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ABSTRACT

This thesis presents an analytical description of the effect of a symmetry breaking

impulse on a vortex, or singularity, trapped in an axisymmetric harmonic potential.

The analysis is performed for a weakly interacting Bose-Einstein condensate. For the

purposes of analytical approximation, we initially assume the interaction time to be

much larger than that of the initial dynamics; later this approximation is examined by

complete numerical solution of the governing equations. We reserve the term vortex

for the interacting case, and use the more generic term singularity for both interacting

and non-interacting cases, when the interacting or non-interacting condensate density

drops to zero and the phase winds by a non-zero integer multiple of 2π around the

density zero. We find that our analytical approach based on the singularities in the

non-interacting case predicts most of the dynamics of vortices in the interacting case,

including the initial breakup of a vortex into singly charged daughter vortices, and

their trajectories in the trapping potential up until they approach each other and

collide after spiraling back in due to the action of the harmonic trap. Thus we show

that the kinetics drive most of the interactions, not interactions. First, we construct

the singularity state for the quantum harmonic oscillator and propagate it through

the discretely symmetric impulse using the time-evolution operator for a given Hamil-

tonian the impulse approximation allows us to factorize the time evolution operator

and obtain analytical results. After the impulse, the resulting wave function can be

treated using the Feynman propagator for a harmonic oscillator potential. Once the

necessary integration has been carried out, it is discovered that the symmetry of the

initial singularity is broken into that of the impulse. In this analysis, we take the im-

pulse to have four-fold symmetry. The actual form of the impulse does not change the

dynamics of the post-symmetry breaking singularities, only the order of symmetry.

Using an incident singularity of winding number ` = 3 as our case study, the result-
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ing singularity structure after symmetry breaking consists of five singularities, one

at the origin, with winding number now ` = −1, and four singularities propagating

periodically about the origin of winding number ` = 1. The initial winding number

of the parent singularity is therefore conserved. The four daughter singularities prop-

agating about the axis do so in an oscillatory manner, where the recombination time

of the singularities is half the trapping potential period. The maximum radius the

trajectories achieve is dependent on the impulse strength and the trapping frequency.

We develop equations of motion and a force-torque model to describe the dynamics

of daughter singularities. We find that the singularities are imprinted by the impulse

with two distinct non-trivial sources of motion. We develop a simple dynamical model

treating the singularities as point particles. We discover that there are two effective

forces the singularities experience during symmetry breaking; a repulsive harmonic

force that causes the trajectories to propagate outward, and a Magnus force that in-

troduces a torque about the axis of symmetry. The singularities initially travel away

from each other due to the presence of a singular repulsive potential at time t = 0

immediately after symmetry breaking. A torque is also imprinted, causing them to

rotate around the axis of symmetry. Although the singularities initially repel from

the origin, the harmonicity of the trapping potential causes them to fold back on

themselves after one-half the trapping period, creating a four-fold petal-like struc-

ture. When compared to numerical integration of the Gross-Pitaevskii equation, we

found that for small enough impulse strength and duration, the impulse serves solely

to break the symmetry of the system. By increasing the duration of the impulse while

decreasing its strength, we obtain the same results to within 10%. This demonstrates

that for weak enough symmetry-breaking potentials, the impulse approximation is

unnecessary. All results can also be applied to singular optics for an optical vortex in

a parabolic gradient index fiber due to the mapping from the Schrödinger equation

to the Helmholtz equation.
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CHAPTER 1

INTRODUCTION

Vortices are ubiquitous to many diverse branches of science, including fluid dynam-

ics [1], meteorology [2], cosmology [3, 4], liquid crystals [5], superconductivity [6–8],

solid state physics [9], and nonlinear singular optics [10, 11]. Whenever a hydrody-

namic description is appropriate, one has the possibility of vortices [1]. In particular,

vortices have been realized experimentally in Bose-Einstein condensates (BEC), ob-

tained when bosons are cooled down to sub-microKelvin temperatures [12–22]. These

vortices are expected to offer interesting applications in interferometry [23], and as a

means to study the behavior of random polynomial roots [24]. Vortices are character-

ized by the presence of a singularity in the value of its phase to which an integer num-

ber can be associated, called vorticity, topological charge, or winding number [25, 26].

This singularity behaves as a particle-like object whose motion can be studied with

respect to the background condensate. The determination of this motion and its

control is applicable in the study of many of the fields described above. We use the

term singularity for the generic case of both interacting and non-interacting BECs.

Since only an interacting BEC is described by hydrodynamics, we only use the term

vortex in the interacting case. In this thesis we determine the dynamics of a vortex

in a Bose-Einstein condensate when it is struck by a symmetry breaking impulse.

A two-dimensional vortex with winding number greater than 1 is generated in an

axisymmetric harmonic potential, and immediately a symmetry breaking potential is

turned on transversely, i.e., in the plane containing the vortex, for a very short period

of time, such that it can be described by an impulse with a constant area of ∆V∆(t).

This potential shows some rotational discrete point symmetry of order N , that is,

it reproduces itself under multiple integer rotations of 2π/N [27]. The topological

charge of the vortex, taken to be l = 3 in this work as a case study, will experience
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a transformation, as discussed in [28–30]. The parent singularity will disintegrate

into a number of single-charged daughter singularities of different sign, analogous to

the disintegration of a radioactive nucleus. The number and sign of these daughter

singularities are related to the peculiarities of the symmetry breaking impulse [31].

Figure 1.1 shows a representation of this discretely symmetric impulse acting on the

parent singularity.

Figure 1.1: A parent singularity of winding number ` = 3 is imprinted by a C4

discretely symmetric impulse. This symmetry breaking process will result in five
daughter singularities, one at the origin of winding number m = −1, and four off-axis
of winding number m = 1. The red singularities have positive winding number, and
rotate clockwise. The central blue singularity has a negative winding number and
rotates counterclockwise.

Here we determine the path followed in a harmonic potential by the ejected daugh-

ter singularities after the impulse. We obtain these trajectories analytically for the

non-interacting case by utilizing the Feynman propagator for a harmonic potential,

and determine their validity in the weakly interacting case. In the non-interacting
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case we find that the parent singularity reconstructs itself from the daughter sin-

gularities after a period of time. The repulsion between interacting singularities in

the weakly interacting system prevents the parent singularity to be reconstructed,

hence describing a helical trajectory around the origin. We discover that there are

two effective forces the singularities experience during symmetry breaking; a repul-

sive harmonic force that causes the trajectories to propagate outward, and a Magnus

force that introduces a torque about the axis of symmetry [32]. It is possible for

the ideal Bose-Einstein condensate to condense into more than one single-particle

mode [33], i.e., be fragmented, so we are actually treating the interacting BEC, but

for times much less than the interaction time, described in 2.5.2. Our results pave

the way to the control and manipulation of the motion of singularities by means of

symmetry breaking impulses. The results are equally applicable to the neighboring

field of nonlinear singular optics [11] by exchanging time evolution with axial-spatial

evolution and the symmetry breaking impulse with an inhomogeneous thin diffracting

element. The study of dynamics of singularities and their interaction is an exciting

field with many potential applications. The dynamics of vortex dipoles; their inter-

action, oscillation, tunneling, and their collapse; has been theoretically studied in

the framework of BEC [34–40]. Other structures of singularities and the interactions

among them lead to elaborated trajectories [41, 42], as discussed numerically in [43].

The geometry of vortex trajectories, like loops or hyperbolas, is related to vortex

creation and annihilation and vortex interactions, and its study leads to a variety of

vortex structures [25, 44–47]. Moreover, the interpretation of the role of a singularity

in quantum dynamics is an interesting issue, as well as the effect of the dynamics of

the singularities in the quantum system [48, 49]. Also, vortices in BEC and nonlinear

optics can show more than one off-axis singularity, called clusters of vortices [26, 50–

56]. These structures are typically unstable, showing very slow dynamical decay

rates, though some controversy has been built up around this issue [57–59]. Here,
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we obtain a breathing cluster of vortices, and we obtain numerical stability of this

structure along the times of the evolution. The outline of this thesis is as follows. In

chapter 2, we present the various concepts and uses of vortices in Bose-Einstein con-

densation as well as sketching the analogy in nonlinear optics. For those unfamiliar

with either field, we briefly explain what an optical vortex is, and how to create a

Bose-Einstein condensate. We also present the uses of vortices in several fields, and

how their manipulation can be advantageous. We finish the chapter by describing the

previous work and the problem to be solved in this thesis. Chapter 3 reviews some

basic mathematical techniques for the linear Schrödinger equation, starting with the

derivation of the harmonic-oscillator propagator. The propagator allows us to take

our initial singularity and propagate it to a future time and place. We will use the

propagator to arrive at our final state as a function of time, allowing us to see the dis-

tinct singularities that arise after symmetry breaking. We also introduce the unitary

time-evolution operator that will be used to propagate our singularity through the

impulse. In chapter 4, we introduce the discretely symmetric impulse that breaks the

symmetry of our initial singularity by constructing a potential profile valid for any

spatially variant discretely symmetric potential. We then use this profile to construct

the unitary time-evolution operator necessary to propagate the initial parent singu-

larity through the impulse. Using group theory [60], we can utilize various symmetry

arguments to simplify the mathematics of the unitary time-evolution operator. In

chapter 5, we introduce the initial test case singularity, with winding number ` = 3,

that will be tested in this thesis. Due to the dependence on l that will arise in the

propagation integral, we need to choose a distinct value for ` in order to carry out our

calculations analytically. We choose ` = 3 as our test case to observe the difference

between the constant potential done previously [61] and the harmonic potential done

here [32]. We then carry out the harmonic oscillator propagation integral introduced

in chapter 3 and calculate the trajectories of the post-symmetry breaking singulari-
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ties. We plot the amplitude of the wave function after symmetry breaking in order

to get a preliminary view of the post-symmetry breaking singularity motion. The

final wave function can be grouped into three different terms, explicitly unveiling the

angular momentum structure of the system. This angular momentum structure is

used to calculate the trajectories of an off axis singularity, which can then be rotated

by nπ/2 radians, where n is an integer, to describe the other three singularities due to

the four-fold symmetry of the imprinting impulse. Chapter 6 utilizes the trajectories

of the previous chapter to arrive at analytic descriptions of the equations of motion.

These equations of motion are analyzed to understand the fundamental motion that

the singularities undergo once symmetry is broken. We discover that there are two

effective forces the singularities experience during symmetry breaking, a repulsive

harmonic force that causes the trajectories to propagate outward, and a force that

introduces a torque about the axis of symmetry. We analyze the two effective forces

in detail. These forces are similar to those found in the constant-potential study in

the optical regime [61], as we would expect. However, the singularities continue to

oscillate about the origin in a flower shape due to the harmonicity of the trapping

potential. Chapter 7 includes a comparison of the analytic trajectories calculated in

this thesis with a numerical analysis performed by my collaborator Dr. M. A. Garcia

March [32]. The numerical analysis was done using the Gross-Pitaevskii equation,

with the nonlinearity set to zero to recover the traditional Schrödinger equation, or

nonlinear Schrödinger equation, including evaluation of the impulse approximation

in the limiting non-interacting case. We also compare the trajectories with the local

minima of the wave function to see how well they match. For the nonlinear system,

we compare the analytic trajectories with numerical data for both attractive and re-

pulsive interparticle interactions and quantitatively analyze the accuracy of the linear

approximation.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce several concepts needed to lay the foundation for

this thesis, beginning with the description of Bose-Einstein condensation (BEC). We

also discuss several uses for vortices in BEC, as well as their optical analog. Finally,

the previous work is discussed, followed by an introduction to the current theoretical

system.

2.1 Bose-Einstein Condensates

Bose-Einstein condensation occurs when a group of bosons is cooled to extremely

low temperatures on the order of microKelvin or smaller. At these temperatures,

the classical picture of a thermal distribution of particles across all different energy

states no longer applies. The bosons begin dropping into the ground state one by

one, until eventually all of the particles are in a single macroscopically occupied mode.

When particles are in the ground state, they have the lowest energy available, so they

also have low momentum. Thus, when the particles condense, their momentum is

bound near zero. By Heisenberg’s uncertainty principle [62], we cannot know the

momentum and the position simultaneously. Thus, if the momentum is bound to

a range near zero, the particle’s position becomes ill defined. This causes the indi-

vidual particle wave function to spread out, making it equally likely to find them

anywhere in the sample. If the particles are close to each other their wave functions

blur into their neighbors, until eventually all the individual wave functions coalesce

into a single function for the entire system, and the individual particles become indis-

tinguishable [63]. In an ideal BEC, the particles do not interact with each other, so

the total wave function behaves exactly like the single particle [64]. This phenomena

allows us to see quantum effects on a mesoscopic or macroscopic scale rather than
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working with a single atom. Fermions are identical and indistinguishable from each

other, so due to the anti-symmetry of their wave functions, we cannot have two of the

same fermions in the same state. Thus, fermions fill more energy levels when more

particles are added to the system. This is known as the Pauli-Exclusion principle,

seen in Figure 2.1, and is the reason that BECs cannot be made with fermions [65].

However, bosonic wave functions are symmetric and distinguishable, so we can put as

many of them in single state as we want, thus allowing us to create a BEC in which

more than one particle may occupy the ground state. In an ideal BEC, all of the

bosons are in the ground state.

Figure 2.1: Filling of states for bosons and fermions: Identical bosons can occupy
the same state due to the symmetry of their wave functions. For a BEC, all of the
particles are in the ground state. Fermions can only have one particle per state due
to the anti-symmetry of their wave functions, and thus fill more energy levels. Figure
does not represent spin-degeneracy.

2.1.1 Creating Bose-Einstein Condensates in the Laboratory

In 1995, BECs were made in the laboratory for the first time by the group led by

Eric A. Cornell and Carl E. Wieman from JILA in Boulder, Colorado using Rubidium-

87 molecules [63]. Another group led by Randall Hulet at Rice University created

a BEC using lithium atoms [66]. An independent research group led by Wolfgang

Ketterle of Massachusetts Institute of Technology created a BEC using Sodium-23
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atoms about four months after Cornell and Wieman [67]. Cornell, Wieman, and

Ketterle won the 2001 Nobel prize for their experiments. To create a BEC, the atoms

need to be trapped in a vacuum on the order of 10−11 Torr [68], and then cooled

using laser trapping and cooling. When photons from the trapping laser beams hit

the atom, they transfer momentum. To get the atoms to slow down and lower their

energy, we want them to interact mainly with the photons traveling in the opposite

direction. Much like a car crash, the head-on scattering of a photon off of the atom

will slow the atom down, lowering its momentum in the direction it was traveling.

The frequencies of the trapping lasers are adjusted to take advantage of the Doppler

effect [69]. If the atom is traveling in the same direction as the photons, the laser

frequency appears to be lower, and the photons will not have a high enough energy to

be absorbed and reemitted by the atom. If the atom is moving against the photons,

the laser frequency will be effectively higher, allowing the photons to have a high

enough energy to be absorbed and reemitted by the atom, and pushing the atom

back to the center of the trap [70]. This is known as velocity dependent scattering

and is illustrated in Figure 2.2.

To confine atoms to the middle of the laser trap, we need them to interact with

photons coming from the six spatial directions. This is done using an array of lasers

adjusted to the absorption frequency of the particles being held. There are two

lasers along each Cartesian axis to ensure photons are coming from each of the six

spatial directions. This method cools the atoms by damping atomic motion, and

therefore lowering the energy. However, the atoms can still float out of the trap

when hit by random photons that scatter from other atoms, so we need another

trapping mechanism. At this point, magnetic fields are turned on. Atoms have a

magnetic dipole moment, so they interact with magnetic fields. The spatially varying

magnetic field can be tweaked to confine the atoms closer, creating what is known as

a magneto-optical trap [70], shown in Figure 2.3. We create a harmonic trap by using
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Figure 2.2: Velocity dependent scattering: If the atom is moving toward the laser
beam, it scatters more photons, pushing it back to the center of the trap. If the atom
is moving away from the laser beam, and therefore toward the center of the trap, it
scatters less photons.

a time-orbiting magnetic field, which creates the pancake shape of a two-dimensional

harmonic trap. By using a specific magnetic field profile, atoms that try to escape

are subject to the Zeeman effect, and get their resonance frequency shifted closer to

the frequency of the lasers by the magnetic field, making the atom more likely to get

a photon kick back to the center of the trap [71].

Some atoms are still moving too fast to effectively reduce the temperature of the

system, so we then reduce the confining field to let the most energetic atoms escape.

