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ABSTRACT

We study the quantum dynamics of ultracold bosons in a tilted double-well

potential by exact diagonalization of one- and two-level Bose-Hubbard-like Hamilto-

nians. In the one-level approximation, the atoms occupy the ground level of each

well. This assumption is relaxed in the two-level approximation which allows atoms

to occupy both the ground and first excited levels. Furthermore, for two- and three-

dimensional potentials, bosons occupying the excited level can have nonzero angular

momentum, thus introducing additional degrees of freedom to these systems.

The stationary states of the one-level Hamiltonian consist of both harmonic

oscillator-like and Schrödinger cat-like states. When the barrier between wells is high,

cat-like states dominate the spectrum. A small potential difference between wells, or

tilt, causes the collapse of the cat-like states and suppresses tunneling between wells.

Such small imperfections in the trapping potential therefore constitute an additional

source of decoherence, called potential decoherence. However, unlike for other forms

of decoherence, tunneling resonances occur when the tilt can be exactly compensated

by atom-atom interactions. At resonance, cat-like eigenstates reappear and a fraction

of the atoms tunnel between wells. Tunneling at resonance is both much faster and

less sensitive to tilt than in the symmetric case. Furthermore, tunneling resonances

constitute a dynamic scheme for the creation of robust few-atom superposition states

in a many-body system.

In the two-level approximation, the ground and excited energy levels are coupled

by atom-atom interactions. The one-level approximation is valid when the interaction

energy is much less than the energy level spacing, i.e., when coupling can be neglected.
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In this regime, the eigenstates of the two-level Hamiltonian have definite occupation

of each level and states in which all atoms occupy the ground level are well described

by the one-level approximation. However, even when the coupling is weak, the two-

level eigenstates undergo eigenvalue crossings when either the number of atoms or the

interaction energy is greater than some critical value. Eigenvalue crossings cause cat-

like states with nonzero occupation of the excited level to emerge among the lowest-

lying eigenstates. When the atom-atom interactions are strong and coupling can

no longer be neglected, atoms occupying the ground and first excited levels become

entangled.
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Chapter 1

INTRODUCTION

In 1925, Einstein generalized the statistics of photons developed by Bose [1] to a

system of non-interacting, massive bosons [2, 3]. He concluded that below a critical

temperature, a finite fraction of the particles condense into the same single-particle

quantum state, forming what is now known as a Bose-Einstein condensate (BEC).

Seventy years later, the first BECs were created experimentally in dilute gases of ru-

bidium [4], sodium [5], and lithium [6], and quickly became the subject of an explosion

of exciting research. Soon after the experimental realization of Bose-Einstein conden-

sation, the interference of two spatially separate BECs was observed [7] demonstrat-

ing the coherence of Bose condensed atoms. Atom lasers, sources of coherent matter

waves, were extracted from BECs first as a series of pulses [8, 9] and later continu-

ously [10]. Today, the versatility of BECs has lead to applications in a wide range of

fields, including quantum information processing, gravitometry, and quantum atom

optics.

Recently, ultracold atoms in optical lattices and multi-well potentials have re-

ceived much attention due to the tunability of their experimental parameters. An

optical lattice is made by standing waves of laser light. Multi-well potentials, on

the other hand, can be created using lasers of various frequencies and geometries

(see Chapter 2). The depth of the wells is easily controlled by varying the intensity

of the laser light. Such control has been used to demonstrate the Mott-insulator-

to-superfluid transition in a BEC with repulsive interactions trapped in a three-
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dimensional optical lattice [11, 12]. Moreover, the strength and even the sign of

atom-atom interactions can be tuned using a Feshbach resonance [13, 14]. Ultracold

atoms in optical lattices therefore constitute designer solid state crystals and provide

an ideal medium for the observation of a vast range of quantum many-body phenom-

ena, including macroscopic quantum tunneling through a potemtial barrier [9] and

“dynamical” tunneling between separate stable regions in phase space [15, 16].

The Mott-insulator-to-superfluid transition is one example of a quantum phase

transition [11, 12, 17]. Like classical phase transitions, a system that passes through a

quantum phase transition undergoes a fundamental change in its macroscopic proper-

ties. For instance, a system of cold atoms in an optical lattice in the superfluid phase

is characterized by delocalized atoms with long-range phase coherence. This is in con-

trast to the Mott insulator phase in which the occupation of each lattice site is exact

and the atoms do not exhibit phase coherence across the lattice [11, 12]. Unlike clas-

sical phase transitions, quantum phase transitions occur at zero temperature. Phase

transitions in a classical system are driven by thermal fluctuations and therefore can-

not occur at zero temperature. However, Heisenberg’s uncertainty principle states

that fluctuations in quantum systems are present even at zero temperature. These

fluctuations can induce transitions between different quantum phases and bring about

a qualitative change in the correlations in the ground state of the system [17].

Our research is a theoretical investigation of two outstanding issues in quantum

many-body theory: macroscopic quantum tunneling and quantum superpositions of

macroscopically distinct states, or Schrödinger cats. We study the quantum dynamics

of many interacting bosons in a double-well potential at zero temperature. A novel

method for the observation of the tunneling of a few atoms through a high barrier

in the presence of many bosons is proposed. In addition, we demonstrate that the
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existence of stationary Schrödinger cat-like states depends strongly on the details of

the trapping potential. Such phenomena provide a stringent test for the validity of

quantum mechanics in many-body systems. Furthermore, we find eigenvalue crossings

in the double-well system which suggest the possibility of phase transitions in the

infinite lattice [17].

1.1 Applications of Ultracold Atoms in Multi-Well Potentials

In 1999 Brennen et al. showed that neutral atoms trapped in an optical lattice

can be used to implement quantum logic gates [18]. Recent studies have focused on

lattices of double-wells with the goal of realizing one- and two-qubit gates [19, 20]. In

these two-well systems, tilt, a potential difference between wells, is applied dynami-

cally and multi-band effects play a vital role in the desired logical operations. Systems

of cold atoms in optical lattices are therefore a promising candidate for quantum com-

putation. Coherent processing of optical information is possible in systems of BECs

in double-well potentials. Ginsberg et al. have demonstrated that optical information

can be transferred between two spatially separate BECs through the conversion of an

optical pulse into a traveling matter wave; a slow light pulse stored in one BEC was

subsequently retrieved from a completely different condensate [21]. This remarkable

experiment has implications in both classical and quantum information processing.

Bose-Einstein condensates in multi-well potentials are also revolutionizing the

field of gravitometry [22]. Atom-chip-based sensors use BECs in double-well poten-

tials to make sensitive measurements of gravity. Local gravitational field gradients

introduce tilt to an otherwise symmetric double-well potential. The resulting atom

population imbalance is determined by analyzing the interference patterns of the

BECs [23, 24]. Another approach to gravitometry uses optical lattices instead of
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double-well potentials. Cold strontium atoms in a lattice will undergo Bloch oscilla-

tions in the presence of a gravitational field. In this case, the strength of the field

is determined by measuring the Bloch frequency [25]. The unprecedented sensitivity

of these effective gravitometers will allow researchers to search for deviations from

Newtonian gravity at very small distances.

Recently, Gati et al. demonstrated that fluctuations in the relative phase of

two BECs in a double-well potential can be used as a primary noise thermometer

to measure temperatures below the critical temperature of the condensate. In this

regime, standard time of flight measurements cannot be applied due to the lack of a

directly visible thermal component. The noise thermometer was used to measure the

heating of a Bose gas. Their experiment demonstrated that the heat capacity of a

Bose gas vanishes at zero temperature [26, 27].

Systems of ultracold atoms in tilted optical lattices allow the direct study of quan-

tum transport phenomena, including Landau-Zener tunneling and Wannier-Stark lad-

ders [28, 29, 30]. These systems are analogous to electrons in a periodic crystal po-

tential where tilt plays the role of an external electric field. Landau-Zener tunneling

refers to interband tunneling in the presence of a strong field. However, when the field

is weak, Landau-Zener tunneling is negligible and a Bloch band splits into equally

spaced energy levels called Wannier-Stark ladders [28]. Wannier-Stark ladders in

optical lattices were observed experimentally in 1996 [29] and recent theoretical stud-

ies have focused on Landau-Zener-like tunneling rates [30]. Clearly, ultracold atoms

provide a new experimental context in which to study quantum transport on a lattice.

Because ultracold atoms in optical lattices mimic traditional solid state systems,

they can be used to create atom analogs of solid state materials and devices. This

new field, dubbed “atomtronics,” exploits the superfluid and insulating regimes of the
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Bose-Hubbard Hamiltonian. The analogs of n-type and p-type semiconductor mate-

rials can be achieved by raising and lowering individual sites in an optical lattice [31].

Moreover, transistor-like behavior of a BEC has been demonstrated theoretically in

a three-well trap [32]. Unlike traditional solid-state devices, the experimental param-

eters of atomtronic devices are easily controllable.

Interest in systems of ultracold atoms in multi-well potentials is not limited to

practical applications; such systems also provide a unique opportunity to study fun-

damental quantum mechanics in finite-sized systems. In particular, a double-well

is one of the simplest potentials that gives rise to many-body phenomena, such as

macroscopic quantum tunneling and Schrödinger cats. In the context of a double-well

potential, a Schrödinger cat describes a state in which one BEC simultaneously occu-

pies both wells. Spatially separate BECs in a two-well potential have recently been

created [33] and tunneling times on the order of 50 ms have been observed [34]. Al-

though Schrödinger cats have not yet been observed experimentally, many theoretical

schemes for their creation in a double-well potential have been proposed.

