

under review, arXiv:1804.10339 (2018)

• “Internal Oscillations of a Dark-Bright Soliton in a Harmonic Potential.” M. O. D.

Alotaibi and L. D. Carr, under review, arXiv:1805.03339 (2018)
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CHAPTER 2

MATHEMATICAL AND NUMERICAL NOTIONS OF DARK-BRIGHT SOLITONS IN

BOSE-EINSTEIN CONDENSATES

This chapter is dedicated to the mathematical and numerical methods used in the soliton

theory. In Sec. 2.1, we derive the GPE starting from the many-body Hamiltonian. In Sec. 2.2,

we introduce the necessary methods to convert the 3D GPE to nondimensionalized 1D GPE.

Sec. 2.3 is dedicated to explaining the imaginary time propagation (ITP) method where we

show the procedures to obtain the ground state energy of one-component dark and bright

solitons in addition to the ground state of the dark-bright soliton. In Sec. 2.4, we discuss

the reasons behind choosing a specific ansatz and the role of this choice in the variational

methods. Sec. 2.5 examine the techniques used to integrate the GPE numerically. Feshbach

resonance method is explained in Sec. 2.6, and the Imaging techniques used to capture

different aspects of the solitary waves experimentally is discussed in Sec. 2.7. We end the

chapter with a general view of the experiments conducted so far on the dark-bright solitons

in Sec. 2.8.

2.1 Derivation of Gross-Pitaevskii equation

The Gross-Pitaevskii equation describes the ground state of a Bose gas under BEC condi-

tions. To derive this equation one starts from the full many-body Hamiltonian for interacting

bosons,

Ĥ =

∫
d3rΨ̂†(r)H0Ψ̂(r) +

1

2

∫
d3r

∫
d3r′Ψ̂†(r)Ψ̂†(r′)Vint(r, r

′)Ψ̂(r′)Ψ̂(r), (2.1)

here Vint(r, r
′) represents the interaction potential term. The single particle Hamiltonian is

H0 = (h̄2/2m)∇2 + Vext, where Vext is the external potential acting on the system. The field

operators Ψ̂†(r) and Ψ̂(r) represent the creation and annihilation of a boson at positon r,

respectively. In the low energy BEC the dominant interaction between particles is a binary
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interaction. Therefore, one can approximate the interaction potential, Vint(r, r
′), to be of the

following form,

Vint(r, r
′) = gδ(r′ − r), (2.2)

where g = 4πh̄2Nas/m governs the interaction strength between particles. The s–wave

scattering length is as, the number of particles represented by N and m is the atomic mass.

Using this potential in the above equation will integrate out r′ and we are left with,

Ĥ =

∫
d3rΨ̂†(r)H0Ψ̂(r) +

g

2

∫
d3rΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (2.3)

Applying the Heisenbergs time evolution equation, ih̄(∂Ψ̂(r)/∂t) = [Ψ̂(r), Ĥ], in order to

evolve the field operator in time and using the bosonic commutation relations,

[Ψ̂(r), Ψ̂†(r′)] = δ(r′ − r), (2.4)

result in obtaining the equation of motion for the whole field,

ih̄
∂

∂t
Ψ̂(r, t) =

[
− h̄2

2m
∇2 + Vext(r)

]
Ψ̂(r, t) + gΨ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t). (2.5)

We are interested in the equation of motion for the condensate alone. To this end, we

split the field operator, Ψ̂, into two parts representing an operator for the condensate part,

Ψ̂condensate, and the non-condensate part, φ̂.

Ψ̂(r, t) = Ψ̂condensate(r, t) + φ̂(r, t). (2.6)

The non-condensate part could represent thermally-excited atoms, quantum fluctuations,

etc. Basically, any atoms that are not in the ground state. Therefore, one could ignore

this part when considering a Bose gas under BEC conditions. The field operator for the

condensate part can be approximated to represent a complex wavefunction when assuming a

large number of particles in the condensate. This is a valid approximation since the operator

acts on single particles. But when the particle number is large it will have no effect and we

can consider the expectation value of the field operator to be of the following form,

Ψcondensate(r, t) = 〈Ψ̂condensate(r, t)〉,
Ψ∗condensate(r, t) = 〈Ψ̂†condensate(r, t)〉.

(2.7)
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By using Eq. (2.7) and Eq. (2.6) in Eq. (2.5), we obtain the Gross–Pitaevskii equation,

ih̄
∂

∂t
Ψ(r, t) =

[
− h̄2

2m
∇2 + Vext(r)

]
Ψ(r, t) + g3DΨ∗(r, t)Ψ(r, t)Ψ(r, t), (2.8)

where we dropped the subscript condensate. Equation (2.8) is the 3D GPE. In Sec. 2.2, we

introduce the necessary steps to convert the dimensional 3D GPE to dimensionless 1D GPE.

2.2 Nondimensionalization and Dimensional Reduction for 3D Gross-Pitaevskii
equation

Nondimensionalization is a method by which we partially (or entirely) remove physical

units from an equation by a proper choice of variables. The result is often a dimensionless

equation. Working with dimensionless equation has many benefits analytically and numeri-

cally. For example, solving a dimensionless equation numerically result in avoiding round-off

due to manipulations with large or small numbers. Also, by working with a dimensionless

equation analytically, we have insights into what parameters that could be small such that

we can ignore or approximate.

The final form of the 3D GPE, Eq. (2.8) is,

ih̄
∂

∂t
Ψ(x, t) =

[
− h̄2

2m

∂2

∂x2
+ V (x) + g3D|Ψ(x, t)|2

]
Ψ(x, t). (2.9)

Here t is the time and x ∈ R3 is the spatial coordinate in 3D. The wave function is

Ψ(x, t) and V (x) represents harmonic potential. The 3D interaction coefficient is g3D. To

nondimensionlize Eq. (2.9) we multiply it by 1
mω2

x

√
`

and scale all quantities according to the

following units:

t̃ =
t

ts
, x̃ =

x

`
, Ψ̃(x̃, t̃) = `

3
2 Ψ(x, t). (2.10)

The dimensionless version of Eq. (2.9) is,

i
∂

∂t̃
Ψ̃(x̃, t̃) =

[
−1

2

∂2

∂x̃2
+ Ṽ (x̃) + g̃3D|Ψ̃(x̃, t̃)|2

]
Ψ̃(x̃, t̃). (2.11)

Here Ṽ (x̃) = 1
2

(
x2 + γ2

yy
2 + γ2

zz
2
)
, γ2

y = ωy

ωx
and γ2

z = ωz

ωx
. The normalized interaction

coefficient is g̃3D = 4πaN
`

where N is the number of particles and a is the scattering length.

12



In the following, we remove the tildes with the understanding that from now on we work

mainly in dimensionless units. In the 1D limit we have ωy ≈ ωz >> ωx. This lead to

γ2
y ≈ γ2

z >> 1. This means physically that we confine the condensates in y- and z-directions

only such that we suppress any excitation other than the ones in the x-direction. In this

way, we can factorize the wave function to the following expression,

Ψ(x, t) = Ψ(x, y, z, t) = ψ (x, t)φ (y, z) . (2.12)

Here φ (y, z) is the wave function in the transverse direction (i.e. y and z directions).

Since there are no excitations allowed in the transverse direction φ (y, z) is the ground state

of the GPE and take the form of Gaussian wave function. Inserting Eq. (2.12) into Eq. (2.11)

and multiply both side by φ∗ (y, z) and integrate over the transverse direction result in the

1D GPE,

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+ V (x) + g1D|ψ(x, t)|2

]
ψ(x, t), (2.13)

with g1D =
g3D
√
γyγz

2π
. For a multiple-component system, we need an equation for each

component. For example, the two-components GPEs take the form,

i
∂

∂t
u+

1

2

∂2

∂x2
u−

[
g1|u|2 + g|v|2

]
u = V (x)u, (2.14)

i
∂

∂t
v +

1

2

∂2

∂x2
v −

[
g2|v|2 + g|u|2

]
v = V (x)v,

where the wave function of component 1 is u and the wave function for component 2 is v.

The interatomic interaction between the two components is g, and g1 and g2 represent the

intra-atomic interaction for component 1 and component 2, respectively. The potential term

is V (x).

2.3 Imaginary time propagation

The ground state is by definition the lowest energy and the most stable state of the

system. For this reason, it is preferable to use the ground state in numerical simulations.

There are many numerical methods to obtain the ground state of a system [37, 38]. Here

13



we use a famous and reliable method, namely, the imaginary time propagation (ITP) [39].

The ITP is a mathematical trick used to numerically convert a random state to the ground

state of a system. In the following, we highlight the main steps to illustrate the use of ITP

to find the ground state of a system.

Expand a random wave function in terms of the system eigenfunctions,

Ψ (x, t) =
∞∑
n=0

ψn (x) e−iEnt, (2.15)

where each next eigenstate has higher energy than the previous one. That is, En > En−1.

The next step is the one that gives the method its name where we substitute the real time

by imaginary one (i.e τ = it).

In this way, equation (2.15) becomes,

Ψ (x, τ) =
∞∑
n=0

ψn (x) e−Enτ =
(
ψ0e

−E0τ + ψ1e
−E1τ + ψ2e

−E2τ + +ψ3e
−E3τ + ....

)
. (2.16)

We see that when we forward propagate τ , the exponentials with higher energy will decay

faster than the those with the lower energy. As a result, for a long time propagation, we are

left with the lowest energy state of the system (i.e. E0). The choice of the initial random

wave function affects the efficiency of the ITP method. It is favored to choose an initial wave

function that is close to the shape of the desired one and not orthogonal to the ground state

so that we minimize the time needed to find the ground state of a system. It is also better

to choose a profile wave function with all Fourier components having a nonzero weight. The

reason behind this fact is that when we propagate τ in time we want to include all the

possible energy values otherwise the final result could be biased and will not reflect the real

ground state of the system. In order to obtain the ground state energy of one component

bright soliton we set the sign of g in Eq. (2.13) to be negative. In Figure 2.1 and Figure 2.2

we show the convergence of an arbitrary wave function to a bright soliton using the ITP.

The bright soliton solution in Figure 2.2 takes the form [40],

ψBS (x) = Asech
[
A
√
−g (x− x0 − vt)

]
eiθ(x,t), (2.17)
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Figure 2.1 Convergence of arbitrary wave function to bright soliton. The left (right) panel shows
the density (phase) of the propagation of bright soliton in ITP.
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Figure 2.2 Bright soliton obtained by ITP. Final result of Figure 2.1.
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where x0 is the position of the soliton, v is the velocity, A is the amplitude and θ is the

phase. We normalize the bright soliton in Figure 2.2 to one. Therefore, by compute the

normalization of Eq. (2.17) to one we obtain the following expression,

2A√
−g

= 1. (2.18)

With g = −1 we find A2 = 0.25 as shown in Figure 2.2.

ITP can also be used to obtain excited states like dark soliton. We do so by modifying the

interaction coefficient to be repulsive (i.e., g > 0) then we imprint a π-phase on half of the

condensate (i.e., x > 0) and allows the wave function to propagate in imaginary time until we

get the desired result. The imprinting of a phase difference basically cut the condensates to

two halves, and therefore we can think of this as a propagation of two constant backgrounds

with an invisible barrier between them. Another way to see this is that when we first obtain

the constant background, the phase through the condensate is constant and by applying a

phase difference in a specific location we get a region where the phase is changing from 0 to

π. Therefore, the particles in this part of the condensate will acquire a non-zero velocity, v,

due to the well-known equation v (x, t) = h̄
m
∇S (x, t), where S (x, t) is the phase across the

condensate. Hence, when we propagate the wave function in imaginary time, the particles in

this region will move either to the right or left side, and a dark soliton will be created. Note

that the absence of particles characterizes a dark soliton. In Figure 2.3 and Figure 2.4, we

plot the result obtained from the ITP method.

In the case of the dark-bright soliton, we obtain the two-component wave function also

by ITP. Here, we work mainly with repulsive interaction coefficients for all components (i.e.,

g1, g2 and g > 0). We only apply a phase difference on one component (i.e., component 1)

such that we form a dark soliton in this component. The repulsive interaction between the

particles in the two components force the particles in component 2 to cluster in the middle

since there are no particles in this region in component 1 due to the presence of the dark

soliton. Therefore, we obtain a bright soliton in the second component.
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Figure 2.3 Convergence of arbitrary wave function to dark soliton. The left (right) panel shows the
density (phase) of the propagation of dark soliton in ITP.
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Figure 2.4 Dark soliton obtained by ITP. Final result of Figure 2.3.
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In Figure 2.5 we plot the density and the phase of the dark component using the ITP and

in Figure 2.6 we plot the density of the bright component using the ITP. Note that once we

get a bright component, the dark component modifies its width to account for the existence

of the bright soliton. Note that once we get a bright component, the dark component

modifies its width to account for the existence of the bright soliton. An essential criterion

that controls the shape of the dark-bright soliton is the miscible/immiscible condition [6],

g2 > g1g2, (2.19)

where g is the interatomic interaction between the two components of the BEC and g1 (g2)

represents the intra-atomic interaction for the dark (bright) component, respectively.

Figure 2.5 Dark soliton component in dark-bright soliton. The left (right) panel shows the density
(phase) of the propagation of dark soliton component in ITP. Note that the creation of the bright
component, Figure 2.6, modify the width of the dark component.

In Figure 2.7, we plot the final result obtained from the ITP for dark-bright wave function

in two-component BEC.

2.4 History of ansatz

An essential step to obtain an accurate description of the dynamic of a solitary wave

using the variational method is the choice of the ansatz. In the case of the bright soliton,
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Figure 2.6 Bright soliton component in dark-bright soliton. The left (right) panel shows the density
(phase) of the propagation of bright soliton component in ITP.

0 20 40 60 80 100
x

0

0.002

0.004

0.006

0.008

0.01

0.012

D
en

si
ty

Dark soliton
Bright soliton

Figure 2.7 Dark-bright soliton obtained by ITP. The final result from Figure 2.6 and Figure 2.6.
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popular options for the ansatz are the Gaussian function or the hyperbolic secant. The choice

between these two functions depends on the problem we are dealing with. For example, in the

case of one-component bright soliton, it is always preferable to select the hyperbolic secant.

After all, this is the exact solution for the NLSE with attractive interaction coefficient (i.e.,

bright soliton) [6]. But with more complex situations like studying the propagation of two

bright solitons, it is better to choose Gaussian functions for their relative ease in calculating

integrals over the Lagrangian density. In addition, using Gaussian functions allow for the

studying of the interaction between different bright solitons without restricting the widths

to be identical. In the case of the dark soliton, the ansatz takes the form of hyperbolic

tangent function. And since we are dealing in this thesis with two-component dark-bright

soliton, we are using the hyperbolic tangent for the dark component and hyperbolic secant

for the bright component in the dark-bright soliton. This choice imposes restrictions on

the width of the two components such that they must be identical to solve the integrals

for the Lagrangian density analytically. Also, a disadvantage of using Gaussian functions

is that they are less accurate than using hyperbolic functions; in fact, it is precisely the

non–Gaussianity of solitons that sets them apart from wave-packet solutions to the NLSE.

2.5 Numerical techniques

We numerically integrate Eq. (2.14) using the method of lines. The method of lines is

a numerical method used to solve Schrodinger-like equations [41]. The general theme of

the method is to solve partial differential equations by discretizing the spatial dimensions

and leave the time dimension to be continuous. By doing so, we recast the problem in the

following form,

ih̄
∂

∂t
ψ (t) = H [ψ (t) , t]ψ (t) , (2.20)

where ψ (t) is an L-dimensional vector such that Eq. (2.20) form a coupled set of ordinary

differential equations (ODEs). The result system of ODEs can be propagated forward in

time using finite difference methods. In the following we discuss different methods used to
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advance the system of ODEs in time.

2.5.1 Runge-Kutta

The Runge-Kutta method [41] is a numerical method used to integrate a system of

ordinary differential equations by using a trial step at the midpoint of an interval to cancel

out lower-order error terms. The general idea is to advance the wave function ψ to ψ (t+ δt).

Therefore, the fourth-order formula of the method becomes,

ψ (t+ δt) = ψ (t) + δt

[
1

6
k1 (t) +

1

63
k2 (t) +

1

3
k3 (t) +

1

6
k4 (t)

]
+O

(
δt5
)
, (2.21)

where,

k1 (t) =
1

i
H [ψ (t) , t]ψ (t) , (2.22)

k2 (t) =
1

i
H [ψ (t) , t] {ψ (t) +

δt

2
k1 (t)},

k3 (t) =
1

i
H [ψ (t) , t] {ψ (t) +

δt

2
k2 (t)},

k4 (t) =
1

i
H [ψ (t) , t] {ψ (t) +

δt

2
k3 (t)}.

2.5.2 Pseudo-Spectral Methods

The pseudo-spectral method is a method used to also propagate a solution, ψ (t), in time.

To explain the procedure used in this method, we start from the Schrodinger equation,

ih̄
∂

∂t
ψ (r, t) = H [ψ (r, t) , t]ψ (r, t) . (2.23)

The general solution of this equation takes the form,

ψ (r, t) = e−iHt/h̄ψ (r, 0) , (2.24)

where a power series define the exponential term. The next step is to separate the Hamil-

tonian into a kinetic term, T = − h̄2

2m
∂2

∂x2
, and potential term, V = V (r). We focus now on

the exponential term (i.e., e−iHt/h̄) in Eq. (2.24). If the potential is time independent then

the exponential term in Eq. (2.24) becomes e−i(T+V (r))t/h̄. By choosing a small time step, we
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can approximate the solution in Eq. (2.24) to the following form,

ψ (r, t) ≈ e−iV (r)t/2h̄e−iT t/h̄e−iV (r)t/2h̄ψ (r, 0) . (2.25)

The next step is to advance the solution, Eq. (2.25), in time such that we propagate

ψ (r, t) to ψ (r, t+ ∆t). Therefore, Eq. (2.25) becomes,

ψ (r, t+ ∆t) ≈ e−iV (r)∆t/2h̄e−iT∆t/h̄e−iV (r)∆t/2h̄ψ (r, t) (2.26)

= e−iV (r)∆t/2h̄e−iT∆t/h̄φ1 (r, t)

= e−iV (r)∆t/2h̄φ2 (r, t) ,

where,

φ1 (r, t) = e−iV (r)∆t/2h̄ψ (r, t) , (2.27)

φ2 (r, t) = e−iT∆t/h̄φ1 (r, t) .

The final step is to employ Fourier transform in Eq. (2.27) such that we convert the

problem to a series of pointwise multiplication. Basically, we obtain Φ1 (k) = F [φ1 (r, t)]

and Φ2 (k) = e−ih̄k
2∆t/2mF [φ1 (r, t)] where F represents a Fourier transform. Therefore,

Eq. (2.26) becomes,

ψ (r, t+ ∆t) ≈ e−iV (r)∆t/2h̄F−1
[
e−ih̄k

2∆t/2mF
[
e−iV (r)∆t/2h̄ψ (r, t)

]]
. (2.28)

We may calculate the pseudospectral derivatives using fast transform algorithms. We

can approximate a function f(x) by a truncated sine series.

f(x) ≈
N∑
k=1

f̃ksin (kx) . (2.29)

The coefficients f̃k can be computed by the discrete sine transform. The finite differences

of the second derivative of the above equation is computed by the following equation,

f (xj+1)− 2f (xj) + f (xj−1)

h2
=

2

h2
Sj{f̃k

[
cos

(
πk

N

)
− 1

]
}, (2.30)

where h is the grid spacing. For the kinetic energy term in Eq. (2.28) we see that the

second derivative converted to multiplication by the coefficient, cos
(
πk
N

)
− 1 in Eq. (2.30).
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Many numerical packages for fast Fourier transform can be used in order to utilize the

propagation of the solution in Eq. (2.28). In this thesis, we are using the Pseudo-Spectral

Method to simulate the GPE. In Figure 2.8 and Figure 2.9, we plot the propagation of the

dark and bright components, respectively, in real time.

Figure 2.8 Dark soliton component in dark-bright soliton in real time. The left (right) panel shows
the density (phase) of the propagation of dark soliton component in real time.

Figure 2.9 Bright soliton component in dark-bright soliton in real time. The left (right) panel shows
the density (phase) of the propagation of bright soliton component in real time.
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2.6 Feshbach Resonances

The Feshbach resonance is a valuable tool used to tune the interactions between atoms in

ultracold atomic gases such as the BEC. By tuning the interaction, we can form a molecule

also. The physics behind this technique can be understood by the two-channel model where

we have an open channel and a closed one as can be seen in Figure 2.10. An interaction

channel forbidden by energy conservation is referred to as a closed channel, whereas an

energetically accessible interaction channel is referred to as an open channel.

Closed Channel

E

Open Channel

Ec

Atomic separation R

E
ne
rg
y

Figure 2.10 Two-channel model.

The event occurs when two atoms collide at energy E in the open channel. Then, the

atoms resonantly coupled and a molecular bound state happen with Ec that is supported

by the closed channel. Note that in the BEC condition mentioned above the collisions take

place near zero energy. Then we realize the resonant coupling when we magnetically tuning

Ec near zero.

2.7 Imaging techniques for two-component Bose-Einstein condensate systems

The imaging techniques for two-component BECs are divided into two categories: De-

structive and nondestructive methods. In the former case, the procedure to obtain BEC
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image heat up the condensate and causing damage to the sample. In this process, a near-

resonant beam focused on the sample and produced a shadow that can be imaged on a

camera where the atomic density distribution is captured. Since the condensates scattered

the light that coming from the near-resonant beam, it will heat it up and destroyed it. In

the case of multiple components, we can change the frequency of the laser beam such that

we distinguish between the different species.

In the nondestructive methods, we are dealing with off-resonant beam this time. By

shining a laser beam of this kind on the sample, we gain a phase-shift caused by the presence

of the condensates. The information in the phase is then converted to intensity, and therefore

we obtain information on the atomic density. In the case of two components BEC with

different hyperfine states we can distinguish between the densities using this method by

tuning the laser beam between the two hyperfine levels. It is also known that this method

has significant advantages over the destructive techniques for the imaging of small and dense

clouds. Experimentally, It is possible to take a hundred images of the same condensate and

revealed important information of the dynamics of the condensates with the data that we

can get from the phase-shift beam [42].