This is known as evaporative cooling. When two atoms collide, they transfer momen-

tum. The atoms with more momentum are moving faster, and are therefore warmer

than their counterparts. If we let this high-energy atom escape, the remaining atoms

are the slow moving atoms, so the entire system is effectively cooled. As explained

previously, cold atoms have low momentum, making their position ill defined. By
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Figure 2.3: A magneto-optical trap: A pair of laser beams (green arrows) along each
Cartesian axis is sufficient to trap the atoms. Two Helmholtz coils (blue circles)
create a magnetic field to further confine the particles to the center of the trap.

having a collection of sufficiently cold atoms in our trap, the individual wave func-

tions blur together, making the total wave function act like the wave function of a

single particle. This is where one achieves Bose-Einstein condensation, opening the

door to many quantum experiments on a macroscopic scale.

2.1.2 Vortices in Bose-Einstein Condensate

Similarly to fluid dynamics, where one can create a vortex by rotating the fluid

in question, it is possible to create vortices in BEC. The velocity of the vortex flows

around the center according to

v ≡ h̄

M
∇θ, (2.1)

where θ is the phase of the vortex. The change in phase around a closed contour

must be an integer multiple of 2π to conserve the boundary conditions of the vortex,

so we can also state that

∆θ =

∮
C

∇θ · dl = 2π` (2.2)
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Quantum vortices are different from their classical counterparts in that the circulation

around a closed contour is quantized in units of h/m, such that

Γ ≡
∮
C

v · dl =
h̄

M
2π` =

h

M
`, (2.3)

where C is a closed circular path about the axis of cylindrical symmetry of the vortex

and ` is the angular momentum quantum number of the vortex [72]. The integer

value of ` is referred to as the winding number or topological charge of the vortex.

Vortices in BECs [16] are analogous to vortices in a fluid, however, the velocity flow

around the core is quantized in a quantum vortex, rather than allowing any value for

the circulation [73].

2.1.3 Controlling Vortices in Bose-Einstein Condensates

The study of vortices in BECs is relatively new, so few practical applications have

been realized. One of the main applications is in the field of atom optics. Atom

optics is the study of the wavelike properties of a beam of particles. Much like a

laser beam, coherent atom beams exhibit diffraction, interference, and various other

optical phenomena. The uses of quantum and atom optics are showing improvements

in communication, sensing, navigation, and quantum computing. Bose-Einstein con-

densates have already been generated directly on chips, so it is only a matter of time

before we are creating integrated atom circuits for faster data transfer [74]. Vortices

in BECs can be used for quantum computing [75]. Because of the stability of vortices

in BEC, they are likely to be used in the future as qubits in quantum information

processors [75]. However, means to control the vortices are still lacking. This thesis

provides another avenue of vortex control. By having an analytical description of

vortex trajectories after symmetry breaking, it is possible to generate several smaller

vortices from one vortex by the action of an impulse, and know exactly where the
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smaller vortices are going to go, as we develop in Sec. 5.3. By varying the symmetry

of the impulse and the initial winding number of the vortex, we can create different

patterns with the vortices, allowing us to send the vortices to definite locations.

2.1.4 Vortices in Superconductors

Superconductors are made of materials cooled below some critical temperature

such that all electric resistance vanishes. This allows current to travel through the

superconductors with no dissipation. Due to the Meissner effect [76], superconductors

are unable to be manipulated by external magnetic fields. Type II superconductors

get around this effect by using mixed states, including normal filaments surrounded

by superconducting regions. This is called a vortex state. These vortices have super-

conducting currents surrounding the vortex core, allowing external magnetic fields to

penetrate the material without destroying superconductivity [77].

The ability to control the behavior of these vortices with external magnetic fields

and still be in a superconducting state suggest the possibility of creating a new gener-

ation of superconducting devices. Also, controlled vortices in superconductors can be

applied in the construction of quiet circuits for sensing and communication, as well

as large currents in high-field magnets [78].

2.2 Symmetry Breaking

When a system encounters a fluctuation that drives it past a critical point, the

state of the system can suddenly change into a completely different structure. This

process is known as spontaneous symmetry breaking. An important concept of sym-

metry breaking is that when a system of symmetry M undergoes an action of sym-

metry N , the system changes its symmetry from M to N . In this thesis, we break

the symmetry of a singularity in an O(2) fully symmetric medium using an impulse

with symmetry C4. Thus our post-action singularities are also C4 symmetric. An
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O(2) symmetry means full rotational in two dimensions, i.e., if it is rotated in the

plane of symmetry, it looks the same at all angles of rotation. An example of O(2)

symmetry is a circle. CN symmetry is a discrete symmetry, meaning if the object is

rotated 2π/N degrees, one recovers the initial view of the object. An example of C4

symmetry would be a square, C3 an equilateral triangle, etc.

2.3 Optical Vortices

The results of this thesis can easily be translated to the field of singular optics,

where vortices in BEC are replaced with optical vortices. Optical vortices are circu-

larly polarized beams of light with helical wave fronts, with a singularity in the center

of the helix [79]. Because the phase is singular, and therefore undefined at this point,

the amplitude of the beam vanishes at the center of the helix. By having a vanishing

amplitude, optical vortices can be physical because the singular phase is canceled by

zero amplitude. The amplitude of a beam with a vortex, in its simplest form, appears

as a donut of intensity, with an empty center, as illustrated in Figure 2.4. Optical

vortices are also known as screw dislocations and phase singularities.

When we calculate the trajectories of several singularities later in Sec. 5.2, we are

actually tracking the center of the vortex where the singularity occurs. If we were to

look at the amplitude, we would see small rings of intensity propagating either down

a fiber (in the optical regime, as described here), or around a two-dimensional Bose-

Einstein condensate (as we will study in this thesis). The number of phase windings

in a single wavelength is known as the topological charge, or winding number [80].

Figure 2.5 shows the helical wave fronts of an optical vortex with winding number

` = 3, like the one we will be using later in this thesis. A single wavelength is plotted,

and there are three full rotations in the wave front. The sign of the topological charge

determines which direction the beam rotates. Since the light wave is rotating, it can

carry orbital angular momentum [81].
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Figure 2.4: The amplitude of a vortex field is shaped similar to a donut to allow
vortices to be physical. The amplitude must vanish at the center to allow a singular
phase, hence the term singularity or vortex. The apparent height shown by false
coloring represents the magnitude of the amplitude.

Optical vortices have numerous practical applications, including photonic crystals,

laser trapping, material manipulation, and telecommunications [82].

2.3.1 Laser Trapping

Numerous breakthroughs have been made in biomedical research due to the ability

to trap and study living cells, chromosomes, spermatozoa, and motor proteins [83,

84]. These traps are called optical tweezers, and are one of the most useful optical

manipulation techniques. Optical tweezers can trap objects as small as 5 nanometers,

so they are used heavily for the study of biological systems [85]. The ability of

optical tweezers to precisely manipulate and transfer particles has led to their use in

medical clinics for procedures such as in vitro fertilization [86]. Optical tweezers may

be used in the future to modify chromosomes of living cells [87]. However, typical

optical trapping using focused Gaussian beams has encountered problems. Due to

the high intensity at the center of the trap, the trapped particles are susceptible
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Figure 2.5: Visualization of the helical wave fronts of an optical vortex plotted in 3-D
with winding number ` = 3. A single wavelength is plotted, showing three distinct
rotations in the wave front.

to damage by absorptive heating [83]. Typical particles that cannot be trapped by

conventional optical tweezers are reflecting, absorbing, and low-dielectric constant

materials [88, 89]. These materials are either easily damaged or repelled by the

focus of typical tweezers. Optical vortices, with their donut shaped intensity profiles,

remedy this problem. Large diameter dielectric particles are trapped in the center

region of optical vortices rather than the high amplitude center used with typical

optical tweezers to prevent damage. The smaller dielectric particles are trapped in

the high points of the vortex amplitude [84], but are still undamaged due to the lower

intensity. By creating patterns with the vortices, as one can do with the work in this

thesis, particles can be confined to a distinct path of the user’s choosing [90].

2.3.2 Material Manipulation and Telecommunications

Optical vortices are becoming more popular in trapping devices not only because

they cause minimal heating damage, but also for the ability to rotate the trapped
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particles [91] by taking advantage of the beam’s inherent angular momentum [92, 93].

Photons in optical vortices carry orbital angular momentum of lh̄ per photon, where

the quantum angular momentum number ` is represented by the winding number

of the beam [94]. The realization that photons carry well-defined orbital angular

momentum associated to the helical wave fronts only furthers the connections be-

tween paraxial optics and quantum mechanics. This angular momentum also allows

optical vortices to be used in quantum computing [95–97]. Because the states can

be entangled [98], essentially creating an infinite-dimensional discrete Hilbert space,

optical vortices can carry more than the typical 0 and 1 values of electronic com-

puters [99, 100]. These entangled states have a tendency to annihilate when left

to interact with the environment, so it is important to be able to control the vor-

tices’ interactions [101]. The work in this thesis provides further means of controlling

vortices.

2.3.3 Photonic Crystals

Photonic crystals are periodic dielectric structures that manipulate photons much

like semiconductors manipulate electrons. These photonic crystals have a band gap

that filters light in a certain frequency range. The introduction of defects in a photonic

crystal creates energy levels, allowing precise control of where and how light flows

through the crystal [102]. However, conventional methods for creating defects are

difficult to control. Defects are usually created via temperature quenching, mechanical

stress, or phase transitions, but these naturally occurring defects tend to annihilate

one another to reduce the elastic free energy in the system [82]. Optical vortices

allow us to introduce defects to a crystal exactly where we want them to be. Because

the vortices are user controlled, they do not annihilate one another. By manipulating

crystals using optical vortices, we essentially create reconfigurable diffraction gratings.

Photonic crystals have a plethora of uses, from redirecting cell phone radiation away
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from the user’s head, to reducing signal loss in hollow optical fibers [102].

2.3.4 Gradient Index Optics

The refractive index is a measure of what the speed of light will be in a given

medium. Indices of refraction are usually thought to be homogeneous in a typical

optical system. The way an optical system interacts with light depends on the value

of the refractive index, the thickness of the material, and the curvature of the ma-

terial’s faces. However, it is possible to manufacture a material such that the index

of refraction varies within the material itself [103]. Since light always takes the path

of least time [104], the variation of the refractive index in a given material controls

the path of the light beam. These specifically manufactured materials are called Gra-

dient Index components, or GRIN mediums. A beam of light propagating through

an inverted quadratic GRIN fiber converges at a focal point further down the axis of

propagation. The beam then diverges past the focal point, only to be refocused by

the GRIN medium again. This process is repeated over and over, revealing a periodic

propagation pattern [81], as depicted below.

Figure 2.6: Due to the varying index of refraction in an inverted quadratic GRIN
medium, light diverges and reconverges in an oscillatory manner. This periodic struc-
ture makes GRIN mediums analogous to the quantum harmonic oscillator.

By using GRIN materials in optical systems, we can set up experiments that are

closely analogous to quantum experiments. For example, in this thesis we will be

using a harmonic potential to trap a Bose-Einstein condensate. The optical analog

of a harmonic trap is a quadratically varying GRIN fiber. Where we would normally

use the Schrödinger equation in quantum mechanics, we use the Helmholtz equation
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for optics [105] to mathematically describe our system. The square of the refractive

index profile plays the same role as the potential profile in the Schrödinger equation.

Due to the close analogy between theories, the results of this thesis can be directly

applied to optics just by changing a few fundamental constants.

2.4 Previous Work

When an optical vortex encounters an infinitesimally thin discretely symmetric

diffraction grating, the symmetry of the initial vortex is broken into the symmetry

of the grating. For a vortex in a constant potential (homogeneous medium), it has

been shown that the initial vortex is broken into N off-axis singularities and a single

singularity at the origin [61]. After returning to the homogeneous fiber, one would

expect the singularities to show trivial motion due to the lack of external forces.

However, this was not the case. The off-axis singularities were seen to travel away from

the origin and rotate about the axis of symmetry before settling into far-field straight

asymptotic trajectories. By calculating the equations of motion for the singularities, it

was observed that the singularities experienced effective external forces, even though

none were present. The diffraction grating imprinted the peculiar motion onto the

singularities when the symmetry was broken. A full study for the constant potential

case can be found in [61]. The same phenomena is expected to be seen for a vortex

in a harmonic potential or GRIN medium. This thesis explores the effect of an

instantaneous discretely symmetric impulse on a singularity in an ideal BEC trapped

by a harmonic potential. Due to the mathematical similarities between optics and

BEC, the work in this thesis and in [61] can be applied to both fields of study.

2.5 Current Work

To set the stage for the current work, we must first introduce the Gross-Pitaevskii

equation as it applies for weakly interacting Bose-Einstein condensates.
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2.5.1 Gross-Pitaevskii Equation

In a dilute BEC, the separation between particles is much larger than the length

scales associated with particle-particle interactions. Due to this separation of scales,

the two-body interactions are much more prevalent than three-or-more-body interac-

tions. Low-energy particles cannot overcome the centrifugal barrier for partial waves

of p symmetry and above. Thus, if we analyze the two-body interaction using scatter-

ing theory for low-energy particles, we see that it is sufficient to consider only s-wave

scattering, which is spherically symmetrical. This simplification for low-energy par-

ticles allows us to describe the system entirely in terms of the scattering length, a.

By considering only s-wave scattering and using the Born approximation, we find

that the effective two-particle interaction can be described entirely by the scattering

length for the potential:

Veff(r, r′) =
4πah̄2

m
δ(r− r′) = g3Dδ(r− r′), (2.4)

where g3D is known as the coupling constant, or nonlinearity of the system. If we

include the previous potential in the Hamiltonian for a system of particles,

H =
N∑
i=1

(
p2
i

2m
+ V (ri)

)
+ g3D

∑
i<j

δ(ri − rj). (2.5)

By averaging over the many-body quantum interactions using the mean-field approx-

imation, we arrive at the Gross-Pitaevskii equation [106]:

ih̄
∂

∂t
ψ(r, t) =

(
− h̄2

2m
∇2 + Vext(r) + g3D|ψ(r, t)|2

)
ψ(r, t). (2.6)
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2.5.2 Two-Dimensional Bose-Einstein Condensate and Symmetry Break-

ing Potential

Let us now consider a Bose-Einstein condensate with the axial frequency set much

higher than the transverse trapping frequencies, making our BEC effectively two-

dimensional. When working in two-dimensions, we must renormalize the nonlinearity

according to [107], thus allowing us to express the nonlinearity as g2D = a
√

8πh̄3ωz/M

or g for simplicity, as will be used for the rest of this thesis. We also make the

assumption that the time scale for interactions is much larger than the time scale of

the symmetry breaking process. This assumption allows us to study the system as

though it were indeed non-interacting.

We must first note that each term in (2.6) has a time scale associated with it.

The transverse potential has a time tpot ∼ 2π/ω. The symmetry breaking potential

has a time ∆t. The nonlinearity has a time tnonlin. The kinetic energy or dispersion

h̄2/2mL2 has a time

tlin = h̄/Ekin, (2.7)

where Ekin ' h̄2/2mL2. L is the harmonic oscillator length, defined by L ≡
√
h̄/mω.

So, tlin ' 2/ω, showing that tlin and tpot are on the same order.

The interaction time can be found by units considerations. To show this, we begin

by stating the units of several variables, where E is the unit of energy and L is the

unit of length, and the square brackets indicate units:

[g2D] = [E][L]2, (2.8)

[|ψ2D|2] =
1

[L]2
,

[h̄] = [E][t].
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We can then show that

[t] =
[h̄]

[E]
=

[h̄][L]2

[g2D]
, (2.9)

tnonlin =
h̄

n̄2Dg2D

, (2.10)

where n̄2D = 1/L2
∫ L/2
−L/2 dxdy|ψ2D|2 is the mean particle density in two-dimensions.

Now let us consider a stationary singularity state in the BEC, with an integer

winding number that is greater than 1. Because the singularity wave function must

be the same at θ = 0 and at θ = 2π, the winding number is always an integer, as

explained in Sec. 2.1.2. We are interested in the effect of a discretely symmetric

impulse on the parent singularity. We describe this impulse by the potential profile,

V (x, t) =


V0(x) 0 ≤ t<t0,

V0(x) + ∆V (x) t0 ≤ t<t1 = t0 + ∆t,

V1(x) t1 ≤ t.