1.2 Theoretical Studies of Ultracold Atoms in Double-Well Potentials

The success of experiments with ultracold atoms in double-well potentials has

sparked an equally ambitious pursuit of a theoretical description of these systems.

Smerzi et al. showed that the semi-classical dynamics of a BEC in a double-well

potential can be modeled as a classical nonrigid pendulum [35]. The dynamics can

also be mapped onto the Lipkin-Meshkov-Glick (LMG) model for mutually interacting

spin-1
2

particles embedded in a magnetic field [36]. Under this mapping, tilt is modeled

by the presence of a parallel field [37]. A quantum dimer, i.e., a double-well potential,

coupled to a heat bath can also be used to study vibrations in water molecules [38].
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In this model, the two oxygen-hydrogen stretching modes are coupled to the relative

angle between the bonds.

The tunneling dynamics of the double-well system have been studied in various

regimes [39, 35, 40] and ultralong tunneling times [41] have been attributed to the

phenomenon of self-trapping observed in recent experiments [34]. The response of a

BEC in a double-well potential to a sudden change in barrier height was analyzed [42]

in an attempt to better understand the “contrast resonance” observed by Tuchman

and Kasevich under similar experimental conditions [43]. Spekkens and Sipe studied

the transition of the ground state of a repulsive BEC in a double-well potential from

a single to a fragmented condensate as the barrier was increased [44], analogous to

the superfluid-to-Mott-insulator transition in a lattice [11].

Other double-well models have focused on the creation of Schrödinger cat-like

states by dynamically reversing the sign of the atomic s-wave scattering length via a

Feshbach resonance [45] or by ramping the potential barrier [46]. Past studies have

also focused on decoherence effects in double-well potentials. Huang et al. showed

that decoherence due to interactions of atoms with the electromagnetic vacuum can

cause the collapse of Schrödinger cat-like states [45]. Thermal effects [47] and dissipa-

tion [48] constitute other sources of decoherence and can suppress tunneling between

wells [49, 50, 51].

To describe these double-well systems, a Hubbard-like Hamiltonian has often

been employed [26, 35, 36, 39, 40, 41, 42, 44, 45, 46]. However, these studies not

only assume that the trapping potential is symmetric, but effects of excited levels

are completely neglected. A multi-level picture of a tilted two-well potential is espe-

cially relevant to the creation of a quantum computer from neutral atoms [19, 20],

atom-chip-based gravity sensors [23, 24], and to the study of quantum transport phe-
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nomena [28, 29, 30]. Although Tonel et al. have investigated the behavior of the

ground state in a tilted double-well with one allowed energy level [52], mean-field

studies have indicated that a two-level approximation is needed when the interac-

tions between particles are strong [53]. Thus, the current experimental context of

double-well potentials has created an urgent need for a new theoretical analysis of

the many-body double-well problem.

1.3 Overview

We use one- and two-level Hubbard-like Hamiltonians to investigate the behavior

of ultracold bosons in a tilted double-well potential. That is, we relax two assumptions

commonly made in previous studies of similar systems: the symmetric trap assump-

tion and the one-level assumption. Furthermore, we allow atoms to have nonzero

orbital angular momentum, thus introducing additional degrees of freedom into our

system which are not found in other studies.

We find that tilt constitutes an additional source of decoherence in these sys-

tems, causing both the collapse of Schrödinger cat-like states and the suppression

of tunneling between wells [54, 55]. We call this potential decoherence. Potential

decoherence displays radically different behavior from other forms of decoherence.

When the barrier is high, tunneling resonances occur for critical values of the tilt

[54, 55]. At resonance, the potential difference between wells is exactly compensated

by atom-atom interactions. Whereas tunneling through the barrier of a symmetric

trap can be prohibitively slow [41], resonances can be used to achieve experimentally

realistic tunneling times. Moreover, tunneling at resonance is also much less sensitive

to potential decoherence than in the symmetric case. Robust few-atom superposition

states are realized periodically by a many-body ystem tunneling at resonance [55].
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The one-level assumption is valid if coupling of energy levels can be neglected.

Although levels are only completely decoupled when there are no atom-atom interac-

tions, coupling is negligible when the interactions are much weaker than the energy

level spacing. Even in this regime, however, effects of the excited level are still impor-

tant. Eigenvalue crossings, which cannot be described by a one-level approximation,

occur when either the number of particles or the interaction energy is greater than a

critical value [54]. Eigenvalue crossings cause states with definite occupation of the ex-

cited level to emerge among the lowest lying eigenstates. Crossings which involve the

ground state energy of the double-well system can become points of non-analyticity

in the ground state energy of the infinite lattice. Such points constitute quantum

phase transitions [17]. This suggests that phase transitions involving excited energy

bands may occur in an optical lattice even when the bands are weakly coupled.

In Chapter 2, we give a brief overview of Bose-Einstein condensation, optical lat-

tices, multi-dimensional double-well potentials, and the localized wavefunction basis;

angular momentum degrees of freedom are introduced in two- and three- dimensional

systems; and we derive the one- and two-level Hamiltonians from first principles quan-

tum field theory. The one-level system is analyzed in Chapter 3. Analytical tech-

niques, including high order degenerate and non-degenerate perturbation theories,

are used to investigate potential decoherence and tunneling resonances. We provide

analytical expressions for the quantum sloshing of many bosons through the potential

barrier. Analytical results are checked numerically for large systems by exact diago-

nalization of the one-level Hamiltonian. The one-level assumption is relaxed in Chap-

ter 4 and the stationary states of the two-level Hamiltonian are characterized. We

discuss eigenvalue crossings in systems described by one-, two-, and three-dimensional

double-well traps and bounds on the use of a one-level approximation are presented.
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Chapter 5 provides a summary of our results and an outlook for future extensions

of this work. Proofs of analytic results as well as exact treatments of simple limit-

ing cases can be found in Appendices A-E. Finally, algorithms for generating matrix

representations of the one-, two-, and three- dimensional two-level Hamiltonians are

presented in Appendix F.
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Chapter 2

BACKGROUND: ULTRACOLD ATOMS IN A DOUBLE-WELL

As discussed in Chapter 1, many theoretical studies of ultracold bosons in double-

well potentials use a Hubbard-like Hamiltonian. In this chapter, the fundamental

physics of these systems is described, beginning with a brief review of Bose-Einstein

condensation and the response of cold atoms to an optical standing wave. A definition

of double-well potentials in one, two and three dimensions is followed by a description

of localized single-particle wavefunctions. One- and two- level Hamiltonians in one,

two, and three spatial dimensions are derived from first principles quantum field

theory for weakly interacting bosons in an external potential.

2.1 Bose-Einstein Condensation

Bose-Einstein condensation in a uniform, non-interacting gas ofN spinless bosons

in thermodynamic equilibrium is a standard problem which is treated in many sta-

tistical mechanics textbooks [56]. In the Grand Canonical ensemble, the mean occu-

pation number of the single-particle state |ν〉 at some temperature T is given by the

Bose-Einstein distribution function,

fBE(ǫν , µ, T ) =
1

e(ǫν−µ)/kBT − 1
, (2.1)

where ǫν is the energy of the state |ν〉, µ is the chemical potential, and kB is Boltz-

mann’s constant. The chemical potential is determined as a function of the total
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number of particles in the gas and the temperature by the requirement that the sum

of the occupation numbers is equal to N . At high temperatures, the chemical poten-

tial is much less than the energy of the single-particle ground state ǫ0 ≡ 0 because

the average occupation of any state is much less than unity. As the temperature

is lowered, the mean occupation of states and hence the chemical potential increase.

However, µ cannot exceed zero since µ > 0 yields a negative occupation of the ground

state which is nonphysical.

The number of allowed energy states in an energy range ǫ to ǫ + dǫ is given by

g(ǫ)dǫ, where g(ǫ) is the density of states. Because the density of states often varies

as a power of the energy, we will consider densities of states of the form

g(ǫ) = Cǫα−1, (2.2)

where C and α are constants that depend on the details of the confining potential [57].

For a system of free particles in d dimensions, α = d/2. If instead the particles are

confined by a d-dimensional harmonic oscillator potential, the density of states varies

with ǫd−1, i.e., α = d.

The total number of particles in excited states is given by

Nex =

∫ ∞

0

dǫ g(ǫ)fBE(ǫ, µ, T ). (2.3)

Equation (2.3) is maximized when µ = 0. The number of particles in excited states

is equal to the total number of particles in the gas at a temperature Tc determined

by the equation

Nex = N =

∫ ∞

0

dǫ g(ǫ)fBE(ǫ, 0, Tc). (2.4)

This integral can be evaluated in terms of gamma and zeta functions provided α > 1.
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The critical temperature is

kBTc =
N1/α

[CΓ(α)ζ(α)]1/α
. (2.5)

At temperatures less than Tc, the occupation of excited states is

Nex(T ) =

∫ ∞

0

dǫ g(ǫ)fBE(ǫ, 0, T ) = C Γ(α)ζ(α)(kBT )α. (2.6)

The remaining particles must therefore occupy the single-particle ground state. The

occupation of the ground state is

N0(T ) ≡ N −Nex(T ) = N

[

1 −
(

T

Tc

)α]

. (2.7)

The rapid population of the ground state for T < Tc is called Bose-Einstein

condensation. The criterion for Bose-Einstein condensation can be understood by

means of the one-particle density matrix,

ρ(r, r′) ≡ 〈Ψ̂†(r′)Ψ̂(r)〉, (2.8)

where Ψ̂†(r) and Ψ̂(r) are the bosonic creation and annihilation operators. By defini-

tion, the one-particle density matrix ρ(r, r′) is Hermitian and therefore has a complete

orthonormal basis {χj(r)} such that

ρ(r, r′) =
∑

j

λjχ
∗
j (r

′)χj(r). (2.9)

In the context of the non-interacting Bose gas, the eigenfunctions χj are the single-

particle wavefunctions and the eigenvalues λj are the corresponding occupation num-



13

bers. At zero temperature in a gas of non-interacting bosons, the eigenvalue for the

lowest excited single-particle state is equal to N and all others vanish. A system in

which the interactions are nonzero is said to exhibit Bose-Einstein condensation if one

of the eigenvalues is of order N while all others are finite in the limit N → ∞ [57, 58].