2.8 Dark-bright solitons in experiments

The first two-component BECs were realized in 1997 by Myatt [43]. In this experiment,

a |1,−1〉 spin state of 87Rb was cooled by the usual method (i.e., cooling the gas below

the critical temperature followed by evaporation phase). To create the second component,

in this case, a |2, 2〉 spin state of 87Rb, the authors thermally contact the |2, 2〉 spin state

with the |1,−1〉 spin state. This “sympathetic” cooling of one species by another is not a

new technique. It has been used to cool trapped ions with strong interactions as mentioned

in Myatt’s paper. Other methods help to realize the creation of more sophisticated two

component BECs. For example, 39K–85Rb, 85Rb–87Rb and 41K–85Rb.These mixtures are

sometimes referred to as heteronuclear mixtures [6]. The two-component BECs with repulsive

interactions allow for the creation of dark-bright soliton. In this case, the dark soliton, which
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is an excited state with energy higher than the underlying BEC ground state, playing the

role of an effective potential that supports the bright soliton.

A dark-bright soliton created in two hyperfine states of 87Rb have a very close interaction

coefficients, Eq. (2.19). Therefore, by tuning the Feshbach resonance to obtain a repulsive

interaction in the two separated condensates, we still work with a Manakov system (i.e., a

system where all the coefficients equal to unity) [44]. Working with different atom species

in the two components allow for exploring systems other than the Manakov system.
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CHAPTER 3

DYNAMICS OF DARK-BRIGHT VECTOR SOLITONS IN BOSE-EINSTEIN

CONDENSATES

We analyze the dynamics of two-component vector solitons, namely dark-bright solitons,

via the variational approximation in Bose-Einstein condensates. The system is described

by a vector nonlinear Schrödinger equation appropriate to multi-component Bose-Einstein

condensates. The variational approximation is based on a hyperbolic tangent (hyperbolic

secant) for the dark (bright) component, which leads to a system of coupled ordinary dif-

ferential equations for the evolution of the ansatz parameters. We obtain the oscillation

dynamics of two-component dark-bright solitons. Analytical calculations are performed for

same-width components in the vector soliton and numerical calculations extend the results

to arbitrary widths. We calculate the binding energy of the system and find it proportional

to the intercomponent coupling interaction, and numerically demonstrate the break up or

unbinding of a dark-bright soliton. Our calculations explore observable eigenmodes, namely

the internal oscillation eigenmode and the Goldstone eigenmode. We find analytically that

the number of atoms in the bright component is required to be less than the number of

atoms displaced by the dark soliton in the other component in order to find the internal

oscillation eigenmode of the vector soliton and support the existence of the dark-bright

soliton. This outcome is confirmed by numerical results. Numerically, we find that the os-

cillation frequency is amplitude independent. For dark-bright solitons in 87Rb we find that

the oscillation frequency range is 90 to 405 Hz, and therefore observable in multi-component

Bose-Einstein condensate experiments.

3.1 Introduction

Nonlinear waves have been a fascinating subject since the discovery of the solitary wave

in 1834 by John Scott Russell in the Union Canal in Scotland where he observed the “great
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wave of translation,” as he called it at the time [1]. Since then, solitary waves of all kinds

have been observed in many systems. Solitons in Bose-Einstein condensates (BECs), which

are the subject of this Article, have been the focus of research efforts since the creation of

BECs [6, 9].

A special structure of a coupled dark-bright soliton may exist in two-component BECs

with repulsive interatomic interactions, where a dark soliton in one component creates a po-

tential well that traps a bright soliton in the second component [10, 12–15, 45, 46]. Although

a bright soliton does not exist in a system with repulsive interactions [16], it can be supported

in such a binary system due to the nonlinear interaction with the dark soliton component.

These solitons can be referred to as symbiotic [17, 46]. A similar possibility for such a mech-

anism was proposed early in the literature in terms of a Bose-Fermi mixture where bosons

and fermions attract each other but the interaction between the bosons themselves is repul-

sive [19]. Vector solitons also exist in fiber optics [20–22] including bright-bright solitons [23]

and dark-bright solitons [24]. Different types of vector solitons in multiple component BECs,

such as pseudo-spinor BECs or three- and higher-component spinor BECs [25, 26], can be

created and transformed into each other by tuning the inter-component interaction via Fes-

hbach resonances [14, 27, 28]. Examples of these vector solitons in two-component BECs

include bright-bright solitons [29] and dark-dark solitons [15, 47], which exhibit rich dynam-

ical far-from-equilibrium phenomena such as beating dark-dark solitons [30]. Among the

techniques to create dark-bright solitons in a binary mixture of BECs are phase imprint-

ing [10] and counter-flowing of two binary BEC mixtures [31].

Many studies have been conducted to investigate the oscillation of vector solitons to

gain a better understanding of the dynamics of multicomponent nonlinear excitations. The

oscillation of bright-bright solitons is one example of such studies. Another example is

the oscillation of dark-dark solitons. In the case of dark-bright solitons, there have been

investigations of the oscillation of multiple dark-bright solitons [31, 46, 48] and the oscillation

of the internal modes for bright-bright solitons using a Gaussian ansatz [49] via variational
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approximation methods. However, to the best of our knowledge no one has treated the

internal oscillations of the dark-bright soliton case variationally using hyperbolic functions,

which is the subject of this Article. A popular choice for the ansatz in the variational

approximation method is Gaussian functions for their relative ease in calculating integrals

over the Lagrangian density. In addition, Gaussian functions do not impose any restriction

in the choice of the width of the two components in the vector soliton. A disadvantage of

using Gaussian functions is that they are less accurate than using hyperbolic functions –

in fact it is exactly the non-Gaussianity of solitons that sets them apart from wavepacket

solutions to the linear Schrödinger equation. Thus in this Article we perform calculations

with variational approximation methods using hyperbolic tangent (hyperbolic secant) for

the dark (bright) component in the dark-bright soliton. This choice imposes restrictions

on the width of the two components such that they must be identical in order to solve the

integrals for the Lagrangian density analytically. We study the behavior of the dark-bright

soliton when a phase is imprinted only on the bright component and find the oscillation

modes of the system, in addition to the binding energy and the velocity of the dark-bright

soliton, which is effected by the interaction coefficient between the two components. In

this scenario the moving bright component pulls the dark component along with it, and

oscillates in addition to moving the dark-bright soliton as a whole. One can think of this

mode as a vibrational excitation of the dark-bright “soliton molecule,” as two-component

vector solitons are sometimes termed. We will use the term dark-bright soliton to describe

these vector solitons. Our calculation shows that the system has a second oscillation mode

in addition to the vibrational mode, namely a Goldstone mode [50], as expected since the

whole dark-bright soliton is moving.

This Article is organized as follows. In Sec. 3.2 we study oscillation of the two components

in the dark-bright soliton by imprinting a phase on the bright component and finding the

normal modes of the system by means of a variational approximation method based on a

hyperbolic tangent (hyperbolic secant) for the dark (bright) soliton component for the two-
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component ansatz. In Sec. 3.5 we calculate the binding energy between the bright and dark

component in the dark-bright soliton as a function of the distance between the center of

each component. In Sec. 3.6 we investigate dark-bright soliton dynamics by numerically

integrating the dimensionless nonlinear Schrödinger equation (NLSE) using an algorithm

that is pseudo-spectral in time and adaptive Runge-Kutta in space. We focus on the inter-

component dynamics for different interaction coefficients and discuss real experimental values

for the internal oscillation frequency in 87Rb. Finally, we present our conclusions in Sec. 5.4.

3.2 Analytical Calculations

The two-component dark-bright soliton is governed by coupled NLSEs [6], which describe

the evolution of the macroscopic wave functions of Bose condensed atoms:

ih̄
∂

∂t̃
ũ
(
x̃, t̃
)

= − h̄2

2m

∂2ũ
(
x̃, t̃
)

∂x̃2
+

[
g̃11|ũ

(
x̃, t̃
)
|2 (3.1)

− ũ2
0 + g̃12|ṽ

(
x̃, t̃
)
|2
]
ũ
(
x̃, t̃
)
,

ih̄
∂

∂t̃
ṽ
(
x̃, t̃
)

= − h̄2

2m

∂2ṽ
(
x̃, t̃
)

∂x̃2
+

[
g̃22|ṽ

(
x̃, t̃
)
|2

+ g̃21|ũ
(
x̃, t̃
)
|2
]
ṽ
(
x̃, t̃
)
,

where tildes denote dimensional quantities. The wave function of the dark soliton is given

by ũ
(
x̃, t̃
)

and of the bright soliton by ṽ
(
x̃, t̃
)
. The interaction strength, g̃ij = 2aijNh̄ω⊥

for (i, j = 1, 2), is renormalized to 1D [51] where g̃12 and g̃21 are the inter-atomic interaction

between the two components of the BEC and g̃11 (g̃22) represents the intra-atomic interaction

for the dark (bright) component. The dark soliton wave function is rescaled to remove the

background contribution, ũ0, as is standard to avoid divergent normalization and energy [52].

The s-wave scattering length between components i and j is aij, N is the total number of

atoms and ω⊥ is the oscillation frequency of the transverse trap. We assume the atomic

masses for the two components m1 and m2 are equal to m, as appropriate for the case of

multiple hyperfine components of e.g. 87Rb. To nondimensionlize Eqs. (3.1) we multiply
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them by (h̄ω⊥)−1 and scale all quantities according to the following units:

x =
x̃

`⊥
,

t = t̃ω⊥,

gij =
g̃ij

`⊥h̄ω⊥
,

|u|2 = `⊥|ũ|2,
|v|2 = `⊥|ṽ|2,

u2
0 =

ũ2
0

h̄ω⊥
,

(3.2)

where `⊥ =
√
h̄/ (mω⊥) is the transverse harmonic oscillator length. In Sec. 3.10 we discuss

specific choices that are consistent with experimental observations. For simplicity we take

g11 ≡ g1, g22 ≡ g2, and g12 = g21 ≡ g. The dimensionless NLSE becomes

i
∂u

∂t
= −1

2

∂2u

∂x2
+
[
g1 |u|2 − u2

0 + g |v|2
]
u,

i
∂v

∂t
= −1

2

∂2v

∂x2
+
[
g2 |v|2 + g |u|2

]
v. (3.3)

We work with the dimensionless 1D two-component coupled NLSE, Eq. (3.3), throughout

the rest of this article. We use the normalization conditions

∫ ∞
−∞

dx

(
u2

0

g1

− |u|2
)

=
N1

N
, (3.4a)∫ ∞

−∞
dx |v|2 =

N2

N
, (3.4b)

for the dark and bright component, respectively. Noting the background subtraction in the

first component of Eqs. (4.8), N1 is the number of atoms displaced by the dark soliton, in

other words, the number of atoms involved with creating the density notch or minimum.

Thus we define the total number of atoms N involved in the dark and bright solitons as

N1 +N2 = N, (3.5)

as appropriate for the two-component BEC and standard for the dark-bright soliton problem,

thereby incorporating N into the definition of the nonlinear coefficient g̃ij [6]. To obtain
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Eq. (3.3), we introduce the following Lagrangian density where we use Euler-Lagrangian

equations to get the equations of motion, i.e., the coupled NLSE of Eq. (3.3):

L =
i

2

[
u∗
∂u

∂t
− u∂u

∗

∂t

] [
1− u2

0

g1 |u|2

]
− 1

2

∣∣∣∣∂u∂x
∣∣∣∣2

− 1

2

[
√
g1 |u|2 −

u2
0√
g1

]2

+
i

2

[
v∗
∂v

∂t
− v∂v

∗

∂t

]
− 1

2

∣∣∣∣∂v∂x
∣∣∣∣2 − g2

2
|v|4 − g |u|2 |v|2

+
u2

0

2g1

[2θ2 (x+ d (t)) + θ1 (t)]2 .

(3.6)

Note that the last term does not depend on the wave function of the dark or the bright

component and was added to eliminate the infinity when using the ansatz, Eq. (3.7), with

θ1 and θ2 to be defined in the following. We adopt the following trial functions as the

dark-bright soliton solutions to Eq. (3.3):

u (x, t) =
u0√
g1

{
iA+ c tanh

[
(d (t) + x)

w

]}
(3.7)

× exp
{
i
[
θ0 + (d (t) + x) θ1 (t) + (d (t) + x)2 θ2

]}
,

v (x, t) =
u0√
g2

F sech

[
(b (t) + x)

w

]
× exp

{
i
[
φ0 + (b (t) + x)φ1 (t) + (b (t) + x)2 φ2

]}
.

The parameters A, c and F describe the amplitude of the two components, where A2+c2 = 1,

as is standard in the formulation of an NLSE dark soliton [18]. In the exponential terms, φ0

and θ0 give rise to a complex amplitude. φ1 (t) and θ1 (t) are responsible for the dark and

bright component velocities. Note that the velocity of a dark soliton also depends on the

amplitude of the wave function as shown in Eq. (3.9d); φ2 and θ2 are essential to vary the

width [53]; and d (t) and b (t) are the position of the dark and bright soliton, respectively.

The two components are assumed to have the same width w. To study the oscillation of

the two components in time, we chose the variational parameters to be the two component

positions d (t) and b (t) and the phases θ1 (t) and φ1 (t). As mentioned in Sec. 3.1, the
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analytical calculations use hyperbolic functions as an ansatz, which are more accurate than

using Gaussian functions. This choice requires the two components to have identical width

in order for the problem to remain analytically tractable, as opposed to using a Gaussian

ansatz [49]. However, we will relax this constraint in Sec. 3.6. Using the ansatz, Eqs. (3.7),

in the normalization, Eqs. (4.8), we find the relation between N1, N2 and the coefficients of

the two components in the dark-bright soliton:

2c2u2
0w

g1

=
N1

N
, (3.8)

2F 2u2
0w

g2

=
N2

N
.

3.3 Evolution Equations

Substituting Eq. (3.7) into the Lagrangian density Eq. (4.12) and integrating over space

from −∞ to ∞ results in the Lagrangian as a function of the variational parameters. Ap-

plying the Euler-Lagrange equations then yields a system of ordinary differential equations

(ODEs) that describes the evolution in time of the position and phase for both components:

d

dt
φ1(t) = α csch

(
b (t)− d (t)

w

)4

(3.9a)

×
{

2 (b (t)− d (t))

[
2 + cosh

(
2
b (t)− d (t)

w

)]
−3w sinh

(
2
b (t)− d (t)

w

)}
,

d

dt
θ1(t) = β

d

dt
φ1 (t) , (3.9b)

d

dt
b (t) = −φ1 (t) , (3.9c)

d

dt
d (t) = −γ − θ1 (t) . (3.9d)

where

α ≡ c2gu2
0

g1w2
, β ≡ F 2g1

c2g2

, γ ≡ A

cw
. (3.10)
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Equations. (4.13) can be reduced to one second order ODE:

d2

dt2
l(t) = (β − 1)α csch

(
l(t)

w

)4

(3.11)

×
{

2l(t)

[
2 + cosh

(
2l(t)

w

)]
− 3w sinh

(
2l(t)

w

)}
.

where l(t) ≡ b(t) − d(t). Despite the attractive simplicity of this unified description, it is

physically advantageous to address the problem with Eqs. (4.13) to illustrate the behavior

of the evolution of the variational parameters in time and to clarify the physical meaning of

the fixed point and linear stability analysis in the next section.

3.4 Normal Modes

Equations (4.13) possess one stable fixed point:

φ1 = 0, θ1 = −γ, l = 0. (3.12)

Since l = 0, we can choose the original of the coordinate system such that b = d = 0.

In Appendix 3.12 we prove that Eqs. (4.13) with the fixed point l = 0 do not possess a

singularity. We proceed by linearizing Eqs. (4.13) around the fixed point Eq. (3.12), i.e.,

ai (t) = afp + δaeiωt, where ai represents the variational parameters and afp is the fixed point

mentioned above. This results in a matrix equation of form
iω 0 −A1 A1

0 iω −A2 A2

1 0 iω 0
0 1 0 iω



δφ1

δθ1
δb
δd

 =


0
0
0
0

 (3.13)

where

A1 =
(
8c2gu2

0)/
(

15g1w
2), (3.14)

A2 =
(
8F 2gu2

0)/
(

15g2w
2). (3.15)

Taking the determinant of the matrix and solving for eigenfrequencies ω and the associated

eigenvectors yields
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ν∓ =


∓ 2√

15
(N1/N2)w−

3
2
√
g
√

N2−N1
N

∓ 2√
15
w−

3
2
√
g
√

N2−N1
N

N1/N2

1

 , (3.16a)

ν01 =


0
0
1
1

 , ν00 =


0
0
0
0

 , (3.16b)

and eigenfrequencies 1

ω∓ = ∓2i

√
1

15

√
gw−

3
2

√
(N2 −N1) /N, (3.17a)

ω01 = 0, ω00 = 0, (3.17b)

where the oscillation frequency ω01 in Eq. (3.17b) corresponds to the zero-energy mode,

sometimes defined in the literature as a Goldstone mode [50, 54], and we have used the

normalization Eqs. (4.8). This mode breaks translational symmetry with no energy cost.

We can interpret it as a moving dark-bright soliton without internal oscillation of the two

components. Also, the eigenvector of this mode, ν01, shows no contribution from the phases

that are responsible in the first place for the oscillation, and has b and d moving together

with zero frequency, i.e., at constant velocity.

Turning to the nonzero frequency eigenmode, in Eq. (3.17a), stable oscillation requires

the condition N1 > N2 be met, in other words, g2 > F 2

c2
g1. Thus for same amplitude

components there is no oscillation. This result is supported by the numerical calculations in

Sec. 3.7, where we find that the bright component in the dark-bright soliton does not exist

when the total number of atoms in the bright component is equal to or greater than the

total number of atoms displaced by dark soliton in the other component ( Figure 3.3). Using

N2 = N −N1 we can rewrite the oscillation frequency as

1We note that the simplification of Eq. (3.11) produces the same eigenfrequencies, as we verified in an
independent calculation.

35



3.0 3.5 4.0 4.5 5.0 5.5
g

0.07

0.08

0.09

0.10

ω

Figure 3.1 Oscillation frequency of the two components in the dark-bright soliton versus the inter-
action coefficients, g. We set N1 ≈ 0.503 ∗ 105 atoms and width w=1 where ω and g are unitless.
The range of the values in g is from 2.4 to 5.8, matching the range of g in the numerical calculations.

ω∓ = ∓2

√
1

15
w−

3
2
√
g
√

(2N1/N)− 1. (3.18)

Note that for a real oscillation the normalization constant 2N1/N should be greater than one,

which in turn makes N1 > N2. Considering the typical number of atoms in 87Rb experiment,

we set N = 105 and N1 ≈ 0.503 × 105. Setting w = 1 in Eq. (3.18) we plot the relative

frequency versus the interaction coefficient g in Figure 3.1.

3.5 Binding Energy of Vector Soliton

In the Lagrangian density, Eq. (4.12), the term g |u|2 |v|2 represents the coupling interac-

tion per unit space between the two components of the dark-bright soliton. Using the ansatz

Eq. (3.7), we can integrate this term over x to find the coupling interaction of the system.

The binding energy can be found when we subtract the coupling interaction energy at l = 0

from l = ∞ where l is the separation between the bright and dark solitons. The energies

associated with all other terms in the Lagrangian density turn out to be independent of l.

The coupling interaction energy of the system is
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Figure 3.2 Coupling energy versus the distance between the two components, l (t), when t=0. Here
we normalize the interaction coefficients to unity and set N1 ≈ 0.503 ∗ 105 atoms. The solid blue
line represent Eq. (3.19) and the dashed red line represent Eq. (3.20).

Ecoupling =
F 2gu4

0

g1g2

csch

[
l (t)

w

]2

×[
4c2

(
w − l coth

[
l (t)

w

])
+ 2w sinh

[
l (t)

w

]2
]
.

(3.19)

In Figure 3.2 we plot Eq. (3.19). As expected for a binding energy, the coupling interaction

energy is minimum at the center where the location of the bright soliton maximum and

dark soliton minimum coincide. Applying a phase to the bright component, i.e., giving it a

“kick”, causes it to experience a force due to the coupling interaction energy that brings it

back to the energy minimum, which creates an oscillation between the two components. If

the imprinted phase is large enough to separate the two solitons beyond their relative widths,

the system reaches a point where the bright soliton escapes and is then destroyed, as we will

show in Sec. 3.6.

To analytically explore the behavior of the oscillation around the fixed point when l� 1

we expand Eq. (3.19) to quadratic order in l:
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Ecoupling =
2(3− 2c2)F 2gu4

0w

3g1g2

+
8c2F 2gu4

0

15g1g2w
l2 (3.20)

As a result, we see that the coupling energy when l << 1 behaves as a parabolic potential

energy near the fixed point. Therefore, we should expect the oscillation frequency to be

amplitude independent for small amplitude excitations, and this is indeed the result we

obtain in Sec. 3.6 (see Figure 3.7).

We can treat the coupling energy as a potential energy and derive the equation of motion

for l(t).

m
d2

dt2
l(t) = − d

dl
Ecoupling

=
2c2F 2gu4

0

g1g2w
csch(

l(t)

w
)4 {2l(t) [2

+cosh(
2l(t)

w
)

]
− 3w sinh (

2l(t)

w
)

}
,

(3.21)

where m = 1 in our units. Comparing Eq. (3.21) to Eq. (3.11) we find that the two equations

are different only by the coefficients and therefore yield different frequencies. This can

be understood by examining the Lagrangian density, Eq. (4.12), where we subtract the

background contributions from the dark soliton momentum term and the intra-component

mean field energy term. The calculations leading to Eq. (3.11) account for this subtraction

whereas the calculations leading to Eq. (3.21) do not. Consequently, the coefficients are

different.

By taking the difference between Eq. (3.19) at l = 0 and l = ∞ we find the binding

energy:

Ebinding = Ecoupling(l→0) − Ecoupling(l→∞)

= −4c2F 2gu4
0w

3g1g2

.
(3.22)
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We note that the binding energy is thus proportional to the intercomponent coupling g and

inversely proportional to the intracomponent couplings g1, g2. The latter inverse propor-

tionality is due to normalization. In addition, we calculate the kinetic energy (KE) and the

intra-component mean-field energy (MFE) of the dark and bright component, separately,

and compare them to the binding energy above.