(2.11)

where x is the two-dimensional position vector (x, y), We assume that the second

interval of time describing the impulse has a very small duration, so that ∆t/tnonlin �

1. Mathematically, the impulse is described by the Dirac delta function, where the

area of the impulse, ∆V∆t, is described by the limits lim∆V→∞∆V∆t = constant

and lim∆t→0 ∆V∆t = constant. The impulse potential, given by ∆V , is taken to

have C4 symmetry so we can observe the effects of a symmetry breaking impulse

on a singularity. We can utilize this limit to erase all time dependence from the

symmetry breaking potential, taking ∆V∆t to be constant. If this limit fails, the

time dependence inherent in an ever-widening delta function will significantly alter

the physics of the singularity trajectories. We explore this limit with numerical data

in chapter 7. The first and last regions are described by the fully symmetric trapping

harmonic potential, so V0 and V1 are identical, and will henceforth be referred to as
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simply V . The impulse ∆V will be described in more detail later. If this impulse has

discrete symmetry, i.e., it is invariant under the action of the C4 rotation group, it will

break the symmetry of the fully symmetric singularity into C4. After this symmetry

breaking impulse occurs, the parent singularity is disassociated into a cluster of singly

charged singularities. Our goal is to find the trajectories of these singularities and

study their dynamics and validity when applied to a nonlinear BEC.
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CHAPTER 3

MATHEMATICAL DESCRIPTION OF A SINGULARITY IN A

NON-INTERACTING BOSE-EINSTEIN CONDENSATE WITH A HARMONIC

POTENTIAL

In this chapter, we present the necessary background mathematics for the calcu-

lations that take place in this thesis.

3.1 The Harmonic-Oscillator Propagator

A non-interacting BEC in a harmonic trap can be treated using the single particle

wave function. The single particle wave function is the solution to the Schrödinger

equation, which can be recovered from the Gross-Pitaevskii equation given in (2.6) by

taking the nonlinearity g to be negligible. We begin by treating the one-dimensional

case for heuristic purposes, and will generalize to more dimensions later.

ih̄
∂ψ(x, t)

∂t
= Hψ(x, t). (3.1)

Since we will be working in a harmonic trap, we use the harmonic oscillator Hamil-

tonian [108]

H = − h̄2

2m

∂2

∂x2
+

1

2
mω2x2. (3.2)

The solutions to the Schrödinger equation describe the time and spatial evolution of

a system. However, our goal is to study both the time and spatial evolution of our

singularity state. To do this, we use a propagator. The propagator allows us to take

some arbitrary initial wave function ψ(x0, t0), and evolve the initial state from one

point in space to another at some different time. We derive the harmonic-oscillator

propagator here. For clarity, we proceed in Dirac notation.
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3.1.1 General Propagation

We begin by assuming the initial wave function can be expanded into a super-

position of the eigenstates of the harmonic-oscillator Hamiltonian [109], such that

|ψ(t0)〉 =
∞∑
n=0

an|φn〉, (3.3)

where an are the eigenvalues and |φn〉 are the eigenkets of H. Currently, we do not

know what the eigenvalues are for our arbitrary wave function, so we are going to

solve for them in terms of the known eigenkets and the wave function. If we take the

scalar product of |ψ(t0)〉 with one of the eigenkets, |φm〉, we can solve directly for am,

〈φm|ψ(t0)〉 =
∞∑
n=0

an〈φm|φn〉. (3.4)

Since the eigenkets are orthogonal and normalized, 〈φm|φn〉 = 0 for all values of

n 6= m, and 1 for n = m. Thus, our sum turns into

〈φm|ψ(t0)〉 =
∞∑
n=0

an〈φm|φn〉

= am〈φm|φm〉

= am. (3.5)

So, rewriting (3.3) with our newly solved value of an yields

|ψ(t0)〉 =
∞∑
n=0

〈φn|ψ(t0)〉|φn〉. (3.6)

In order to evaluate the inner product of |φn〉 with |ψ(t0)〉, we insert a resolution

of the identity in terms of a complete set of position eigenkets to project the state
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vectors into position space, in the form [110]

|ψ(t0)〉 =
∞∑
n=0

∫ ∞
−∞

dx0 〈φn|x0〉〈x0|ψ(t0)〉|φn〉. (3.7)

The previous equation gives us a means to propagate ψ(t0) to a new position x, but

what about to a future time t? To propagate ψ(t0) forward in time, we need to

introduce time-dependent coefficients to the sum in (3.3). Thus, we get

|ψ(t)〉 =
∞∑
n=0

ancn(t)|φn〉

=
∞∑
n=0

cn(t)〈φn|ψ(t0)〉|φn〉

=
∞∑
n=0

∫ ∞
−∞

dx0 〈φn|x0〉〈x0|ψ(t0)〉|φn〉cn(t). (3.8)

For the harmonic oscillator, we take the set of |φn〉 to be harmonic oscillator eigen-

states, and use the time-dependent coefficients cn(t), which are given by

cn(t) = e−iω(n+1/2)(t−t0), (3.9)

where ω is the frequency of the harmonic oscillator. If we take the inner product of

x with (3.8) , we get our final expression for ψ(x, t):

〈x|ψ(t)〉 =
∞∑
n=0

∫ ∞
−∞

dx0 〈φn|x0〉〈x0|ψ(t0)〉〈x|φn〉e−iω(n+1/2)(t−t0), (3.10)

or, in functional form,

ψ(x, t) =
∞∑
n=0

∫ ∞
−∞

dx0 φ
∗
n(x0)ψ(x0, t0)φn(x)e−iω(n+1/2)(t−t0). (3.11)
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3.1.2 Hermite Polynomials and the Propagator

To further simplify (3.11), we need to insert the stationary states, φn(x). It is

easiest to introduce dimensionless variables at this time. Let us define

L ≡
√

h̄

mω
, (3.12)

x̃ ≡ x

L
and ỹ ≡ y

L
(3.13)

Using these dimensionless variables, we take the stationary states of the harmonic

oscillator given in terms of Hermite polynomials [110]:

φn(x̃) =
1√
n!2n

(
1

π

)1/4

Hn(x̃)e−x̃
2/2. (3.14)

If we plug these wave functions into (3.11), we get

ψ(x̃, t) =
∞∑
n=0

∫ ∞
−∞

dx̃0 ψ(x̃0, t0)e−iω(n+1/2)(t−t0) 1

2nn!
√
π
Hn(x̃)Hn(x̃0)e−(x̃20+x̃2)/2.

(3.15)

If we define

W (x̃, x̃0, t) =
∞∑
n=0

Hn(x̃)e−x̃
2/2Hn(x̃0)e−x̃

2
0/2

2nn!
√
π

T n, (3.16)

where

T ≡ e−iω(t−t0), (3.17)

we can simplify the expression for ψ(x̃, t) significantly. The integral form of the

Hermite polynomials is given by

Hn(x̃) =
2n(−i)nex̃2√

π

∫ ∞
−∞

du une2ix̃u−u2 . (3.18)
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If we substitute this expression into (3.16) and simplify, we find

W (x̃, x̃0, t) = e(x̃2+x̃20)/2π−3/2

∞∑
n=0

−T n2n

n!

∫ ∞
−∞

du

∫ ∞
−∞

dv unvne2ix̃u−u2e2ix̃0v−v2

= e(x̃2+x̃20)/2π−3/2

∫ ∞
−∞

du

∫ ∞
−∞

dv

∞∑
n=0

−T n2nunvn

n!
e2iyu−u2+2iy0v−v2

= e(x̃2+x̃20)/2π−3/2

∫ ∞
−∞

du

∫ ∞
−∞

dv e−2Tuve−u
2−v2+2ix̃u+2ix̃0v

= e(x̃2+x̃20)/2π−3/2

∫ ∞
−∞

dv e−v
2+2ix̃0v

∫ ∞
−∞

du e−u
2−2u(Tv−ix̃). (3.19)

The u integral can be carried out by noting that

∫ ∞
−∞

dx e−a
2x2−2bx =

√
π

a
eb

2/a2 , Re(a2)>0, (3.20)

which will give us

W (x̃, x̃0, t) = e(x̃2+x̃20)/2π−3/2

∫ ∞
−∞

dv e−v
2+2ix̃0v

(√
π e(Tv−ix̃)2

)
=
e(x̃20+x̃2)/2

π

∫ ∞
−∞

dv eT
2v2−2ix̃Tv−x̃2e−v

2+2ix̃0v

=
e(x̃20−x̃2)/2

π

∫ ∞
−∞

dv e−v
2(1−T 2)−2iv(x̃T−x̃0). (3.21)

If we carry out the v integral using (3.20),

W (x̃, x̃0, t) =
e(x̃20−x̃2)/2√
π(1− T 2)

exp

[
−(x̃T − x̃0)2

1− T 2

]
=

1√
π(1− T 2)

exp

[
−1

2
(x̃2 + x̃2

0)
1 + T 2

1− T 2
+ 2x̃x̃0

T

1− T 2

]
. (3.22)
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If we look back at (3.15), we can use our simplified W (x̃, x̃0, t) function to simplify,

giving us

ψ(x̃, t) =
∞∑
n=0

∫ ∞
−∞

dx̃0 ψ(x̃0, t0)e−iω(n+1/2)(t−t0) 1

2nn!
√
π
Hn(x̃)Hn(x̃0)e−(x̃20+x̃2)/2

=

∫ ∞
−∞

dx̃0 ψ(x̃0, t0)e−iω(t−t0)/2W (x̃, x̃0, t)

=

∫ ∞
−∞

dx̃0 ψ(x̃0, t0)T 1/2W (x̃, x̃0, t)

=

∫ ∞
−∞

dx̃0 ψ(x̃0, t0)

√
T

π(1− T 2)
exp

[
−1

2
(x̃2 + x̃2

0)
1 + T 2

1− T 2
+ 2x̃x̃0

T

1− T 2

]
.

(3.23)

We can simplify the arguments of the exponentials by using trigonometry identities

i
1 + T 2

1− T 2
= i

1 + e−2iω(t−t0)

1− e−2iω(t−t0)
=

cosω(t− t0)

sinω(t− t0)
(3.24)

and

1− T 2

2iT
=

1− e−2iω(t−t0)

2ie−iω(t−t0)
= sinω(t− t0). (3.25)

Our propagated wave function over time then becomes

ψ(x̃, t) =

∫ ∞
−∞

dx̃0 ψ(x̃0, t0)
1√

2iπ sinω(t− t0)

× exp

{
i

2 sinω(t− t0)
[(x̃2 + x̃2

0) cosω(t− t0)− 2x̃x̃0]

}
. (3.26)

This is the dimensionless harmonic-oscillator propagator in one dimension. To extend

this propagator to more dimensions, we multiply them together [111], such that

ψ(x̃, t) =
N∏
s=1

∫ ∞
−∞

dx̃s ψ(x̃0s, t0)

[
1

2iπ sinωs(t− t0)

]1/2

×

exp

{
i

2 sinωs(t− t0)
[(x̃2

s + x̃2
0s) cosωs(t− t0)− 2x̃sx̃0s]

}
, (3.27)

30



where ωs is the harmonic trap frequency in the s dimension. We will use dimensionless

units throughout the entire thesis, so x̃ and ỹ are understood to be dimensionless.

3.1.3 Test Cases

If we take the ground state wave function of the one-dimensional harmonic oscil-

lator [110], given by

ψ(x̃) =

(
1

π

)1/4

e−x̃
2/2 (3.28)

we can demonstrate that the ground state is in fact a stationary state. We demon-

strate this property of the ground state by inserting the wave function into (3.26),

which gives the expression for ψ(x̃, t):

ψ(x̃, t) =

∫ ∞
−∞

dx̃0

(
1

π

)1/4
√

1

2iπ sin(ωt)
e−x̃

2
0/2

× exp

{
i

2 sin(ωt)
[(x̃2 + x̃2

0) cos(ωt)− 2x̃x̃0]

}
. (3.29)

If we proceed with the integration, we see that

ψ(x̃, t) =

(
1

π

)1/4
√

1

2iπ sin(ωt)

∫ ∞
−∞

dx̃0 e
−x̃20/2 exp

{
i

2 sin(ωt)
[(x̃2 + x̃2

0) cos(ωt)− 2x̃x̃0]

}

=

(
1

π

)1/4
√

1

2iπ sin(ωt)

√
2π

[1− i cot(ωt)]
e−x̃

2/2

=

(
1

π

)1/4

e−x̃
2/2

√
1

i sin(ωt) + cos(ωt)

=

(
1

π

)1/4

e−x̃
2/2 exp

(
−iωt

2

)
=ψ(x̃, 0) exp

(
−iωt

2

)
=ψ(x̃, 0)e−iE0t, (3.30)
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where E0 is the ground state energy E0 ≡ 1/2 in dimensionless units. This equation is

consistent with the unitary time-evolution operator formulated from the Schrödinger

equation [110], which confirms that the spatial propagator returns the same result as

the more direct evolution operator when all spatial dependence is removed. We can

directly demonstrate how the propagator evolves a wave function spatially by using

a superposition of eigenstates of the harmonic oscillator. Let us consider the wave

function created by a superposition of the ground state and the first excited state of

the harmonic oscillator,

ψ(x̃, t) =
1

2

(
1

π

)1/4

e−x̃
2/2(
√

2 + 2x). (3.31)

If we insert this equation into the propagator given in (3.26) and simplify, we see that

the future wave function is now

ψ(x̃, t) =
1

2

(
1

π

)1/4

e−x̃
2/2(
√

2e−it/2 + 2xe−3it/2), (3.32)

which is exactly what results when using the time evolution operator. Evidently, the

use of the time evolution operator and the Feynman propagator result in the same

wave function. However, the propagator is more straightforward for arbitrary wave

functions where one does not know how to write it as a superposition state. It turns

out that the probability distribution given by this wave function is varying spatially

in time, so the actually beating between states is clearly visible. We plot several time

steps in Figure 3.1 to demonstrate.

3.2 The Unitary Time-Evolution Operator

The unitary time-evolution operator is a postulate of quantum mechanics. It

provides a means to take the initial state of a wave function and propagate it to a
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Probability Density of Superposition State after Propagation

Figure 3.1: A parent singularity of winding number ` = 3 is imprinted by a C4

discretely symmetric impulse. This symmetry breaking process will result in five
daughter singularities, one at the origin of winding number m = −1, and four off-axis
of winding number m = 1.

future time t using the particle’s Hamiltonian. It is given by [110]

ψ(x, t) = e−iĤ0(t−t0)/h̄ψ(x, t0). (3.33)

In most cases, t0 is taken to be 0, so

ψ(x, t) = e−iĤ0t/h̄ψ(x, 0). (3.34)

For stationary states, i.e. when the wave function has separable spatial and temporal

components, the operation of the time evolution operator on the stationary state

will evolve the state in time only. For non-stationary states, the operation of the

time evolution operator will evolve the state in time and space. We will use the

time evolution operator to evolve the initial singularity state through the symmetry
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breaking impulse. We then use the full Feynman propagator to find the solution to

(2.6) for a future time and new position.

3.2.1 Symmetry Breaking Case

In this thesis, we will be using the two-dimensional propagator to evolve our

initial singularity in the transverse plane. Before we continue, let us remember the

dimensionless variables used previously:

ωt ≡ τ,

√
h̄

mω
≡ L, and x̃ =

x

L
(3.35)

In two dimensions, the wave function in (3.26) becomes

ψ(x̃, t) =
1

2iπ sin τ
exp

[
i cos τ(x̃2 + ỹ2)

2 sin τ

] ∫ ∞
−∞

dx̃′
∫ ∞
−∞

dx̃′ ψ(x̃′, τ ′)

× exp

{
i

2 sin τ

[
(x̃′ 2 + ỹ′ 2) cos τ − 2(x̃x̃′ + ỹỹ′)

}]
(3.36)

for t ≥ 0.
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CHAPTER 4

EFFECT OF AN IMPULSE DURING PROPAGATION

The goal of this research is to determine what happens to a singularity in a BEC

when it is “shocked” by an instantaneous symmetry breaking potential. To analyze

the potential profile given by equation (2.11), we first assume that the second region

describing the impulse is very short, so that ∆t � 1. Since we are making the

assumption that the impulse is instantaneous, we can evolve our singularity through

the impulse by using the spatially invariant unitary time-evolution operator, rather

than a propagator.