The diluteness condition for a weakly interacting Bose gas is

n̄a3
s ≪ 1, (2.10)

where n̄ is the average density of the gas and as is the s-wave scattering length of the

atoms. Although the system is said to be “weakly interacting” when condition (2.10)

is met, the interaction energy can be on the order of the kinetic energy in this regime

and dilute gases can therefore exhibit non-ideal behavior [59].

2.2 Effects of Reduced Dimensionality

Condensation of a non-interacting Bose gas in a three-dimensional harmonic

trap, corresponding to α = 3, requires that T < T3D, where the critical temperature

is given by

kBT3D = ~ω3D

[

N

ζ(3)

]1/3

≈ 0.94 ~ω3DN
1/3. (2.11)

Here ~ωx, ~ωy, and ~ωz are the oscillator energies and ω3D ≡ (ωxωyωz)
1/3. To achieve

two-dimensional Bose-Einstein condensation, corresponding to α = 2, the trapping

frequency ωz in the third dimension must satisfy

~ω2D ≪ kBT2D < ~ωz, (2.12)
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where ω2D ≡ (ωxωy)
1/2 and the critical temperature is given by

kBT2D = ~ω2D

[

N

ζ(2)

]1/2

≈ 0.78 ~ω2DN
1/2. (2.13)

In a one-dimensional harmonic trap, α = 1 and the integral (2.4) diverges. There-

fore, Bose-Einstein condensation cannot occur in the thermodynamic limit. However,

macroscopic occupation of the ground state is possible in a finite system provided

ωx ≪ ω⊥, (2.14)

where we assume the trapping frequencies in the transverse directions are the same,

ωy = ωz ≡ ω⊥. The critical temperature in one dimension is approximately [60]

kBT1D ≃ ~ωx
N

ln(N)
. (2.15)

Thus, Bose-Einstein condensation is possible in one- and two- dimensional harmonic

traps with very large anisotropy [57, 59].

2.3 Optical Lattices

Bose-Einstein condensates in optical lattices are ideal systems for the study of

many-body quantum mechanics, as we saw in Chapter 1. Here we consider the

response of an atom coupled to a classical, single-mode laser of frequency ωl and

wavenumber kl forming a standing wave in one dimension [57, 61, 62, 63]. In the

dipole approximation, the interaction between the atom and the laser light is

Ĥdipole = −µ · E(x̂, t), (2.16)
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where µ is the electric dipole moment of the atom, E is the electric field, and x̂ is the

position operator. For a real standing wave, the applied electric field has the form

E(x̂, t) = Re{E0(x̂)e
iωlt}. (2.17)

An atom initially in the electronic ground state |g〉 will be coupled by the laser light

to an excited internal state |e〉. The energy difference between these two states is

~ωeg. Conventional perturbation theory can be used to determine the change ∆Eg in

the ground-state energy. The shift in energy, known as the ac-Stark effect, is given

by

∆Eg(x) = −~ΩR(x)2/δ, (2.18)

where we have introduced the detuning δ ≡ ωl − ωeg and the effective Rabi frequency

~ΩR(x) ≡ |〈e|µ · E0(x̂)|g〉|. In deriving Equation (2.18), we have neglected the finite

lifetime of the ground and excited states due to spontaneous emission of photons.

Furthermore, we assume that the frequency ωl is close to resonance so that the ground

state |g〉 is not coupled to excited states other than |e〉. The condition for the validity

of Equation (2.18) is |δ| ≫ ΩR.

The energy shift ∆Eg has the form of an effective potential acting on the atom.

The resulting potential is

Vlattice(x) ≡ −~Ω2
R(x)/δ = −(~Ω2

0/δ) sin2(klx) = −V0 sin2(klx), (2.19)

where the spatial dependence of a 1D standing wave gives ΩR(x) = Ω0 sin(klx) and

the lattice depth is defined as V0 ≡ ~Ω2
0/δ. The potential (2.19) is referred to as

an optical lattice. The depth of the lattice V0 can be tuned by simply adjusting

the intensity of the laser light. This potential can be modified using different laser
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Figure 2.1. Schematic of a double-well potential. We study the behavior of ultra-
cold bosons in a double-well potential. Shown is a sketch of atoms occupying a
one-dimensional double-well. The labels left and right will be used throughout our
presentation. Minima occur at x = ±a and the barrier has height V0 at x = 0. Atoms
can tunnel between wells through the barrier, as indicated by the arrow.

geometries [63] to obtain, for instance, a lattice of double-wells [19].

2.4 Double-Well Potentials

Double-well potentials are a simple limiting case of optical lattices which never-

theless exhibit rich quantum behavior. We study the behavior of ultracold bosons,

with mass M and s-wave scattering length as, experiencing a double-well potential.

In this section, we explicitly define double-well potentials in one, two, and three

dimensions.

Let V1 : R → [0,∞) represent an arbitrary one-dimensional (1D) double-well

potential. We assume the following.

1. V1 is infinitely differentiable and can therefore be expanded in a Taylor series.
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This assumption is physically realistic since double-well traps are made using

counter propagating beams [19] or superpositions of periodic and harmonic po-

tentials [34].

2. V ′
1(x) = 0 if and only if x ∈ {−a, 0, a} for some a > 0; V ′

1(x) > 0 for x ∈

(−a, 0)∪ (a,∞) and V ′
1(x) < 0 for x ∈ (−∞,−a)∪ (0, a); V ′′

1 (x) = 0 if and only

if x ∈ {−b, b} for some 0 < b < a; and V ′′
1 (x) > 0 for x ∈ (−∞,−b)∪ (b,∞) and

V ′′
1 (x) < 0 for x ∈ (−b, b). These assumptions guarantee that V1 is a double-well

potential with absolute minima at xL ≡ −a and xR ≡ +a and a local maximum

value of V0 ≡ V1(0) at x = 0.

3. V1(±a) = 0, thus establishing a reference for zero energy. The height of the

barrier between wells is then V0.

4. the double-well is symmetric, that is, V1(−x) = V1(x) for x ∈ R. In practice,

it can be very difficult to create a perfect;y symmetric double-well potential.

This assumption will later be relaxed in order to study the effects of a small

potential difference between wells.

A schematic of a double-well potential is shown in Figure 2.1. The distance a is

analogous to the lattice constant for an infinite lattice and should not be confused

with the s-wave scattering length as of the atoms. We define the recoil energy Er by

Er ≡ ~
2/Ma2. The dimensionless quantity V0/Er provides a useful measure of the

barrier size and is standard in experiments on optical lattices.

We also study two- and three-dimensional double-well potentials of the form

V2(x, y) = V1(x) + V⊥(y) and V3(x, y, z) = V1(x) + V⊥(y) + V⊥(z), (2.20)

where the single-well potential V⊥ : R → [0,∞) satisfies the following assumptions.



18

1. V⊥ is infinitely differentiable and can therefore be expanded in a Taylor series.

2. V ′
⊥(x) = 0 if and only if x = 0; V ′

⊥(x) > 0 for x > 0 and V ′
x(x) < 0 for x < 0;

and V ′′
⊥(x) > 0 for x ∈ R. These assumptions guarantee that V⊥ is a single-well

potential with a global minimum at the origin.

3. V ′′
⊥(0) = V ′′

1 (±a) and V⊥(0) = 0. As we will see, this assumption ensures that

Vd is well approximated by a d-dimensional isotropic harmonic oscillator near

the minima.

In higher dimensions, xL ≡ (xL, 0, 0) and xR ≡ (xR, 0, 0) are the minima of the

double-well potential. Expanding Vd in a Taylor series about x = xj , we find that, to

second order,

Vd(x − xj) ≈
1

2
Mω2x2, (2.21)

for j ∈ {L,R}. That is, each well of the double-well potential resembles a d-

dimensional, isotropic, simple harmonic oscillator with frequency

ω ≡
√

V ′′
1 (a)/M. (2.22)

The harmonic oscillator length aho =
√

~/Mω is related to the double-well po-

tential V1 by

a/aho =
[

V ′′
1 (a)a2/Er

]1/4
. (2.23)

In the many-body system, we will show that off-site interactions can be neglected if

a & 2aho, that is, if the condition

[

V ′′
1 (a)a2/Er

]1/4
& 2, (2.24)
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is satisfied. A lower bound on V0,

V0 >
d+ 2

2
~ω =

d+ 2

2

√

ErV ′′
1 (a)a2. (2.25)

can be achieved by requiring that the first excited level of the isotropic oscillator

is lower than the barrier height. Together, Equations (2.24) and (2.25) imply the

necessary condition

V0/Er & 2(d+ 2). (2.26)

In the double-well experiments of [34], the barrier height V0 is approximately 11Er.

A much larger barrier, V0 ≈ 2000Er, is used in the gravity-sensor experiments of [23].

Barrier heights ranging between 10 and 40 recoils are used in the experiments of [19].

Clearly, condition (2.26) is experimentally feasible.