For the dark component in the dark-bright soliton,

KE =
N1[−2 + π2w4θ2

2]

6Nw2
+

1

2
θ1(

4Acu2
0

g1

+
N1θ1

N
), (3.23)

MFE = − g1N
2
1

6wN2
. (3.24)

For the bright component in the dark-bright soliton,

KE = −N2[1 + π2w4φ2
2]

6Nw2
− N2φ

2
1

2N
, (3.25)

MFE = − g2N
2
2

6wN2
. (3.26)

We found the KE and the MFE of the dark (bright) soliton component is inversely pro-

portional to the intracomponent coupling g1 (g2). Note that both the KE and the MFE of

the two components does not depend on the intercomponent coupling g as expected. This

result can be understood when we examine the Lagrangian density, Eq. (4.12), where the

intercomponent coupling g only appears in the coupling term and therefore only contributes

to the binding energy.

Finally, we compare the binding energy to the kinetic energies (i.e., Eqs. (3.23), (3.25))

and the mean field energies (i.e., Eqs. (3.24), (3.26)) of the dark-bright soliton. We find

that in order to break or unbind the dark-bright soliton the imprinted phase on the bright

component should be greater than the following quantity:
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φ1 >
1√
3N2

[−2N1 +N2 − 2N1w

w2
− N2

1 (2 + g1) + g2N
2
2

Nw

+ π2w2(N1θ
2
2 −N2φ

2
2) + 3N1θ

2
1

+
6 θ1

√
N1

√
2Nu2

0w − g1N1

w
√
g1

]−1 .

(3.27)

In Sec. 3.8, we compare Eq. (3.27) to Figure 3.9.

3.6 Numerical Calculations

In this section we numerically investigate the interaction between the two components.

First, we explore the approach to the integrable Manakov case of equal interaction coeffi-

cients g = g1 = g2 and find the ground state density of a dark-bright soliton. The Manakov

case formally precludes a dark-bright soliton, since the number of atoms in the bright soliton

component must be less than the number of atoms displaced by the dark component soliton.

In Sec. 3.4 we derived this condition as a requirement to find a real oscillation of the two

component dark-bright soliton. Second, we investigate the interaction between the two com-

ponents with unequal interaction coefficients by finding the ground state of the system when

the interatomic interaction goes from the miscible to the immiscible domain, representing

a quantum phase transition for the dark-bright soliton. Third, we investigate dark-bright

soliton dynamics, studying the velocity of the dark-bright soliton, the oscillation frequency

mode as a function of the interaction coefficients, and unbinding or break-up process when

the dark-bright soliton is too strongly perturbed. Fourth, we end this section with a discus-

sion of the experimental case for 87Rb where we can use these units to convert between the

dimensionless variables in the study conducted and physically measurable quantities such as

the oscillation time. Note that throughout this section, we performed the simulations with

grid size nx = 256 and in a box with hard wall boundaries. The box length was set to L=50

unless otherwise noted.
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3.7 Dark-Bright Soliton with Equal Interaction Coefficients

We obtain our initial state numerically by using the imaginary-time-propagation method

to find the ground state energy of the coupled NLSEs. Starting with constant initial wave-

functions for both components, where we imprinted a phase on the constant dark component

only, we perform two sets of simulations. We allow the particle number to fluctuate between

the two components during imaginary time propagation. Fixing g1 = g2 = 1 and allowing g

to increase toward the Manakov case of g = g1 = g2, we find the result shown in Figure 3.3,

where in the last two panels the dark-bright soliton ceases to exist and all atoms pile up in

the “bright” component.

3.8 Dark-Bright Soliton with Unequal Interaction Coefficients

We explore the miscible-immiscible quantum phase transition at g2 = g1g2 in a non-

Manakov system for which g1 6= g2, as shown in Figure 3.4, where we again tune g through

the transition. For g < 2.3 we do not find a true bright soliton but rather a bump on a

non-zero background, in fact a finite-size effect. For g > 2.3 in the last two panels the

dark-bright soliton appears, since the number of atoms in the bright component is less than

that displaced by the dark component. In the miscible domain in Figure 3.4(a)-(f), the

strength of the repulsive interaction between the two components is less than the repulsive

interaction between the particles in the bright component which allows the bright soliton

to expand and reach the boundaries. In the immiscible domain in Figure 3.4(g)-(h), the

coupling interaction is strong to the point that it forces the bright component to live within

the dark soliton only.

To highlight the effect of the miscibility transition, in Figure 3.5, as we increase the inter-

component coupling, g, the amplitude of the bright component decreases and the amplitude

of the dark component increases. With increasing intercomponent coupling g, the ground

state of the dark-bright soliton shows that the density of the bright component decreases

and therefore the amplitude too. This can be understood by examining Figure 3.4. We see
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Figure 3.3 Approach to the Manakov case. Ground state density of a two-component BEC
when the interaction coefficients g1, g2 are equal to unity, versus the coupling interaction cof-
ficient g. The bright (dark) component is the dashed blue (solid red) line. In (a)-(h) g =
0.0, 0.2, 0.4, 0.6, 0.8, 0.95, 1.0, 1.2, respectively. We allow the relative particle number between the
two components to fluctuate, and past the Manakov point at g = 1 the lowest energy solution
places all atoms in one component.
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Figure 3.4 Dark-bright solitons through the miscible/immiscible phase transition. We take g1 = 2.0
and g2 = 2.7. in (a)-(h) g = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, respectively. The phase transition
occurs at g = 2.3, leading to well-localized bright solitons in the immiscible domain in the last two
panels.
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Figure 3.5 Amplitude of the bright and dark component versus the coupling interaction g. We
measure the amplitudes of the two components at the ground state with different values of g1, g2

and g. (a) g1 = 1.0, g2 = 1.5 (b) g1 = 2.0, g2 = 2.7.
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that when the intercomponent coupling is zero the size of the two densities of the dark and

bright component is governed by the intra-component couplings, g1 and g2, respectively. As

we increase g, the dark component density exerts a repulsive force on the bright component

density and forces it to localize in the center. As we pass the phase transition point when

g > 2.3, the density of the bright soliton component continues to decrease, thus its ampli-

tude decreases too, and the density of the dark soliton component increases at a slow rate

compared to the change in the bright component density. The difference between the rate

of change with g in the density between the two components depends on their sizes. The

dark soliton component is larger than the bright soliton component, as shown in Figure 3.4,

and therefore increasing the density of the dark soliton component will have a small effect

on increasing its amplitude. Finite size effects allow the soliton to exist slightly beyond the

miscibility boundary indicated by the dot-dashed line in Figure 3.4.

3.9 Dark-Bright Soliton Dynamics

We now turn to internal excitations of the dark-bright soliton. Our procedure is to imprint

a phase solely on the bright component, via state-selective manipulation of BECs. The

ensuing dynamics involves not only internal oscillations but also an overall velocity of both

dark and bright components, i.e., the Goldstone mode. The results for our two case studies

from Figure 3.5 are shown in Figure 3.6. We find the velocity of the dark-bright soliton

drops quickly at the beginning then it slowly decreases as the coupling interaction increases.

This behavior can be understood if we examine the density of the bright component. We find

the form depicted in Figure 3.5, i.e., that the amplitude (and therefore the density) of the

bright component decreases as the coupling interaction increases. In this case, the imprinted

phase on the “small” bright component will not pull the dark soliton quickly and therefore

the velocity of the dark-bright soliton changes at a small rate as the bright component

amplitude decreases. In addition, the initial velocity of the dark-bright soliton when g1=2.0

and g2=2.7 is higher than the case when g1=1.0 and g2=1.5 because the difference between

the amplitudes of the two components in the former case is less than in the latter. In
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Figure 3.6 Collective velocity of dark-bright soliton after phase imprint. We take a phase imprint
of φ=0.5 and two different cases for g1 and g2, in the immiscible domain when g >

√
g1g2. See

Sec. 3.10 for converted units. Note that a dark-bright soliton can be created as we get very close
to this line from the miscible domain. The amplitude of the bright soliton controls the rate of the
velocity of the dark-bright soliton. As we increase the intercomponent coupling interaction, g, the
amplitude of the bright soliton decreases as shown in Figure 3.5 and therefore the density of the
bright soliton decreases too. Imprinting a phase on the small density bright soliton will have a small
effect on dragging the dark soliton and therefore will result in a small velocity of the dark-bright
soliton.
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other words, a phase imprinted on the bright component will have a bigger impact in the

former case. The dashed lines distinguish the miscible and immiscible domains. Note that

a dark-bright soliton can be created as we approach this line from the miscible domain.

Having explicated the trends in the overall velocity or Goldstone mode, we examine our

second mode of interest, namely the frequency of internal excitations. In Figure 3.7, we first

discuss the numerical results then we will discuss the comparison between these outcomes

and the analytical results. Numerically, different values of imprinted phases on the bright

component are shown in the figure (φ = 0.7 and φ = 1.0). The oscillation frequency of

the two components versus the coupling interaction g is almost identical, indicating that

the frequency is amplitude independent. Imprinting a large phase on the bright component

can decouple the two components in the dark-bright soliton. In the case with φ = 1.0

the imprinted phase is large enough to cause a disturbance when the coupling coefficient

is close to the miscible domain and therefore it shows a different oscillation frequency for

g just above the critical value for the phase transition. In the same figure we plot also

the analytical results obtained from Eq. (3.18). We did not include the oscillation of the

width, i.e., the breather mode, in the analytical calculations because we can only perform

the calculations for in-phase width oscillation analytically. In contrast, in the numerical

calculations the motion also includes arbitrary-phase width oscillation. The range of the

values of g is bounded between two limits. In the lower limit, when g <
√
g1g2, i.e., in the

miscible domain, the bright component in the dark-bright soliton exists on a top of a finite

background caused by finite size effects (for example see Figure 3.4). Therefore, imprinting

phase on the bright soliton component to start the oscillation motion will also move the finite

background density, causing a larger scale disturbance and affecting the frequency results.

The upper limit of the values of g come from the fact that for large g the ground state energy

of the system does not support a dark-bright soliton because of the strong intercomponent

interactions between the dark component and the bright component.
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We see also in Figure 3.7 that the comparison between the numerical and the analytical

results becomes better as we increase the intercomponent interactions g. When g is close to

the miscible domain the oscillation of the width of the two components is stronger due to

the fact that g is small and therefore the width oscillation contributes to the oscillation of

the two components. When g is large, the oscillation of the width of the two components

becomes smaller due to the fact that the repulsive interaction between the two component is

stronger and therefore it will force the two components to be confined in their region. Thus

as we increase g we will have a smaller contribution of the width oscillation mode in the

oscillation of the two components which will improve the comparison between the numerical

and the analytical results.
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Figure 3.7 Trends in internal dynamics. Oscillation frequency of the two components in the dark-
bright soliton, with g1 = 2.0, g2 = 2.7 and φ = 0.7 and 1.0, obtained from numerical integration
of Eq. (3.3) verses the oscillation frequency obtained from the analytical calculations, Eq. (3.18).
Numerically, the oscillation frequency of the two components versus the coupling coefficient g for
different values of φ shows that the oscillation frequency is amplitude independent in the case
explored. We also plot the result from Eq. (3.18) to compare the two outcomes from the analytical
and numerical calculations. The discrepancy between numerics and the model are due to the
restricted ansatz (equal soliton widths) in the variational calculation.

To explain the data underlying Figs. Figure 3.6 and Figure 3.7, we show an example of the

complete numerical integration and the resulting density and phase of the two-component

wavefunction in Figure 3.8. To obtain this data, we numerically integrate Eq. (3.3) us-

ing a pseudo-spectral method as mentioned in Sec. 3.1. Figure Figure 3.8 clarifies many
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Figure 3.8 Oscillation of the two-component wave function |u (x, t) |2 and |v (x, t) |2 in the immiscible
domain with g1 = 2.0, g2 = 2.7, g = 3.2 and φ=0.7. In (a), (b), (c) and (d) represent the density
and the phase of the bright and dark components, respectively. In figures (e), (f), (g) and (h) we
plot the previous figures with a small time and space intervals to show the oscillations.

49



features of the interactions between the two components in dark-bright soliton. Figures Fig-

ure 3.8(a)-(b) show the density and the phase of the oscillating bright component, while

Figures Figure 3.8(c)-(d) show the corresponding dark component oscillations. Figures Fig-

ure 3.8(e)-(h) present a zoom window on a small interval to display the oscillation more

clearly. The interaction coefficients are g1=2.0, g2=2.7, g=3.2 and φ=0.7. The oscillation

frequency amplitude of the dark component decreases as we increase the interaction coef-

ficient which in turn makes the observation of the oscillation in the dark component not

obvious compared to the oscillation of the bright component. For the above interaction co-

efficient values the amplitude of the bright component is almost half the amplitude of the

dark component, as shown in Figure 3.8 and Figure 3.5 both.

Finally, we examine the break-up of a dark-bright soliton. In Figure 3.9, we again plot

the dark-bright soliton density and phase in both components, but this time we imprint a

relatively large phase on the bright soliton component in order to unbind the dark-bright

soliton. We emphasize that the bright component of a dark-bright soliton can only exist

at long times in bound form. When the imprinting phase is large (i.e. φ = 6 and 10) a

significant portion of the bright soliton density escapes from the effective potential created

by the dark soliton component (see Figure 3.10) and therefore breaks up the dark-bright

soliton. Using the interaction coefficients mentioned in Figure 3.9 in Eq. (3.27) in addition

to setting N1 ≈ 0.503 ∗ 105, N = 1 ∗ 105, θ1 = 1, φ2 = 1, θ2 = 2 and the width = 1 we

find that the system oscillates as long as φ < 3.4. Above this value the dark-bright soliton

start to unbind or break up. We find this value in good agreement with the numerical

results obtained in Figure 3.9 where we see that a significant fraction of the bright soliton

component breaks away from the effective potential created by the dark soliton component

around φ = 6 and above.

To quantify the breakup, in Figure 3.10 we plot the percentage of density loss of the bright

component in the dark-bright soliton as a function of time for different phase imprinting

values. Below the critical value of φ, the bright component density is almost intact. Above
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Figure 3.9 Unbinding of a dark-bright soliton. We demonstrate break-up of the dark-bright soliton
by imprinting different values of the phase, φ, on the bright component with interaction coefficients
g1 = 2.0, g2 = 2.7, g = 2.6. Panels (a)-(d), (e)-(h) and (i)-(l) use phase imprintings of φ = 2, 6
and 10, respectively. In the left (right) panel, is the density (phase) of the bright and the dark
component. The box dimension is L = 100.
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the critical value the bright component start to lose a significant portion of the density,

characteristic of the breaking up of the dark-bright soliton. The integration region for the

bright component density is taken to be the line extending a distance, r, on either side of

the dark component center, r0. Therefore, the local bright component density is given by

EBS =

∫ r0+r

r0−r
dx |v|2 (3.28)

We interpret the dark soliton component center as the point of minimum density. We define

numerically the distance r = c1(L/nx) where L and nx represents box dimension and grid

size, respectively. The factor c1 = 50 defines the cut-off region which is wide enough to

capture the dark component area, as can be seen in Figure 3.9.
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Figure 3.10 Percentage density loss of the bright component in the dark-bright soliton for different
phase imprinting values. Below the critical value mentioned above (i.e. φ = 0, 1 and 2) the dark-
bright soliton maintains its internal structure and the bright soliton component density is almost
intact, see the inset. Above the critical value (i.e. φ = 6, 8 and 10) we see that the bright soliton
losses density due to the relative strong kick that allows for a significant portion of the density to
escape. The inset also highlights the stability of the dark-bright soliton at long times for small
enough phase imprinting.

3.10 Units

Typical experimental values for a 87Rb BEC are ω⊥ ≈ 2π × 720 Hz, as ≈ 5.1 ∗ 10−9m

and N ≈ 105. For these parameters, the length scale is `⊥ ≈ 0.4 µm and the time scale is

t⊥ ≈ 0.22 ms. An example of using the units in the table to calculate the frequency of the
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Table 3.1 Converted Units.

SI Units Factor per Unit Unitless Unit

x̃ 0.4 ∗ 10−6 x meter
t̃ 0.22 ∗ 10−3 t second
g̃ij 13.7 gij kB·nK· µm
ω̃ 4.5 ∗ 103 ω Hz
ũ0

2 33.9 u2
0 kB·nK

ũ
(
x̃, t̃
)

1.57 ∗ 103 u (x, t) 1√
meter

ṽ
(
x̃, t̃
)

1.57 ∗ 103 v (x, t) 1√
meter

oscillation mode in 87Rb is obtained by examining Figure 3.7. For g = 4 we find that the

oscillation frequency ω is 0.056. Using the units in Table 3.1, the equivalent SI units are

ω=252 Hz with g=54.8 kB · nK · µm, which are reasonable numbers for an experiment in

87Rb.

3.11 Conclusions

We calculated the normal modes of the system using hyperbolic tangent for the dark

component and hyperbolic secant for the bright component. We found the velocity of each

component depends on the imprinted phase, following the known expression for the velocity

of the condensate in which the phase depends on x in order to cause the dark-bright soliton

components to move. In the dark component, the velocity also depends on the amplitude.

There are two modes of the oscillation of the dark-bright soliton, the Goldstone mode,

which we interpreted as a moving dark-bright soliton without internal oscillation of the two

components, and the oscillation mode of the two components relative to each other. In

addition, we found numerically that in order to find a bright component in a dark-bright

soliton the density of the bright component is required to be less than the density of the dark

component. This result was supported by analytical calculations in Sec. 3.4 where we found

that in order to make the dark and bright components oscillate we must meet this criterion.

In Sec. 3.6, we calculated different aspects of the interaction between the two components.

Of particular interest is the two-component oscillation in the dark-bright soliton, where we
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found that the oscillation frequency is nearly independent of the imprinted phase up to a

critical value, meaning that the frequency is amplitude independent. We illustrated the

oscillation of the density and the phase of the two-component dark-bright soliton. Also, we

calculated the binding energy of the dark-bright soliton. We compared the binding energy

to the kinetic energy and the mean field energy of the dark-bright soliton in order to find

the critical value of the imprinted phase on the bright component that breaks or unbinds

the dark-bright soliton. Future work may extend our study to three-component solitons in

different hyperfine states of the same condensate or for different species of atoms. In the

multi-component case, the phase between the different components is coherent and the norm

is not separately conserved.

3.12 Fixed point singularity

Here we wish to prove that the system of Equations (4.13) does not posses a singularity.

In particular, Eq. (3.9a) with l ≡ b(t)− d(t) becomes

d

dt
φ1(t) =αcsch

(
l

w

)4{
2l

[
2 + cosh

(
2
l

w

)]
−3wsinh

(
2
l

w

)}
=4lαcsch

(
l

w

)4

+ 2lαcosh

(
2
l

w

)
csch

(
l

w

)4

− 3wαcsch

(
l

w

)4

sinh

(
2
l

w

)
.

When we expand the r.h.s of the above equation around the fixed point the terms l−3 and

l−1 cancel out, and we are left with terms proportional to l. That is, the fixed point of the

system (i.e. l = 0) is valid. Note that we will not be able to address this fact if we work

with Eq. (3.11) instead of Eqs. (4.13).
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CHAPTER 4

SCATTERING OF A DARK-BRIGHT SOLITON BY AN IMPURITY

We study the dynamics of a dark-bright soliton interacting with a fixed impurity using

a mean-field approach. The system is described by a vector nonlinear Schrodinger equation

(NLSE) appropriate to multicomponent Bose-Einstein condensates. We use the variational

approximation, based on hyperbolic functions, where we have the center of mass of the two

components to describe the propagation of the dark and bright components independently.

Therefore, it allows the dark-bright soliton to oscillate. The fixed local impurity is modeled

by a delta function. Also, we use perturbation methods to derive the equations of motion

for the center of mass of the two components. The interaction of the dark-bright soliton

with a delta function potential excites different modes in the system. The analytical model

capture two of these modes: the relative oscillation between the two components and the

oscillation in the widths. The numerical simulations show additional internal modes play an

important role in the interaction problem. The excitation of internal modes corresponds to

inelastic scattering. In addition, we calculate the maximum velocity for a dark-bright soliton

and find it is limited to a value below the sound speed, depending on the relative number of

atoms present in the bright soliton component and excavated by the dark soliton component,

respectively. Above a critical value of the maximum velocity, the two components are no

longer described by one center of mass variable and develop internal oscillations, eventually

breaking apart when pushed to higher velocities. This effect limits the incident kinetic

energy in scattering studies and presents a smoking gun experimental signal.

4.1 Introduction

Scattering is a fundamental physical process and essential tool to investigate objects in

quantum theory [55]. We determine the low-energy interactions of subatomic particles by
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the well-known quantity, scattering length. Within this process, we acquire information re-

garding the nature of the interaction. Additionally, the interaction of solitons with localized

impurities is a general and fundamental problem [6]. Utilizing the NLSE, many studies in-

vestigate the scattering of a bright or dark soliton with a localized impurity [56–62]. An

impurity can be represented by a delta function as long as the size of the impurity is small

enough compared to the soliton size. In BECs, one can create a delta function by a sharply

focused far-detuned laser beam [6]. Of particular interest in soliton interactions with impu-

rities is the interaction of two-component solitons with a delta function potential due to the

rich dynamics that can be seen in these systems. The interaction of dark-bright solitons with

an impurity has been the focus of other studies [63, 64]. But, to the best of our knowledge,

the problem of the interaction of dark-bright solitons, with two independent centers of mass

for the dark and bright components, with localized impurities and using the Lagrangian

approach method has not been addressed so far. As we will show, the interplay between

internal modes and the impurity is key to understanding the scattering process correctly.

In this work, we study the problem using coupled NLSEs, sometimes called the vector

NLSE, that is appropriate to describe matter-wave dark-bright soliton in BEC [65]. The exis-

tence of the delta function potential modifies the background of the dark soliton component,

and therefore one should account for this effect. We do so by considering a perturbation

method [46, 66] where we adjust the coupled NLSEs to account for the delta function as

a small perturbation term. We proceed by adopting a modified Euler-Lagrange equation,

called the variational Lagrangian approach, to calculate the equations of motion for the two

propagating centers of mass (i.e., the locations of the dark component and the bright com-

ponent) [52, 67, 68]. The second part of this work is dedicated to investigating the dark

soliton maximum velocity when interacting with a bright soliton in a dark-bright soliton.

It is a well-known fact that the maximum velocity of a one-component dark soliton is the

speed of sound [9]. We show that this qualitative characteristic of the dark soliton velocity is

changing when we add a bright soliton to the picture. We adopt a known ansatz to describe
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the propagation of the dark-bright soliton. This ansatz is the exact solution for a dark-bright

soliton with equally interacting coefficients (i.e., Manakov case [69]). We then extend our re-

sults numerically in the more general case. We show that the incident velocity and therefore

kinetic energy of the dark-bright soliton on the impurity is limited by the number of atoms

in the bright soliton relative to the “hole” or density notch made by the dark soliton. Above

a critical velocity, the dark-bright soliton develops oscillations, and when pushed further

breaks up. This sets definite limits on scattering studies.