4.1 Evolution Operator

The evolution operator for a wave function can be expressed by eiĤτ [110], where τ

is the dimensionless time variable τ ≡ ωt, as described in Sec. 3.2. For this potential

profile, we can decompose the evolution operator into three separate operators, one

for each region, according to

eiĤτ = eiĤ(τ−τ1)eiĤ∆τeiĤτ0 . (4.1)

Now, Ĥ = Ĥ0 + ∆V̂ , where Ĥ0 is the initial Hamiltonian of the harmonic oscillator

given in (3.2), and ∆V̂ is the symmetry breaking potential, both in dimensionless

units. According to the potential profile given in (2.11), the evolution operator can

be rewritten as

eiĤτ = eiĤ0(τ−τ1)ei(Ĥ0+∆V̂ )∆τeiĤ0τ0 . (4.2)

Let us analyze the evolution operator for the impulse. Since ∆τ � 1, we can apply

the Hausdorff-Campbell decomposition [112] via the Zassenhaus formula to lowest
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order, given by

et(X̂+Ŷ ) = etX̂etŶ e−t
2[X̂, Ŷ ]/2 (4.3)

in order to get

ei(Ĥ0+∆V̂ )∆τ = eiĤ0∆τei∆V̂∆τ +O(∆τ 2) = ei∆V̂∆τeiĤ0∆τ +O(∆τ 2), (4.4)

where the two orders of the operators are possible since they commute with O(∆τ 2).

The full evolution operator is then given by

eiĤτ = eiĤ0(τ−τ1)ei∆V̂∆τeiĤ0∆τeiĤ0τ0 = eiĤ0(τ−τ1)ei∆V̂∆τeiĤ0(τ0+∆τ). (4.5)

If we take into account that τ1 = τ0 + ∆τ , we find

eiĤτ = eiĤ0(τ−τ1)ei∆V̂∆τeiĤ0τ1 . (4.6)

If we apply this operator to an initial wave function, we see that

|φ(τ)〉 = eiĤ0(τ−τ1)ei∆V̂∆τeiĤ0τ1|φ(0)〉 = eiĤ0(τ−τ1)ei∆V̂∆τ |φ(τ1)〉. (4.7)

It turns out that the presence of an impulse at time τ1 only produces a multiplication

by the diagonal operator in position space, ei∆V̂∆τ . If we define

φ̄(τ1) = ei∆V̂∆τ |φ(τ1)〉, (4.8)

the resulting amplitude can be propagated to future times using the unitary time-

evolution operator from Sec. 3.2 in the final potential eiĤ0(τ−τ1).
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4.2 Impulse Potential with Discrete Rotational Symmetry

In this section, we analyze the effect of an impulse having rotational symmetry

of finite order. This means that ∆V̂ is invariant under the action of the elements

of a discrete rotational group CN . The operation of CN on ∆V̂ returns the original

potential when rotated π/N radians. To simplify the analysis, we assume that the

original medium has continuous rotational symmetry, O(2). This restricts our har-

monic trap such that the trapping frequencies ωx = ωy. Mathematically, we express

the invariance property of the impulse as

∆V (Gx̃) = ∆V (x̃) ∀G ∈ CN . (4.9)

This property determines the functional form of the potential close to the rotation

axis. It is convenient to introduce a complex notation for the spatial coordinates such

that χ = x̃ + iỹ. Close to the origin, |χ|2 = x̃2 + ỹ2 ≈ 0 so we can perform a Taylor

expansion of the evolution operator in (4.8) in the complex variable χ and keep the

lower order terms. Because of the CN invariance of the potential, there are only two

types of CN -invariant products of χ and χ∗ that can appear in this Taylor expansion:

χχ∗ = |χ|2 = x̃2 + ỹ2, χN , and χ∗N . As a concrete example of our symmetry breaking

procedure, we will study one of the simplest cases corresponding to discrete rotational

symmetry of order N = 4. If we perform a Taylor expansion on the arbitrary impulse

function V (χ) in both variables and keep the allowed terms mentioned previously,

the potential of the impulse can be expanded to read

∆V (χ) = u0 + u1|χ|2 + u2|χ|4 + v0χ
4 + v1χ

∗4 +O(χ6), (4.10)

where u0, u1, u1, v0 and v1 are constants. In order for this expansion to be valid,

∆V (χ) must be real, and the constants v0 and v1 must be equal and real, which we
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state specifically later after Eq. (5.23). This potential presents the most general form

of a C4 invariant potential close to the symmetry axis. Since we assume that the first

medium is O(2) invariant, it is clear that the only terms that break the symmetry

into C4 are χ4 and χ∗4. Since we are only analyzing the result of the symmetry

breaking process, it is sufficient to only consider the χ4 and χ∗4 terms. We take

u0 = u1 = u2 = 0 and proceed to evaluate the form of the function after the action of

the symmetry breaking impulse. By only considering the symmetry breaking terms,

our evolution operator becomes

ei∆V̂∆τ = ei∆τ(v0χ4+v1χ∗4). (4.11)

4.3 Transformation Rule

Before we proceed, we can predict the singularity structure of the singularities after

symmetry breaking via the transformation rule [31]. If an O(2) (infinitely) symmetric

waveform interacts with a discretely symmetric impulse, the resulting waveform takes

on the discrete symmetry of the impulse [31]. The question is, how does the singu-

larity get changed physically? For a symmetric wave function, ψ(r, θ) = eimθu(r, θ),

where

u(r, θ) = u(r, θ + 2π
N

) is the amplitude field of the wave function, θ is the phase, m

is the central singularity winding number, and N is the symmetry order. To differ-

entiate between the daughter singularities after symmetry breaking and the incident

parent singularity, we refer to the winding numbers of the post-symmetry breaking

singularity as m, rather than `. The value of m can take on several values based on

the symmetry order:

m =

 0,±1,±2, . . . ,±N
2
, even N

0,±1,±2, . . . ,±N−1
2
, odd N.

(4.12)
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Now that we have various options for m, we can use it to find out how many daugh-

ter singularities come off axis after symmetry breaking. This is governed by the

transformation rule [31]

`−m = kN, (4.13)

where ` is the winding number of the singularity and k is an integer. The integer

k is related to the number of rings of single valued singularities emerging from the

axis. For the typical symmetry breaking potential, only one ring of positively single

charged singularities emerges from the origin. The number of daughter singularities

propagating off the axis is determined by kN . In general, the off axis singularities

carry m = 1 and there are always N of them [31]. For an incident singularity with

winding number ` = 3 being broken by an N = 4 symmetric impulse, the transfor-

mation rule gives 3−m = 4, so evidently our central singularity has winding number

m = −1. In this case, a single singularity of winding number ` = 3 will result in

5 singularities after symmetry breaking. One stays at the origin, with a new wind-

ing number of m = −1, and four come symmetrically off-axis with winding number

m = 1, as seen in Figure 1.1. Since the central singularity resides at the origin, and

therefore does not have interesting dynamics, we will only study the behavior of the

N off-axis singularities. Let us now explicitly calculate the outcome of the symmetry

breaking impulse on our initial parent singularity. We begin by introducing the initial

singularity state.
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CHAPTER 5

PROPAGATION AFTER SYMMETRY BREAKING

We are interested in the analytical description of the symmetry breaking process of

a singularity propagating in the fully rotationally invariant medium after experiencing

the symmetry breaking impulse. According to the analysis of the potential profile in

chapter 4, the amplitude of the singularity wave function after the action of the

impulse will be given by

φ̄(χ, τ1) = ei∆V (χ)∆τφ(χ, τ1), (5.1)

where φ(χ, τ1) represents the singularity wave function before the impulse.

5.1 Incident Singularity

To observe distinct singularities after symmetry breaking, we need to begin with

a stationary state of the harmonic oscillator. The stationary state wave functions of

the harmonic oscillator are given by

φn(x̃) =

√
1

2nn!
√
π
Hn(x̃)e−x̃

2/2, (5.2)

where Hn(x̃) are Hermite polynomials [105]. To extend these states into two dimen-

sions, we multiply φn(x̃) and φm(ỹ) [108]. Continuing to substitute our dimensionless

conventions introduced in Sec. 3.2.1, the 2-D stationary state becomes

φnm(x̃) =
1√

2n+mn!m!π
Hn(x̃)Hm(ỹ)e−(x̃2+ỹ2)/2. (5.3)

This gives us the general form of our incident wave function, but we still need to make

a singularity state. To describe a singularity at the origin on a Gaussian background,
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which is what the harmonic oscillator state is made of, we multiply by the factor χl,

with χ ≡ x̃ + iỹ. [113] Since we are going to be continuing with a direct calculation,

let us take our initial parent singularity to have winding number ` = 3. Thus, our

wave function becomes

φnm(x̃) = (x̃+ iỹ)3 1√
2n+mn!m!π

Hn(x̃)Hm(ỹ)e−(x̃2+ỹ2)/2. (5.4)

We would like to work with a normalized state, so let us calculate what normalization

constant we will need. To begin, we enforce the normalization conditions such that∫∞
−∞ dx̃ φ∗nm(x̃)φnm(x̃) = 1. For the case of l = 3,

∫ ∞
−∞

dx̃

∫ ∞
−∞

dỹ

∣∣∣∣(x̃+ iỹ)3 1√
2n+mn!m!πL2

Hn(x̃)Hm(ỹ)e−(x̃2+ỹ2)/2

∣∣∣∣2 =
√

6. (5.5)

Thus, we need to add a factor of
√

1/6 onto our input wave function, making it now

φnm(x̃) =

√
1

6
(x̃+ iỹ)3 1√

2n+mn!m!π
Hn(x̃)Hm(ỹ)e−(x̃2+ỹ2)/2. (5.6)

To test whether this state is in fact a stationary state, it needs to satisfy the time-

independent Schrödinger equation. Since we are using the ground state for our cal-

culations, we set n = m = 0. The time-independent Schrödinger equation for the

two-dimensional harmonic oscillator in dimensionless units from (3.12) is given by

[
−1

2
∇̃2 +

1

2
(x̃2 + ỹ2)

]
φ(x̃, ỹ) = Eφ(x̃, ỹ). (5.7)

If we substitute (5.6) into the previous equation, we see that E = (1 + `). This

result shows us that the winding number of the singularity adds an additional ` units

relative to the ground state energy. However, our input wave function still satisfies

the time-independent Schrödinger equation, so it is indeed a stationary state. We can
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also find the eigenvalue of the orbital angular momentum operator Lz by operating

on the wave function with Lz = xpy − ypx. Doing so, we see that the eigenvalue is

the winding number, `.

5.2 Propagation

Now that we have a valid expression for the initial singularity state φn,m(x̃), we

can insert it into our expression for the wave function after the impulse given by (5.1)

using the Taylor expansion of the evolution operator given in (4.11). This gives us

φ̄(x̃) = eih∆τ[v0(x̃+iỹ)4+v1(x̃−iỹ)4]φ(x̃). (5.8)

If we carry out another Taylor expansion for the exponential, we get the expression

for φ̄(x̃) that will be used for the propagation in the harmonic trap.

φ̄(x̃) =
[
1 + iv0h∆τ(x̃+ iỹ)4 + iv1h∆τ(x̃+ iỹ)∗4

]
φ(x̃). (5.9)

Inserting the initial state φnm given in Sec. 5.1 into the previous equation, we arrive

at the final form of our wave function after symmetry breaking.

φ̄(x̃) =
[
1 + iv0∆τ(x̃+ iỹ)4 + iv1∆τ(x̃− iỹ)4

]√1

6
(x̃+ iỹ)3 1√

2n+mn!m!π
× (5.10)

×Hn(x̃)Hm(ỹ)e−(x̃2+ỹ2)/2,

where χ was replaced by its Cartesian representation, χ ≡ x̃+ iỹ. Taking the initial

state to be the ground state, given by

φ00 =
1√
6π
e−(x2+y2)/2(x+ iy)3, (5.11)
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equation (5.10) is then used as the initial function in the harmonic-oscillator propa-

gator from (3.36). Before we integrate, it is convenient to absorb the length of the

impulse ∆τ into the constants v0 and v1, such that v0∆τ ≡ v0 and v1∆τ ≡ v1. Now,

if we carry out the propagator integral given by (3.36) for the previous equation us-

ing the initial state φ00, we get the final wave-function for the singularity field after

symmetry breaking:

φ(x̃, ỹ, τ) = e−8iτ−(x̃2+ỹ2)/2

√
π

6

(
e4iτ (x̃+ iỹ)3 + iv0(x̃+ iỹ)7

+ v1(ix̃+ ỹ)
{

24e6iτ + 36e4iτ (x̃2 + ỹ2 − 2) + (x̃2 + ỹ2 − 12)(x̃2 + ỹ2)2

+12(3x̃2 + 3ỹ2 − 2) + 12e2iτ
[
6 + x̃4 − 6ỹ2 + ỹ4 + 2x̃2(ỹ2 − 3)

]})
. (5.12)

As a preliminary observation, we can plot the amplitude of φ(x̃, ỹ, τ) via Contour

Plot 3D in Mathematica, so we can have an idea of what the singularities should be

doing after symmetry breaking before we explicitly calculate the trajectories. If we

choose v1 = v0 = 5× 10−4, we get the following figure:

As we expected from the transformation rule analysis in Sec. 4.3, we have four

singularities propagating off axis. If we take several time slices of our system, we can

track the rotation direction of the off-axis singularities about the axis of symmetry,

as well as have a better understanding of the symmetry breaking process. We can

view the progression of the singularities in Figure 5.2. The axis of symmetry in this

case is the origin.

The singularities are evidently propagating in a counterclockwise direction around

the origin.

5.2.1 Angular Momentum Structure

The expression for φ(x̃) in (5.12) can be written in a clearer form by reintroducing

the complex coordinate χ = x̃ + iỹ so that we can recognize a well defined angular
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Figure 5.1: 3-D contour plot of the amplitude of φ(x̃, ỹ, τ), as viewed over one period
of axial oscillations. The parent singularity is broken into five daughter singularities.
One singularity remains at the origin, as seen by the hole in the center of the figure.
Four off-axis singularities propagate periodically about the axis of symmetry. False
color is added to improve visibility.

momentum structure. After transferring to the complex coordinate χ, we get the

complex version of (5.12):

φcomplex(χ, τ) =e−8iτ−|χ|2/2
√
π

6

(
e4iτχ3 + iv0χ

7 + iv1χ
∗ {−24 + 24e6iτ+ (5.13)

+|χ|2(|χ|2 − 6)2 + 36e4iτ (|χ|2 − 2) + 12e2iτ
[
6 + |χ|2(|χ|2 − 6)

]})
We can break this down so that

φcomplex(χ, τ) = e−8iτ−|χ|2/2
√
π

6

(
A0(τ)χ3 + A+χ

7 + A−(|χ|, τ)χ∗
)
, (5.14)
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where

A+ ≡ iv0, (5.15)

A0(τ) ≡ e4iτ , (5.16)

and

A−(|χ|, τ) ≡iv1

{
−24 + 24e6iτ + |χ|2(|χ|2 − 6)2 + 36e4iτ (|χ|2 − 2) (5.17)

+12e2iτ
[
6 + |χ|2(|χ|2 − 6)

]}
The expression in (5.14) has the form predicted by our previous symmetry arguments

from Sec. 4.3 and [60] since it can be written as

φ(χ, τ) =

√
π

6
e−8it−|χ|2/2χ∗

(
A+χ

8 + A0(t)χ4

|χ|2
+ A−(|χ|, t)

)
= χ∗F (χ, t), (5.18)

where we have used the identities χ7

χ∗ = χ8

|χ|2 and χ3

χ∗ = χ4

|χ|2 , and where

F (χ, τ) ≡
√
π

6
e−8it−|χ|2/2

(
A+χ

8 + A0(t)χ4

|χ|2
+ A−(|χ|, t)

)
. (5.19)

It becomes immediately apparent that F (χ, τ) is C4 invariant due to the dependence

on only χ4 and χ8 terms. Because F (χ, τ) is C4 invariant,

φ(εχ, τ) = ε−1φ(χ, τ), (5.20)

where ε ≡ eiπ/2 is the elementary rotation of 4th order. Thus, as expected from the

analysis in Sec. 4.3 using the transformation rule, the solution preserves the winding

number m = −1 for the center singularity.
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5.3 Trajectories

In this thesis, we are interested in the trajectories followed by the singularities

that arise after symmetry breaking. Since we have an analytical expression for the

propagating field, we can obtain clearer insight into the dynamics of these singulari-

ties. Singularities are given by the zeros of the complex wave function φ(χ, τ). We

can find these zeros by setting φ(χ, τ) = 0 and solving for χ. From (5.18), we see

that there are two situations when φ(χ, τ) = 0, when χ∗ = 0 and when F (χ, τ) = 0.