2.4.1 Localized Single-Particle Wavefunctions

We now turn our attention to the construction of localized wavefunctions in a

d-dimensional double-well potential Vd. For j ∈ {L,R}, the localized wavefunctions

φ
(ℓ,m)
d (x − xj) ≡ 〈x|j, ℓ,m〉d, (2.27)

can be approximated by the eigenfunctions of the d-dimensional, isotropic, simple

harmonic oscillator (2.21) with corresponding energy eigenvalues (ℓ + d/2)~ω. This

approximation is valid when a ≫ aho. However, we do not restrict ourselves to this

approximation. Here ℓ ∈ {0, 1} is called the energy level index since the energy of the

state |j, ℓ,m〉d depends only on the value of ℓ. Because an isotropic oscillator potential

is central, it is possible to construct eigenfunctions which are also eigenfunctions of

the z- and the total angular momentum operators L̂z and L2 [64]. The index m counts
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the quanta of angular momentum in the z-direction.

In one dimension, we have

φ
(0,0)
1 (x) = a

−1/2
ho π−1/4e−x2/2a2

ho ,

φ
(1,0)
1 (x) = a

−1/2
ho 21/2π−1/4(x/aho) e

−x2/2a2

ho ,
(2.28a)

where aho is given by Equation (2.23). In two and three dimensions, the eigenfunctions

are given by

φ
(0,0)
2 (s, φ) = a−1

ho π
−1/2e−s2/2a2

ho ,

φ
(1,±1)
2 (s, φ) = a−1

ho π
−1/2(s/aho) e

−s2/2a2

hoe±iφ,
(2.28b)

and

φ
(0,0)
3 (r, θ, φ) = a

−3/2
ho π−3/4e−r2/2a2

ho ,

φ
(1,0)
3 (r, θ, φ) = a

−3/2
ho 21/2π−3/4(r/aho) e

−r2/2a2

ho cos(θ),

φ
(1,±1)
3 (r, θ, φ) = a

−3/2
ho π−3/4(r/aho) e

−r2/2a2

ho sin(θ)e±iφ,

(2.28c)

where we have introduced the plane polars (s, φ) and the spherical polars (r, θ, φ)

defined by s =
√

x2 + y2, r =
√

x2 + y2 + z2, θ = cos−1(z/r), and φ = tan−1(y/x).

The localized wavefunctions are shown in Figure 2.2.

The coordinate representation of L̂z is

L̂z = −i~ ∂

∂φ
. (2.29)

One can show [64] that φ
(ℓ,m)
d are eigenfunctions of L̂z with z-component of angular

momentum equal to m~, that is,

L̂zφ
(ℓ,m)
d = m~φ

(ℓ,m)
d for d ∈ {1, 2, 3}. (2.30)

It is in this context that the index m of the localized states |j, ℓ,m〉d, given by (2.27),
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Figure 2.2. Localized wavefunctions: Harmonic oscillator approximation. In the
harmonic oscillator approximation, the localized wavefunctions are assumed to be
eigenfunctions of the simple harmonic oscillator with frequency ω =

√

V ′′
1 (a)/M .

Shown are the localized probability densities |φ(ℓ,m)
d |2, given by Equation (2.28), offset

by the energy of the corresponding level. The left-most panel corresponds to the one-
dimensional case, the middle panel to two dimensions, and the right-most panel to
three dimensions. In one dimension, the angular momentum of the localized states
is always zero. On the other hand, in two and three dimensions the degenerate
wavefunctions of the excited level are eigenfunctions of the orbital angular momentum
operators. This choice of wavefunctions introduces new degrees of freedom into the
two-level Hubbard-like Hamiltonian.
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is called the angular momentum index. We emphasize that neither j nor ℓ should

be mistaken as the “total angular momentum”; j ∈ {L,R} and ℓ ∈ {0, 1} are the

well and energy level indices, respectively. The allowed values of m do, however,

depend on the value of ℓ. When ℓ = 0, there is no angular momentum, i.e., m = 0.

When ℓ = 1, the allowed values of m depend on the dimensionality d: m = 0 in 1D,

m ∈ {−1,+1} in 2D, and m ∈ {−1, 0,+1} in 3D.

Analogous to the creation of Wannier functions in a lattice [62, 63], wavefunctions

localized in the left and right wells can be constructed by taking appropriate superpo-

sitions of symmetric and antisymmetric eigenstates of the single-particle Hamiltonian.

The Hamiltonian for a single particle of mass M in a double-well potential is

Ĥdouble−well ≡
p̂2

2M
+ Vd(x̂). (2.31)

Because Vd is separable, the eigenstates are products of the one-dimensional eigen-

states, that is, |nx, ny, nz〉 = |nx〉⊗|ny〉⊗|nz〉, with corresponding energy eigenvalues

εnx,ny,nz
= εnx

+ εny
+ εnz

.

Consider the eigenstates |nx〉 of the 1D potential V1. When condition (2.25) is

met, the four lowest lying states occur in nearly degenerate pairs of symmetric and

antisymmetric states, as in Figure 2.3(a). The left- and right-localized states are

|L, 0, 0〉1 = (|0x〉 + |1x〉)/
√

2, |R, 0, 0〉1 = (|0x〉 − |1x〉)/
√

2,

|L, 1, 0〉1 = (|2x〉 + |3x〉)/
√

2, |R, 1, 0〉1 = (|2x〉 − |3x〉)/
√

2,
(2.32a)

where the state |j, ℓ,m〉d was defined in Equation (2.27). The 1D localized wavefunc-

tions, given by φ
(ℓ,0)
1 (x − xj) ≡ 〈x|j, ℓ, 0〉1, are shown in Figure 2.3(b). In 2D and

3D, we construct localized wavefunctions which are eigenfunctions of the z- and total
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angular momentum operators. The two- and three- dimensional states are

|j, 0, 0〉2 = |j, 0, 0〉1 ⊗ |0y〉,

|j, 1,±1〉2 = (|j, 1, 0〉1 ⊗ |0y〉 ± i|j, 0, 0〉1 ⊗ |1y〉) /
√

2,
(2.32b)

and

|j, 0, 0〉3 = |j, 0, 0〉2 ⊗ |0z〉,

|j, 1, 0〉3 = |j, 0, 0〉2 ⊗ |1z〉,

|j, 1,±1〉3 = |j, 1,±1〉2 ⊗ |0z〉,

(2.32c)

where j ∈ {L,R}. The energy of the state |j, ℓ,m〉d is defined as

Eℓ
d ≡ d〈j, ℓ,m|Ĥdouble−well|j, ℓ,m〉d. (2.33)

In one dimension, the level energies depend only on ℓ and are given by

E0
1 =

ε1x
+ ε0x

2
and E1

1 =
ε3x

+ ε2x

2
. (2.34)

Likewise, in two-dimensions the energies Eℓ
2 are

E0
2 = E0

1 + ε0y
and E1

2 =
1

4

(

E0
1 + E1

1 + ε0y
+ ε1y

)

. (2.35)

Finally, in three dimensions we find that

E0
3 = E0

2 + ε0z
and E1

3 = E0
2 + ε1z

= E1
2 + ε0z

. (2.36)

In 3D, E1
3 is independent of m provided E0

1 = ε0y
= ε0z

and E1
1 = ε1y

= ε1z
. Since we

assume that V ′′
1 (xL,R) = V ′′

⊥(0), the conditions E0
1 ≈ ε0y

and E1
1 ≈ ε1y

are satisfied

for large V0/Er.
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Figure 2.3. Localized wavefunctions: Superpositions of eigenfunctions. (a) Shown are
the first four eigenfunctions 〈x|nx〉 of a double-well V1(x) in arbitrary units. The
eigenfunctions are offset by the corresponding eigen energy and are plotted in al-
ternating solid blue and dashed red lines for clarity. The lowest eigenstates occur
in nearly degenerate pairs of symmetric and antisymmetric states. (b) Spatially lo-
calized states can be constructed by superpositions of the appropriate eigenstates.
Shown are the states 〈x|L, 0, 0〉1 (solid blue line) and 〈x|R, 1, 0〉1 (dashed red line)
offset by the corresponding energy. In both (a) and (b), the double-well potential is
indicated in black for reference.
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2.5 Multidimensional One- and Two-Level Hamiltonians

In terms of the bosonic annihilation and creation field operators Ψ̂(x) and Ψ̂†(x),

the second-quantized Hamiltonian for a system of N interacting bosons of mass M

confined by an external potential Vd(x) at zero temperature is given by

Ĥd =

∫

dx Ψ̂†
d(x)

(

− ~
2

2M
∇2

d + Vd(x)

)

Ψ̂d(x)

+
1

2

∫

dx Ψ̂†
d(x)

[
∫

dx′ Ψ̂†
d(x

′)Vint(x − x′)Ψ̂d(x
′)

]

Ψ̂d(x), (2.37)

where Vint(x−x′) is the two-body interatomic potential. At low densities, only binary

collisions are relevant. In the low energy limit, these collisions are characterized only

by the s-wave scattering length of the atoms. Then the two-body potential can be

replaced by the effective interaction [59]

Vint(x − x′) = gd δ
(d)(x − x′), (2.38)

where the coupling constant gd depends on the s-wave scattering length as of the

particles and δ(d)(x− x′) is the d-dimensional Dirac delta distribution. In the s-wave

limit, the second-quantized Hamiltonian (2.37) reduces to [57, 61, 62, 63, 65]

Ĥd =

∫

dx Ψ̂†
d(x)

(

− ~
2

2M
∇2

d + Vd(x)

)

Ψ̂d(x) +
gd

2

∫

dx Ψ̂†
d(x)Ψ̂†

d(x)Ψ̂d(x)Ψ̂d(x).