This article is organized as follows. In Sec. 4.2, we study the scattering of the dark-bright

soliton by a delta function potential using a variational approximation method based on a

hyperbolic tangent (hyperbolic secant) for the dark (bright) soliton component for the two-

component ansatz and utilizing a perturbation method to account for the effect of the delta

function on the background. In Sec. 4.2.3, we examine the velocity of the dark-bright soliton

and obtain an analytical expression describing the effect of the bright component amplitude

on the velocity of the dark-bright soliton. In Sec. 4.3.1, we investigate the scattering of the

dark-bright soliton by a delta function potential by numerically integrating the dimensionless

NLSE using an algorithm employing a pseudospectral method. We study the velocity of the

dark-bright soliton numerically in Sec. 4.3.2. Finally, we present our conclusions in Sec. 5.4.

4.2 Analytical Calculations

4.2.1 Lagrangian density and ansatz

We start by introducing the coupled NLSEs:

i
∂

∂t
u+

1

2

∂2

∂x2
u−

[
g1|u|2 + g|v|2 − u2

0

]
u = V (x)u, (4.1)

i
∂

∂t
v +

1

2

∂2

∂x2
v −

[
g2|v|2 + g|u|2

]
v = V (x)v,

where u ≡ u(x, t) and v ≡ v(x, t) are the wave functions for the dark and bright soliton

components, respectively. The dark soliton wave function is rescaled to remove the back-

ground contribution, u0, which is a standard procedure to avoid divergent normalization and
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energy [52]. The potential in the above equations takes the form,

V (x) = α δ (x) , (4.2)

for both components. We assume α� u0, and therefore we consider the potential to behave

like a small perturbation effect which allows us to use the perturbation method. The same

length-based units as we have described previously [65] are used here: [x]=[L], [t]=[L2],

[g1, g2, g]=[u0]=[L−1], [α]=[δ(x)]=[L−1], |u, v|2 = [L−1], where the square brackets mean

“the units of.” The existence of a delta function affects the background of the dark-bright

soliton, as seen in Figure 4.1, and we need to modify the background also to account for

this effect. We assume the dark soliton component lives on a modified Thomas–Fermi cloud,

|uTF|2, which accounts for the effect of the delta function on the background [63],

|uTF|2 ≈
1

g1

(u2
0 − αu0exp(−2|x|)), (4.3)

and by using the following transformations,

|u|2 → |uTF|2|u|2, |v|2 →
|v|2

u2
0

, t→ u2
0t, x→ u0x, (4.4)

we recase Eqs. (4.1) into the following:

i
∂

∂t
u+

1

2

∂2

∂x2
u−

[
g1 |u|2 + g |v|2 − 1

]
u = Ru (4.5)

i
∂

∂t
v +

1

2

∂2

∂x2
v −

[
g2 |v|2 + g |u|2

]
v = Rv,

where the RHS of Eqs. (4.5) represent the perturbation effects,

Ru =
α

u0

[
(1− g1|u|2)u− x

|x|
d

dx
u

]
e−2|x| (4.6)

Rv =
α

u0

[
δ (x)− g|u|2e−2|x|] v,

where α� 1 in these units. We work with the following ansatz,
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u(x, t) =
1
√
g1

{c(t)tanh

[
(x+ d(t))

w(t)

]
+ iA(t)} (4.7)

v(x, t) =
1
√
g2

F (t)sech

[
(x+ b(t))

w(t)

]
ei[φ0(t)+xφ1(t)].

Here c(t) and A(t) are the amplitude and velocity for the dark soliton component, respec-

tively. The amplitude for the bright soliton component is F (t). The velocity of the bright

soliton is given by φ1(t), and d(t) and b(t) are the position of the dark and bright soliton, re-

spectively. The width for the two components is w(t) and φ0(t) is a phase that gives rise to a

complex amplitude of the bright component. We have a total of eight variational parameters

that describe the propagation of the dark-bright soliton. The perturbation terms account

for the effect of the potential (i.e., delta function). In the absence of the perturbation terms,

the problem reduced to a propagation of the two–component dark-bright soliton [65]. We

use the normalization conditions,

∫ ∞
−∞

dx

(
1

g1

− |u|2
)

=
N1

N
, (4.8a)∫ ∞

−∞
dx |v|2 =

N2

N
, (4.8b)

for the dark and bright component, respectively. We subtract the background in the first

component of Eqs. (4.8), therefore, N1 is the number of atoms displaced by the dark soliton.

We define the total number of atoms N involved in the dark and bright solitons as

N1 +N2 = N, (4.9)

Using the ansatz, Eqs. (4.7), in the normalization, Eqs. (4.8), we find the relation between

N1, N2 and the coefficients of the two components in the dark-bright soliton:

2c2w

g1

=
N1

N
, (4.10)

2F 2w

g2

=
N2

N
.
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The modified Euler-Lagrange equation [52],

∂L

∂aj
− d

dt

(
∂L

∂a
′
j

)
= 2 Re

{∫ ∞
−∞

R∗u
∂u

∂aj
+R∗v

∂v

∂aj
dx

}
, (4.11)

here aj represent the variational parameters in the ansatz. The Lagrangian density for the

system of coupled equations, Eqs. (4.5) when Ru = Rv = 0 is:

L =
i

2

[
u∗
∂u

∂t
− u∂u

∗

∂t

] [
1− 1

g1 |u|2

]
− 1

2

∣∣∣∣∂u∂x
∣∣∣∣2

− 1

2

[
√
g1 |u|2 −

1
√
g1

]2

+
i

2

[
v∗
∂v

∂t
− v∂v

∗

∂t

]
− 1

2

∣∣∣∣∂v∂x
∣∣∣∣2 − g2

2
|v|4 − g |u|2 |v|2 .

(4.12)

We utilize the modified Euler-Lagrange equation, Eq. (4.11), to account for the effect of the

delta function on the background. By inserting the ansatz, Eq. (4.7), into the Lagrangian

density, Eq. (4.12), we obtain the Lagrangian as a function of the variational parameters.

Then, we use Eq. (4.11) with the perturbation terms, Eq. (4.6) to find the equations of

motion (EOMs) of the system.

Dark soliton

Bright soliton

            α

Printed by Wolfram Mathematica Student Edition

Figure 4.1 The effect of a delta function potential on the background of a dark-bright soliton. The
delta function potential is modeled by Thomas-Fermi cloud as described by Eq. (4.3).
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4.2.2 Evolution equations

The outcome of the calculations in Sec. 4.2.1 is a system of ordinary differential equations

(ODEs) that describe the propagation of dark-bright solitons toward a delta function. Below,

we write down only the equations that we are going to use to form a system of second order

coupled ODEs,

d

dt
φ1(t) =

gc2(t)

g1w2(t)
csch

(
b (t)− d (t)

w(t)

)4

(4.13a)

×
{

2 (b (t)− d (t))

[
2 + cosh

(
2
b (t)− d (t)

w(t)

)]
−3w(t) sinh

(
2
b (t)− d (t)

w(t)

)}
+

g2
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d

dt
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2N
√

1− A2(t)
. (4.13d)

Here, Eq. (4.13d) is obtained by inserting the ansatz, Eq. (4.7), in the coupled NLSEs,

Eqs. (4.5), and separate the imaginary and real parts. In our calculations we take the

delta function as located at the origin x = 0 without loss of generality. We assume that

the oscillations between the two component is very small (i.e. b(t) − d(t) << 1). The

perturbation component Γ1 in Eq. (4.13a) is obtained by solving the RHS of Eq. (4.11) with

aj = b and the perturbation component Γ2 in Eq. (4.13b) is obtained by solving the RHS of

Eq. (4.11) with aj = d. As a result, we obtain the following terms,
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)
tanh

(
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. (4.14b)

As a quick consistency check, note that when we set α = 0 (i.e. no potential), Γ1 and Γ2 are

equal to zero too and therefore the perturbation terms are eliminated. By taking the second

derivative of Eq. (4.13c) and Eq. (4.13d) we can further simplify the system of equations,

Eqs. (4.13), and obtain the following second order differential equations:

d2

dt2
d (t) = − gN2

4Nw (t)
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,

where we used the normalization, Eq. (4.10). Equations (4.15) describe the propagation of

the two component dark-bright soliton in the vicinity of delta function potential located at
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x = 0.

By fixing the initial velocity of the dark-bright soliton, VCM = 0.06 and depending on the

strength of the potential, α, we obtain three distinctive behavior of the dark-bright soliton as

seen in Figure 4.2, Figure 4.3 and Figure 4.4. These scenarios comprise reflection, reflection

with resonance and a subsequent delay, and transmission, respectively. In all figures, we

find that the internal oscillation of the two components did not change for the incident

and reflected dark-bright soliton. This means that there is ultimately no energy exchange

between the internal modes and the kinetic energy of the dark-bright soliton. In Figure 4.2,

Figure 4.3 and Figure 4.4 we set g1 = 2, g2 = 2.7, g = 2.6, w = 1 and N1 = 0.521× 105. In

Sec. 4.3.1, we compare these analytical predictions to the numerical calculations.

b(t)

d(t)
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t

-10

-5

5

10
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Figure 4.2 Reflection of dark-bright soliton. We found the dark-bright soliton reflected by the
potential when α = 0.15. We set the center of mass velocity VCM = 0.06.

4.2.3 Dark-bright soliton velocity

In this section, we work with the velocity of the dark-bright soliton. Here we are working

with different units [70]. The dimentionless coupled NLSEs,
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Figure 4.3 Reflection of dark-bright soliton with resonance. Here we set α = 0.04 and we see
that the dark-bright soliton oscillates at the location of the potential for a finite time before it
reflects back for the same value of VCM used in Figure 4.2. Thus our model appears to capture a
quasibound state or resonance.
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Figure 4.4 Transmission of dark-bright soliton. Here we set α = 0.01. The dark and bright soliton
locations oscillate around their center of mass position. We found the dark-bright soliton passes
over the potential for the same value of VCM used in Figure 4.2.
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+
[
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]
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are integrable (i.e., Manakov case) and possess an exact analytical dark-bright soliton solu-

tion of the following form [71]:

ψ1 (x, t) = cos∆φ tanhξ + i sin∆φ, (4.17)

ψ2 (x, t) = η sechξ exp{i [φ0 + xφ1]}.

Here ψ1(x, t) and ψ2(x, t) are the wave functions for the dark and bright soliton components,

respectively. The argument of the hyperbolic functions is ξ = D (x− x0 (t)), cos∆φ and η

are the dimensionless amplitudes of the dark and bright components, respectively, and D

and x0 (t) are the inverse width and the centre position of the dark-bright soliton. The phase

jump over the dark soliton is ∆φ. By using the variational method, we obtain the EOMs,

ẋ0 = D tan∆φ (4.18)

D2 = cos2∆φ− η2 (4.19)

Plugging Eq. (4.19) into Eq. (4.18), we get:

ẋ0 =
√

cos2∆φ− η2 tan∆φ. (4.20)

For η = 0 (i.e. v(x, t) = 0), we have ẋ0 = sin∆φ which is the velocity of dark soliton

in one-component BECs, a Josephson-type relation based on the phase jump phi over the

soliton [72]. The two extreme limits of the phase jump over the dark soliton are ∆φ = 0

and ∆φ = π
2
. In the former the depth of the dark soliton is maximum, and the velocity

is zero. In the latter case, the depth of the dark soliton is zero whereas the velocity is

maximum (i.e., the speed of sound, c). By examining Eq. (4.20), we find that the existence

of a bright component affects the velocity of the dark-bright soliton and sets an upper limit
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for the maximum velocity depending on the amplitude of the bright component. Also, the

term cos2∆φ − η2 in Eq. (4.20) restricts the range of the real values of the velocity of the

dark-bright soliton. By equating this term to zero, we find that ∆φ gives a real value only for

∆φ : 0→ cos−1 (η). This implies that there is a finite range of the velocity of the dark-bright

soliton as well as a finite range of the depth of the dark component in the dark-bright soliton.

Since the depth of the dark component is governed by cos∆φ, the range of the dark soliton

amplitude goes from u0 when ∆φ = 0 to η when ∆φ = cos−1 (η). That is, the minimum

depth of the dark soliton component in the dark-bright soliton is not zero as it is the case for

one-component dark soliton. It depends on the amplitude of the bright soliton component.

In the range ∆φ : 0→ cos−1 (η) the dark-bright soliton velocity is zero on both ends as seen

form Eq. (4.20). So, in this interval, the velocity increases to a finite value and decreases,

see Figure 4.5. To find the maximum velocity of the dark-bright soliton we differentiate

Eq. (4.20) and solve it for ∆φ. As a result, we obtain the following equation,

ẋmax
0 = 1− η = 1−

√
N2D

2(N1 +N2)
. (4.21)

Above this maximum value, ẋmax
0 , an internal oscillation develops between the two compo-

nents which means the two component are no longer described by one center of mass variable

for the dark-bright soliton. Therefore, the above ansatz, Eq. (4.17), is not valid beyond this

maximum velocity. Note that for η → 1, ẋmax
0 → 0, N2 → N1 from below, and the dark-

bright soliton ceases to exist, as shown in [65]. In Figure 4.5 we plot the velocity of the

dark-bright soliton for η = 0.5 (i.e., the bright component is half the amplitude of the dark

component). Since the amplitude squared of both components is proportional to the number

of atoms in each component, the case where η = 0.5 is equivalent to N1 = 2N2, where N1

is the number of atoms displaced by the dark soliton and N2 is the number of atoms in the

bright soliton, as described in Sec. 4.2.1.
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Figure 4.5 Dark-bright soliton velocity. The bright soliton amplitude is η. We set η = 0.5 in
Eq. (4.20) such that the amplitude of the bright component is half the amplitude of the dark
component. Notice that the speed of sound, c, is 1 and the maximum velocity of the dark-bright
soliton in this case is c/2 where we can calculate it from Eq. (4.21). Above c/2 the two components
in the dark-bright soliton start to oscillate, as can be seen in the numerical simulation in Figure 4.10,
therefore an ansatz with one variable to describe the location of the two components is not valid.
We plot the case for one-component dark soliton, η = 0, for comparison.

4.3 Numerical Calculations

We numerically study the interaction between the two components in the dark-bright

soliton and the potential barrier in Sec. 4.3.1 where we use a delta function as described

by Eq. (4.2). The strength of the delta function potential can be modified by varying the

amplitude α. In addition, we study the effect on a one-component dark soliton velocity

when interacting with another component, in this case a one-component bright soliton. The

velocity of the dark soliton component is fundamentally different than the velocity of the

bright soliton. As we increase the speed of the dark soliton, its width goes to infinity, and

the depth goes to zero. As a result, the dark soliton disappears and we left with a plane

wave. Also, the maximum velocity of a one-component dark soliton is the speed of sound in

BEC. In contrast, the one-component bright soliton velocity is unbounded and its width is

not a function of its velocity at all. These known facts raise questions when we are dealing

with the dark-bright soliton, as we explored under certain simplifying assumptions amenable

to analytical treatment in Sec. 4.2.3, where we found a maximum velocity dependent on
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the difference between the amplitudes of the two components. Therefore, the presence of

the bright soliton component will qualitatively change the behavior of the well-known dark

soliton velocity. We now relax those assumptions to treat the general case numerically.

Throughout this section, we performed the simulations with grid size nx = 256 in a box with

hard-wall boundaries. The box length was set to L = 100 unless otherwise noted.

4.3.1 Scattering of dark-bright soliton by potential barrier

We now explore the scattering problem numerically by creating a moving dark-bright

soliton incident on a delta-function potential. We make no other assumptions, allowing for

internal excitations of the dark-bright soliton around its center of mass. There are two ways

to to impart a velocity to the dark-bright soliton. The first is to imprint a linear phase ramp

on the bright soliton component. As a result the bright soliton will drag the dark soliton,

and therefore we will have a moving dark-bright soliton.

The second is to imprint a phase to one side of a dark soliton, creating a phase jump

∆φ, therefore, we obtain the same moving dark-bright soliton. There is however a significant

difference in the outcome in terms of excitation of internal modes. In the first case, imprinting

a phase on the bright soliton will produce an internal oscillation of the two components of the

dark-bright soliton. We use this method here to move the dark-bright soliton. The second

method is used in the second part of the numerical section where we are interested in having

the two components move without any internal oscillation.

We thus first imprint a phase on the bright component and therefore the dark-bright

soliton moves toward the delta function which is for convenience located at x = 60 in our

simulation, with the grid of 256 points running from x = 0 to x = 100. Depending on the

strength of the delta function (i.e., α), where we fixed the incident velocity for all cases, we

have three distinctive sets of dark-bright soliton dynamics ensue. In Figure 4.6, where we

have both the analytical and numerical results plotted on the same graph, we set α = 0.01

and find that the dark-bright soliton is passing over the potential. When the dark-bright

soliton interacts with the delta function, we found that numerically the dark-bright soliton
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moves slightly faster than the analytical prediction. At the end of this section, we discuss

the physical reasons for the discrepancy between the analytical and numerical results.

In Figure 4.7, we set α = 0.04, and the outcome of this comparison between the analytical

and numerical calculations is that the dark-bright soliton hovers around the location of

the potential for a finite time, appearing to be briefly quasibound or resonant, and then

is reflected. The analytical predictions and the numerical calculations show that the dark-

bright soliton reflects with different velocities. We consider this case as an inelastic scattering

of the dark-bright soliton by a delta function as can be seen in Figure 4.9. Numerically,

when the dark-bright soliton interacts with the potential barrier an internal state is excited

(i.e., the internal oscillation of the two components) and therefore the dark-bright soliton

come out of the interaction with a different velocity than the initial one.

In contrast, in Figure 4.8 we found that the dark-bright soliton reflects rapidly from the

potential for α = 0.15. The delta function potential, in this case, does not allow for the

creation of a quasibound state as in Figure 4.8.

In Figure 4.9, we compare the analytical predictions to the numerical calculations for a

wide range of delta function strength (i.e., α) and the center of mass velocity of the dark-

bright soliton. We identify three regions. The transmission of the dark-bright soliton over the

barrier, the reflection, and the inelastic scattering region. These three case studies outline the

basic kinds of dynamical outcomes. The dark-bright soliton has an additional characteristic

that during the scattering process, for a small range of delta function strength, energy can be

absorbed into the internal mode. In this case, the oscillation mode. We defined this region

as an inelastic scattering region. It is noteworthy to mention that the inelastic scattering

and the excitation of the internal modes occur only when we allow for an additional degree

of freedom, as we do in this article, namely, the internal oscillation of the two components.

The basic idea is the scattering process interaction with the impurity transfers kinetic

center of mass energy into internal modes, resulting in inelastic scattering. Two of these

modes are captured by the analytical model: the dominant feature of relative oscillation
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between the two components, as well as the oscillation in the widths. However, the analyt-

ical model requires these widths oscillate in sync. The numerical simulations allow further

internal modes to enter the problem, starting with out-of-sync oscillations of the soliton

widths, and including even shape deformations of various kinds. In general, the scattering of

a dark-bright soliton is a complex inelastic process which will require experiments to properly

understand, especially since quantum fluctuations are well known to concentrate at mean

field minima, in this case the interstices where the bright soliton meets the dark soliton. A

proper treatment of such quantum fluctuations is an excellent subject for future study and

involves at a minimum solution of the dynamical Bogoliubov equations.

Figure 4.6 Transmission of a dark-bright soliton. (a) Density and (b) phase of the bright soliton;
(c) density and (d) phase of the dark soliton. The kinetic energy of the two-component dark-bright
soliton is greater than the potential energy of the barrier and therefore the dark-bright soliton passes
over it. The phonons appear as bright yellow bands moving at a much higher velocity, primarily
associated with the initial velocity kick applied at t = 0. We set α = 0.01 and VCM = 0.06. The
delta function located at x = 60. The white thick line represents the analytical results.
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Figure 4.7 Resonant reflection of a dark-bright soliton. (a) Density and (b) phase of the bright
soliton; (c) density and (d) phase of the dark soliton. The kinetic energy of the two components
dark-bright soliton is almost equal to the potential energy of the barrier and therefore the dark-
bright soliton hovers over the barrier for a finite time where energy goes into internal modes, not
phonons. We set α = 0.04 and VCM = 0.06. The delta function located at x = 60. The white thick
line represents the analytical results.
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Figure 4.8 Simple reflection of a dark-bright soliton. (a) Density and (b) phase of the bright soliton;
(c) density and (d) phase of the dark soliton. The kinetic energy of the two components dark-bright
soliton is less than the potential energy of the barrier and therefore the dark-bright soliton reflects
from the barrier. We set α = 0.15 and VCM = 0.06. The delta function located at x = 60. The
white thick line represents the analytical results.
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Figure 4.9 Transmission and reflection of dark-bright soliton for different values of the potential
strength and center of mass velocity. We compare the analytical predictions to numerical results for
a wide range of the delta function amplitude, α, and the dark-bright center of mass velocity, VCM.
We identify the regions for the transmission and reflection of the dark-bright soliton by the potential
barrier based on the parameter domain, α and VCM. The gray area represents inelastic scattering
(i.e., internal excitation), showing that excitation of inelastic modes generally occur when close to
the border between transmission and reflection. Note for VCM = 0.06 we have a transmission of the
dark-bright soliton for α = 0.01 and reflection when α = 0.04 and 0.15 as described in Figure 4.6,
Figure 4.7 and Figure 4.8
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Figure 4.10 Dark-bright soliton component velocities. We plot the velocities of the two components
vs the phase difference imprinted on the dark component only, ∆φ. For a bright soliton component
with half the amplitude of the dark soliton component the maximum velocity of the dark-bright
soliton before it oscillates is half the speed of sound, c/2, as predicted from Figure 4.5. In the
simulation units, c/2 = 0.15. Above this value, the two components start to oscillate.
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4.3.2 Dark-bright soliton velocity

The behavior of the dark soliton velocity changes when interacting with another compo-

nent, in this case, a bright soliton component in a dark-bright soliton. To study this behavior

numerically, we imprint a phase jump, ∆φ, on the dark soliton component only. In this way,

we adiabatically move the two components such that we do not cause an oscillation between

them, to explore our analytical predictions for the Manakov case from Sec. 4.2.3. It is im-

portant to mention that the interaction coefficients (i.e., g1 and g2) are all positive in this

case. This means that the bright soliton component can only live in such repulsive media by

interacting with the dark soliton component. As mentioned in Sec. 4.2.3, Eq. (4.16) possesses

an exact analytical dark-bright soliton solution, Eq. (4.17). By examining this solution, we

find that both component locations of the dark-bright soliton are expressed by one single

spatial variable, x0 (t). This is a criterion for an exact solution of Eq. (4.16).