The former corresponds to the singularity at the origin of winding number m = −1

that we have predicted in Sec. 4.3. We can study the behavior of the wave function

near the origin (|χ| ≈ 0) by developing φ(χ, τ) in a Taylor series around χ = 0:

φ(χ, τ) ≈ 32e−5iτ
√

6π sin3(τ)v1χ
∗. (5.21)

Evidently, the singularity at the origin is due to the symmetry breaking of the initial

parent singularity, as seen by the dependence on the symmetry breaking parameter

v1. We see again that this singularity has winding number m = −1, as evidenced by

the factor of χ∗. If we set v1 = 0, then A−(|χ|, τ) = 0, and the expansion about

χ = 0 is instead

φ(χ, τ) ≈
√
π

6
e−4iτχ3, (5.22)

which preserves the initial winding number of ` = 3, as seen by χ3. The latter type

of phase singularity, when F (χ, τ) = 0, is more difficult to analyze because we have

to work with the complex roots of the nonlinear equation F (χ, τ) = 0. This is the

same as solving the equation

A+χ
8 + A0(τ)χ4 + |χ|2A−(|χ|, τ) = 0. (5.23)
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To make the calculation easier, we assume that the two symmetry breaking parame-

ters are of the same order. Thus, we take v0 ≈ v1 = v. If we go to the v = 0 limit,

we see that A+ = 0 and A−(|χ|, τ) = 0. For F (χ, τ) = 0 to be true in this limit, it

follows that as v ≈ 0, A0(τ)|χ|4 ≈ 0, and therefore χ ≈ 0, leading to the conclusion

that χ = χ(v), and the statement that in the v � 1 regime, |χ| � 1. For small values

of χ, the first terms that reappear in (5.23) are those in A−(|χ|, τ) that depend on

|χ|2. Due to |χ| being much less than 1, it follows that |χ|2>|χ|4>|χ|8. By expanding

out A−(|χ|, τ), we see that the |χ2| term is

lim
v�1

A−(|χ|, t) ≈ |χ|2(−24iv1 + 72ie2itv1 − 72ie4itv1 + 24ie6itv1). (5.24)

By using this approximation, we can instead solve the equation

F ≈ A0(τ)χ4 + lim
v�1

A−(|χ|, t) = 0, (5.25)

where we have kept only the nonzero terms from the v � 1 limit. Thus, to this order

e4itχ4 + |χ|2(−24iv1 + 72ie2itv1 − 72ie4itv1 + 24ie6itv1) = 0. (5.26)

If we solve for χ4,

χ4 =
24iv1 − 72ie2itv1 + 72ie4itv1 − 24ie6itv1

e4it
|χ|2 = vp(t)|χ|2. (5.27)

The simplest mathematical object to calculate now is |χ|. This is done by taking the

modulus of the previous expression and dividing by |χ|2. We obtain

|χ|2 = 192v1 sin3 τ. (5.28)
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The equation above provides the evolution of the radial coordinate of the off-axis

singularities. Recall that |χ(τ)|2 = x̃(τ)2 + ỹ(τ)2 = r(τ)2 so that in polar coordinates

the radius of the phase singularity trajectory is given by

R(τ) ≈ 8
√

3(v1 sin3(τ))1/2. (5.29)

To find θ(τ), we need to look back at (5.27). If we rewrite χ and p in modulus-

argument complex form, χ becomes |χ|eiθ and p becomes |p|eiγ. Equation (5.27)

becomes

|χ|4ei4θ = v|p|eiγ|χ|2 |χ|2ei4θ = v|p|eiγ. (5.30)

We saw in (5.27) that |χ|2 = vp, so the previous equation becomes

ei4θ = eiγ = 4θ = γ + 2nπ. (5.31)

Thus, the evolution of the polar coordinates of the singularities is provided by the

phase of p(τ). From (5.27),

p(τ) =
24i− 72ie2iτ + 72ie4iτ − 24ie6iτ

e4iτ
. (5.32)

The phase of p(τ) is found by taking the arctangent of p(τ). This gives us

θ(τ) =
1

4
γ =

1

4

[
2nπ + arctan

(
sin4(τ)

− cos(τ) sin3(τ)

)]
=
nπ

2
− τ

4
(5.33)

We can plot the previous trajectories in the Cartesian plane by using the relations

x̃ = R cos(θ) and ỹ = R sin(θ). The trajectories are plotted in Figure 5.3.

If we compare these trajectories with the amplitude of the final wave function,

we see that they match. Figure 5.4 includes both the analytical trajectories and the

amplitude of the wave function in Figure 5.1 for comparison. An in-depth convergence
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study can be found in chapter 7.

5.4 Recombination Time and Maximum Radius

By analyzing the radial component of the trajectories when R(τ) returns to zero,

we can determine the amount of time it takes for the singularities to recombine at

the origin. We can equate R(τ) in (5.29) to 0 and solve for τ . Doing so, we see that

R(t) = 0 ∀ τ = nπ (5.34)

where n is an integer. Replacing the dimensionless variables with their original coun-

terparts, we see that the recombination time is

trecombination =
nπ

ω
, (5.35)

or half the period of the trapping potential. We can also analytically solve for the

maximum radius the trajectories achieve. We first take the derivative of the radial

function in (5.29) and set it equal to zero to determine when the trajectories reach

their maximum radius. Doing so, we see that Rmax occurs at τ = π/2. Evaluating

(5.29) at τ = π/2, we get a maximum radius of

Rmax = 8
√

3v. (5.36)
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Figure 5.2: By plotting the amplitude of the wave function after symmetry breaking
at discrete time steps, we can track the rotation of the off-axis singularities about
the axis of symmetry. It is apparent that the singularities rotate clockwise around
the axis of symmetry. We also plot the phase of the wave function and mark the
singularities that arise after symmetry breaking. Positively charged singularities are
yellow, and negatively charged ones are red.
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Analytical trajectories of off-axis singularities
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Figure 5.3: The trajectories of the four singularities that arise after symmetry break-
ing. The singularities traverse these lines in the clockwise direction. The trajectories
are plotted over one period of the trapping potential.
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Figure 5.4: The analytical trajectories seen in Figure 5.3 are compared to the contour
plot of the amplitude of the final wave function seen in Figure 5.1. A full convergence
study between the approximate trajectories and the minimum of the wave function
can be found in chapter 7.
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CHAPTER 6

EQUATIONS OF MOTION

Using the expressions obtained for R(τ) and θ(τ), we can find the equations of

motion for the off-axis singularities. The equations of motion will reveal the effects

of the impulse on the incident parent singularity in more detail.

6.1 Effective Forces

By taking the derivatives of R(τ), we see that the velocity and acceleration in the

radial component can be expressed as

Ṙ(τ) =12
√

3 cos(t)(v1 sin(τ))1/2, (6.1)

R̈(τ) =3
√

3(3 cos(2t)− 1)(v1 csc(τ))1/2. (6.2)

By taking the derivatives of θ(τ), we see that the angular velocity is constant, and

therefore the angular acceleration is zero. Thus,

θ̇(τ) =− 1

4
, (6.3)

θ̈(τ) =0. (6.4)

However, the fact that there is an angular velocity at all tells us that the singularities

have experienced a torque about the axis at some point in their creation and propa-

gation. If we recombine R(τ) and θ(τ) into the complex coordinate χ(τ) = R(τ)eiθ(τ)

once again, we can study the behavior of the singularities immediately after symme-

try breaking. If we Taylor expand equations (5.29) and (5.33) around τ = 0, i.e.,

immediately after symmetry breaking, we get

R(τ) ≈ 8
√

3
√
v τ 3/2, (6.5)
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and

θ(τ) ≈ π

4
− τ

4
. (6.6)

The previous expansions give us the complex coordinate χ(τ) right after symmetry

breaking, such that

χ(τ) ≈ 8
√

3v τ 3/2e
i
4

(π−τ). (6.7)

We now proceed to derive the equation of motion associated to (6.7). If we differen-

tiate (6.7) with respect to τ , we see that

χ′(τ) =

(
3

2τ
− i

4

)
χ(τ). (6.8)

A second derivative of (6.7) will provide us with the equation of motion in complex

notation:

χ′′(τ) =
12− τ(12i+ τ)

16τ 2
χ(τ). (6.9)

If we let Ω2
0 = 1

16
− 3

4τ2
, and Ω2

1 = 3
4τ

, we can rewrite (6.9) as

χ′′(τ) = −(Ω2
0 + iΩ2

1)χ(τ). (6.10)

Evidently, the singularities experience a nontrivial type of force. The previous equa-

tion represents a special type of harmonic oscillator in which the frequency is both

complex and time dependent. Since the frequency is complex, we do not expect the

system to be conservative. We can prove this statement by manipulating (6.9) and

its conjugate in the same manner we would do to establish conservation of energy in

a standard harmonic oscillator. First, we write the conjugate of (6.9):

χ′′∗(τ) = −(Ω2
0 − iΩ2

1)χ∗(τ). (6.11)
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Next, we multiply (6.9) by χ′∗(τ) and (6.11) by χ′(τ) and add the two resulting

equations to obtain

χ′′(τ)χ′∗(τ)+χ′(τ)χ′′∗(τ) = −(Ω2
0 + iΩ2

1)χ(τ)χ′∗(τ) + χ′(τ)(−Ω2
0 + iΩ2

1)χ∗(τ) (6.12)

= −Ω2
0χ(τ)χ′∗(τ)− iΩ2

1χ(τ)χ′∗(τ)− Ω2
0χ
′(τ)χ∗(τ) + iΩ2

1χ
′(τ)χ∗(τ)

= −Ω2
0(χ(τ)χ′∗(τ) + χ′(τ)χ∗(τ)) + iΩ2

1(χ′(τ)χ∗(τ)− χ(τ)χ′∗(τ)).

We immediately recognize that the left hand side and the first term of the right hand

side are total derivatives. If we rewrite the total derivatives, we get

d

dτ
(χ′(τ)χ′∗(τ)) = −Ω2

0

d

dτ
(χ(τ)χ∗(τ)) + iΩ2

1(χ′(τ)χ∗(τ)− χ(τ)χ′∗(τ)). (6.13)

Unfortunately, Ω2
0 is time dependent, so we cannot just combine the total derivatives.

Instead, we must subtract the term with d
dτ

Ω2
0. Namely, the total derivative of the

Ω2
0 term is

d

dτ
(Ω2

0χ(τ)χ∗(τ)) = χ(τ)χ∗(τ)
d

dτ
Ω2

0 + Ω2
0

d

dτ
χ(τ)χ∗(τ). (6.14)

This allows us to rewrite (6.13) as

d

dτ
(χ′(τ)χ′∗(τ)) + Ω2

0

d

dτ
(χ(τ)χ∗(τ)) = iΩ2

1(χ′(τ)χ∗(τ)− χ(τ)χ′∗(τ))

d

dτ

(
χ′(τ)χ′∗(τ) + Ω2

0χ(τ)χ∗(τ)
)
− χ(τ)χ∗(τ)

d

dτ
Ω2

0 = iΩ2
1(χ′(τ)χ∗(τ)− χ(τ)χ′∗(τ)).

(6.15)

If we replace χ′(τ) and χ′∗(τ) with their functional values, and evaluate the derivative

of Ω2
0, we obtain

d

dτ

(
χ′(τ)χ′∗(τ) + Ω2

0χ(τ)χ∗(τ)
)

=

(
3

2τ 3
+

Ω2
1

2

)
χ(τ)χ∗(τ). (6.16)
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If we define the energy of the system the same way we would a typical harmonic

oscillator,

E =
1

2
χ′(τ)χ′∗(τ) +

1

2
Ω2

0χ(τ)χ∗(τ), (6.17)

it is clear that there is gain in the system. We can see the value of the gain by

considering the derivative of the energy:

dE

dτ
=

1

2

d

dτ

(
χ′(τ)χ′∗(τ) + Ω2

0χ(τ)χ∗(τ)
)

(6.18)

=
1

2

(
3

2τ 3
+

Ω2
1

2

)
χ(τ)χ∗(τ) (6.19)

=
3

4τ

(
1

τ 2
+

1

4

)
|χ(τ)|2 ≥ 0. (6.20)

Thus, energy is not conserved by the system containing just the singularities de-

scribed by our equations of motion. However, the nonlinear Schrödinger equation

does conserve energy, so the energy is being exchanged between the singularities

and the remainder of the Bose-Einstein condensate described by the full nonlinear

Schrödinger equation. The presence of this effective harmonic motion explains why

the post-symmetry breaking singularities expel from the origin. However, we still

need to explain the effective torque that the singularities seem to experience. To

understand this torque better, let us rewrite our complex coordinate in Cartesian

coordinates via the definition of χ(τ) = x̃(τ) + iỹ(τ). This gives us

χ′′(τ) = x̃′′(τ) + iỹ′′(τ) (6.21)

= −(Ω2
0 + iΩ2

1)(x̃(τ) + iỹ(τ))

= −(Ω2
0 + iΩ2

1)x̃(τ)− i(Ω2
0 + iΩ2

1)ỹ(τ)

= −Ω2
0x̃(τ)− iΩ2

1x̃(τ)− iΩ2
0ỹ(τ) + Ω2

1ỹ(τ).
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If we collect the real and imaginary parts, we arrive at

x̃′′(τ) = −Ω2
0x̃(τ) + Ω2

1ỹ(τ) (6.22)

ỹ′′(τ) = −Ω2
0ỹ(τ)− Ω2

1x̃(τ). (6.23)

We can write the previous equations in vector form as

r ′′(τ) = −Ω2
0r(τ) + Ω2

1

 0 1

−1 0

 r(τ). (6.24)

In order to see how a torque comes into our system, we need to rewrite the Ω2
1

matrix term in three-dimensions. To do this, we construct the external 3-D vector

Λ = (0, 0, Ω2
1) such that

r× Λ =

∣∣∣∣∣∣∣∣∣∣
i j k

x̃ ỹ z̃

0 0 Ω2
1

∣∣∣∣∣∣∣∣∣∣
= Ω2

1(ỹ, −x̃, 0) = Ω2
1

 0 1

−1 0

 rT (τ), (6.25)

where rT (τ) is the transverse plane, which we are working in. Therefore, the equation

of motion for the singularities can be represented in 3-D, although the motion is

restricted to a two-dimensional plane r(τ) = (x̃, ỹ, 0). We write our 3-D representation

as

r ′′(τ) = −Ω2
0r(τ) + (r(τ)× Λ). (6.26)

This equation of motion shows the simultaneous presence of a harmonic force and an

external force associated with a torque. The fact that the latter is associated with

a torque can be checked by calculating its effect on the angular momentum of the

phase singularity, L = r× r′. If we look at the derivative of the angular momentum,
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we see that

dL

dτ
=

d

dτ
(r× r′) = r′ × r′ + r× r′′ = r× r′′. (6.27)

If we evaluate this cross product using our expression for r′′(τ) in (6.26),

r× r′′ = r× (−Ω2
0r + (r× Λ)

= −Ω2
0(r× r) + r× (r× Λ)

= r× (r× Λ). (6.28)

Using the vector triple product [114], we obtain

r× r′′ = r(r · Λ)− Λ(r · r). (6.29)

Because Λ is defined only to have a z̃ component, and our position vector is two-

dimensional, the dot product of r with Λ vanishes, leaving

r× r′′ = −Λ(r · r)

= −Λ|r|2

= (0, 0 ,−Ω2
1|rT |2). (6.30)

Finally, we arrive at

dL

dτ
= M ≡

(
0, 0, −Ω2

1|rT |2
)

=

(
0, 0, −|rT |2

3

4τ

)
, (6.31)

where M is the torque. The previous equation shows that the angular momentum has

variation only in the z̃ direction, which means there is a torque that causes rotation

in the x̃, ỹ plane, as we expect. Because the value of the torque is negative, our

singularities rotate about the origin in a clockwise manner, as our trajectories in Sec.