(2.39)

For a d-dimensional trapping potential Vd(x), the coupling constants are

g1 = (2~ω⊥)as, g2 =
(

√

8π~3ωz/M
)

as, and g3 = (4π~
2/M)as, (2.40)



26

where g1 and g2 are obtained by projecting onto the mean-field ground state in the

transverse directions [66]. The 1D and 2D transverse trapping frequencies ω⊥ and ωz

must be sufficiently high to reduce the dimensionality of the single-particle wavefunc-

tions, as described in Section 2.2, but should not be near any potential resonances [67].

The field operators can be expanded in terms of the localized single-particle

wavefunctions [65],

Ψ̂(x) =
∑

j,ℓ,m

b̂
(ℓ,m)
j φ

(ℓ,m)
d (x − xj), (2.41)

for j, j′ ∈ {L,R} and ℓ ∈ {0, 1}. The allowed values of m depend on the values

of both d and ℓ, as discussed in the previous section. The localized wavefunctions

φ
(ℓ,m)
d (x−xj) = 〈x|j, ℓ,m〉d are given by Equation (2.32). For the lattice, φ

(ℓ,m)
d (x−xj)

would be Wannier functions. The simplest description of many bosons in a double-well

potential is achieved by making the one-level approximation. In this approximation,

ℓ = 0 and all atoms occupy the lowest energy level in each well. However, the first

excited level plays an important role in many applications of these systems [19, 20]

and cannot be neglected when the interactions are strong [53, 54]. Therefore, we also

consider a two-level approximation in which ℓ ∈ {0, 1}, that is, the atoms are allowed

to occupy both the lowest and first excited energy levels in each well.

In d ∈ {1, 2, 3} spatial dimensions, the two-level Hamiltonian Ĥd is

Ĥ1 =
∑

ℓ

{

Ĥ
(ℓ,0)
1 + Eℓ

1 N̂
(ℓ,0)

}

+ 2U11
1

∑

j

{

∑

ℓ 6=ℓ′

[

n̂
(ℓ,0)
j n̂

(ℓ′,0)
j

]

}

+U11
1

∑

j

{

(

b̂
(0,0)†
j b̂

(1,0)
j

)2

+ h.c.

}

, (2.42a)
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Ĥ2 =
∑

ℓ,m

{

Ĥ
(ℓ,m)
2 + Eℓ

2 N̂
(ℓ,m)

}

− J−11
2

∑

j 6=j′

{

b̂
(1,−1)†
j b̂

(1,+1)
j′ + h.c.

}

+2U11
2

∑

j







∑

(ℓ,m)6=(ℓ′,m′)

[

n̂
(ℓ,m)
j n̂

(ℓ′,m′)
j

]







+2U11
2

∑

j

{

(

b̂
(0,0)†
j

)2

b̂
(1,−1)
j b̂

(1,+1)
j + h.c.

}

, (2.42b)

Ĥ3 =
∑

ℓ,m

{

Ĥ
(ℓ,m)
3 + Eℓ

3 N̂
(ℓ,m)

}

− J−11
3

∑

j 6=j′

{

b̂
(1,−1)†
j b̂

(1,+1)
j′ + h.c.

}

+2U11
3

∑

j







∑

(ℓ,m)6=(ℓ′,m′)

[

ǫℓ
′m′

ℓm n̂
(ℓ,m)
j n̂

(ℓ′,m′)
j

]







+U11
3

∑

j

{

(

b̂
(0,0)†
j b̂

(1,0)
j

)2

+ h.c.

}

+U11
3

∑

j

{[

2
(

b̂
(0,0)†
j

)2

+
(

b̂
(1,0)†
j

)2
]

b̂
(1,−1)
j b̂

(1,+1)
j + h.c.

}

, (2.42c)

where

Ĥ
(ℓ,m)
d ≡ −J ℓ|m|

d

∑

j 6=j′

b̂
(ℓ,m)†
j b̂

(ℓ,m)
j′ + U

ℓ|m|
d

∑

j

n̂
(ℓ,m)
j

(

n̂
(ℓ,m)
j − 1

)

, (2.42d)

is the one-level Hamiltonian and

ǫℓ
′m′

ℓm ≡







1/2, ℓ = ℓ′ = |m+m′| = 1

1, otherwise
, (2.42e)

for all allowed values of j, ℓ, and m. The operators b̂
(ℓ,m)
j and b̂

(ℓ,m)†
j satisfy the

usual bosonic annihilation and creation commutation relations, n̂
(ℓ,m)
j ≡ b̂

(ℓ,m)
j b̂

(ℓ,m)
j

are number operators, and N̂ (ℓ,m) ≡ n̂
(j,m)
L + n̂

(j,m)
R .
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Single particles in the ℓth energy level with z angular momentum m~ tunnel be-

tween wells with hopping strength J
ℓ|m|
d and pairs of particles interact in the same well

interact with interaction energy U
ℓ|m|
d . Interactions can be either repulsive, U

ℓ|m|
d > 0,

or attractive, U
ℓ|m|
d < 0. While the hopping strengths J10

d and J±11
d are greater than

J00
d , the interaction energies U10

d and U11
d are smaller in magnitude than U00

d . Inter-

actions of two atoms in different levels of the same well are on the order of U00
d and

cannot be neglected. Furthermore, while single-atom transitions between energy lev-

els are forbidden by the orthogonality of the localized wavefunctions, two atoms can

hop together between energy levels such that the z-component of the on-site angular

momentum is conserved. Thus the energy levels are coupled by the interaction energy

U11
d . Energy levels only become completely decoupled when U11

d = 0, but the effects

of coupling are negligible for N |U00
d | ≪ 2∆E10

d . For clarity, pictorial interpretations

of Ĥ1, Ĥ2, and Ĥ3, are provided in Figures 2.4, 2.5, and 2.6.

The hopping strengths J
ℓ|m|
d and J−11

d given by

J
ℓ|m|
d = −

∫

dx
[

φ
(ℓ,m)
d (x − xL)

]∗
(

− ~
2

2M
∇2 + V (x)

)

φ
(ℓ,m)
d (x − xR), (2.43a)

J−11
d = −

∫

dx
[

φ
(1,−1)
d (x − xL)

]∗
(

− ~
2

2M
∇2 + V (x)

)

φ
(1,+1)
d (x − xR), (2.43b)

and interaction energies U
ℓ|m|
d given by

U10
d = (3/4)U00

d and U11
d = (1/2)U00

d , (2.43c)

where

U00
d =

gd

2

∫

dx |φ(0,0)
d (x − xL)|4. (2.43d)

In our derivation of the one- and two-level Hamiltonians, we have assumed that the
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(0,0) (0,0)

(1,0) (1,0)

Figure 2.4. Pictorial representation of the one-dimensional Hamiltonian Ĥ1. The
allowed modes of the 1D system are depicted as circles. Blue and green circles cor-
respond to modes in the left and right wells, respectively. The level index ℓ and
the angular momentum index m are indicated by the ordered pair (ℓ,m) in the cen-
ter of the circles. Tunneling processes are depicted as solid red lines. One or two
dots are drawn near the lines corresponding to whether the transition involves one or
two particles. Dashed magenta lines represent interactions between two atoms. The
parameters which appear next to the lines are the coefficients of the corresponding
process in the 1D Hamiltonian (2.42a). The 1D Hamiltonian consists of two one-level
Hamiltonians coupled by the interaction energy U11

1 .
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RIGHTLEFT

J 0
2D

J 2D
1

J 11

J 1

2D

2D

(0,0) (0,0)

(1,−1)(1,−1)

(1,+1)(1,+1)

(a) One-atom processes

U2D
11 U2D

11

U2D
11

U2D
11 U2D

11

U2D
11

U2D
00

(0,0)

(1,−1) (1,+1)

(b) Two-atom processes

Figure 2.5. Pictorial representation of the two-dimensional Hamiltonian Ĥ2. This
diagram is similar to Figure 2.4 except that the one- and two-atom processes are
depicted separately in (a) and (b), respectively. (a) A single atom can tunnel between
wells provided it remains in the same energy level. However, as indicated by the
diagonal lines, the atom need not remain in the same angular momentum state. (b)
Within each well, a pair of atoms can hop from the ℓ = 0 level to the ℓ = 1 level with
one atom entering angular momentum state m = −1 and the other entering state
m = +1.
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(a) One-atom processes

U3D
00

U3D
11U3D
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U3D
11U3D
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U3D
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(0,0)

(1,−1) (1,0) (1,+1)

(b) Two-atom processes

Figure 2.6. Pictorial representation of the three-dimensional Hamiltonian Ĥ3. This
diagram is similar to Figure 2.5. (a) The single-atom processes are essentially the
same as in the one- and two- dimensional cases. One important difference is that
the tunneling strength J10

d of the excited level is greater than the tunneling strength
J00

d in 1D, whereas in 3D these energies are equal. (b) In addition to the two-atom
processes present in the 1D and 2D Hamiltonians, two atoms in the same well can
tunnel from the m = 0 state to the m = ±1 states all within the energy level ℓ = 1.
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off-site interaction terms, e.g.,

gd

2

∫

dx |φ(0,0)
d (x − xL)|2|φ(0,0)

d (x − xR)|2,

are much smaller than U00
d .