In Figure 4.5, we see that the existence of the bright soliton component with half the

amplitude of the dark soliton component prevents the dark soliton component from reaching

its maximum velocity, µ1 and puts an upper limit on it. This is the upper limit for the

velocity of the dark-bright soliton before the two components oscillate. By adopting the

method mentioned above to move the dark-bright soliton we are in a position to compare

the analytical results obtained in Sec. 4.2.3 with the numerical results we have in this section.

In Figure 4.10, we imprint a phase difference on the dark soliton component only with

interaction parameters g1 = 2, g2 = 3 and g = 2.6. We find that the two components

in the dark-bright soliton have the same velocity below a critical value of the phase im-

printed. Therefore, no internal oscillation happens and the one variable,x0 (t), represents

the two-component locations. Above the critical value, we find the two components start

to acquire different velocities. Consequently, an internal oscillation between the two compo-

nents occurs and the positions of the dark component and the bright component no longer

coincide. Therefore, the two-component cannot be expressed by one variable as described in

Eq. (4.17).
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4.4 Conclusions

We obtained a system of equation of motions for a dark-bright soliton scattering off

a fixed localized impurity, modeled by a delta function potential. We used a variational

method with a hyperbolic tangent for the dark component and a hyperbolic secant for the

bright component. The existence of the delta function altered the background of the dark

soliton component, and therefore a perturbation method was needed to incorporate the effect

of the delta function. The interaction of the dark-bright soliton with the potential excites

different modes in the system. As a result, the dark-bright soliton emerges with a different

velocity. Our analytical model capture two of these modes: the dominant feature of relative

oscillation between the two components, as well as the oscillation in the widths. However, the

analytical model requires these widths oscillate in sync. The numerical simulations allow

further internal modes to enter the problem, starting with out-of-sync oscillations of the

soliton widths, and including even shape deformations of various kinds.

We identify regions for the transmission, reflection and inelastic scattering of the dark-

bright soliton by the potential barrier. We present three case studies outlining the basic

kinds of dynamical outcomes. The many internal modes excited in this problem show the

complexity of the nonlinear dynamical multicomponent problem. Our study rather points

to different physical regimes, and one can follow up by applying our model to any particular

experiment intending to pursue the scattering question. Nevertheless, we have provided at

least one case study of transmission/reflection in Figure 4.9, to give the reader a general

idea of the sorts of regimes that may occur. The scattering of a dark-bright soliton could also

cause quantum fluctuations, as one might model, e.g., in dynamical Bogoliubov theory. In

this case, the kinetic energy would go not only into internal mean-field modes but also into

enhanced quantum fluctuations localized in and near the dark-bright soliton. If that is the

case, then a reduced velocity of a scattered dark-bright soliton beyond mean-field predictions

will be a sign of quantum fluctuations. This is another strong reason to get the mean-field

inelastic scattering correct, carefully understanding all internal modes created by interaction
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with the impurity.

In scattering theory, we usually put no limit on the incident kinetic energy. However,

dark solitons are well known to be limited to the speed of sound c in the medium. The

dark soliton grows shallower as the velocity is increased and eventually disappears. The

dark-bright soliton is also limited in velocity and therefore incident kinetic energy. However,

the limit is much more stringent. We showed in the Manakov or equal-interaction case where

it scales with the relative number of atoms in the bright and dark components. That is, as

the dark soliton goes faster and is therefore shallower, it can no longer support the bright

soliton. For example, when the bright soliton has half of the number of atoms as the dark

one excavates or pushes aside, the maximum velocity is half the sound speed. Above this

critical velocity the soliton components begin to oscillate, and eventually break apart. This

limits the kind of scattering experiments that can be performed in multicomponent BEC

experiments and presents a smoking gun signal.

Future work may extend the investigation of the interaction of vector soliton with an

impurity to three-component. We might rip apart the dark-bright soliton with the proper

resonance condition, as found for exciton transport. In this sense, the barrier can be used

to reflect, transmit, excite, or even destroy the dark-bright soliton [73, 74]. In addition, by

solving this single impurity problem, we may extend the work for solving the disordered

problem. It is noteworthy to mention that the excitation of the internal modes occur only

when we allow for an additional degree of freedom, as we do in this article, namely, the

internal oscillation of the two components which reflect the importance of using ansatz with

two independent positions for the dark and bright soliton components.
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CHAPTER 5

INTERNAL OSCILLATIONS OF A DARK-BRIGHT SOLITON IN A HARMONIC

POTENTIAL

We investigate the dynamics of a dark-bright soliton in a harmonic potential using a

mean-field approach via coupled nonlinear Schrödinger equations appropriate to multicom-

ponent Bose-Einstein condensates. We use a modified perturbed dynamical variational La-

grangian approximation, where the perturbation is due to the trap, taken as a Thomas-Fermi

profile. The wavefunction ansatz is taken as the correct hyperbolic tangent and secant solu-

tions in the scalar case for the dark and bright components of the soliton, respectively. We

also solve the problem numerically with psuedo-spectral Runge-Kutta methods. We find,

analytically and numerically, for weak trapping the internal modes are nearly independent

of center of mass motion of the dark-bright soliton. In contrast, in tighter traps the internal

modes couple strongly to the center of mass motion, showing that for dark-bright solitons

in a harmonic potential the center of mass and relative degrees of freedom are not indepen-

dent. This result is robust against noise in the initial condition and should, therefore, be

experimentally observable.

5.1 Introduction

Solitons are emergent excitations of atomic matter waves in Bose-Einstein condensates

(BECs). In their simplest form they appear in highly visible form as density peaks (bright

soliton) or notches (dark solitons) in scalar BECs [1, 6, 9, 75]. The experimental realization

of multiple-component BECs, where different atom species or internal states of the same

atom type can be populated, has aroused considerable interest in vector solitons. The two-

component vector soliton of different forms (i.e., dark-dark solitons [15, 30, 47], bright-bright

solitons [29] or dark-bright solitons [10–14, 46]) give rise to much richer phenomena than the

single-component BECs, where one already finds, for example, soliton trains [76], domain
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walls [77], collective excitations and complex dynamics. In this Article we focus on the

case of the dark-bright soliton. Although in scalar BECs the bright soliton can only exist

for attractive interatomic interactions [78], it can also be induced in purely repulsive multi-

component BECs when a second component is occupies the density notch formed by a dark

soliton in the first component. In this way, a dark soliton in one component forms an

effective potential that traps the bright soliton component and therefore allows the creation

of a nonlinear excited state. These solitons are sometimes referred to as symbiotic. We use

the term dark-bright soliton for clarity [17, 46].

The nonlinear Schrödinger equation (NLSE) without the potential term is an integrable

equation and possess solitonic solutions. By adding a potential term, in our case a harmonic

potential, we work with the celebrated Gross-Pitaevskii equation (GPE). The oscillation of

nonlinear excitations in a harmonic potential is a common problem that has been the focus

of many studies, as such large scale motions are easily observable in BEC experiments. Of

particular interest is the oscillation of two-component excitation like a bright-bright soliton,

dark-dark soliton or dark-bright soliton [70]. In these studies, usually, the ansatz used to

describe the dark-bright soliton contains one variable to describe the position of the dark and

bright components. A more realistic situation is to relax this restriction and allow the two

components to move freely by adding one more degree of freedom to the problem, namely, the

internal oscillation between the two components. We study the coupling between the internal

oscillation of the two components in the dark-bright soliton and the oscillation of the whole

system in a harmonic potential. The harmonic potential modifies the background of the dark

component in a dark-bright soliton. Therefore a Thomas-Fermi background approximation

is needed where the new dark component wave function is represented by subtracting the old

dark component density from the harmonic potential function. The result is a dark soliton

on a top of parabola-shaped background, Figure 5.1.

It is well-known in the classical two-body problem that relative and center of mass degrees

of freedom are independent in a harmonic potential. A dark-bright soliton represents an
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emergent two-body semiclassical object in the context of the mean-field approximation on the

many-body wavefunction underlying the BEC. To what extent does this emergent structure

have the same properties as a classical two-body problem? An elementary consideration

is separation of relative and center of mass degrees of freedom. Previous treatments have

avoided this question by pinning the dark and bright solitons to the same position. By

relaxing this constraint, in this Article, via both variational Lagrangian analytical methods

and numerical solution of the GPE, we show that in general relative and center-of-mass

degrees of freedom are not independent for the dark-bright soliton. In contrast, these degrees

of freedom are independent in the uniform case, where the center-of-mass motion is associated

with a Goldstone mode [65]. For a weak enough trap, the separation of variables from the

uniform case is only very weakly affected by the trap. However, as the trap strength grows

this separation of variables is lost.

This Article is structured as follows. In Sec. 5.2 we present the two-component GPE,

the variational Lagrangian model, use perturbation theory, and derive the equations of mo-

tion for the bright and dark soliton components. In Sec. 5.3 we numerically integrate the

dimensionless GPE using a psuedo-spectral Runge-Kutta method and study the dynamics

of the oscillation of the dark-bright soliton in a harmonic potential. Finally, in Sec. 5.4 we

summarize our conclusions.

5.2 Analytical Calculations

5.2.1 Lagrangian density and ansatz

The two-component dark-bright soliton is governed by coupled GPEs [6], which describe

the evolution of the macroscopic wave functions of Bose condensed atoms:

ih̄
∂

∂t̃
ũ = − h̄2

2m

∂2ũ

∂x̃2
+

[
g̃1|ũ|2 − ũ2

0 + g̃|ṽ|2 + Ṽ (x̃)

]
ũ,

ih̄
∂

∂t̃
ṽ = − h̄2

2m

∂2ṽ

∂x̃2
+

[
g̃2|ṽ|2 + g̃|ũ|2 + Ṽ (x̃)

]
ṽ, (5.1)
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where tildes denote dimensional quantities. The wave function of the dark soliton is given

by ũ ≡ ũ
(
x̃, t̃
)

and of the bright soliton by ṽ ≡ ṽ
(
x̃, t̃
)
. The dark soliton wave function

is rescaled to remove the background contribution, ũ0 [52]. Although this is not necessary

for the harmonic trap since there is no divergence in the total number of atoms, in order

to match smoothly onto the untrapped limit and connect well with previous results from a

uniform system [65], we include this subtraction. The interaction strength, g̃j = 2ajNh̄ω⊥

for (j = 1, 2), is renormalized to 1D [51] where g̃1 (g̃2) represents the intra-atomic interaction

for the dark (bright) component and g is the inter-atomic interaction between the two com-

ponents of the BEC. The total number of atoms is N , the scattering length is aj and ω⊥ is

the oscillation frequency of the transverse trap. To nondimensionlize Eqs. (5.1) we multiply

them by (h̄ω⊥)−1 and scale all quantities according to the following units:

x =
x̃

`⊥
,

t = t̃ω⊥,

gij =
g̃ij

`⊥h̄ω⊥
,

|u|2 = `⊥|ũ|2,
|v|2 = `⊥|ṽ|2,

V (x) =
Ṽ (x̃)

h̄ω⊥
,

u2
0 =

ũ2
0

h̄ω⊥
,

(5.2)

where `⊥ =
√
h̄/ (mω⊥) is the transverse harmonic oscillator length.

The dimensionless version of the coupled GPEs is,

i
∂

∂t
u = −1

2

∂2

∂x2
u+ V (x)u+

[
g1|u|2 + g|v|2 − u2

0

]
u,

i
∂

∂t
v = −1

2

∂2

∂x2
v + V (x)v +

[
g2|v|2 + g|u|2

]
v, (5.3)

The potential in Equations 5.3 takes the form,

V (x) =
1

2
Ω2x2, (5.4)
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for both components. We assume Ω� 1 and therefore we treat the harmonic potential as a

small perturbation effect. Despite the fact that x2 → ∞ in Eq. (5.4), because V (x) always

multiplies a background Thomas-Fermi wavefunction, the total perturbation is always small.

Even outside the Thomas-Fermi approximation, Gaussian tails in realistic BEC profiles in a

harmonic trap will fall away much faster than x2 diverges, making this perturbative picture

a physically reasonable one beyond our approximations. The existence of the harmonic

potential affects the background density of the dark-bright soliton, Figure 5.1. Consequently,

we have to modify the usual assumption for a dark soliton of a uniform background and

assume the dark soliton is supported by a Thomas-Fermi background condensate of form

Box size

D
en

si
ty

Dark soliton
Bright soliton
Harmonic potential

Figure 5.1 Dark-bright soliton in harmonic potential well. The background is affected by the
harmonic trap, and therefore we work with the modified Thomas-Fermi cloud as described by
Eq. (5.5).

|uTF|2 = u2
0 − V (x). (5.5)

We recast Eqs. (5.3) to the following:

i
∂

∂t
u+

1

2

∂2

∂x2
u−

[
g1 |u|2 + g |v|2 − u2

0

]
u = Ru (5.6)

i
∂

∂t
v +

1

2

∂2

∂x2
v −

[
g2 |v|2 + g |u|2

]
v = Rv,
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where the RHS of Eqs. (5.6) represent the perturbation effects,

Ru =
1

2u2
0

[
2u(u2

0 − g1|u|2)V (x) + V ′(x)∂xu
]

(5.7)

Rv =
V (x)

u2
0

[
(u2

0 − g|u|2)v
]
.

Here V ′(x) ≡ dV (x)
dx

. The Lagrangian density for the system of coupled equations, Eqs. (5.6)

is:

L =
i

2

[
u∗
∂u

∂t
− u∂u

∗

∂t

] [
1− u2

0

g1 |u|2

]
− 1

2

∣∣∣∣∂u∂x
∣∣∣∣2

− 1

2

[
√
g1 |u|2 −

u2
0√
g1

]2

+
i

2

[
v∗
∂v

∂t
− v∂v

∗

∂t

]
− 1

2

∣∣∣∣∂v∂x
∣∣∣∣2 − g2

2
|v|4 − g |u|2 |v|2 .

(5.8)

We adopt the following trial functions as the dark-bright soliton solutions to Eqs. (5.6):

u (x, t) =
u0√
g1

{
iA (t) + c (t) tanh

[
(d (t) + x)

w (t)

]}
,

v (x, t) =
u0√
g2

F (t) sech

[
(b (t) + x)

w (t)

]
(5.9)

× exp{i [φ0 (t) + xφ1 (t)]}.

The parameters A, c, F describe the amplitude of the two components where,

A2 + c2 = 1, (5.10)

and A determines the velocity of the dark soliton component. In the exponential term in

Eqs. 5.9, φ0 gives rise to a complex amplitude to the bright soliton component. The velocity

of the bright soliton is given by φ1, and d and b are the position of the dark and bright

soliton, respectively. Since we are using hyperbolic functions as an ansatz, we assume the two

components have the same width, w, for the problem to remain analytically tractable [49].

There are 8 variational parameters subject to 1 constraint. The 8 variational parameters

82



as shown in Eq. (5.9) are A, c, d, w, F , b, φ0 and φ1 where we note Eq. (5.10) effectively

reduces the number to 7.

In this ansatz, we have assumed a fixed background, i.e., there is no motion of the

Thomas-Fermi background with respect to the harmonic trap. The ansatz also neglects

phonon effects. Both of these restrictions will be relaxed in our numerical treatment in

Sec. 5.3. We utilize the following normalization conditions,

∫ ∞
−∞

dx

(
u2

0

g1

− |u|2
)

=
N1

N
, (5.11a)∫ ∞

−∞
dx |v|2 =

N2

N
. (5.11b)

Here N1 is the number of atoms displaced by the dark soliton and N2 is the number of

atoms in the bright soliton, and N the total number of holes and atoms involved in the

emergent feature of the dark-bright soliton only. In contrast, the total number of atoms

in the condensate is Ntotal =
∫
dx|v|2 +

∫
dx|uTF|2|u|2. In general, N2 � Ntotal as many

more atoms are in the Thomas-Fermi background supporting the dark soliton, see the sketch

in Figure 5.1. Likewise the number of holes, i.e. the atoms displaced by the dark soliton,

is typically much less than the total number of atoms even after subtracting out N2, i.e.,

N1 � Ntotal − N2. This choice corresponds to the same normalization choice as used in

unbounded systems without traps, and therefore allows us to check all results in the limit

that trap frequency Ω → 0. By inserting the ansatz, Eqs. (5.9), in the normalization,

Eqs. (5.11), we find the relation between N1, N2 and the coefficients of the two components

in the dark-bright soliton:

2u2
0c

2w

g1

=
N1

N
, (5.12a)

2u2
0F

2w

g2

=
N2

N
, (5.12b)

N = N1 +N2 (5.12c)
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Out of the 8 experimental parameters g,N, g1, N1, g2, N2, u0 and Ω, only 5 remain after

taking into account the 3 constraints of Eqs. (5.12) after the variational procedure. We

choose g,N1/N2, g1, g2 and Ω as the “free parameters”.

5.2.2 Evolution equations

Using a perturbation technique in the variational method also modifies the standard

Euler-Lagrange. To find the equations of motion that govern the behavior of the variational

parameters we utilize the following modified Euler-Lagrange equation as defined in [52]:

∂L

∂aj
− d

dt

(
∂L

∂ȧj

)
= 2 Re{

∫ ∞
−∞

(R∗u
∂u

∂aj
+R∗v

∂v

∂aj
) dx}. (5.13)

Here L =
∫∞
−∞ dxL, L is the Lagrangian density in Eq. (5.8) and aj represents the variational

parameters where ȧj ≡ da/dt. We obtain R∗u and R∗v by inserting Eq. (5.9) into Eq. (5.7) and

take the conjugate of the outcome. Also, inserting Eqs. (5.9) into Eq. (5.8) and integrating,

we obtain the Lagrangian as a function of the variational parameters,

L = −2u2
0c

2

3g1w
− u2

0F
2

3g2w
− 2u4

0c
4w

3g1

+
2gu4

0(−1 + c2)F 2w

g1g2

− 2u4
0F

4w

3g2

+
gu4

0c
2F 2

g1g2

csch

(
b− d

w

)2

×
{

4 coth

(
b− d

w

)
(b− d)−

[
3 + cosh

(
2
b− d

w

)
w

]}
− u2

0F
2wφ2

1

g2

− 2u2
0

g1

[
tan−1

( c
A

)
− Ac

] d
dt
d

− 2u2
0F

2w

g2

d

dt
φ0 +

2u2
0bF

2w

g2

d

dt
φ1. (5.14)

Applying the modified Euler-Lagrange equations, Eq. (5.13), yields a system of coupled

nonlinear ordinary differential equations (ODEs) that describe the evolution in time of the

variational parameters under the influence of the harmonic potential,
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φ̇1 =
gu2

0c
2

g1w
Γ1 +

Ω2

45g1

{b [45(g1 − g) (5.15a)

−g(π2 − 15)c2 + gπ2c2d
]}

Ȧ =
gu2

0cF
2

2g2w
Γ1 +

c(2 + u2
0c

2w2)d

6u2
0w

Ω2 (5.15b)

2u2
0c

g1

ḋ+
2u2

0c

g1A2
(
1 + c2

A2

) ḋ =
π2u2

0Ac
2w3

6g1

Ω2 (5.15c)

2u2
0A

g1

ḋ− 2u2
0

g1A
(
1 + c2

A2

) ḋ = (5.15d)

cw [18 + (12 + π2)u2
0c

2w2]

18g1

Ω2 − 2gu4
0cF

2Γ2

g1g2

− 4u2
0c

3g1g2w

[
−g2 + u2

0

(
−2g2c

2 + 3gF 2
)

w2
]

2wḞ + F ẇ = 0 (5.15e)

Fw
(
φ1 + ḃ

)
+ b
(

2wḞ + F ẇ
)

= 0 (5.15f)

4u4
0w2

3g1g2Fw

(
g2c

4 − g1F
4
)
− 4u2

0

3g1g2Fw

(
g2c

2 − g1F
2
)

+
4gu4

0c
2F Γ1

g1g2w
(d− b) = Ω2

{
2(π2 − 6)c2w

9g1F

+
2gπ2u2

0c
2dFw

45g1g2

+
u2

0w3

18g1g2F

[
(π2 − 6)c2

(3g2c
2 − gF 2) + 6(g − g1)π2F 2

]}
(5.15g)

− 2u2
0F

3g2w
− 4u4

0wF

3g1g2

(
3g + 2g1F

2
)

+
2gu4

0c
2F

g1g2

(Γ2 + 2w)

− 2u2
0Fw

g2

(
φ2

1 + 2φ̇0 − 2bφ̇1

)
=
u2

0Fw

90g1g2

Ω2

×
[
8gπ2bc2d+ 5

(
3 (g1 − g) π2 + 2g

(
π2 − 6

)
c2
)

w2
]
, (5.15h)

where Γ1 and Γ2 in Eq. (5.15a), Eq. (5.15b) and Eq. (5.15d) are represented as follows,
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Γ1 = csch

(
b− d

w

)4{
2

[
2 + cosh

(
2
b− d

w

)]
(b− d) (5.16a)

−3 sinh

(
2
b− d

w

)
w

}
,

Γ2 = csch

(
b− d

w

)2{
4 cosh

(
b− d

w

)
(b− d) (5.16b)

−
[
3 + cosh

(
2
b− d

w

)]
w

}
.

In Eqs. (5.15) we have an algebraic equation, Eq. (5.15g), where we do not have any deriva-

tives of the variational parameters. In addition we use the the constraint, Eq. (5.10). In

this case, we expect to find only 6 frequencies out of the total 8 equations of the system in

Eqs. (5.15).