5.3 were seen to do in Figure 5.2. We can check that the energy equation we found
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in (6.18) is correct using our 3-D formalism. If we take the inner product of r′ with

r′′, we see that

r′ · r′′ = r · (−Ω2
0r + (r× Λ))

= −Ω2
0(r′ · r) + r′ · (r× Λ)

= −Ω2
0(r′ · r) + Λ · (r′ × r)

= −Ω2
0(r′ · r)− Λ · L.. (6.32)

We can rearrange for Λ · L to get

−Λ · L = r′ · r′′ + Ω2
0(r′ · r). (6.33)

If we look at the definition of energy again,

E =
1

2
(r′ · r′) +

1

2
Ω2

0(r · r), (6.34)

we can take the derivative to see how the energy is changing with time,

dE

dτ
=

1

2

d

dτ
(r′ · r′) +

1

2

d

dτ
(Ω2

0r · r) (6.35)

=
1

2
(r′′ · r′ + r′ · r′′) +

1

2

d

dτ
(Ω2

0r · r)

= r′ · r′′ + 1

2

[
dΩ2

0

dτ
(r · r) + Ω2

0(r′ · r + r · r′)
]

= r′ · r′′ + Ω2
0(r · r′) +

1

2

dΩ2
0

dτ
.

If we substitute in equation (6.33) and the value of Ω2
0, we see that

dE

dτ
= −Λ · L +

1

2

dΩ2
0

dτ
= −Λ · L +

3

4τ 3
, (6.36)
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and finally, if we use our numerical value for Λ · L, we see that the change in energy

is consistent with our previous analysis in (6.18):

dE

dτ
=

1

2

(
|r|2Ω2

1 +
3

4τ 3

)
=

3

4τ

(
1

τ 2
+

1

4

)
. (6.37)

Let us note that all of these results apply, when properly rotated, to any of the four

daughter singularities moving away from the center of symmetry. This is due to the

four-fold symmetry of our solutions and it is reflected in the four solutions that we

have for the angular coordinate θ(τ) in (5.33).

6.2 Dynamics of Singularities after Rotational Symmetry Breaking

In Sec. 6.1, we derived the equation of motion for the four daughter singularities

that arise immediately after symmetry breaking by a discretely symmetric impulse.

We found that the breaking of rotational symmetry causes a parent singularity to

cluster into a central singularity carrying topological charge equal to the angular

pseudo-momentum m and a “wave” of N (N being the order of symmetry of the

impulse) single charged daughter singularities with particle-like motion moving away

from the symmetry axis. The dynamics of these singularities as point-like particles

is described by the equation of motion in (6.26) (for the case N = 4). This equation

is notable because it shows that although the wave function is described by the

propagator for the linear harmonic oscillator, the clustered singularities do not move

as classical particles in a harmonic potential. In fact, right after the action of the

impulse, they experience two types of forces, as described by the right-hand side of

(6.26):

• A harmonic repulsive force given by Ω2
0r(τ).

• A rotational force F = (r(τ)× Λ) generating a torque M = −|r|2Λ.

Both forces have a peculiar behavior. Let us analyze them separately.
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6.2.1 Effective Harmonic Potential

This effective potential is crucial because it is responsible for the dissociation of

the initial parent singularity with topological charge l = 3 into the central singularity

of charge m = −1 and four singularities of charge q = 1. If the interaction was

attractive, the four singularities would remain at the origin (the center of symmetry)

since both the initial position and initial velocity are zero. However, we find that the

interaction is repulsive because Ω2
0 = 1

16
− 3

4τ2
<0 for small values of τ . Nevertheless,

a repulsive harmonic interaction is not enough to guarantee the motion of the broken

singularities away from the origin since their position and velocity are initially zero.

They would remain there in a situation of unstable equilibrium since the force upon

them would be zero. Something else is needed to trigger the expansive motion of

the broken singularities. The mechanism is the existence of a nonzero, in this case

singular, repulsive potential at τ = 0.

|FH | =
∣∣∣∣( 1

16
− 3

4τ 2

)∣∣∣∣ r(τ) ∼ 1

τ 2
τ 3/2 = lim

τ→0

1√
τ

=∞. (6.38)

If we analyze the form of the effective harmonic potential for small values of τ , we

see from (6.18) that

VH(r) =
1

2
Ω2

0|r|2 ≈ −
3

4τ 2
|r|2 τ � 1, (6.39)

indicating the presence of a singular repulsive potential at τ = 0. The curvature

of the quadratic potential is, thus, infinite and negative right after the symmetry is

broken, so the force on the escaping singularities is non-zero when they are located

at the origin when τ = 0. This singular potential is the reason why the singularities

start to move away from the center of symmetry. The fact that the potential and

force are singular at τ = 0 does not produce any issues in the velocity and position
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of the fleeing singularities when τ = 0 because the acceleration, which has the form

r′′(τ) ∼ 1/
√
τ has first and second integrals of the form:

r′(τ) ∼
√
τ + C and r(τ) ∼ τ 3/2 + C ′, (6.40)

which are both finite at τ = 0 and compatible with the initial condition r′(0) = 0 and

r(0) = 0 when the constants are taken to be zero.

6.2.2 Torque

As seen in (6.31), there is an r dependence in the torque that the singularities

experience around the origin once symmetry is broken. The torque is zero when

τ = 0 since M ∼ r2 and limτ→0 r
2 = 0 due to the initial condition of r(0) = 0. Thus,

the singularities must start moving away from each other, making r 6= 0, before the

external torque can take effect. This allows us to conclude that the singular repulsive

effective harmonic potential must act on the singularities before they can acquire

any angular momentum. As our singularities acquire a linear velocity away from

the origin, they become subject to the Magnus effect. This effect creates a force

perpendicular to the direction of motion according to F = S(ω × v), where S is a

property of the medium the singularity is traveling through, ω is the angular rotational

velocity of the spinning object, and v is the linear velocity. This perpendicular

Magnus force causes the singularities to follow a curved path. If we evaluate the

expression for the Magnus force, we see that

F = S(ω × v)

= S〈0, 0, ω〉 × 〈 3

4τ
x̃,

3

4τ
ỹ, 0〉

= S〈−3ω

4τ
ỹ,

3ω

4τ
x̃, 0〉, (6.41)
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where the velocity vector was formed by taking the derivative of the position at small

τ given in (6.5). If we evaluate the torque associated with the Magnus force, we see

that

τ = r× F

= 〈x̃, ỹ, 0〉 × S〈−3ω

4τ
ỹ,

3ω

4τ
x̃, 0〉

= 〈0, 0,
3Sω

4τ
|r|2〉, (6.42)

which is consistent with our expression for the torque found in the Sec. 6.1 with

S = −1 and ω = 1, verifying that the torque associated with the singularities after

symmetry breaking is generated by the Magnus force. Therefore, the dynamics of

our singularities after symmetry breaking can be described as follows: First, the

action of the symmetric impulse introduces an effective singular repulsive harmonic

potential that splits N = 4 single daughter singularities out of the original parent

singularity. As these singularities begin to travel away from the origin, they gain

angular momentum from the effective external torque caused by the Magnus force

and rotate around the axis of symmetry. Eventually, the effective harmonic potential

is overpowered by the trapping potential, so the singularities travel back toward the

origin, and settle into oscillatory motion about the origin.
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CHAPTER 7

CONVERGENCE STUDIES AND NUMERICAL ANALYSIS

We can compare the analytical trajectories from Sec. 5.3 with the actual minima

of the wave function amplitude, found using the minimize command in Mathemat-

ica on the wave function given after the operation of the full Feynman propagator.

We also compare the analytical trajectories with numerical data generated by nu-

merically solving the Gross-Pitaevskii equation in (2.6). To begin, we compare the

analytic trajectories with the full Feynman propagator to determine the accuracy of

the analytical trajectories for various impulse areas. We then use the same value for

impulse area, and compare to numerical data for three different impulse strengths

and durations. For both studies, we create a list of points at different times using

the analytic equations found in Sec. 5.3, and use the standard error analysis equa-

tion given in (7.1) to determine the validity of the analytical trajectories versus the

numerical data, found by either using the minimize command or by numerical in-

tegration. Later, we demonstrate using numerical data obtained from full solution

of the Gross-Pitaevskii equation the effect particle-particle interactions have when

nonlinearity, g, is reintroduced. We can calculate the error between two methods by

using the formula

ε = Log10

∣∣∣∣ r1 − r2

1
2
(r1 + r2)

∣∣∣∣ (7.1)

where r = x̃2 + ỹ2.

7.1 Linear Comparison

To compare the analytic trajectories to their actual locations in the wave function

found using the full Feynman propagator, we must find a way to track the singularities.

Due to the non-analyticity of the wave function, we must use the Minimize command

in Mathematica in order to track the singularities for various time steps. Using a Do

67



loop, we can append the location of the minima in the fourth quadrant to a list and

plot the trajectories. As we do so, we can compare the analytical trajectories (in pink)

with the located minima of the full Feynman propagator (blue) for v = 5 × 10−5 in

Figure 7.1. The value of v is a numerical representation of the impulse area, ∆V∆t,

as described by the potential profile in 4.

0.01 0.02 0.03 0.04
x

-0.08

-0.06

-0.04

-0.02

y

Analytic trajectories vs. actual minima of wavefunction, v=0.00005

Figure 7.1: The analytical trajectories (pink) are plotted against the minima of the
full Feynman propagator (blue) for discrete time steps, using a value of v = 5× 10−5

for the area of the symmetry breaking impulse. The analytical trajectories are a good
description of the singularity motion for small impulse areas.

We then calculate the error between the two methods using (7.1). As one can see

in Figure 7.2, the error is largest at the apex of the petal loop, but is still within 0.5%

of the amplitude minima. The first few points in Figure 7.2 have larger error due to

the close proximity of the singularities immediately after symmetry breaking. The

minimize command searches for a local minima, so when all four external singularities

are very close to each other, the local minima could be from any of the singularities,

increasing the error. If we repeat the calculations of error for various impulse areas v,

we see that the error increases near the apex of the petal, but remains low near the

origin. These results show that the analytic trajectories are the best approximations

for extremely thin impulses, but are still valid near the origin for larger impulses.
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0.001
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Ε

Error between analytic trajectories and actual minima, v=0.00005

Figure 7.2: Error between the analytical trajectories and the local minima of the full
Feynman propagator wave function for v = 5×10−5 plotted on logarithmic scale. The
error is always less than 0.5%. The scattered points at the beginning and end of the
plot are due to the minimize command in Mathematica being unable to distinguish
between the four external singularities when they are extremely close to the origin.

The error is insignificant until the outer edge of the petals. The increase in error

is most likely due to the various approximation techniques used to calculate the

analytical trajectories, one of which was working close to the origin. We can increase

the value of the impulse area v to observe the loss of validity as the area of the

impulse increases. As one can see in Figure 7.3, the error significantly increases as

the area of the impulse increases. The error becomes greatest near the apex of the

petal structure, while still being within 5 near the origin. The error rises above 5 for

times greater than τ ≈ 0.5 for the large impulse area, v = 5× 10−3.

Although we see that the error increases significantly as v increases, we do not

know whether it is the impulse potential itself or the duration of the impulse that

causes the error to increase. We test three different durations, all for impulse area

v = 5× 10−4, in the next section.
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Comparison of error between analytic trajectories and actual minima

Figure 7.3: Error for impulse areas of v = 5× 10−3 (yellow), v = 5× 10−4 (pink), and
v = 5× 10−5 (blue). The error increases significantly as the duration of the impulse
increases, but remains the lowest near the origin.

7.2 Numerical Comparison- Linear

The Gross-Pitaevskii equation, given by (2.6), was solved numerically for the same

impulse used in the analytical analysis for the linear case of g = 0. To determine

whether it is the duration of the impulse or the height of the impulse that affects

the error, we include numerical integration studies for g = 0. Three studies were

evaluated for impulse area v = 5× 10−4, each with a different duration and height:

∆V (x̃, ỹ) = 5× 10−3, ∆t = 10−1, v = 5× 10−4; (7.2)

∆V (x̃, ỹ) = 5× 10−2, ∆t = 10−2, v = 5× 10−4; (7.3)

∆V (x̃, ỹ) = 5× 10−1, ∆t = 10−3, v = 5× 10−4. (7.4)

If we plot each case, we see that there is no significant difference as the duration of

the impulse is increased, as shown in Figure 7.4.

If we calculate the error between the analytic and numerical trajectories, we see

that the error stays below 10% for all durations once the singularities leave the origin.
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Figure 7.4: Numerical trajectories for impulse durations of ∆t = 10−1, ∆t = 10−2,
and ∆t = 10−3, compared to analytic trajectories. We see no significant change as
the duration is increased.

The large error near the origin is due to the unavoidable limitation related to the grid

spacing necessary to compute the minima of the wave function. We plot the error on

a logarithmic scale in Figure 7.5.

These results allow us to conclude that the actual duration of the impulse does not

significantly change the dynamics of the system so long as the duration is less than

the linear time scale, given in (2.7). Mathematically, ∆t� tlin = 1/2 in dimensionless

units. We tested three different durations and found that the approximation holds.

For the analytic trajectories, this means the approximation is valid to within 5%

for impulse areas less than ∆V (x̃, ỹ)∆t = 5 × 10−4. For small areas, the impulse

only serves to break the symmetry of the singularities, and becomes negligible if the

duration is increased. In essence, a shallow potential for a longer time which is not

governed by the impulse approximation has the same effect as an extremely strong

potential for an infinitesimal amount of time, as long as the area ∆V (x̃, ỹ)∆t remains

small.
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Figure 7.5: Error between numerical trajectories for impulse durations of ∆t = 10−1,
∆t = 10−2, and ∆t = 10−3, and analytic trajectories. We see no significant change
as the duration is increased.

7.3 Numerical Comparison- Nonlinear

The Gross-Pitaevskii equation, given by (2.6), was solved numerically for the same

impulse used in the analytical analysis for various values of the nonlinearity, g. The

nonlinearity depends explicitly on the interaction length between particles, so the

higher the nonlinearity, the more the particles are interacting with each other, and

the sooner the interactions become significant. We observe the numerical data for

attractive nonlinearity and repulsive nonlinearity to see the structure of the vortex

trajectories in each case. The effect we pursue is in the very core of the vortex, but

there is an unavoidable limitation related to the grid spacing necessary to compute

the minima of the wave function. Thus, the numerics have large error near the origin,

so we only include numerics to observe the general path taken by each singularity for

nonlinear interactions, and do not directly calculate the error between numerics and

analytics.
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7.3.1 Repulsive Nonlinearity

Repulsive nonlinearity arises when the particles in a Bose-Einstein condensate

interact with one another via a positive s-wave scattering length, corresponding to

positive values of g. As the nonlinearity becomes larger, the trajectories begin to

interact at further distances from each other. This prevents the singularities from

recombining at the origin, and instead sends the trajectories into repulsive motion,

similar to the behavior of like-charged particles, before returning to the oscillatory

path about the origin. Trajectories derived from numerical integration for various

repulsive nonlinearities, g, can be seen in Figure 7.6. By increasing the nonlinearity

from g = 0 to g = 1, 2, 3, 4, we see that when the singularities come back to the

origin, the nonlinearity begins to show its effects, as seen by the paths taken by the

numerical data. As seen in the previous figure, once nonlinearity is introduced, the

singularities interact before traveling straight across the origin.

7.3.2 Attractive Nonlinearity

Attractive nonlinearity corresponds to a negative value for the s-wave scattering

length, resulting in negative values of the nonlinearity, g. As the attractive non-

linearity becomes increasingly negative, the trajectories begin to interact at further

distances from each other. This prevents the singularities from recombining at the

origin, behaving similarly to a system of planets, essentially ”sling-shotting” around

each other before returning to their oscillatory paths. Trajectories calculated numer-

ically for attractive nonlinearity can be seen in Figure 7.8. Once the singularities

are far enough away from each other for attractive interactions to lessen their effect,

the singularities settle back onto the oscillatory path about the origin as described

by the analytic trajectories. By increasing the attractive nonlinearity from g = 0 to

g = −1, −2, −3, −4, we see that the nonlinearity begins to show its effects near the

origin, as seen by the paths taken by the numerical data. However, with the attrac-
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tive nonlinearity, the trajectories return to the opposite orbit as with the repulsive

nonlinear data. In an interacting BEC it is possible for attractions to cause the BEC

to collapse, for sufficiently negative g. This interesting possibility is not investigated

as it lies outside the scope of the thesis.
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Figure 7.6: Numerical simulations for (a) repulsive nonlinearity of g = 1; (b) repulsive
nonlinearity of g = 2; (c) repulsive nonlinearity of g = 3; (d) repulsive nonlinearity
of g = 4.