In the harmonic oscillator approximation, we find

U00
d = ~ω

Gd√
2π

(aho

a

)2−d

, (2.44)

where ~ω = ∆E10
d is the energy level spacing. The dimensionless coupling constants

are defined as

G1 ≡ asa/a
2
⊥, G2 ≡ as/az, and G3 ≡ as/a. (2.45)

Here a⊥ =
√

~/Mω⊥ and az =
√

~/Mωz are the transverse trapping lengths in 1D

and 2D, respectively (see Equations (2.12) and (2.14)). Off-site interactions scale like

U00
d exp[−(a/aho)

2]. If a & 2aho, then exp[−(a/aho)
2] . 0.02 and the off-site terms are

much smaller than U00
d in magnitude. We can therefore neglect interactions between

atoms in the left well with those in the right when condition (2.24) is met. Although

off-site interactions have been neglected in the derivation of Hamiltonian (2.42), all

other nonzero terms have been included. While the harmonic oscillator assumption

was used to evaluate the interaction energies (2.43c), we have also evaluated these

energies numerically for specific potentials.

From the definition (2.32) of the exact wavefunctions φ
(ℓ,m)
d (x−xj), one can show

the relation

J00
1 =

ε1x
− ε0x

2
and J10

1 =
ε3x

− ε2x

2
. (2.46a)
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Furthermore, the 2D and 3D hopping strengths are related to J00
1 and J10

1 by

J00
d = J00

1 , J±11
d = (J10

1 ± J00
1 )/2, J10

3 = J00
1 , for d ∈ {2, 3}. (2.46b)

It is therefore sufficient to compute only the 1D hopping parameters. In the harmonic

oscillator approximation, the localized wavefunctions are given by Equation (2.28a)

and the 1D hopping strengths have the form

J00
1 ≈ 1

2
Er

{

(

a

aho

)2
[

(

a

aho

)2

− 1/2

]

− 2V0/Er

}

e−a2/a2

ho , (2.47a)

J10
1 ≈ J00

1

[

(

a

aho

)2

− 1

]

+
1

2
Er

{

(

a

aho

)6

− 9

2

(

a

aho

)4

+

(

a

aho

)2
}

e−a2/a2

ho (2.47b)

where Er is the recoil energy of the double-well and a/aho & 2. Equation (2.47)

is derived in Appendix A for an arbitrary double-well potential. Clearly, the hop-

ping strengths have a decaying exponential dependence on (a/aho)
2. Moreover, since

J10
1 /J

00
1 is on the order of (a/aho)

2 and J00/~ω is on the order of exp[−(a/aho)
2], we

have

J00
1 ≪ J10

1 ≪ ~ω = ∆E10
d . (2.48)

Therefore, the hopping strength is greater in the ℓ = 1 energy level than in the ℓ = 0

energy level, as expected.

To model a potential difference of ∆V between the wells, we increase the energy

of all the atoms in the left well and decrease the energy of the atoms in the right well

by an amount ∆V/2. The one-level Hamiltonian becomes

Ĥ
(ℓ,m)
d → Ĥ

(ℓ,m)
d +

∆V

2

(

n̂
(ℓ,m)
L − n̂

(ℓ,m)
R

)

, (2.49)
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where ∆V is called the tilt of the double-well. The left well has a higher energy than

the right well for ∆V > 0, the right well has a higher energy for ∆V < 0, and ∆V =

0 indicates a symmetric double-well potential. Ultracold atoms in tilted double-

well potentials are especially relevant to quantum information processing [19, 20],

gravitometry [23, 24], and quantum atom optics [28, 29, 30].

Throughout our discussion, we will operate in Fock space. A state vector in Fock

space has the form

|Ψ〉 =

Ωd−1
∑

nd=0

cnd
|nd〉, |nd〉 =

⊗

ℓ,m

|n(ℓ,m)
L , n

(ℓ,m)
R 〉(ℓ,m), (2.50)

where n
(ℓ,m)
j represents the number of atoms in the ℓth energy level of the jth well

with z angular momentum m~. Here Ωd is size of the Hilbert space {|nd〉}. We

work in the canonical ensemble, that is, we require the total number of particles

N =
∑

j,ℓ,m n
(ℓ,m)
j to be constant. Under this restriction, the size of the Hilbert

space is given by

Ωd =
(N + 2d+ 1)!

N !(2d+ 1)!
. (2.51)

For large N , the multiplicity Ωd scales like N2d+1. The stationary states of the two-

level Hamiltonian are discussed in Chapter 4.

When the coupling between levels is very weak, N |U00
d | ≪ 2∆E10

d , the effects of

the excited level can be neglected and a one-level approximation, in which all particles

occupy the ground level of each well, is valid. The one-level Hamiltonian is

Ĥ
(0,0)
d ≡ −J00

d

∑

j 6=j′

b̂
(0,0)†
j b̂

(0,0)
j′ + U00

d

∑

j

n̂
(0,0)
j

(

n̂
(0,0)
j − 1

)

+
∆V

2

(

n̂
(0,0)
L − n̂

(0,0)
R

)

.

(2.52)
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In this approximation, an arbitrary state vector in Fock space is given by

|Ψ〉 =

N
∑

nL=0

cnL
|nL, N − nL〉(0,0), (2.53)

where nL and nR = N − nL represent the number of particles in the left and right

wells, respectively. The size of the Hilbert space {|nL, N−nL〉(0,0)} reduces to N +1.

The one-level approximation is discussed in detail in Chapter 3. In the limit of an

infinite number of wells, the one-level Hamiltonian reproduces the single-band Bose-

Hubbard Hamiltonian for weakly interacting bosons in an optical lattice. That is, as

the number of sites goes to infinity,

Ĥ
(0,0)
d → ĤBH ≡ −J

∑

<j,j′>

b̂†j b̂j′ + U
∑

j

n̂j (n̂j − 1) +
∑

j

Vjn̂j (2.54)

where < j, j′ > indicates a sum over nearest neighbors.
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Chapter 3

ONE-LEVEL APPROXIMATION

In this chapter, we study the behavior of N ultracold bosons in a tilted double-

well potential in the one-level approximation. The stationary states fall into one of

two categories: harmonic oscillator-like states or Schrödinger cat-like states. When

the barrier between wells is low, all states are oscillator-like. Cat-like states dominate

the spectrum in the high barrier limit. We show that Schrödinger cats are highly

sensitive to imperfections in the trapping potential; cat-like states are easily localized

when a small tilt is introduced. Thus, tilt constitutes a new source of decoherence,

called potential decoherence. Potential decoherence is a unique form of decoherence

because cat-like states reappear for critical values of the tilt, unlike for decoherence

due to coupling to a thermal heat bath.

The evolution of a state in which all atoms initially occupy one well is studied

in various parameter regimes. In the high and low barrier limits, the atoms undergo

quantum sloshing, that is, all atoms tunnel through the potential barrier. Interactions

damp the tunneling when the barrier is low; quantum revivals occur periodically

at times determined solely by the interaction energy. Although tunneling is easily

suppressed by potential decoherence, tunneling resonances occur for critical values of

the tilt when the barrier is high. Resonances are caused by the reappearance of the

cat-like eigenstates. At resonance, only a fraction of particles tunnel between wells.
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3.1 One-Level Hamiltonian

The one-level Hamiltonian for N weakly interacting bosons in a tilted two-well

potential is

Ĥ = −J
∑

j 6=j′

b̂†j b̂j′ + U
∑

j

n̂j (n̂j − 1) +
∆V

2
(n̂L − n̂R) . (3.1)

Equation (3.1) was derived in Chapter 2. Because there are no angular momentum

degrees of freedom in the lowest energy level, the cumbersome sub- and super-scripts

of Equation (2.52) have been dropped. Recall that the subscript j ∈ {L,R} is the

well index, J is the hopping strength, U is the interaction potential, and ∆V is the

potential difference between wells, or tilt.

For convenience, we define the following operators,

ĤU ≡ U
∑

j

n̂j (n̂j − 1) , ĤJ ≡ −J
∑

j 6=j′

b̂†j b̂j′, and Ĥ∆V ≡ ∆V

2
(n̂L − n̂R) . (3.2)

The Hamiltonian can then be written Ĥ = ĤU+ĤJ+Ĥ∆V . We identify two parameter

regimes: J ≪ |U |, the high barrier regime; and J ≫ N |U |, the low barrier regime.

When the barrier is high, ĤJ can be treated as a perturbation to ĤU and vice versa

for a low barrier.

As stated in Chapter 2, an arbitrary state vector in Fock space is given by

|Ψ〉 =
N

∑

nL=0

cnL
|nL, N − nL〉, (3.3)

where nL and nR = N − nL represent the number of particles in the left and right

wells, respectively. We require the total number of particles N to be constant. Under
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this restriction, the Hamiltonian (3.1) reduces to an (N + 1) × (N + 1) tridiagonal

matrix with elements

Hij ≡ 〈i, N − i|Ĥ|j, N − j〉 = H
(U)
ij +H

(J)
ij +H

(∆V )
ij , (3.4a)

where

H
(U)
ij = U

(

2(i−N/2)2 +N(N/2 − 1)
)

δij , (3.4b)

H
(J)
ij = −J

(

√

(i+ 1)(N − i) δi,j−1 +
√

(j + 1)(N − j) δi,j+1

)

, (3.4c)

H
(∆V )
ij = ∆V (i−N/2) δij, (3.4d)

for i, j ∈ {0, 1, 2, . . . , N}.