5.2.3 Normal modes

The system of equations, Eqs. (5.15) has a fixed point,

bfp = 0, dfp = 0, Afp = 0, cfp = 1, Ffp = 1, (5.17)

wfp = wfp, φ1fp = 0, φ0fp = 0,

where wfp is determined by the constraints of Eqs. (5.12). We continue by linearizing

Eqs. (5.15) around the fixed point Eq. (5.17). Here we set,

aj (t) = ajfp + δaj e
iωt, (5.18)

where ω is the oscillation frequency between the two components and the aj are the 8

variational parameters. Keeping δaj to linear order results in a matrix equation of the form,
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

A11 A12 A13 0 0 0 0 0
0 A22 A23 A24 0 0 0 0
0 A32 0 A34 0 0 0 0
0 0 0 0 A45 A46 A47 0
0 0 0 0 A55 A56 0 0
A61 0 A63 0 A65 A66 0 0
0 0 0 0 A75 A76 A77 0
0 0 0 0 A85 A86 A87 A88





δφ1

δd
δb
δA
δF
δw
δc
δφ0


=
[
0
]

(5.19)

where [0] refers to a column vector with eight entries of value zero. The nonzero terms

are written in Appendix 5.5. Taking the determinant of the matrix and solving for the

eigenfrequencies, ω, we obtain,

α1ω
6 + α2ω

4 + α3ω
2 = 0 , (5.20)

where as mentioned already only six eigenfrequencies are expected due to constraints and

the form of the coupled nonlinear ODEs in Eqs. 5.15. Solving the determinant we obtain,

ω± = 0, 0,
1√
2

√
−α2

α1

± 1

α1

√
α2

2 − 4α1α3, (5.21)

− 1√
2

√
−α2

α1

± 1

α1

√
α2

2 − 4α1α3.

where we write out the long expressions for α1, α2 and α3 in Appendix 5.5. Since we are

considering a small oscillation frequency, Ω� 1, we expand the coefficients (i.e., α1, α2 and

α3) around Ω→ 0 and find that α3 → 0. Therefore, we end up with one internal oscillation

frequency of interest,

ωinternal =

√
α2

−α1

. (5.22)

The dark-bright soliton we consider exists in repulsive media, therefore, g, g1 and g2 all

take positive values. In this case, α1 < 0, α2 > 0 for any values of the free parameters

mentioned in Sec. 5.2.1. In Figure 5.2 we plot a typical case for in the internal oscillation

frequency, Eq. 5.22, using the same parameters as our previous treatment of the uniform case
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for comparison [65]. The result is nearly independent of trapping frequency until a sudden

strong coupling for larger Ω, beyond which the result turns imaginary. However, this is also

beyond the assumptions of the model, namely Ω � 1. Therefore we examine the questions

of the real trend in a more thorough numerical treatment in Sec. 5.3.

Analytical

Numerical

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Ω

2π

0.01

0.02

0.03

0.04

0.05

0.06
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ωInternal

2π

Figure 5.2 Internal oscillation frequency of the dark-bright soliton verses the trap frequency. The
relative degree of freedom of a dark-bright soliton is nearly independent of the center of mass degree
of freedom up to a trapping frequency of about 0.0159, in units of the transverse trap frequency,
at which point the internal and external motion becomes strongly coupled. This corresponds to
a trapping length ratio of ω2 = 0.32, or an approximately 3:1 prolate trap. Here we take g1 = 2,
g2 = 2.6, g = 2.6, N1/N2 = 0.503. The error bars for the numerical calculations are smaller than
the point size, e.g. ±0.00017 for Ω/2π = 0.0222.

5.2.4 Nonlinear dark-bright soliton motion

The system of Eqs. (5.15) also can be simplified to a smaller set of second order nonlinear

coupled ODEs. From Eq. (5.15e) and Eq. (5.15f), we obtain the following,

ḃ = −φ1, (5.23)

with the help of Eq. (5.15a), we get our first second order differential equation (ODE),

b̈ =− gu2
0c

2

g1w
Γ1 −

Ω2

45g1

(5.24)

×
{

45(g1 − g)− g(π2 − 15)c2 + gπ2c2d
}
b.
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Note that when we set c = 0 (i.e., eliminating the dark soliton) Eqs. (5.24) recovers the well-

known oscillation frequency of the one-component bright soliton in a harmonic potential,

b̈+ Ω2b = 0. (5.25)

In the limiting case, g = 0 because there is no interaction between the bright soliton and the

dark soliton. The second ODE is obtain by inserting Eq. (5.15c) into Eq. (5.15d) and use

the normalization conditions, Eqs. (5.12), we obtain,

ḋ =
1

576A(1− A)5/2

[
3g3

1N
3
1π

2Ω2

N3u6
0

(5.26)

+
4g3

1N
3
1 (3 + π2)Ω2(−1 + A2)

N3u6
0

−72g1N1Ω2(−1 + A2)2

Nu4
0

+
96(2g1N1 − 3gN2)(−1 + A2)3

N

−96u2
0(4N − 3gN2Γ2)(−1 + A2)4

g1N1

.

]
Equation (5.26) take the form ḋ = f(A(t),Γ2(t)). Taking the total time derivative of

Eq. (5.26) yields,

d̈ = αȦ, (5.27)

where α is obtained from Eq. (5.26) and Eq. (5.15b),

α = −gN2Γ1

6g3
1N

3
1

(
−4− 4g2

1N
2
1 + 6gg1N1N2 + 3gN2Γ2

)
(5.28)

+
Γ1

6g3
1N

3
1A

2

(
−4gN2 − 2gg2

1N
2
1N2 + 3g2g1N1N

2
2

+3g2N2
2 Γ2

)
+ Ω2

{
gN2Γ1

576g1N1A2

[
−72− 12g2

1N
2
1

−g2
1N

2
1π

2 + 216A2 + 48g2
1N

2
1A

2 + 7g2
1N

2
1π

2A2
]

− 1

72g2
1N

2
1A

2

[
32 + 20g2

1N
2
1 + 2g4

1N
4
1

−3gg3
1N

3
1N2− 24gN2Γ2 − 12g2

1N
2
1A

2

+24gg1N1N2

(
−1 + A2

)
− 3gg2

1N
2
1N2Γ2

(
1 + A2

)]
d.
}
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By plotting Eq. (5.24) and Eq. (5.27) we obtain Figure 5.3, where the interplay between

external and internal degrees of freedom of the dark-bright soliton is clearly evident, showing

that the assumption of the two components moving together, as found in previous treatments

before this Article, does not capture the richness of the dynamics.

49.4 49.6 49.8 50.2 50.4 50.6 50.8
Position

500

1000

1500

Time

Figure 5.3 Oscillation of dark-bright soliton in a harmonic potential well. The nonlinear ODE
evolution of the dark and bright soliton positions resulting from our variational Lagrangian treat-
ment shows a rich structure to the internal dynamics, even for a small trapping frequency of
Ω/2π = 0.0064. The free parameters are the same as in Figure 5.2.

5.3 Full numerical evolution of the coupled GPEs

We now numerically study the oscillation of the dark-bright and the internal oscillation

between the two components in a harmonic potential described by Eq. (5.4), making no other

assumptions beyond coupled GPEs. Throughout this section, we present the simulations

with grid size nx = 256 in a box with hard-wall boundaries, noting that this is sufficient to

converge our simulations. For example, the error bars are smaller than the point size for

internal frequencies (see Figure 5.2) even when we cut the grid in half to 128 points. The

box length is set to L = 100 unless otherwise noted.

5.3.1 Dark-bright soliton in harmonic potential

To move a dark-bright soliton in a harmonic potential, we may imprint a phase on

the bright component or the dark component but with a fundamental difference between

these two methods. If we imprint a phase difference on the dark component only, it will
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Figure 5.4 Bright component in dark-bright soliton. The oscillation of the bright soliton component
in dark-bright soliton. The white line represents the analytical result for the bright soliton position,
Eq. (5.24). We set the trap frequency Ω/2π = 0.0064. We find the dark-bright soliton oscillates
with ωDB/2π = 0.0039. In the lower panel, we plot the phase.

Figure 5.5 Dark component in dark-bright soliton. The oscillation of the dark soliton component
in dark-bright soliton. In the upper panel, the white line represents the analytical plot from
Eq. (5.24). We set the trap frequency Ω/2π = 0.0064. We find the dark-bright soliton oscillates
with ωDB/2π = 0.0039. In the lower panel, we plot the phase.
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move slowly such that it will pull the bright component with it but without any oscillation

between the two components. For this method, it is noteworthy to mention that an ansatz

with only one variable to represent the location of the dark and bright components is a valid

choice to describe the moving dark-bright in a harmonic potential as this is the case for

other studies [70]. But since we are interested in the oscillation of dark-bright soliton in

a harmonic potential with an additional degree of freedom, namely, the internal oscillation

of the two components, we work with the second method (i.e., imprinting a phase on the

bright component only). In this method, the relatively small density of the bright component

moves faster when imprinting a phase on it and as a result, it will drag the dark soliton with

it and form an oscillation between the two components. Therefore, the dark-bright soliton

will move, and we study the center-of-mass trajectory to calculate the oscillation of the

dark-bright soliton as a whole.

In Figure 5.4 and Figure 5.5, we plot the outcomes from the numerical simulations and

the analytical calculations of the bright and dark components, respectively. In each plot, the

upper panel shows the density, and the lower panel the phase. The analytical results, the

white line in the center of the bright and dark components, oscillate with nearly the same

frequency as the numerical results, showing a small deviation after many trap periods. This

deviation is a result of the interaction between the dark-bright soliton with the reflected

phonons, not captured in the analytical model where we assumed an inert Thomas-Fermi

background. When the dark-bright soliton moves in a harmonic potential, phonons are

created and propagate away with the speed of sound. They then reach the low density

regions of the BEC at the harmonic trap edges and turn back around to interact with the

dark-bright soliton.

To test the analytical predictions against the numerical outcomes, we plot the center

of mass oscillation frequency ωDB of the dark-bright soliton vs. the trapping frequency

Ω in Figure 5.6. The analytical results are obtained by evolving the nonlinear ODEs and

performing a Fourier transform. These scale almost linearly together showing they are nearly
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but not quite proportional for weak trapping. For small trapping frequencies, as shown in

Figure 5.2, the internal frequency is also nearly independent of the trap. This is an indication

that the internal oscillation of the two components does not couple with the oscillation of

the dark-bright soliton in the weak trapping case. In contrast, our coupled GPE simulations

show that for stronger trapping the internal degree of freedom is strongly dependent on the

trap frequency, see Figure 5.2. In this regime, the analytical result diverges to zero, but the

numerical result increases. We interpret these results further in Sec. 5.4.

Numerical

Model

0.005 0.010 0.015 0.020

Ω

2π

0.002

0.004

0.006

0.008

0.010

ωDB

2π

Figure 5.6 The oscillation of the dark-bright soliton for different values of the trap oscillation of the
harmonic potential. We compare the analytical predictions to numerical results of the oscillation
of dark-bright soliton, ωDB/2π, for a wide range of trap frequencies, Ω/2π.

5.3.2 Robustness of dark-bright soliton oscillations

In this section, we address the question of experimental observability. How stable are

the dominant frequencies of dark-bright soliton motion in a harmonic trap? To answer this

questions, we add white noise to the system in the spatial Fourier transform of the initial

condition at the 5% level, then reverse Fourier transform to obtain a noisy initial state.

Propagating this noisy initial state, we plot two cases for the same harmonic potential trap

frequency, Ω/2π = 0.0064 in Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11. The free

parameters are again taken to match our test case used throughout this paper, although we

also examined other cases to find similar features. In Figure 5.8 and Figure 5.9 we plot

the density of the bright component and the dark component, respectively. The dark-bright
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Figure 5.7 Oscillation frequencies of the dark-bright soliton in harmonic potential. A Fourier
transform of our numerical results allows us to pick out the important frequencies in the problem.
We show here a sample case of Ω/2π = 0.0064. The first dominant frequency is located at ω/2π =
0.0039 which corresponds to the center of mass oscillation of the dark-bright soliton in the harmonic
potential. The second dominant frequency is located at ω/2π = 0.032 , and corresponds to the
internal oscillation between the two components. Overall the dynamics is in fact quite rich, with
many aspects to the motion, as observed in the dense Fourier tail.

Figure 5.8 Oscillation of bright component in a harmonic potential. We plot the density (phase) in
the upper (lower) panel for the bright component in dark-bright soliton with harmonic potential
frequency, Ω/2π = 0.0064, g1 = 2, g2 = 2.6 and g = 2.6.
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Figure 5.9 Oscillation of dark component in a harmonic potential. We plot the density (phase)
in the upper (lower) panel for the dark component in dark-bright soliton with harmonic potential
frequency, Ω/2π = 0.0064, g1 = 2, g2 = 2.6 and g = 2.6.

Figure 5.10 Oscillation of bright component in a harmonic potential when white noise added. We
plot the density (phase) in the upper (lower) panel for the bright component in dark-bright soliton
for the same parameters in Figure 5.8 with 5% noise added to the initial wave function at t = 0.
The bright component oscillate with the same frequency in Figure 5.8 but with less oscillation
amplitude.
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Figure 5.11 Oscillation of dark component in a harmonic potential with white noise added. Shown
are density (phase) in the upper (lower) panel for the dark component in a dark-bright soliton for
the same parameters in Figure 5.9 with 5% noise added to the initial wave function at t = 0.
The dark component oscillates with the same frequency in Figure 5.9 but with a slightly smaller
oscillation amplitude.

soliton oscillates with ωDB/2π = 0.0039 and the internal oscillation in this case is ωinternal =

0.032. The noisy case is found to oscillate with the same frequency but with a slightly

reduced oscillation amplitudeas can be seen in Figure 5.10 for the bright component and in

Figure 5.11 for the dark component. Thus we expect our predictions to be experimentally

observable.

5.4 Conclusions

We obtained a system of equation of motions for a dark-bright soliton in a harmonic

potential. We used a variational method with a hyperbolic tangent for the dark component

and a hyperbolic secant for the bright component. The harmonic potential modifies the

background of the dark component according to the well-known Thomas-Fermi background

approximation. A perturbation method was needed to include the effect of the harmonic

potential, which amounts to restricting our analytical treatment cigar-shaped traps, also

common in experiments.
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The decoupling of relative and center of mass degrees of freedom for the harmonic case

occurs for the classical two-body problem as well as its quantum extension, including to

more than two particles, with relative coordinates appropriately generalized. It is not imme-

diately obvious this decoupling should also occur for a two-body bound state of two emergent

features, a bright and a dark soliton. For example, spontaneous symmetry breaking often

causes such emergent properties to not respect underlying symmetries. In previous work, we

showed that for a uniform system the decoupling in fact does hold [65]. For a weak trap, this

property nearly holds, but as the trapping strength is increased, internal oscillations and ex-

ternal motion are strongly coupled. The effective potential, consisting of a sum between the

potential and the mean field, may well be responsible for this effect, as found for example in

non-exponential tunneling decay out of quasibound states in the scalar case [79–81]. As the

trap is tightened the edges of the condensate are deformed by approach of the dark-bright

soliton during its oscillations. Because we treat a purely repulsive condensate in both com-

ponents, the effective potential is larger than the bare potential, leading to a higher effective

trapping frequency. Moreover, the edges of the trap now impinge on the dark-bright soliton

internal oscillations, shortening the internal oscillation time and therefore leading to a higher

frequency. The result is a coupling between center of mass motion deforming the effective

potential, and internal oscillations being sped up by the deformation.

Future work could be the study of the internal oscillation of the two-component dark-

bright soliton in a harmonic potential with an impurity at the center to look at the damping

of a dark-bright soliton under periodic interaction with an impurity. Other works have

investigated the interaction of a dark-bright soliton in a harmonic potential with an impurity,

but they did not take into account internal modes. Thus we suggest adding one more degree

of freedom, namely, a relative coordinate for the position of the dark and bright solitons,

which as we have shown is vital to understand and predict harmonic motion.

97



5.5 Matrix elements

The matrix elements in Eq. (5.19) are,

A11 = iω, (5.29)

A12 =
8gu2

0

15g1w2
fp

− gπ2Ω2

45g1

,

A13 = − 8gu2
0

15g1w2
fp

− Ω2 +
2gΩ2

3g1

+
gπ2Ω2

45g1

,

A22 =
4gu2

0

15g2w2
fp

−
Ω2(2 + u2

0w2
fp)

6u2
0wfp

,

A23 = − 4gu2
0

15g2w2
fp

,

A24 = iω,

A32 =
4iu2

0ω

g1

,

A34 = −
π2u2

0w3
fpΩ2

6g1

,

A45 =
16gu4

0wfp

3g1g2

,

A46 = −8u4
0

3g1

+
8gu4

0

3g1g2

+
4u2

0

3g1w2
fp

− Ω2(
6 + (12 + π2)u2

0w2
fp

6g1

),

A47 = − 4u2
0

3g1wfp

− 8u4
0wfp

g1

+
8gu4

0wfp

3g1g1

− Ω2(
6 + (12 + π2)u2

0w3
fp

6g1

),
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A55 = 2iwfpω, (5.30)

A56 = iω,

A61 = wfp,

A63 = iwfpω,

A65 = wfpφ1fp,

A66 = φ1fp,

A75 = −4(g1 − g2)u2
0

3g1g2wfp

− 4(3g1 + g2)u4
0wfp

3g1g2

+ Ω2

(
2(π2 − 6)wfp

9g1

+
u2

0w3
fp

18g1g2

[
−6(g + 2g2) + π2(−5g + 6g1 + 3g2)

])
,

A76 = −4(g1 − g2)u4
0

3g1g2

+
4(g1 + g2)u2

0

3g1g2w2
fp

+ Ω2

(
12− 2π2 + 27u2

0w2
fp

9g1

+

(2g1 − g2)π2u2
0w2

fp

2g1g2

−
g(6 + 5π2)u2

0w2
fp

6g1g2

)
,

A77 =
8u2

0

3g1wfp

(−1 + 2u2
0w2

fp) + Ω2

(
−

2(−6 + π2)wfp(2 + 3u2
0w2

fp)

9g1

+
g(−6 + π2)u2

0w3
fp

9g1g2

)
,

(5.31)

A85 = − 2u2
0

3g1g2wfp

(g1 + 2gu2
0w2

fp + 12g1u
2
0w2

fp) + Ω2(
g(12 + π2)u2

0w3
fp

18g1g2

−
π2u2

0w3
fp

6g2

),

A86 =
1

2g2g2w2
fp

(2g1u
2
0 − 4gu4

0w2
fp − 8g1u

4
0wfp) + Ω2(

gu2
0w2

fp(12 + π2)

6g1g2

−
π2u2

0w2
fp

2g2

),

A87 =
16gu4

0wfp

3g1g2

− Ω2(
2gu2

0w3
fp

9g1g2

),

A88 = −4iu2
0wfpω

g2

.
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The frequency coefficients are,

α1 =
1

27g3
1g

3
2

[
768u8

0(3g2(g2 − g1) + u2
0w2

fp(2g(3g1 + g2)− g2(19g1 + 25g2)) (5.32)

+2(−g2(3g1 + g2) + g(g1 + 3g2))u4
0w4

fp

−32u6
0w2

fp{2g2(27g1 + g2(129− 14π2))

+g2(−198g + 126g1 + 600g2 + (3g + 39g1)

−70g2π
2)u2

0w2
fp + 12(5g2 + 32gg2 + 3g2(g1 + 8g2)) + u4

0w4
fp(50g2 + 3(61g1 − 31g2)g2

−4g(15g1 + 29g2))}Ω2

−4g2u
4
0w4

fp(6 + (12 + π2)u2
0w2

fp)(4g2(−6 + π2))

+(−6(g + 3g2) + (−29g + 30g1 + 3g2)π2u2
0)w2

fpΩ4)
]
,

α2 =
u2

0

4860g4
1g

4
2w2

fp

{384gg2u
4
0 + 8u2

0w2
fp(90g1g2 (5.33)

− 2gg2(30 + π2) + gg1π
2u2

0w2
fp)Ω2

− 5g1g2π
2w4

fp(2 + u2
0w2

fp)Ω4[
192u4

0(3(g1 − g2)g2 + (−2g(3g1 + g2)

+g2(19g1 + 25g2))u2
0w2

fp2(g2(3g1 + g2)− g(g1 + 3g2))u4
0w4

fp)
]

+ 8u2
0w2

fp(2g2(27g1

+ g2(129− 14π2)) + g2(−198g + 126g1

+ 600g2 + (3g + 39g1 − 70g2)π2)u2
0w2

fp + (12(5g2 − 32gg2 + 3g2(g1 + 8g2) + (50g2 + 3(61g1 − 31g2)g2

− 4g(15g1 + 29g2))π2)u4
0w4

fp)Ω2

+ g2w4
fp(+(12 + π2)u2

0w2
fp)(4g2(−6 + π2) + (−6(g + 3g2) + (−29g + 30g1 + 3g2)π2)u4

0w4
fp)Ω4)},
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α3 =
π2u2

0Ω4

43740g4
1g

4
2

(24gu2
0(2g2 + (2g − 3g1 + g2)u2

0w2
fp) (5.34)

− g2(−45g1 + g(30 + π2))w2
fp(2 + u2

0w2
fp)Ω2)

(192u4
0(3(g1 − g2)g2 + (−2g(3g1 + g2)

+ g2(19g1 + 25g2))u2
0w2

fp

+ 2(g2(3g1 + g2)− g(g1 + 3g2))u4
0w4

fp) + 8u2
0w2

fp(2g2(27g1 + g2(129− 14π2))

+ g2(−198g + 126g1

+ 600g2 + (3g + 39g1 − 70g2)π2)u4
0w4

fp + (12(5g2 − 32gg2 + 3g2(g1 + 8g2)) + (50g2

+ 3(61g1 − 31g2)g2 − 4g(15g1 + 29g2))π2)u4
0w4

fp)Ω2

g2w4
fp(6 + (12 + π2)u2

0w2
fp)(4g2

(−6 + π2) + (−6(g + 3g2)

+ (−29g + 30g1 + 3g2)π2)u2
0w2

fp)Ω4).
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

A dark-bright soliton is a bound state of a bright component with positive kinetic energy

and a dark component with negative kinetic energy. We can think of the exciton as an

analogy to this system where we have a bound state of an electron and a hole which are

attracted to each other by the electrostatic Coulomb force. This model where we have two

such complementary existing objects in a bound state is ubiquitous in nature. Therefore, a

detailed study of the dynamics of these models is needed. The ability to control, to a high

degree of accuracy, the interactions between the particles in each component in the dark-

bright soliton and the interaction between the two components in BECs makes dark-bright

solitons an ideal platform to compare the analytical predictions of mathematical models to

the outcomes of experiments. The general motivation in this thesis is to shed light on relevant

quantities that needed to be identified to gain a better understanding of the nature of dark-

bright soliton interactions in BECs such as the binding energy between the two components,

internal excitations, etc. Another aspect that motivates us to work with dark-bright solitons

in BECs is that it can only exist in multiple-component condensates. In this case, due to

the intra-actions/interactions of particles in multiple components, richer phenomena can be

found than would be possible in one-component BECs.