75



Figure 7.7: Comparison between repulsive nonlinear numerical data for g =
1, 2, 3, 4. As the nonlinearity increases, the singularities are less likely to return to
the origin. This repulsive motion is similar to a system of like-charged particles in
that the singularities interact with each other before returning to the oscillatory path
about the origin.
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Figure 7.8: Numerical simulations for (a) attractive nonlinearity of g = −1; (b)
attractive nonlinearity of g = −2; (c) attractive nonlinearity of g = −3; (d) attractive
nonlinearity of g = −4.

77



Figure 7.9: Comparison between attractive nonlinear numerical data for g =
−1, −2, −3, −4. As the nonlinearity increases, the singularities are less likely
to return to the origin. The negative nonlinearity sets the trajectories into orbital
motion in the opposite direction as the repulsive nonlinear case, essentially ”sling-
shotting” around each other, causing the singularities to interact with each other
before returning to the oscillatory path about the origin.

78



CHAPTER 8

CONCLUSIONS

We have analytically described the equations of motion for the off-axis daughter

singularities that arise after the action of a symmetry breaking impulse on a single

parent singularity. For an initial singularity of winding number ` = 3 at the origin and

a C4 discretely symmetric impulse, the symmetry of the initial parent singularity is

broken into C4 as well. Four singularities with winding number ` = 1 oscillate about

the origin in a flowering pattern. A single singularity of winding number m = −1

remains stationary at the origin. All future evolution of the singularities is determined

by the order of symmetry of the impulse, not by the actual form of the impulse, as one

would expect. The singularities are imprinted by the impulse and “remember” the

effect of symmetry breaking once back to an ordinary confining harmonic potential.

It is intriguing to note that the actual form of the impulse does not change the motion

of the singularities. It is the order of symmetry and the overall impulse area, ∆V∆t,

that determine all future propagation patterns. The symmetry determines the pattern

of the singularities after symmetry breaking, and the impulse area determines how far

the singularities travel away from the origin. The analytical trajectories of the off-axis

singularities give rise to a blossoming structure. The singularities periodically oscillate

about the origin, while rotating about the axis of symmetry. The disassociation of

the initial parent singularity into several smaller daughter singularities is due to an

effective singular repulsive harmonic potential that is introduced by the symmetry

breaking impulse. The singularities also acquire angular momentum around the axis

of symmetry due to an external effective torque. Once the effective repulsive potential

is overpowered by the trapping harmonic potential, the singularities settle into an

oscillatory pattern as expected in a harmonic trap. The analytic trajectories were

compared with the local minima of the full Feynman propagator wave function for
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impulse strengths of v = 5 × 10−3, v = 5 × 10−4, and v = 5 × 10−5. Comparison

with the full Feynman propagator showed the trajectories to be within 0.5% error

for v = 5 × 10−5, 5% error for v = 5 × 10−4, and 50% error for v = 5 × 10−3. The

increase in error as the impulse area is increased is due primarily to approximations

made in the analytical analysis, mainly the assumption we were working close to the

origin. By superimposing the analytic trajectories with the local minima of the full

Feynman propagator, we see that they are in agreement for small impulse strengths.

We also conclude that the actual duration of the impulse does not significantly

change the dynamics of the system so long as the total impulse area is small, less

than ∆V (x̃, ỹ)∆t = 5 × 10−4 to keep the error below 10%. For small areas, the

impulse only serves to break the symmetry of the singularities. In essence, a shallow

potential for a longer time which is not governed by the impulse approximation has

the same effect as an extremely strong potential for an infinitesimal amount of time,

as long as the area ∆V (x̃, ỹ)∆t remains small. The initial break-up of the singularity

is completely controlled by linear effects. It is only long-time behavior that requires

full nonlinear analysis due to the interaction between particles in an interacting BEC.

In the future, one might expand this theory to include an analytical model treating

vortices as interacting point charges or singularities. This would allow us to treat

vortex recombination for the interacting cases. For example, the image method of a

charge at a boundary has been successfully applied to understand statics of vortices

in BEC. Recently, point-charge methods have been successfully applied to vortex

dynamics [115].
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APPENDIX - MATHEMATICA CODE

ClearAll�"Global`�"�
Here we define our initial wave function for propagation.

wave�x_, y_� :� 1

6
�x � � y�a 1

n� 2n

1

m� 2m

1

Π
HermiteH�n, x� HermiteH�m, y� �� 12 �x2�y2�

Does our wavefunction satisfy the time-independent Shrodinger equation? It indeed does, as 1+a 
is an integer multiple of �Ω's. The value a is the topological charge of the vortex at the origin. We 
also set n=m=0, beginning with the Harmonic ground state and creating a vortex. 

n � 0;
m � 0;

wave�x, y�
�

1

2
��x2�y2� �x � � y�a

6 Π

xd � FullSimplify�D�wave�x, y�, �x, 2���;
yd � FullSimplify�D�wave�x, y�, �y, 2���;
laplace � FullSimplify�xd � yd�;
Simplify�FullSimplify� � 1

2
laplace �

1

2
�x2 � y2� wave�x, y� � wave�x, y���

1 � a

Finding the angular momentum eigenvalues

�x ��� D�wave�x, y�, y�� � y ��� D�wave�x, y�, x��� � wave�x, y� �� FullSimplify
a

Is our input function normalized? For the distinct case of a=3, which we will be using in all following 
calculations, it is. 

a � 3;
Integrate�Integrate�Abs�wave�x, y�2�, �x, ��, ���, �y, ��, ���
1

Propagator Integral

This is the propagator integral to be carried out. The entire integral requires too much memory, so 
we append to a list term by term. 

expanded�xp_, yp_, x_, y_, t_� � Expand� 1

2 � Sin�t� �
� Cos�t� �x2�y2�

2 Sin�t�

�
�

2 Sin�t� ��xp2�yp2� Cos�t��2 �x xp�y yp�� �1 � � vo �xp � � yp�4 � � v1 �xp � � yp�4� wave�xp, yp��;
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int1�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���1��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int2�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���2��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int3�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���3��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int4�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���4��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int5�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���5��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int6�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���6��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int7�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���7��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int8�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���8��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int9�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���9��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int10�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���10��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int11�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���11��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int12�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���12��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int13�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���13��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int14�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���14��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int15�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���15��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int16�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���16��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int17�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���17��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

2   UnitsCHeck.nb
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int18�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���18��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
int19�x_, y_, t_� �

FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���19��, �xp, ��, ��,
Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;

int20�x_, y_, t_� �
FullSimplify�Integrate�Integrate�expanded�xp, yp, x, y, t���20��, �xp, ��, ��,

Assumptions � �t � 0, t � Reals��, �yp, ��, ��, Assumptions � �t � 0, t � Reals���;
FullSimplify�int1�x, y, t� � int2�x, y, t� � int3�x, y, t� � int4�x, y, t� � int5�x, y, t� �

int6�x, y, t� � int7�x, y, t� � int8�x, y, t� � int9�x, y, t� � int10�x, y, t� �
int11�x, y, t� � int12�x, y, t� � int13�x, y, t� � int14�x, y, t� � int15�x, y, t� �
int16�x, y, t� � int17�x, y, t� � int18�x, y, t� � int19�x, y, t� � int20�x, y, t��

Φ�x_, y_, t_� :�
��8 � t�

x2

2
�
y2

2
Π

6
��4 � t �x � � y�3 � � vo �x � � y�7 � v1 �� x � y� �24 �6 � t � 36 �4 � t ��2 � x2 � y2� �

��12 � x2 � y2� �x2 � y2�2 � 12 ��2 � 3 x2 � 3 y2� � 12 �2 � t �6 � x4 � 6 y2 � y4 � 2 x2 ��3 � y2����
To see if we are achieving similar shapes to the numerical results, we must give the symmetry 
breaking parameters, vo and v1, numerical values, along with the characteristic length L. The value 
"span" is a range for graphing purposes.

l � 1;
vo � .0005;
v1 � .0005;
span � .3;
a � 3;

amplitude � ContourPlot3D�Abs�Φ�x, y, t�� � .001,�x, �span, span�, �y, �span, span�, �t, 0, Π�, PlotPoints � 30, Mesh � None,
ContourStyle � Directive�Pink, Opacity�0.5�, Specularity�White, 30��,
ViewPoint � Top, PlotLabel � Style�"Contour plot of �Φ�x, y, t��", Large�,
LabelStyle � Large, AxesLabel � �"x", "y ", " t "�, ImageSize � 500,
Ticks � ����0.2, "�0.2 "�, �0, "0.0 "�, �0.2, "0.2 "��, ���0.2, "�0.2"�,�0, "0.0"�, �0.2, "0.2"��, ��0, " 0 "�, �1, " 1 "�, �2, " 2 "�, �3, " 3 "����;

Export�"amplitude.eps", amplitude�
amplitude.eps

Clear�l, vo, v1�
Complex Coordinates

Now we desire to put our final wavefunction in terms of the complex coordinate, Χ=x+� y.

replace � �x � 1

2
�Χ � Χstar�, y �

1

2 �
�Χ � Χstar��;

replace2 ��Χ Χstar2 � Χmag2 Χstar, Χ2 Χstar3 � Χmag4 Χstar, Χ3 Χstar4 � Χmag6 Χstar, Χ Χstar � Χmag2�;

UnitsCHeck.nb   3
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Here we separate into the form A� Χ7 �A0�t� Χ3 �A�� Χ , t� Χ�.
frontbits � FullSimplify�Φ�x, y, t� �. replace���1�� FullSimplify�Φ�x, y, t� �. replace���2��
��8 � t�

Χ Χstar
2

Π

6

collectors � Collect�Expand�FullSimplify�Φ�x, y, t� �. replace���3��� �. replace2, Χstar�
�4 � t Χ3 � � vo Χ7 � ��24 � v1 � 72 � �2 � t v1 � 72 � �4 � t v1 � 24 � �6 � t v1 � 36 � v1 Χmag2 �

72 � �2 � t v1 Χmag2 � 36 � �4 � t v1 Χmag2 � 12 � v1 Χmag4 � 12 � �2 � t v1 Χmag4 � � v1 Χmag6� Χstar
Anot � Coefficient�collectors, Χ, 3� �. Χmag � Χ Χstar

�4 � t

Aplus � Coefficient�collectors, Χ, 7� �. Χmag � Χ Χstar

� vo

Aminus � Coefficient�collectors, Χstar� �. Χmag � Χ Χstar �� FullSimplify
� v1��24 � 24 �6 � t � Χ Χstar ��6 � Χ Χstar�2 � 36 �4 � t ��2 � Χ Χstar� � 12 �2 � t �6 � Χ Χstar ��6 � Χ Χstar���

The complex version of Φ

frontbits �Anot Χ3 � Aplus Χ7 � Aminus Χstar� �� FullSimplify
��8 � t�

Χ Χstar
2

Π

6

��4 � t Χ3 � � vo Χ7 � � v1 Χstar ��24 � 24 �6 � t � Χ Χstar ��6 � Χ Χstar�2 � 36 �4 � t ��2 � Χ Χstar� �
12 �2 � t �6 � Χ Χstar ��6 � Χ Χstar����

Φcomplex�Χ_, Χstar_, t_� :�
��8 � t�

Χ Χstar

2

Π

6
��4 � t Χ3 � � vo Χ7 � � v1 Χstar ��24 � 24 �6 � t � Χ Χstar ��6 � Χ Χstar�2 �

36 �4 � t ��2 � Χ Χstar� � 12 �2 � t �6 � Χ Χstar ��6 � Χ Χstar����
Asymptotic Expansions

Series�Φcomplex�Χ, Χstar, t�, �Χ, 0, 1�, �Χstar, 0, 1�� �� FullSimplify
�32 ��5 � t 6 Π v1 Sin�t�3 Χstar � O�Χstar�2� � O�Χstar�2 Χ � O�Χ�2
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Evidently, the singularity at the origin is due to the symmetry breaking of the vortex, as seen by the 
dependence on the symmetry breaking parameter v1. If we set v1=0, then A� � 0, and the 
expansion about Χ=0 is instead

v1 � 0;
Series�Φcomplex�Χ, Χstar, t�, �Χ, 0, 3�, �Χstar, 0, 3�� �� FullSimplify
��4 � t

Π

6
Χ3 � O�Χ�4

which preserves the initial winding number of a=3, as evidenced by Χ3.

Clear�v1�
For the off axis singularities, we must solve the equation A� Χ8 �A0�t� Χ4 � Χ 2 A�� Χ , t� � 0. 
Assuming v1 and vo are of the same order and we go to the v=0 limit,

Aplus �. vo � 0

0

Aminus �. v1 � 0

0

For the previous equation to be true, it follows that as v�0, A0�t� Χ4 � 0, and therefore Χ�0. 
Evidentally, Χ=Χ(v), and in the v<<1 regime it is also true that |Χ|<<1.

F � Aplus Χ8 � Anot Χ4 � Χ Χstar Aminus �� Expand
�4 � t Χ4 � � vo Χ8 � 24 � v1 Χ Χstar � 72 � �2 � t v1 Χ Χstar �
72 � �4 � t v1 Χ Χstar � 24 � �6 � t v1 Χ Χstar � 36 � v1 Χ2 Χstar2 � 72 � �2 � t v1 Χ2 Χstar2 �
36 � �4 � t v1 Χ2 Χstar2 � 12 � v1 Χ3 Χstar3 � 12 � �2 � t v1 Χ3 Χstar3 � � v1 Χ4 Χstar4

For small values of Χ, the first terms that comes back into the expression are those in A� that 
depend on Χ 2 � Χ Χstar.

firstterm � Coefficient�Χ Χstar Aminus �� Expand, Χ Χstar�
�24 � v1 � 72 � �2 � t v1 � 72 � �4 � t v1 � 24 � �6 � t v1

Anot Χ4 � firstterm Χ Χstar

�4 � t Χ4 � ��24 � v1 � 72 � �2 � t v1 � 72 � �4 � t v1 � 24 � �6 � t v1� Χ Χstar
insides �

�firstterm

�4 � t

���4 � t ��24 � v1 � 72 � �2 � t v1 � 72 � �4 � t v1 � 24 � �6 � t v1�
phase�t_� :� ���4 � t ��24 � v1 � 72 � �2 � t v1 � 72 � �4 � t v1 � 24 � �6 � t v1�
real�t_� � FullSimplify�Re�phase�t��, Assumptions � �v1 � Reals, l � Reals��;
imaginary�t_� � FullSimplify�Im�phase�t��, Assumptions � �v1 � Reals, l � Reals��;
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R�t_� :� FullSimplify� real�t�2 � imaginary�t�2 , Assumptions � �t � Reals��
realΘ�t_� � FullSimplify�Re�phase�t��, Assumptions � �t � Reals, v1 � Reals, l � Reals��;
imaginaryΘ�t_� � FullSimplify�Im�phase�t��, Assumptions � �t � Reals, v1 � Reals, l � Reals��;
Θ�wind_, t_� :�
FullSimplify� 1

4
ArcTan�realΘ�t�, imaginaryΘ�t�� � wind Π

2
, Assumptions � �l � Reals, v1 � Reals��

v1 � .0005;
Plots � ParametricPlot3D���R�t� Cos�Θ�0, t��, R�t� Sin�Θ�0, t��, t�, �R�t� Cos�Θ�1, t��, R�t� Sin�Θ�1, t��, t�,�R�t� Cos�Θ�2, t��, R�t� Sin�Θ�2, t��, t�, �R�t� Cos�Θ�3, t��, R�t� Sin�Θ�3, t��, t��,�t, 0, Π�, ViewPoint � Top, PlotStyle � Thick, LabelStyle � 23,

AxesLabel � �"x", "y ", " Τ "�, ImageSize � 500,
Ticks � ����0.2, "�0.2 "�, �0, "0.0 "�, �0.2, "0.2 "��, ���0.2, "�0.2"�,�0, "0.0"�, �0.2, "0.2"��, ��0, " 0 "�, �1, " 1 "�, �2, " 2 "�, �3, " 3 "����;

Export�"trajectories.eps", Plots�
trajectories.eps

Directory���Users�kelleycommeford
Equations of motion

Clear�l, v, v1�
We further simplify our expression for Χ to study the effective potentials immediately after 
symmetry breaking, when t is approximately zero. Further calculations are done by hand.

rapprox�t_� �
FullSimplify�Series�R�t�, �t, 0, 2��, Assumptions � �l � 0, l � Reals, v1 � 0, v1 � Reals��

8 3 v1 t3�2 � O�t�5�2
Θapprox�t_� �
FullSimplify�Series�Θ�0, t�, �t, 0, 1��, Assumptions �� �l � 0, l � Reals, v1 � 0, v1 � Reals��
Π