3.2 Entanglement Measures

In order to characterize the entanglement of a state |Ψ〉, we utilize two entan-

glement measures adapted from standard definitions for chains of qubits: Meyer’s

measure of the impurity [68, 69] and the von Neumann entropy S, which, in our case,

is equivalent to the Shannon entropy [70]. The impurity is given by

Q =
N + 1

N

[

1 − 1

2

(

Trρ̂2
L + Trρ̂2

R

)

]

=
N + 1

N

[

1 −
N

∑

nL=0

|cnL
|4

]

, (3.5)

where ρ̂L(R) = TrR(L)|Ψ〉〈Ψ| is the reduced density matrix. The entropy is

S = −Trρ̂L logN+1 ρ̂L = −Trρ̂R logN+1 ρ̂R = −
N

∑

nL=0

|cnL
|2 logN+1 |cnL

|2. (3.6)
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Here 0 ≤ Q, S ≤ 1 with Q = S = 0 if |Ψ〉 is a pure state and Q = S = 1

for a maximally mixed state. A pure state satisfies cnL
= δnL,n′

L
for some n′

L ∈

{0, . . . , N} whereas a maximally mixed state is defined by cnL
= 1/

√
N + 1 for every

nL ∈ {0, . . . , N}.

In particular, we are interested in using the impurity Q and the entropy S to

characterize the entanglement of partial Schrödinger cat states. These states have the

form

|ψ±
cat;nL〉 =

1√
2
(|nL, N − nL〉 ± |N − nL, nL〉), (3.7)

for 0 ≤ nL < N/2. Here nL = 0 represents the extreme Schrödinger cat state

|ψ±
cat; 0〉 = (|0, N〉 ± |N, 0〉) /

√
2 in which all atoms simultaneously occupy both wells.

For partial cat states, we find that

Qcat =
N

2(N + 1)
and Scat = logN+1(2), (3.8)

Unfortunately, the above measures do not distinguish between the states |ψ±
cat;nL〉

and, say, |ψ±
cat;n

′
L〉 where n′

L 6= nL. Such a distinction is vital as the decoherence of

a partial cat state |ψ±
cat;nL〉 is highly sensitive to the value of nL [45, 54, 55], as we

will demonstrate.

In order to better identify cat-like states, it is desirable to have a quantum

measure whose value lies between 0 and 1 and which is maximized for partial cat

states. In addition, the measure should distinguish between states |ψ±
cat;nL〉 and

|ψ±
cat;n

′
L〉. As we will show, the quantity P̄cat(nc) defined by

P̄cat(nc) = |〈Ψ|P̂cat(nc)|Ψ〉|, (3.9)
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where

P̂cat(nc) ≡
nc

∑

nL=0

(|nL, N − nL〉〈N − nL, nL| + h.c.) for 0 ≤ nc ≤ N/2. (3.10)

is the Schrödinger-cat projection operator, satisfies these requirements. It is trivial

to show that P̄cat(nc) = 0 for pure states and that P̄cat(nc) = 1 for partial cat states

|ψnL
〉 such that nL ≤ nc. That 0 ≤ P̄cat(nc) ≤ 1 follows directly from the unitarity

of the operator P̂cat(N/2). Partial cat states with P̄cat(nc) = 1 have a minimum

peak separation of N − 2nc. We call the P̄cat(nc) the cat measure. The cat measure

is only valid when the amplitudes cnL
= 〈nL, N − nL|Ψ〉 are real. Our measure is

similar to one proposed by Huang and Moore [45]. Their measure, however, does not

distinguish between cat states and pure states. Recently, Korsbakken et al. proposed

a measurement-based measure of cat states which we do not consider here [71].

3.3 Characterization of Energy Eigenstates

We begin our analysis of the one-level approximation with a characterization of

the eigenstates |φk〉 of the Hamiltonian (3.1). The energy eigenstates satisfy

Ĥ|φk〉 = εk|φk〉, (3.11)

and can be expanded in terms of the number states |nL, N − nL〉 as

|φk〉 =

N
∑

nL=0

c(k)
nL
|nL, N − nL〉. (3.12)

Here |c(k)
nL |2 is the probability of finding nL particles in the left well when the system is

in the kth excited state. The discrete probability amplitudes c
(k)
nL and the correspond-
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ing energy eigenvalues εk are readily obtained by diagonalizing the matrix (3.4). The

eigenstate label k is chosen to increase with increasing energy.

3.3.1 Harmonic-Oscillator-Like States

Consider a system of non-interacting bosons in a symmetric potential, that is,

U = ∆V = 0 and Ĥ = ĤJ . The probability amplitude of the kth excited state is

c(k)
nL

= AkHk(nL|N)
√

P1/2(nL|N), (3.13)

where P1/2(nL|N) is the binomial distribution, Hk(nL|N) is a kth order discrete Her-

mite polynomial, and Ak is a normalization constant (see Appendix B). The corre-

sponding energy eigenvalue is

εk = −J(N − 2k). (3.14)

The eigenstates of the noninteracting Hamiltonian are called harmonic-oscillator-like

states because the (discrete) probabilty amplitudes closely resemble the (continuous)

eigenfunctions of the one-dimensional simple harmonic oscillator and the eigenvalues

are linear in k. The ground state and several excited states are shown in Figure 3.1.

All eigenstates and eigenvalues are shown in Figure 3.2. The ground state amplitude

c
(0)
nL , given by

c(0)nL
=

√

P1/2(nL|N) =
1

2N/2

√

N !

nL!(N − nL)!
, (3.15)

is a binomial distribution of number states, as in Fig. 3.1(a). This distribution

represents a superfluid state with energy ε0 = −NJ .

The oscillator-like states are significantly entangled, as can be seen in Figure 3.3.
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Figure 3.1. Eigenstate amplitudes: Harmonic oscillator-like states. Shown are the
discrete probability amplitudes c

(k)
nL of the eigenstates |φk〉 when U = ∆V = 0 and

N = 100 for (a) the ground state, (b) the first excited state, (c) the 19th excited
state, and (d) the 20th excited state. These states are called oscillator-like because
they resemble the continuous eigenfunctions of the 1D simple harmonic oscillator.
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Figure 3.2. Eigenstates and eigenvalues: Harmonic oscillator-like states. (a) The

eigenstate amplitudes |c(k)
nL | of the Hamiltonian Ĥ when U = ∆V = 0 and N = 100

are plotted for all values of nL and k. Amplitude is indicated by the colorbar. A
vertical cross section of this plot produces curves similar to those of Fig. 3.1. (b)
The eigenvalues εk of the same system as (a). The line serves as a guide to the eye.
Just as in the 1D simple harmonic oscillator, the eigenvalues of the non-interacting
systems are linear in k. The insert is a zoom of the indicated region.
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Figure 3.3. Entanglement measures: Harmonic oscillator-like states. Top panel:
Shown are the probability amplitudes |cknL

| for all nL and k for a system of N = 100
non-interacting atoms in a symmetric double-well. The color bar is the same as in
Figure 3.2(a). Middle panel: The impurity and the entropy of the kth excited state,
denoted Qk and Sk, respectively, versus k. Eigenstates which lie in the middle of
the spectrum are highly mixed and have an impurity close to unity. Bottom panel:
Plotted is P̄cat(nc) for nc = 5 (blue), nc = 15 (green), and nc = 25 (red). For small
values of nc, P̄cat(nc) is significantly less than unity.
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Eigenstates which lie in the middle of the spectrum, such as Figure 3.1(c), have

the highest impurity Q and entropy S because they are composed of a more even

distribution of Fock states than the lowest and highest excited states. This is obvious

in Figure 3.2; the middle of the spectrum has essentially no white regions, that is,

there are no regions of zero probability. Because there are no eigenstates which

resemble partial cat states, P̄cat(nc) is significantly less than unity over the entire

spectrum.

3.3.2 Schrödinger-Cat-Like States

We now turn our to attention a symmetric potential in which the barrier is

sufficiently high that no tunneling occurs, that is, J = ∆V = 0. In this case, Ĥ = ĤU

and the eigenstates and eigenvalues of the Hamiltonian (3.1) are given by

Ĥ|nL, N − nL〉 = εnL
|nL, N − nL〉, (3.16)

with

εnL
= U

[

2(nL −N/2)2 +N(N/2 − 1)
]

. (3.17)

Suppose now that the barrier is high but that the hopping strength is nonzero, that

is, 0 < J ≪ |U |. In this case, we treat ĤJ as a perturbation to ĤU . Because

εN−nL
= εnL

, the states |nL, N−nL〉 and |N−nL, nL〉 are degenerate and we employ

degenerate perturbation theory (see Appendix C).

To lowest order in J/|U |, the eigenstates have the form

|φ±;nL〉 = |ψcat
± ;nL〉 for 0 ≤ nL < N/2. (3.18)

These represent symmetric (+) and antisymmetric (−) pairs of macroscopic super-
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Figure 3.4. Eigenstate amplitudes: Schrödinger cat-like states. Shown are the discrete
probability amplitudes c

(k)
nL of the eigenstates |φk〉 when J/U = 0.1, ∆V = 0, and

N = 100 for (a) the ground state, (b) the first excited state, (c) the 19th excited
state, and (d) the 20th excited state. The ground state is a Mott-insulator state in
which exactly half the atoms occupy each well. Higher excited states are macroscopic
superposition states which resemble partial Schrödinger cat states.
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Figure 3.5. Eigenstates and eigenvalues: Schrödinger cat-like states. (a) The eigen-

state amplitudes |c(k)
nL | of the Hamiltonian Ĥ when J/U = 0.1, ∆V = 0, and N = 100

are plotted for all values of nL and k. Amplitude is indicated by the colorbar. A
vertical cross section of this plot produces plots similar to Fig. 3.4. The eigenstates
are symmetric and antisymmetric macroscopic superpositions of different Fock states.
(b) The eigenvalues εk of the same system as (a). The line serves as a guide to the
eye. The eigenvalues occur in nearly degenerate pairs corresponding to symmetric
and antisymmetric pairs of cat-like states. The energy increases quadratically with
k. The insert is a zoom of the indicated region.
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Figure 3.6. Entanglement measures: Schrödinger cat-like states. Top panel: Shown
are the probability amplitudes |cknL

| for all nL and k for a system of N = 100 atoms
in a symmetric double-well with J/U = 0.1. Middle panel: The impurity and the
entropy of the kth excited state, denoted Qk and Sk, respectively, versus k. Excited
states closely resemble partial cat states. For k > 20, Qk ≃ Qcat and Sk ≃ Scat.
Bottom panel: Plotted is P̄cat(nc) for nc = 5 (blue), nc = 15 (green), and nc = 25
(red). In this parameter regime, P̄cat(nc) can be used to determine the minimum peak
separation of the cat-like eigenstates quite precisely. Cat-like states with P̄cat(nc) ≃ 1
have a minimum peak separation of N − 2nc.
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position states, or partial Schrödinger cat states. The energy splitting between sym-

metric and antisymmetric pairs of states is

∆εN−nL
= 4U

(N − nL)!

nL![(N − 2nL − 1)!]2

(

J

2U

)N−2nL

, (3.19)

which is a very small number. For the special case nL = 0, the eigenstates are extreme

cat states of the form |ψcat
± ; 0〉 with an energy level splitting

∆εN = 4U
N

(N − 1)!