In this thesis, we have studied the behavior of the two-component dark-bright solitons

in BECs analytically and numerically. We utilized different analytical methods like the

variational method, perturbation theory, etc. It is a well-known fact that the efficiency of

the variational approach depends on the choice of the trial function (i.e., the ansatz). To

obtain an accurate description, we used hyperbolic functions in our calculations which is

more accurate than the Gaussian function and more challenging to work with. We compare

our findings with numerical simulations where we use a pseudospectral method.
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In the first project, we studied the internal oscillation of the two components dark-bright

soliton. We calculated the normal modes of the system where we used hyperbolic secant for

the bright soliton component and hyperbolic tangent for the dark soliton component. The

velocity of each component depends on the imprinted phase. In the case of the dark soliton,

the velocity depends on the amplitude too, in case we include this as a variational parameter,

as in the second which we do in the second project. We find that there are two modes of

the oscillation of the dark-bright soliton. The first one is the famous Goldstone mode. This

mode represents a moving dark-bright soliton without internal oscillation and is related to

continuous translational symmetry of the underlying equations of motion in the uniform

potential. The second mode is the one we are interested in, namely the oscillation of the two

components relative to each other. We compared the results obtained from the variational

method with numerical simulations. We studied the binding energy and found a critical

value for the breakup of the dark-bright soliton. By imprinting a linear phase on the bright

component only, we were able to impart a velocity relative to the dark component. If we

imprint a small phase, we get an oscillation between the two components, similar to exciting

a vibrational mode of a diatomic molecule. But if we imprint a large phase we break up

the dark-bright soliton, similar to unbinding a diatomic molecule. By comparing the kinetic

and mean-field energies of the two components that we got from the analytical calculations,

we find the critical value for the unbinding or break up of the dark-bright soliton. We

investigated this scenario also numerically. We found by numerical simulation that to get a

bright component in a dark-bright soliton the density must be less than the density of the

dark element. We obtain this result analytically too, where we noticed that to make the

dark and bright components oscillate relative to each other we must meet this rule. Also,

we found numerically that the oscillation frequency is independent of the imprinted phase

on the bright soliton. This means that for a small phase kick we have a simple harmonic

oscillation motion around the equilibrium point. A possibility to extend this work is by

considering an oscillation between three-component solitons. Different platforms could host

103



such experiments. For example, we can have three-component solitons in different hyperfine

states of BEC like 87Rb in the F = 1,mF ∈ {−1, 0,+1} states or for different types of atoms.

In multicomponent BECs produced from the same hyperfine manifold, the phase between

various components is coherent and the norm is not separately conserved, only the total

number of atoms. This additional feature must be accounted in the analytical calculations.

In the second project, we studied the propagation of two-component dark-bright solitons

in the presence of impurities. Physically any small impurity, relative to the size of the

soliton, can be represented by a delta function: for instance, a heavy impurity atom, or a

potential perturbation made with an focused laser. The inclusion of a delta function potential

affects the background of the dark component. Therefore, we approximate the effect by

considering a well-known method, namely, the Thomas-Fermi background approximation

where we also used the perturbation theory. The interaction of the dark-bright soliton with

the potential excites different modes in the system. As a result, the dark-bright soliton

emerges with a different velocity. Our analytical model capture two of these modes: the

dominant feature of relative oscillation between the two components, as well as the oscillation

in the widths. However, the analytical model requires these widths oscillate in sync. The

numerical simulations allow further internal modes to enter the problem, starting with out-

of-sync oscillations of the soliton widths, and including even shape deformations of various

kinds. We identify regions for the transmission, reflection and inelastic scattering of the dark-

bright soliton by the potential barrier. We present three case studies outline the basic kinds of

dynamical outcomes. The many internal modes excited in this problem show the complexity

of the nonlinear dynamical multicomponent problem. Our study points to different physical

regimes, and one can follow up by applying our model to any particular experiment intending

to pursue the scattering question. The scattering of a dark-bright soliton could also cause

quantum fluctuations, as one might model, e.g., in dynamical Bogoliubov theory. In this case,

the kinetic energy would go not only into internal mean-field modes but also into enhanced

quantum fluctuations localized in and near the dark-bright soliton. If that is the case, then

104



a reduced velocity of a scattered dark-bright soliton beyond mean-field predictions will be a

sign of quantum fluctuations. This is another strong reason to get the mean-field inelastic

scattering correct, carefully understanding all internal modes created by interaction with the

impurity. We also study in this project the velocity of the dark-bright soliton. The velocity

of a one-component dark soliton is well understood. By adding another component, in this

case, a bright soliton, the behavior of the dark soliton speed is changing. We found for a

dark-bright soliton the maximum velocity is limited by the relative number of atoms in the

bright component as compared to the size of the hole or density notch created by the dark

component. Above this critical velocity the dark-bright soliton develops internal oscillations,

and eventually unbinds and breaks apart. Future work may extend the investigation of the

interaction of dark-bright solitons with an impurity to three components, where the dynamics

of internal excitations may become much more complex. We might rip apart the dark-bright

soliton with the proper resonance condition, as found for exciton transport. In this sense

the barrier can be used to reflect, transmit, excite, or even destroy the dark-bright soliton.

In addition, by solving this single impurity problem, we may extend the work for solving the

disordered problem.

In the last project, we studied the internal oscillation of the two-component dark-bright

soliton in a harmonic potential. We used a variational method with a hyperbolic tangent for

the dark component and a hyperbolic secant for the bright component. The harmonic poten-

tial modified the background of the dark component according to the well-known Thomas-

Fermi background approximation. Therefore, a perturbation method was needed to include

the effect of the harmonic potential. The decoupling of relative and center of mass degrees

of freedom for the harmonic case occurs for the classical two-body problem as well as its

quantum extension, including to more than two particles, with relative coordinates appro-

priately generalized. In this project, we studied the decoupling for a two-body bound state

of two emergent features, a bright and a dark soliton and found that for a weak trap the in-

ternal oscillation modes were nearly independent of center of mass motion of the dark-bright
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soliton. But as the trapping strength increased, internal oscillations and external motion

were strongly coupled. One reason for this effect could be the effective potential as found for

example in non-exponential tunneling decay out of quasibound states in the scalar case [79–

81]. The tightened trap deforms the edges of the condensate when the dark-bright soliton

approaches during its oscillations. Therefore, the edges of the trap influence the internal os-

cillation of the dark-bright soliton and as a result a coupling between the internal oscillation

modes and the center of mass motion occurs. Future work could be the study of the internal

oscillation of the two-component dark-bright soliton in a harmonic potential with an impu-

rity at the center to look at the damping of a dark-bright soliton under periodic interaction

with an impurity. Other works have investigated the interaction of a dark-bright soliton in

a harmonic potential with an impurity, but they did not take into account internal modes.

Thus we suggest adding one more degree of freedom, namely, a relative coordinate for the

position of the dark and bright solitons, which as we have shown is vital to understand and

predict harmonic motion.
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Frantzeskakis, R. Carretero-González, and P. Schmelcher. Multiple dark-bright solitons
in atomic Bose-Einstein condensates. Physical Review A, 84(5):053630, nov 2011. ISSN
1050-2947. doi: 10.1103/PhysRevA.84.053630. URL http://link.aps.org/doi/10.

1103/PhysRevA.84.053630.

[45] Th. Busch and J R Anglin. Dark-Bright Solitons in Inhomogeneous Bose-Einstein
Condensates. Physical Review Letters, 87(1):10401, jun 2001. URL https://link.

aps.org/doi/10.1103/PhysRevLett.87.010401.

[46] V. Achilleos, D. Yan, P. G. Kevrekidis, and D. J. Frantzeskakis. Dark–bright solitons
in Bose–Einstein condensates at finite temperatures. New Journal of Physics, 14(5):
055006, 2012. URL http://stacks.iop.org/1367-2630/14/i=5/a=055006.

[47] Chao-Fei Liu, Min Lu, and Wei-Qing Liu. Dynamics of vector dark soliton induced by
the Rabi coupling in one-dimensional trapped Bose-Einstein condensates. Physics Let-
ters A, 376(3):188–196, jan 2012. ISSN 0375-9601. URL http://www.sciencedirect.

com/science/article/pii/S0375960111013272.

[48] H. Li, D. N. Wang, and Y. Cheng. Dynamics of dark-bright vector solitons in a two-
component Bose-Einstein condensate. Chaos, Solitons Fractals, 39(4):1988–1993, feb
2009. ISSN 09600779. doi: 10.1016/j.chaos.2007.06.063. URL http://linkinghub.

elsevier.com/retrieve/pii/S0960077907004560.

[49] B. A. Malomed. Internal vibrations of a vector soliton in the coupled nonlinear
Schrodinger equations. Physical Review E, 58(2):2564–2575, 1998. URL http://pre.

aps.org/abstract/PRE/v58/i2/p2564.

[50] J. Goldstone. Field theories with Superconductor solutions. Il Nuovo Cimento (1955-
1965), 19(1):154–164, 2008. ISSN 1827-6121. URL http://inspirehep.net/record/

12289?ln=en.

[51] L. D. Carr and M. A. Leung. Dynamics of the Bose-Einstein condensate: quasi-one-
dimension and beyond. Journal of Physics B: Atomic, Molecular and Optical Physics,
33(19):3983, 2000. URL http://stacks.iop.org/0953-4075/33/i=19/a=312.
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APPENDIX

MATHEMATICA CODE FOR DYNAMICS OF DARK-BRIGHT VECTOR SOLITONS

IN BOSE-EINSTEIN CONDENSATES

The following Mathematica notebook used to generate the analytical results for the dy-

namics of dark-bright vector solitons in Bose-Einstein Condensates project.
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Introduction:

The NLSE :
If g12 = g21 = g , then we have
i ∂t u(x, t) = - 1

2
∂xxu(x, t) + g11 u(x, t) 2 -u0

2 + 2 g v(x, t) 2 u(x, t)

i ∂t v(x, t) = - 1
2
∂xxv(x, t) + 2 g u(x, t) 2 +g22 v(x, t) 2 v(x, t)

The Ansatz :
u(x, t) = u0

g11

i A + c tanh (d(t)+x )
w

  ExpIθ0 + (d[t] + x ) θ1[t] + (d[t] + x )2 θ2 , where A2 + c2 = 1 

v(x, t) = u0

g22

F sech (b(t)+x )
w

 Expi ϕ0(t) + (x + b(t)) ϕ1(t) + (x + b(t))2 ϕ2(t) 

The Lagrangian density:

ℒ = i
2
u4 ∂u

∂t
- u ∂u4

∂t
1 - u0

2

g11 u 2  -
1
2

∂u
∂x

2 - 1
2
 g11 u 2 - u0

2

g11


2

+ i
2
v4 ∂v

∂t
- v ∂v4

∂t
 - 1

2
∂v
∂x

2 - g22

2
v 4

-2 g u 2 v 2 + u02

2 g11
(2 θ2 (x + d[t]) + θ1[t])2

 

Units:
[x]=[L] , 
[t] = L2

[g] =  1
L
 , [u0] =  1

L
]

[F] = [1] ,  [c] = [1] ,[A] = [1] 
[v] =  1

L
 ,[u] =  1

L
  

[b] = [L] ,  [w] = [L] ,  
[ϕ0] = [1] ,  [ϕ1] =  1

L
 ,  [ϕ2] =  1

L2  

Lagrangian:

In[!]:= u[x_, t_] :=
u0

g111/2
I A + c Tanh

(d[t] + x )

w
 ExpI θ0 + (d[t] + x ) θ1[t] + (d[t] + x )2 θ2;

In[!]:= v[x_, t_] :=
u0

g221/2
F Sech

(b[t] + x )

w
 ExpI ϕ0 + (b[t] + x ) ϕ1[t] + (b[t] + x )2 ϕ2;

In[!]:= myassum = A, c, d[t], w, θ0, u0, g, g11, g22,
1

g11
,

1

g22
,

F, b[t], ϕ0, ϕ1[t], θ1[t], ϕ2, x, t, l[t] ∈ Reals, A2 + c2 ⩵ 1, w > 0;

In[!]:= φ_* := φ /. Complex[u_, v_] → Complex[u, -v]

Calculate:
 ℒ1 = i

2
u4 ∂u

∂t
- u ∂u4

∂t
1 - u0

2

g11 u 2 
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In[!]:= FullSimplify
I

2
((Evaluate[Simplify[u[x, t]*, Assumptions → myassum]]) ∂tu[x, t] -

u[x, t] ∂t(Evaluate[Simplify[u[x, t]*, Assumptions → myassum]])) *

1 - u02  (g11 u[x, t] (Evaluate[Simplify[u[x, t]*, Assumptions → myassum]])),

Assumptions → myassum

Out[!]=
1

g11 w A2 + c2 Tanh x+d[t]
w


2


c2 u02 -1 + Tanh
x + d[t]

w

2

-w (2 θ2 (x + d[t]) + θ1[t]) d′[t] - w (x + d[t]) θ1′[t] +

c Sech
x + d[t]

w

2
((A + c w (2 θ2 (x + d[t]) + θ1[t])) d′[t] + c w (x + d[t]) θ1′[t])

Integrate[%, {x, -∞, ∞}, Assumptions → myassum]

eq1 =
2 u02 A c - ArcTan c

A
 d′[t]

g11
+
2 c2 u02 w θ1[t] d′[t]

g11
;

Calculate

ℒ2 =  - 1
2

∂u
∂x

2 + 2 u02 θ22 d[t]2

g11
+ 2 u02 θ2 d[t] θ1[t]

g11
+

u02 θ1[t]2

2 g11
+ x  4 u02 θ22 d[t]

g11
+ 2 u02 θ2 θ1[t]

g11
 + 2 u02

g11
x2 θ22

& - 1
2
 g11 u 2 - u02

g11

2
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In[!]:= -
1

2
∂xu[x, t] Simplify[(Evaluate[∂xu[x, t]])*, Assumptions → myassum] +

2 u02 θ22 d[t]2

g11
+

2 u02 θ2 d[t] θ1[t]

g11
+

u02 θ1[t]2

2 g11
+ x

4 u02 θ22 d[t]

g11
+
2 u02 θ2 θ1[t]

g11
+
2 u02

g11
x2 θ22

Out[!]=
2 u02 x2 θ22

g11
+
2 u02 θ22 d[t]2

g11
+
2 u02 θ2 d[t] θ1[t]

g11
+
u02 θ1[t]2

2 g11
+

x
4 u02 θ22 d[t]

g11
+
2 u02 θ2 θ1[t]

g11
-

1

2 g11
ⅇ-ⅈ θ0+θ2 (x+d[t])2+(x+d[t]) θ1[t]

u0
c Sech x+d[t]

w

2

w
- A + ⅈ c Tanh

x + d[t]

w
 (2 x θ2 + 2 θ2 d[t] + θ1[t])

c ⅇⅈ θ0+θ2 (x+d[t])2+(x+d[t]) θ1[t] u0 Sech x+d[t]
w


2

g11 w
+

ⅈ ⅇⅈ θ0+θ2 (x+d[t])2+(x+d[t]) θ1[t] u0 ⅈ A + c Tanh x+d[t]
w

 (2 θ2 (x + d[t]) + θ1[t])

g11

Integrate[%, {x, -∞, ∞}, Assumptions → myassum]

eq2 = -
2 c2 u02

3 g11 w
+
c2 π2 u02 w3 θ22

3 g11
+
2 A c u02 θ1[t]

g11
+
c2 u02 w θ1[t]2

g11
-
2 c4 u04 w

3 g11
;

Calculate 
ℒ3 = i

2
v4 ∂v

∂t
- v ∂v4

∂t


In[!]:= FullSimplify

I

2
((Evaluate[Simplify[v[x, t]*, Assumptions → myassum]]) ∂tv[x, t] - v[x, t]

∂t(Evaluate[Simplify[v[x, t]*, Assumptions → myassum]])), Assumptions → myassum

Out[!]= -
F2 u02 Sech x+b[t]

w

2
((2 ϕ2 (x + b[t]) + ϕ1[t]) b′[t] + (x + b[t]) ϕ1′[t])

g22

Integrate[%, {x, -∞, ∞}, Assumptions → myassum]

eq3 = -
2 F2 u02 w ϕ1[t] b′[t]

g22
;

Calculate:
ℒ4 = - 1

2
∂v
∂x

2 - g22
2

v 4
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In[!]:= Simplify-
1

2
∂xv[x, t] (Evaluate[∂xv[x, t]])*, Assumptions → myassum +

Simplify-
g22

2
(v[x, t] (Evaluate[v[x, t]])*) (v[x, t] (Evaluate[v[x, t]])*),

Assumptions → myassum

Out[!]= -
F4 u04 Sech x+b[t]

w

4

2 g22
-

1

2 g22 w2

F2 u02 Sech
x + b[t]

w

2

2 w x ϕ2 + 2 w ϕ2 b[t] - ⅈ Tanh
x + b[t]

w
 + w ϕ1[t]

2 w x ϕ2 + 2 w ϕ2 b[t] + ⅈ Tanh
x + b[t]

w
 + w ϕ1[t]

Integrate[%, {x, -∞, ∞}, Assumptions → myassum]

eq4 = -
F2 u02

3 g22 w
-
2 F4 u04 w

3 g22
-
F2 π2 u02 w3 ϕ22

3 g22
-
F2 u02 w ϕ1[t]2

g22
;

Calculate:
ℒ5 = -2 g u 2 v 2

In[!]:= Simplify[ -2 g (u[x, t] u[x, t]*) (v[x, t] v[x, t]*), Assumptions → myassum]

Out[!]= -

2 F2 g u04 Sech x+b[t]
w


2
1 + c2 -1 + Tanh x+d[t]

w

2


g11 g22

Integrate[%, {x, -∞, ∞}, Assumptions → myassum]

eq5 =
4 -1 + c2 F2 g u04 w

g11 g22
-
2 c2 F2 g u04

g11 g22
Csch

b[t] - d[t]

w

2

w 3 + Cosh
2 (b[t] - d[t])

w
 + 4 Coth

b[t] - d[t]

w
 (-b[t] + d[t]) ;

The Average Lagrangian is:
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eq1 + eq2 + eq3 + eq4 + eq5

-
2 c2 u02

3 g11 w
-

F2 u02

3 g22 w
-
2 c4 u04 w

3 g11
-
2 F4 u04 w

3 g22
+
4 -1 + c2 F2 g u04 w

g11 g22
+

c2 π2 u02 w3 θ22

3 g11
-
F2 π2 u02 w3 ϕ22

3 g22
-

1

g11 g22
2 c2 F2 g u04 Csch

b[t] - d[t]

w

2

w 3 + Cosh
2 (b[t] - d[t])

w
 + 4 Coth

b[t] - d[t]

w
 (-b[t] + d[t]) +

2 A c u02 θ1[t]

g11
+
c2 u02 w θ1[t]2

g11
-
F2 u02 w ϕ1[t]2

g22
-
2 F2 u02 w ϕ1[t] b′[t]

g22
+

2 u02 A c - ArcTan c
A
 d′[t]

g11
+
2 c2 u02 w θ1[t] d′[t]

g11

L = -
2 c2 u02

3 g11 w
-

F2 u02

3 g22 w
-
2 c4 u04 w

3 g11
-
2 F4 u04 w

3 g22
+
4 -1 + c2 F2 g u04 w

g11 g22
+

c2 π2 u02 w3 θ22

3 g11
-
F2 π2 u02 w3 ϕ22

3 g22
-

1

g11 g22
2 c2 F2 g u04 Csch

b[t] - d[t]

w

2

w 3 + Cosh
2 (b[t] - d[t])

w
 + 4 Coth

b[t] - d[t]

w
 (-b[t] + d[t]) +

2 A c u02 θ1[t]

g11
+
c2 u02 w θ1[t]2

g11
-
F2 u02 w ϕ1[t]2

g22
-
2 F2 u02 w ϕ1[t] b′[t]

g22
+

2 u02 A c - ArcTan c
A
 d′[t]

g11
+
2 c2 u02 w θ1[t] d′[t]

g11
;

EOMs:

Normalizations:

For Dark Soliton, ∫-∞
∞ ⅆ x  u0

2

g11
- u(x, t) 2 = N1

Integrate
u02

g11
- u[x, t] (Evaluate[Simplify[u[x, t]*, Assumptions → myassum]]),

{x, -∞, ∞}, Assumptions → myassum

2 c2 u02 w

g11

For Bright Soliton, ∫-∞
∞ ⅆ x v(x, t) 2 = N2

Integrate[v[x, t] (Evaluate[Simplify[v[x, t]*, Assumptions → myassum]]),
{x, -∞, ∞}, Assumptions → myassum]

2 F2 u02 w

g22
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For b(t)

Expand[∂b[t]L]

20 c2 F2 g u04 Coth b[t]-d[t]
w

 Csch b[t]-d[t]
w


2

g11 g22
+

1

g11 g22
4 c2 F2 g u04 Cosh

2 (b[t] - d[t])

w
 Coth

b[t] - d[t]

w
 Csch

b[t] - d[t]

w

2
-

1

g11 g22 w
16 c2 F2 g u04 b[t] Coth

b[t] - d[t]

w

2
Csch

b[t] - d[t]

w

2
-

8 c2 F2 g u04 b[t] Csch b[t]-d[t]
w


4

g11 g22 w
+

1

g11 g22 w
16 c2 F2 g u04 Coth

b[t] - d[t]

w

2
Csch

b[t] - d[t]

w

2
d[t] +

8 c2 F2 g u04 Csch b[t]-d[t]
w


4
d[t]

g11 g22 w
-
4 c2 F2 g u04 Csch b[t]-d[t]

w

2
Sinh 2 (b[t]-d[t])

w


g11 g22

Expand[∂b'[t]L]

-
2 F2 u02 w ϕ1[t]

g22

Equation I:

16 c2 F2 g u04 Csch b[t]-d[t]
w


4
(-b[t] + d[t])

g11 g22 w
+

1

g11 g22 w
8 c2 F2 g u04 Cosh

2 (b[t] - d[t])

w
 Csch

b[t] - d[t]

w

4
(-b[t] + d[t]) +

12 c2 F2 g u04 Csch b[t]-d[t]
w


4
Sinh 2 (b[t]-d[t])

w


g11 g22
- ∂t -

2 F2 u02 w ϕ1[t]

g22
= 0

16 c2 F2 g u04 Csch b[t]-d[t]
w


4
(-b[t] + d[t])

g11 g22 w
+

1

g11 g22 w
8 c2 F2 g u04 Cosh

2 (b[t] - d[t])

w
 Csch

b[t] - d[t]

w

4
(-b[t] + d[t]) +

12 c2 F2 g u04 Csch b[t]-d[t]
w


4
Sinh 2 (b[t]-d[t])

w


g11 g22
+
2 F2 u02 w ϕ1′[t]

g22
= 0

    

    

123



For d(t)

Expand[∂d[t]L]

-
20 c2 F2 g u04 Coth b[t]-d[t]

w
 Csch b[t]-d[t]

w

2

g11 g22
-

1

g11 g22
4 c2 F2 g u04 Cosh

2 (b[t] - d[t])

w
 Coth

b[t] - d[t]

w
 Csch

b[t] - d[t]

w

2
+

1

g11 g22 w
16 c2 F2 g u04 b[t] Coth

b[t] - d[t]

w

2
Csch

b[t] - d[t]

w

2
+

8 c2 F2 g u04 b[t] Csch b[t]-d[t]
w


4

g11 g22 w
-

1

g11 g22 w
16 c2 F2 g u04 Coth

b[t] - d[t]

w

2
Csch

b[t] - d[t]

w

2
d[t] -

8 c2 F2 g u04 Csch b[t]-d[t]
w


4
d[t]

g11 g22 w
+
4 c2 F2 g u04 Csch b[t]-d[t]

w

2
Sinh 2 (b[t]-d[t])

w


g11 g22

Expand[∂d'[t]L]

2 A c u02

g11
-
2 u02 ArcTan c

A


g11
+
2 c2 u02 w θ1[t]

g11

Equation II:

16 c2 F2 g u04 Csch b[t]-d[t]
w


4
(b[t] - d[t])

g11 g22 w
+

1

g11 g22 w
8 c2 F2 g u04 Cosh

2 (b[t] - d[t])

w
 Csch

b[t] - d[t]

w

4
(b[t] - d[t]) -

12 c2 F2 g u04 Csch b[t]-d[t]
w


4
Sinh 2 (b[t]-d[t])

w


g11 g22
-

∂t
2 A c u02

g11
-
2 u02 ArcTan c

A


g11
+
2 c2 u02 w θ1[t]

g11
= 0
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16 c2 F2 g u04 Csch b[t]-d[t]
w


4
(b[t] - d[t])

g11 g22 w
+

1

g11 g22 w
8 c2 F2 g u04 Cosh

2 (b[t] - d[t])

w
 Csch

b[t] - d[t]

w

4
(b[t] - d[t]) -

12 c2 F2 g u04 Csch b[t]-d[t]
w


4
Sinh 2 (b[t]-d[t])

w


g11 g22
-
2 c2 u02 w θ1′[t]

g11
= 0

For ϕ1(t),

Expand[∂ϕ1[t]L]

-
2 F2 u02 w ϕ1[t]

g22
-
2 F2 u02 w b′[t]

g22

Expand[∂ϕ1'[t]L]

0

Equation III:

-
2 F2 u02 w ϕ1[t]

g22
-
2 F2 u02 w b′[t]

g22
= 0

For θ1(t),

Expand[∂θ1[t]L]

2 A c u02

g11
+
2 c2 u02 w θ1[t]

g11
+
2 c2 u02 w d′[t]

g11

Expand[∂θ1'[t]L]

0

Equation IV:

2 A c u02

g11
+
2 c2 u02 w θ1[t]

g11
+
2 c2 u02 w d′[t]

g11
= 0

EOMs:

b′[t] = -ϕ1[t] (* Eq A *)
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d′[t] = -
A

c w
- θ1[t] (* Eq B *)

ϕ1′[t] =
c2 g22

F2 g11
θ1′[t]

ϕ1′[t] =
2 c2 g u02

g11 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) - 3 w Sinh

2 (b[t] - d[t])

w
 (* Eq C *)

θ1′[t] =
2 F2 g u02

g22 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) - 3 w Sinh

2 (b[t] - d[t])

w
 (* Eq D *)

Eq(C) and Eq(D) are identical. Except for a constant. So, it’s better to choose b[t]-d[t] = l[t]
Re-write down the system of equations above.  

b′[t] - d′[t] = -ϕ1[t] - -
A

c w
- θ1[t]

l′[t] =
A

c w
+ θ1[t] - ϕ1[t] (* Eq I *)

ϕ1′[t] =

2 c2 g u02

g11 w2
Csch

l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 (* Eq II *)

θ1′[t] =

2 F2 g u02

g22 w2
Csch

l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 (* Eq III *)

Fixed Points:

From Eq A and Eq B we get 

ϕ1fp = 0, θ1fp = -
A

c w

Eq II and Eq III give the same results. Using FindRoot method. 

TrigReduceCsch
l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 

-
8 4 l[t] + 2 Cosh 2 l[t]

w
 l[t] - 3 w Sinh 2 l[t]

w


-3 + 4 Cosh 2 l[t]
w

 - Cosh 4 l[t]
w


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Numerator[%]

-8 4 l[t] + 2 Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w


ExpandAll 4 l[t] + 2 Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w


1

w


4 l[t]

w
+
2 Cosh 2 l[t]

w
 l[t]

w
- 3 Sinh

2 l[t]

w


% /. 
2 l[t]

w
→ y,

4 l[t]

w
→ 2 y

2 y + y Cosh[y] - 3 Sinh[y]

FullSimplify[2 y + y Cosh[y] - 3 Sinh[y]]

y (2 + Cosh[y]) - 3 Sinh[y]

Here we use FindRoot method, 

y (2 + Cosh[y]) - 3 Sinh[y] = 0 → y =
3 Sinh[y]

(2 + Cosh[y])

FindRooty ⩵
3 Sinh[y]

(2 + Cosh[y])
, {y, 0}

{y → 0.}

So, the fixed point for 2 l[t]
w

= 0, that is 

lfp = 0

We end up with the following fixed points

ϕ1fp = 0, θ1fp = -
A

c w
, lfp = 0

Let’s expand the system of ODE

System of ODEs,

expandaraoundFP = {θ1[t] → θ1fp + ϵ Δθ1, ϕ1[t] → ϕ1fp + ϵ Δϕ1, l[t] → lfp + ϵ Δl};

insertExponential = { Δθ1 → δθ1 Exp[I ω t], Δϕ1 → δϕ1 Exp[I ω t], Δl → δl Exp[I ω t]};

fp = ϕ1fp → 0, θ1fp → -
A

c w
, lfp → 0;

l′[t] =
A

c w
+ θ1[t] - ϕ1[t] (* Eq one *)

LHS,

l′[t] →
d

dt
(lfp + ϵ δl Exp[I ω t]) →

d

dt
( ϵ δl Exp[I ω t]) → ⅈ ⅇⅈ t ω δl ω ϵ
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RHS,

A

c w
+ θ1[t] - ϕ1[t] /. expandaraoundFP

A

c w
+ Δθ1 ϵ - Δϕ1 ϵ + θ1fp - ϕ1fp

% /. fp

Δθ1 ϵ - Δϕ1 ϵ

Series[Δθ1 ϵ - Δϕ1 ϵ, {ϵ, 0, 1}]

(Δθ1 - Δϕ1) ϵ + O[ϵ]2

Normal(Δθ1 - Δϕ1) ϵ + O[ϵ]2

(Δθ1 - Δϕ1) ϵ

Collect[%, ϵ]

(Δθ1 - Δϕ1) ϵ

% /. insertExponential

ⅇⅈ t ω δθ1 - ⅇⅈ t ω δϕ1 ϵ

We end up with, 

-ⅇⅈ t ω ϵ (δθ1 - δϕ1 - ⅈ δl ω) = 0

ϕ1′[t] =

2 c2 g u02

g11 w2
Csch

l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 (* Eq two *)

LHS,

ϕ1′[t] →
d

dt
(ϕ1fp + ϵ δϕ1 Exp[I ω t]) →

d

dt
( ϵ δϕ1 Exp[I ω t]) → ⅈ ⅇⅈ t ω δϕ1 ω ϵ

RHS,

2 c2 g u02

g11 w2
Csch

l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 /.

expandaraoundFP

1

g11 w2
2 c2 g u02 Csch

lfp + Δl ϵ

w

4

2 (lfp + Δl ϵ) 2 + Cosh
2 (lfp + Δl ϵ)

w
 - 3 w Sinh

2 (lfp + Δl ϵ)

w

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% /. fp

1

g11 w2
2 c2 g u02 Csch

Δl ϵ

w

4

2 Δl ϵ 2 + Cosh
2 Δl ϵ

w
 - 3 w Sinh

2 Δl ϵ

w


Series[%, {ϵ, 0, 1}]

16 c2 g u02 Δl ϵ

15 g11 w2
+ O[ϵ]2

Normal
16 c2 g u02 Δl ϵ

15 g11 w2
+ O[ϵ]2

16 c2 g u02 Δl ϵ

15 g11 w2

% /. insertExponential

16 c2 ⅇⅈ t ω g u02 δl ϵ

15 g11 w2

We end up with, 

ⅈ ⅇⅈ t ω ϵ 16 ⅈ c2 g u02 δl + 15 g11 w2 δϕ1 ω

15 g11 w2
= 0

θ1′[t] =

2 F2 g u02

g22 w2
Csch

l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 (* Eq three *)

LHS,

θ1′[t] →
d

dt
(θ1fp + ϵ δθ1 Exp[I ω t]) →

d

dt
( ϵ δθ1 Exp[I ω t]) → ⅈ ⅇⅈ t ω δθ1 ω ϵ

RHS,

2 F2 g u02

g22 w2
Csch

l[t]

w

4

2 2 + Cosh
2 l[t]

w
 l[t] - 3 w Sinh

2 l[t]

w
 /.

expandaraoundFP

1

g22 w2
2 F2 g u02 Csch

lfp + Δl ϵ

w

4

2 (lfp + Δl ϵ) 2 + Cosh
2 (lfp + Δl ϵ)

w
 - 3 w Sinh

2 (lfp + Δl ϵ)

w


% /. fp

1

g22 w2
2 F2 g u02 Csch

Δl ϵ

w

4

2 Δl ϵ 2 + Cosh
2 Δl ϵ

w
 - 3 w Sinh

2 Δl ϵ

w

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Series[%, {ϵ, 0, 1}]

16 F2 g u02 Δl ϵ

15 g22 w2
+ O[ϵ]2

Normal
16 F2 g u02 Δl ϵ

15 g22 w2
+ O[ϵ]2

16 F2 g u02 Δl ϵ

15 g22 w2

% /. insertExponential

16 ⅇⅈ t ω F2 g u02 δl ϵ

15 g22 w2

We end up with, 

ⅈ ⅇⅈ t ω ϵ 16 ⅈ F2 g u02 δl + 15 g22 w2 δθ1 ω

15 g22 w2
= 0

Collect the Equations Above, 

ⅇⅈ t ω ϵ (-δθ1 + δϕ1 + ⅈ δl ω) = 0

ⅇⅈ t ω ϵ -
16 c2 g u02

15 g11 w2
δl + ⅈ δϕ1 ω = 0

ⅇⅈ t ω ϵ -
16 F2 g u02

15 g22 w2
δl + ⅈ δθ1 ω = 0

Form the Matrix, 

-1 1 ⅈ ω

0 ⅈ ω -
16 c2 g u02

15 g11 w2

ⅈ ω 0 -
16 F2 g u02

15 g22 w2

δθ1
δϕ1
δl

=
0
0
0

Det

-1 1 ⅈ ω

0 ⅈ ω -
16 c2 g u02

15 g11 w2

ⅈ ω 0 -
16 F2 g u02

15 g22 w2



240 ⅈ F2 g g11 u02 w2 ω - 240 ⅈ c2 g g22 u02 w2 ω + 225 ⅈ g11 g22 w4 ω3  225 g11 g22 w4

Simplify

240 ⅈ F2 g g11 u02 w2 ω - 240 ⅈ c2 g g22 u02 w2 ω + 225 ⅈ g11 g22 w4 ω3  225 g11 g22 w4

ⅈ ω 16 F2 g g11 u02 - 16 c2 g g22 u02 + 15 g11 g22 w2 ω2  15 g11 g22 w2
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Solve[% ⩵ 0, ω]

{ω → 0}, ω → -
4 -F2 g g11 u02 + c2 g g22 u02

15 g11 g22 w
, ω →

4 -F2 g g11 u02 + c2 g g22 u02

15 g11 g22 w


Let’s now do the calculations without using l[t], and use only b[t] and d[t]:

Use the following fixed points:

ϕ1fp = 0, θ1fp = -
A

c w
, bfp = 0, dfp = 0

And the system of ODEs are:

b′[t] = -ϕ1[t] (* Eq one-I *)

d′[t] = -
A

c w
- θ1[t] (* Eq Two-II *)

ϕ1′[t] =
2 c2 g u02

g11 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) -

3 w Sinh
2 (b[t] - d[t])

w
 (* Eq Three-III *)

θ1′[t] =
2 F2 g u02

g22 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) -

3 w Sinh
2 (b[t] - d[t])

w
 (* Eq Four-IV *)

expandfpNEW =

{θ1[t] → θ1fp + ϵ Δθ1, ϕ1[t] → ϕ1fp + ϵ Δϕ1, b[t] → bfp + ϵ Δb, d[t] → dfp + ϵ Δd};

insertExponentialNEW =

{ Δθ1 → δθ1 Exp[I ω t], Δϕ1 → δϕ1 Exp[I ω t], Δb → δb Exp[I ω t], Δd → δd Exp[I ω t]};

fp = ϕ1fp → 0, θ1fp → -
A

c w
, bfp → 0, dfp → 0;

Eq one-I

b′[t] = -ϕ1[t]

LHS,

b′[t] →
d

dt
(bfp + ϵ δb Exp[I ω t]) →

d

dt
( ϵ δb Exp[I ω t]) → ⅈ ⅇⅈ t ω δb ω ϵ

RHS,
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(-ϕ1[t]) /. expandfpNEW

-Δϕ1 ϵ - ϕ1fp

% /. insertExponentialNEW

-ⅇⅈ t ω δϕ1 ϵ - ϕ1fp

Series[%, {ϵ, 0, 1}]

-ϕ1fp - ⅇⅈ t ω δϕ1 ϵ + O[ϵ]2

Normal-ϕ1fp - ⅇⅈ t ω δϕ1 ϵ + O[ϵ]2

-ⅇⅈ t ω δϕ1 ϵ - ϕ1fp

% /. fp

-ⅇⅈ t ω δϕ1 ϵ

We end up with, 

ⅈ ⅇⅈ t ω δb ω ϵ + ⅇⅈ t ω δϕ1 ϵ = 0

Collectⅈ ⅇⅈ t ω δb ω ϵ + ⅇⅈ t ω δϕ1 ϵ, ϵ ⅇⅈ t ω

ⅇⅈ t ω ϵ (δϕ1 + ⅈ δb ω)

ⅇⅈ t ω ϵ (δϕ1 + ⅈ δb ω) = 0

Eq Two-II

d′[t] = -
A

c w
- θ1[t]

LHS, 

d′[t] →
d

dt
(dfp + ϵ δd Exp[I ω t]) →

d

dt
( ϵ δd Exp[I ω t]) → ⅈ ⅇⅈ t ω δd ω ϵ

RHS,

-
A

c w
- θ1[t] /. expandfpNEW

-
A

c w
- Δθ1 ϵ - θ1fp

% /. insertExponentialNEW

-
A

c w
- ⅇⅈ t ω δθ1 ϵ - θ1fp

Series[%, {ϵ, 0, 1}]

-
A

c w
- θ1fp - ⅇⅈ t ω δθ1 ϵ + O[ϵ]2
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Normal -
A

c w
- θ1fp - ⅇⅈ t ω δθ1 ϵ + O[ϵ]2

-
A

c w
- ⅇⅈ t ω δθ1 ϵ - θ1fp

% /. fp

-ⅇⅈ t ω δθ1 ϵ

We end up with, 

ⅇⅈ t ω ϵ (δθ1 + ⅈ δd ω) = 0

Eq Three-III

ϕ1′[t] =
2 c2 g u02

g11 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) - 3 w Sinh

2 (b[t] - d[t])

w


LHS,

ϕ1′[t] →
d

dt
(ϕ1fp + ϵ δϕ1 Exp[I ω t]) →

d

dt
( ϵ δϕ1 Exp[I ω t]) → ⅈ ⅇⅈ t ω δϕ1 ω ϵ

RHS,

2 c2 g u02

g11 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) -

3 w Sinh
2 (b[t] - d[t])

w
 /. expandfpNEW

1

g11 w2
2 c2 g u02 Csch

bfp - dfp + Δb ϵ - Δd ϵ

w

4

2 (bfp - dfp + Δb ϵ - Δd ϵ) 2 + Cosh
2 (bfp - dfp + Δb ϵ - Δd ϵ)

w
 -

3 w Sinh
2 (bfp - dfp + Δb ϵ - Δd ϵ)

w


% /. fp

1

g11 w2
2 c2 g u02 Csch

Δb ϵ - Δd ϵ

w

4

2 (Δb ϵ - Δd ϵ) 2 + Cosh
2 (Δb ϵ - Δd ϵ)

w
 - 3 w Sinh

2 (Δb ϵ - Δd ϵ)

w


Series[%, {ϵ, 0, 1}]

16 c2 g u02 (Δb - Δd) ϵ

15 g11 w2
+ O[ϵ]2
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Normal
16 c2 g u02 (Δb - Δd) ϵ

15 g11 w2
+ O[ϵ]2

16 c2 g u02 (Δb - Δd) ϵ

15 g11 w2

% /. insertExponentialNEW

16 c2 g u02 ⅇⅈ t ω δb - ⅇⅈ t ω δd ϵ

15 g11 w2

We end up with, 

ⅈ ⅇⅈ t ω δϕ1 ω ϵ =
16 c2 g u02 ⅇⅈ t ω δb - ⅇⅈ t ω δd ϵ

15 g11 w2

Eq Four-IV

θ1′[t] =
2 F2 g u02

g22 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) - 3 w Sinh

2 (b[t] - d[t])

w


LHS,

θ1′[t] →
d

dt
(θ1fp + ϵ δθ1 Exp[I ω t]) →

d

dt
( ϵ δθ1 Exp[I ω t]) → ⅈ ⅇⅈ t ω δθ1 ω ϵ

RHS,

2 F2 g u02

g22 w2
Csch

b[t] - d[t]

w

4

2 2 + Cosh
2 (b[t] - d[t])

w
 (b[t] - d[t]) -

3 w Sinh
2 (b[t] - d[t])

w
 /. expandfpNEW

1

g22 w2
2 F2 g u02 Csch

bfp - dfp + Δb ϵ - Δd ϵ

w

4

2 (bfp - dfp + Δb ϵ - Δd ϵ) 2 + Cosh
2 (bfp - dfp + Δb ϵ - Δd ϵ)

w
 -

3 w Sinh
2 (bfp - dfp + Δb ϵ - Δd ϵ)

w


% /. fp

1

g22 w2
2 F2 g u02 Csch

Δb ϵ - Δd ϵ

w

4

2 (Δb ϵ - Δd ϵ) 2 + Cosh
2 (Δb ϵ - Δd ϵ)

w
 - 3 w Sinh

2 (Δb ϵ - Δd ϵ)

w

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Series[%, {ϵ, 0, 1}]

16 F2 g u02 (Δb - Δd) ϵ

15 g22 w2
+ O[ϵ]2

Normal
16 F2 g u02 (Δb - Δd) ϵ

15 g22 w2
+ O[ϵ]2

16 F2 g u02 (Δb - Δd) ϵ

15 g22 w2

% /. insertExponentialNEW

16 F2 g u02 ⅇⅈ t ω δb - ⅇⅈ t ω δd ϵ

15 g22 w2

We end up with, 

ⅈ ⅇⅈ t ω δθ1 ω ϵ =
16 F2 g u02 ⅇⅈ t ω δb - ⅇⅈ t ω δd ϵ

15 g22 w2

Collect these equations:

ⅇⅈ t ω ϵ (δϕ1 + ⅈ δb ω) = 0

ⅇⅈ t ω ϵ (δθ1 + ⅈ δd ω) = 0

ⅇⅈ t ω ϵ -
16 c2 g u02

15 g11 w2
δb +

16 c2 g u02

15 g11 w2
δd + ⅈ δϕ1 ω = 0

ⅇⅈ t ω ϵ -
16 F2 g u02

15 g22 w2
δb +

16 F2 g u02

15 g22 w2
δd + ⅈ δθ1 ω = 0

Matrix,

ⅇⅈ t ω ϵ

ⅈ ω 0 1 0
0 ⅈ ω 0 1

-
16 c2 g u02

15 g11 w2
16 c2 g u02

15 g11 w2
ⅈ ω 0

-
16 F2 g u02

15 g22 w2
16 F2 g u02

15 g22 w2
0 ⅈ ω

δb
δd
δϕ1
δθ1

=

0
0
0
0

Det

ⅈ ω 0 1 0
0 ⅈ ω 0 1

-
16 c2 g u02

15 g11 w2
16 c2 g u02

15 g11 w2
ⅈ ω 0

-
16 F2 g u02

15 g22 w2
16 F2 g u02

15 g22 w2
0 ⅈ ω



240 F2 g g11 u02 w2 ω2 - 240 c2 g g22 u02 w2 ω2 + 225 g11 g22 w4 ω4  225 g11 g22 w4
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Simplify240 F2 g g11 u02 w2 ω2 - 240 c2 g g22 u02 w2 ω2 + 225 g11 g22 w4 ω4  225 g11 g22 w4

1

15
ω2 -

16 c2 g u02

g11 w2
+
16 F2 g u02

g22 w2
+ 15 ω2

Solve[% ⩵ 0, ω]

{ω → 0}, {ω → 0}, ω → -
4 -F2 g g11 u02 + c2 g g22 u02

15 g11 g22 w
,

ω →
4 -F2 g g11 u02 + c2 g g22 u02

15 g11 g22 w


FullSimplify[%]

{ω → 0}, {ω → 0}, ω → -
4 g -F2 g11 + c2 g22 u02

15 g11 g22 w
, ω →

4 g -F2 g11 + c2 g22 u02

15 g11 g22 w

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