4
�
t

4
� O�t�2

Χ�t_� � 8 3 l3 v1 t3�2 �� � Π4 � t4 �
8 3 �� � Π4 � t4 � l3 t3�2 v1

D�Χ�t�, t� � Χ�t� �� FullSimplify
�
�

4
�

3

2 t
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D�Χ�t�, �t, 2�� � Χ�t� �� FullSimplify
12 � t �12 � � t�

16 t2

Convergence- v=0.005

Clear�l, v1, vo, minimums3, calculateds3, i, x, y, min3�
l � 1;
v1 � .005;
vo � .005;

minimums3 � ��;
calculateds3 � ��;
shifted1 � ��;
shifted2 � ��;
shifted3 � ��;
shifted43 � ��;
times � ��;
�x3 � .1;
�y3 � .1;

Do�
calc � �R�i� Cos�Θ�3, i��, R�i� Sin�Θ�3, i���;
shiftx�b_� :� R�i� Cos�Θ�b, i� � Π

4
�;

shifty�b_� :� R�i� Sin�Θ�b, i� � Π
4
�;

min3 � If�R�i� � .1,
Minimize��Abs�Φ�x, y, i��, calc�1� � �x3 � x � calc�1� � �x3, calc�2� � �y3 � y � calc�2� � �y3�,�x, y���2�, Minimize��Abs�Φ�x, y, i��, calc�1� � �x3 � 10 � x � calc�1� � �x3 � 10,

calc�2� � �y3 � 10 � y � calc�2� � �y3 � 10�, �x, y���2��;
AppendTo�minimums3, �x, y� �. min3�;
AppendTo�calculateds3, calc�;
AppendTo�shifted1, �i, shiftx�0�, shifty�0���;
AppendTo�shifted2, �i, shiftx�1�, shifty�1���;
AppendTo�shifted3, �i, shiftx�2�, shifty�2���;
AppendTo�shifted43, �i, shiftx�3�, shifty�3���;
Clear�min3�,�i, 0.01, 4, .005��

compare3 � ListPlot��minimums3, calculateds3�, PlotRange � All,
LabelStyle � Large, ImageSize � 750, AxesLabel � �" x", " y"�, PlotLabel �
Style�"Analytic trajectories vs. actual minima of wavefunction, v�0.005", Large��;

Export�"compare3.eps", compare3�
compare3.eps

error3 � Abs� Drop�calculateds3�All, �1, 2��, �180� � Drop�minimums3�All, �1, 2��, �180�
1

2
�Drop�calculateds3�All, �1, 2��, �180� � Drop�minimums3�All, �1, 2��, �180�� �;

logerror3 � error3�All, 1�2 � error3�All, 2�2 ;

UnitsCHeck.nb   7

97



lin3 � ListLogPlot�logerror3, AxesLabel � �"Τ", "Ε"�,
LabelStyle � Large, ImageSize � 750, PlotRange � All,
PlotLabel � Style�"Error between analytic trajectories and actual minima, v�0.005",

Large�, DataRange � �0, 4��;
Export�"errorlin3.eps", lin3�
errorlin3.eps

numdata3 � Import�"sing_g0_0p005.txt", "Table"�;
ListPlot��numdata3�All, �4, 5��, shifted43�1 ;; 280, �2, 3���, Joined � True, PlotRange � All�;
matched � ��R�10�10� Cos�Θ�3, 10�10��, R�10�10� Sin�Θ�3, 10�10���, shifted43�39, �2, 3��,

shifted43�61, �2, 3��, shifted43�79, �2, 3��, shifted43�99, �2, 3��,
shifted43�119, �2, 3��, shifted43�139, �2, 3��, shifted43�159, �2, 3��,
shifted43�179, �2, 3��, shifted43�199, �2, 3��, shifted43�219, �2, 3��,
shifted43�239, �2, 3��, shifted43�259, �2, 3��, shifted43�279, �2, 3���;

errors � Abs� matched � numdata3�All, �4, 5��
1

2
�matched � numdata3�All, �4, 5��� �;

logerrors � errors�All, 1�2 � errors�All, 2�2 ;

ListLogPlot�Drop�logerrors, 2�, Joined � True, DataRange � �0.2, 1.4�, PlotRange � All�;
Convergence- v=0.00005

Clear�l, v1, vo, minimums, calculateds, i, x, y, min�
l � 1;
v1 � .00005;
vo � .00005;

minimums � ��;
calculateds � ��;
shifted1 � ��;
shifted2 � ��;
shifted3 � ��;
shifted4 � ��;
times � ��;
�x � .001;
�y � .001;
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Do�
calc � �R�i� Cos�Θ�3, i��, R�i� Sin�Θ�3, i���;
shiftx�b_� :� R�i� Cos�Θ�b, i� � Π

4
�;

shifty�b_� :� R�i� Sin�Θ�b, i� � Π
4
�;

min � If�R�i� � .01,
Minimize��Abs�Φ�x, y, i��, calc�1� � �x � x � calc�1� � �x, calc�2� � �y � y � calc�2� � �y�,�x, y���2�, Minimize��Abs�Φ�x, y, i��, calc�1� � �x � 10 � x � calc�1� � �x � 10,

calc�2� � �y � 10 � y � calc�2� � �y � 10�, �x, y���2��;
AppendTo�minimums, �x, y� �. min�;
AppendTo�calculateds, calc�;
AppendTo�shifted1, �i, shiftx�0�, shifty�0���;
AppendTo�shifted2, �i, shiftx�1�, shifty�1���;
AppendTo�shifted3, �i, shiftx�2�, shifty�2���;
AppendTo�shifted4, �i, shiftx�3�, shifty�3���;
Clear�min�,�i, 0.01, 4, .005��

compare � ListPlot��minimums, calculateds�, PlotRange � All,
LabelStyle � Large, ImageSize � 750, AxesLabel � �" x", " y"��;

Export�"compare.eps", compare�
compare.eps

error � Abs� Drop�calculateds�All, �1, 2��, �180� � Drop�minimums�All, �1, 2��, �180�
1

2
�Drop�calculateds�All, �1, 2��, �180� � Drop�minimums�All, �1, 2��, �180�� �;

logerror � error�All, 1�2 � error�All, 2�2 ;

lin � ListLogPlot�logerror, AxesLabel � �"Τ", "Ε"�,
LabelStyle � Large, ImageSize � 750, PlotRange � All, DataRange � �0, 4��;

Export�"errorlin.eps", lin�
errorlin.eps

numdata � Import�"sing_g0_0p00005.txt", "Table"�;
ListPlot��numdata�All, �4, 5��, shifted4�1 ;; 240, �2, 3���, Joined � True, PlotRange � All�;

Convergence- v=0.0005

Clear�l, v1, vo, minimums2, calculateds2, i, x, y, min2�
l � 1;
v1 � .0005;
vo � .0005;
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minimums2 � ��;
calculateds2 � ��;
shifted1 � ��;
shifted2 � ��;
shifted3 � ��;
shifted42 � ��;
times � ��;
�x2 � .01;
�y2 � .01;

Do�
calc � �R�i� Cos�Θ�3, i��, R�i� Sin�Θ�3, i���;
shiftx�b_� :� R�i� Cos�Θ�b, i� � Π

4
�;

shifty�b_� :� R�i� Sin�Θ�b, i� � Π
4
�;

min2 � If�R�i� � .02,
Minimize��Abs�Φ�x, y, i��, calc�1� � �x2 � x � calc�1� � �x2, calc�2� � �y2 � y � calc�2� � �y2�,�x, y���2�, Minimize��Abs�Φ�x, y, i��, calc�1� � �x2 � 10 � x � calc�1� � �x2 � 10,

calc�2� � �y2 � 10 � y � calc�2� � �y2 � 10�, �x, y���2��;
AppendTo�minimums2, �x, y� �. min2�;
AppendTo�calculateds2, calc�;
AppendTo�shifted1, �i, shiftx�0�, shifty�0���;
AppendTo�shifted2, �i, shiftx�1�, shifty�1���;
AppendTo�shifted3, �i, shiftx�2�, shifty�2���;
AppendTo�shifted42, �i, shiftx�3�, shifty�3���;
Clear�min2�,�i, 0.01, 4, .005��

compare2 � ListPlot��minimums2, calculateds2�, PlotRange � All,
LabelStyle � Large, ImageSize � 750, AxesLabel � �" x", " y"�, PlotLabel �
Style�"Analytic trajectories vs. actual minima of wavefunction, v�0.0005", Large��;

Export�"compare2.eps", compare2�
compare2.eps

error2 � Abs� Drop�calculateds2�All, �1, 2��, �180� � Drop�minimums2�All, �1, 2��, �180�
1

2
�Drop�calculateds2�All, �1, 2��, �180� � Drop�minimums2�All, �1, 2��, �180�� �;

logerror2 � error2�All, 1�2 � error2�All, 2�2 ;

lin2 � ListLogPlot�logerror2, AxesLabel � �"Τ", "Ε"�,
LabelStyle � Large, ImageSize � 750, PlotRange � All,
PlotLabel � Style�"Error between analytic trajectories and actual minima, v�0.0005",

Large�, DataRange � �0, 4��;
Export�"errorlin2.eps", lin2�
errorlin2.eps

numdata2 � Import�"sing_g0_0p0005.txt", "Table"�;
ListPlot��numdata2�All, �4, 5��, shifted42�1 ;; 240, �2, 3���, Joined � True, PlotRange � All�;
Needs�"PlotLegends`"�
compareall � ListLogPlot��logerror, logerror2, logerror3�, AxesLabel � �"Τ", "Ε"�,

LabelStyle � Large, ImageSize � 750, PlotRange � All, DataRange � �0, 4��;
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Export�"compareall.eps", compareall�
compareall.eps

Recombination times

Clear�l, v1, v0, v�
R�t�
8 3 �v12 Sin�t�6�1�4
Clear�l, v1�
Reduce�R�t� � 0, t��C�1� � Integers && �t � 2 Π C�1� �� t � Π � 2 Π C�1��� �� v1 � 0

� Always integer multiples of Π, regardless of v or L, so recombination time is half the trapping period.

FullSimplify�D�R�t�, t�, Assumptions � �l � Reals, v1 � Reals��
12 3 Cot�t� �v12 Sin�t�6�1�4
Solve�D�R�t�, t� � 0, t�
��t � � Π

2
�, �t � Π

2
��

� Confirms maximum R is at Π/2.

R� Π
2
�

8 3 �v12�1�4
maxR�Ω_, v_� :� 8 3

1

Ω

3

v

Plot3D�maxR�Ω, v�, �Ω, 0.5, 1�, �v, 0, .01�, AxesLabel � �Ω, v��;
� As Ω goes to 0, the singularities never come back, as expected. Also, as v goes to 0, the singularities never 

blast apart, as expected.

Plot��maxR�1, .00005�, maxR�1, .005�, maxR�1, .05��, �L, 0, 1��;

UnitsCHeck.nb   11

101



� As the strength of the symmetry-breaking impulse increases, the maximum radius increases, as expected.

Magnus Force

� The magnus force is given by F=S(Ω x v)

Ω � S �0, 0, w�;
v � � 3

4 t
x,

3

4 t
y, 0�;

f � Cross�Ω, v�
�� 3 S w y

4 t
,
3 S w x

4 t
, 0�

� Now we find the torque from this magnus force, Τ=r x F

r � �x, y, 0�;
Cross�r, f� �� FullSimplify
�0, 0,

3 S w �x2 � y2�
4 t

�
Different V

Clear�R, Θ, v, v1, vo, n�
R�v_, t_� :� 8 3 �v2 Sin�t�6�1�4
Θ�v_, n_, t_� :� 1

4
�2 n Π � ArcTan��v Cos�t� Sin�t�3, v Sin�t�4��

ParametricPlot���R�.005, t� Cos�Θ�.005, 0, t��, R�.005, t� Sin�Θ�.005, 0, t���,�R�.003, t� Cos�Θ�.003, 0, t��, R�.003, t� Sin�Θ�.003, 0, t���,�R�.002, t� Cos�Θ�.002, 0, t��, R�.002, t� Sin�Θ�.002, 0, t���,�R�.001, t� Cos�Θ�.001, 0, t��, R�.001, t� Sin�Θ�.001, 0, t���,�R�.0005, t� Cos�Θ�.0005, 0, t��, R�.0005, t� Sin�Θ�.0005, 0, t���,�R�0.00005, t� Cos�Θ�0.00005, 0, t��, R�0.00005, t� Sin�Θ�0.00005, 0, t����, �t, 0, 3.1��;
ListPlot���0.005, maxR�1, .005��, �0.003, maxR�1, .003��,�0.002, maxR�1, .002��, �0.001, maxR�1, .001��, �0.0005, maxR�1, .0005��,�0.00005, maxR�1, .00005���, Joined � True, PlotRange � �0, 1��;

Impulse Approximation

Clear�v0p5t0p001, v0p05t0p01, v0p005t0p1, data, time, fun, v0p5data, v0p05data,
v0p005data, error0p5, error0p05, error0p005, magerror0p5, magerror0p05, magerror0p005�
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SetDirectory�"�Users�kelleycommeford�Dropbox�Kelley CSM�Mathematica"��Users�kelleycommeford�Dropbox�Kelley CSM�Mathematica
v0p5t0p001 � Import�"V0_0p5_t0p001_A_0p0005.txt", "Table"�;
v0p05t0p01 � Import�"V0_0p05_t0p01_A_0p0005.txt", "Table"�;
v0p005t0p1 � Import�"V0_0p005_t0p1_A_0p0005.txt", "Table"�;
data�wind_, list_� :��Thread��R�list� Cos�Θ�wind, list� � Π � 4�, R�list� Sin�Θ�wind, list� � Π � 4����;
time � Range�10�10, 2, 10�3� �� N;
fun � Nearest�data�1, time��1��;
v1 � 0.0005;

v0p5data � Table�fun�v0p5t0p001�i, �6, 7����1�, �i, Length�v0p5t0p001�All, �6, 7�����;
v0p05data � Table�fun�v0p05t0p01�i, �6, 7����1�, �i, Length�v0p05t0p01�All, �6, 7�����;
v0p005data � Table�fun�v0p005t0p1�i, �6, 7����1�, �i, Length�v0p005t0p1�All, �6, 7�����;
error0p5 � Abs� v0p5data � v0p5t0p001�All, �6, 7��

1
2 �v0p5data � v0p5t0p001�All, �6, 7��� �;

error0p05 � Abs� v0p05data � v0p05t0p01�All, �6, 7��
1
2 �v0p05data � v0p05t0p01�All, �6, 7��� �;

error0p005 � Abs� v0p005data � v0p005t0p1�All, �6, 7��
1
2 �v0p005data � v0p005t0p1�All, �6, 7��� �;

magerror0p5 � error0p5�All, 1�2 � error0p5�All, 2�2 ;

magerror0p05 � error0p05�All, 1�2 � error0p05�All, 2�2 ;

magerror0p005 � error0p005�All, 1�2 � error0p005�All, 2�2 ;

errorlin � Show��ListLogPlot��magerror0p5, magerror0p05, magerror0p005�, PlotRange � All,
PlotStyle � Thick, LabelStyle � 23, AxesLabel � �"Τ", "Ε"�, ImageSize � 750�,

LogPlot�0.1, �x, 0, 150�, PlotStyle � Thick���;
Directory���Users�kelleycommeford�Dropbox�Kelley CSM�Mathematica
Export�"impulseerror.eps", errorlin�
impulseerror.eps

Needs�"PlotLegends`"�
impulses � ListPlot��Drop�v0p5t0p001�All, �4, 5��, 15�, Drop�v0p05t0p01�All, �4, 5��, 15�,

Drop�v0p005t0p1�All, �4, 5��, 15�, data�3, time��1��, Joined � True,
AxesOrigin � �0, 0�, PlotStyle � Thick, LabelStyle � 23, AxesLabel � �"x", "y"�,
ImageSize � 750, PlotLegend � �Style�"V�x,y��0.5", Large�, Style�"V�x,y��0.05", Large�,

Style�"V�x,y��0.005", Large�, Style�"Analytic", Large��, LegendSize � �.75, .5��;
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Export�"impulses.eps", impulses�
impulses.eps

Export�"analyticdata.txt", data�1, time��1�, "Table"�
analyticdata.txt

Directory���Users�kelleycommeford�Dropbox�Kelley CSM�Mathematica

14   UnitsCHeck.nb
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