(

J

2U

)N

. (3.20)

The ground state and several excited states are plotted in Figure 3.4. All eigenstates

and corresponding eigenvalues are shown in Figure 3.5.

The impurity and the entropy of the cat-like eigenstates approach Qcat and Scat

for highly excited states, as is evident in Figure 3.6. These measures obviously cannot

be used to distinguish between cat-like states with different peak separations. How-

ever, P̄cat(nc) acts as an indicator for cat-like states with a separation greater than

N − 2nc.

3.3.3 Medium Barrier

When J < N |U |, the eigenstates can be either oscillator- or cat-like. For repulsive

interactions, U > 0, the low-lying states are oscillator-like whereas higher lying states

are cat-like. The ground state and several excited states are plotted in Figure 3.7. All

eigenstates and corresponding eigenvalues are shown in Figure 3.8. In the oscillator-

like region, the eigenvalues εk are approximately linear in k. The deviation from

linear spacing is induced by the interaction energy U . In the cat-like region, on the

other hand, the eigenvalues occur in nearly degenerate pairs which vary quadratically
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Figure 3.7. Eigenstate amplitudes: Medium barrier. Shown are the discrete probabil-
ity amplitudes c

(k)
nL of the eigenstates |φk〉 when J/U = 10, ∆V = 0, and N = 100 for

(a) the ground state, (b) the first excited state, (c) the 59th excited state, and (d) the
60th excited state. The lowest lying eigenstates are oscillator-like states. High-lying
states occur in nearly degenerate pairs of partial cat-like states.
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Figure 3.8. Eigenstates and eigenvalues of the single-level Hamiltonian: Medium
barrier. (a) The eigenstate amplitudes |c(k)

nL | of the Hamiltonian Ĥ when J/U = 10,
∆V = 0, and N = 100 are plotted for all values of nL and k. Amplitude is indicated
by the colorbar. A vertical cross section of this plot produces plots similar to Fig.
3.7. Low-lying states are oscillator-like whereas high-lying states are cat-like. The k
axis is simply reversed when the interactions are attractive: k → N − k as U → −U .
(b) The eigenvalues εk of the same system as (a). The line serves as a guide to the
eye. The eigenvalues display different dependence on k in the oscillator- and cat- like
regions.
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Figure 3.9. Energy level diagram. Energy eigenvalues versus J/NU for N = 25
particles. Energy is in units of U . When J ≪ |U |, all the eigenvalues occur in nearly
degenerate pairs corresponding to symmetric and antisymmetric pairs of entangled
states. As J increases, the near degeneracies of the lowest lying states are lifted.
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Figure 3.10. Entanglement measures: Medium barrier. Top panel: Shown are the
probability amplitudes |cknL

| for all nL and k for a system of N = 100 atoms in a
symmetric double-well with J/U = 10. Middle panel: The impurity and the entropy
of the kth excited state, denoted Qk and Sk, respectively, versus k. The highest
excited states are cat-like states. Cat-like eigenstates are less mixed and have a
smaller impurity than oscillator-like states. Bottom panel: Plotted is P̄cat(nc) for
nc = 5 (blue), nc = 15 (green), and nc = 25 (red). This measure increases to unity in
the cat-like region. Because the peaks of the cat-like states have a finite width, the
rise to unity is not as sharp as in Figure 3.6.
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with k. The peaks of the cat-like states have a finite width in this regime, as can be

seen in Figures 3.7(c) and (d).

In Figure 3.9 the eigenvalues are plotted versus J/N |U |. When J ≪ |U |, the

eigenvalues occur in nearly degenerate pairs. As we have seen, the eigenstates are cat-

like in this regime. As J/N |U | increases, the degeneracies are lifted and oscillator-like

states begin to emerge among the low lying states. When J > N |U |, all degeneracies

have been lifted and oscillator-like states dominate the spectrum. Therefore, the

highest lying states are cat-like when the condition J ≪ N |U | is met.

The impurity, entropy, and cat measure are plotted versus eigenstate label k

in Figure 3.10. While both the impurity and the entropy behave differently in the

oscillator- and cat-like regions, neither measure provides an obvious distinction be-

tween these two types of states. As expected, the cat measure is an excellent candidate

for this purpose; states for which P̄cat(nc) ≃ 1 are clearly cat-like, and oscillator-like

states yield values of P̄cat(nc) significantly less than unity. Since the peaks of the

cat-like states have a finite width in this regime, the rise to unity is not as abrupt as

in the high barrier case (see Figure 3.6).

3.3.4 Potential Decoherence

Consider a symmetric potential, ∆V = 0, with a high barrier, J ≪ |U |. Because

the level splitting between symmetric and antisymmetric pairs of cat-like states is so

small, small perturbations can easily mix these states [45] and produce a localized

state of the form |nL, N − nL〉. Indeed, entangled eigenstates are highly sensitive to

tilt ∆V (see Appendix D). The probability densities of the localized eigenstates of

a condensate in a slightly tilted potential are shown in Fig. 3.11(b). The entangled
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eigenstates of Equation (3.18) are destroyed when

|∆V | &
2∆εN−nL

N − 2nL
, (3.21)

where ∆εN−nL
is given by (3.19). Small imperfections in the external potential thus

constitute a source of quantum decoherence, which is usually caused by coupling with

an external system or thermal effects. In addition to dissipation and measurement,

tilt therefore poses a further difficulty in the engineering of entangled states in ex-

periments. Because condition (3.21) is minimized when nL = 0, extreme Schrödinger

cat states are the most sensitive to imperfections in the double-well, making them an

unlikely candidate for experiments. Partial cat states, nL 6= 0, on the other hand, are

more robust with respect to tilt.

Despite their fragility, cat-like eigenstates reappear periodically for certain values

of the tilt. These tunneling resonances occur when

∆V = ∆Vp ≡ 2pU, p ∈ {1, 2, . . . , N − 1}. (3.22)

While potential decoherence is caused by the slight misalignment of energy levels in

the left and right wells, tunneling resonances occur when the potential difference can

be exactly compensated by the repulsive (attractive) interaction of p particles in the

lower (upper) well. To (N − 2nL − p − 1)th order in J/|U |, the energy eigenstates

have the form

|φ±;nL, p〉 =
1√
2

(|nL, N − nL〉 ± |N − nL − p, nL + p〉) , (3.23)

where 0 ≤ nL < (N − p)/2. The energy difference between the symmetric and anti-
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Figure 3.11. Potential decoherence and tunneling resonances. Eigenstate probability
amplitudes for all eigenstates for N = 10, J/U = 0.1, and (a) ∆V/U = 0, (b)
∆V/U = 10−2, and (c) ∆V/U = 6. Here k is the eigenstate label, nL is the number of
particles in the left well, and the color indicates amplitude. The color bar is the same
as in Figure 3.5(a). (b) The nearly degenerate pairs of entangled states are highly
sensitive to tilt. (c) However, when ∆V = ∆Vp ≡ 2pU the tilt is compensated by the
interaction of p particles in the lower well and the lower entangled states reappear.
(d) Avoided crossings in the energy eigenvalues indicate a reappearance of pairs of
entangled eigenstates. The eigenvalues are shown alternatively in solid blue lines and
dashed red lines to aid with visualization.
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symmetric states |φ±;nL, p〉 is ∆εp
N−nL

. For the special case nL = 0, the eigenstates

are

|φ±; 0, p〉 =
1√
2

(|0, N〉 ± |N − p, p〉) , (3.24)

with an energy splitting

∆εp
N =

4U(J/2U)N−p(N − p)

(N − p− 1)

√

N !

p!(N − p)!
(3.25)

The reappearance of superposition states is shown in Figure 3.11(c) for ∆V = ∆V3,

i.e., p = 3. Because these states also occur in nearly degenerate pairs, the tunneling

resonances are easily identified by avoided crossings in the energy eigenvalues, such

as those displayed in Figure 3.11(d). The cat-like states (3.23) are destroyed when

|∆V − ∆Vp| &
2∆εp

N−nL

N − 2nL − p
. (3.26)

A full discussion of potential decoherence and tunneling resonances can be found in

Appendix C.

3.4 Dynamics: Quantum Sloshing

Quantum sloshing is the tunneling of all N atoms through the potential barrier.

We consider the dynamics of a system in which all particles initially occupy the right

well, i.e., |ψ〉 = |0, N〉. This initial condition can be achieved experimentally by

applying a positive tilt to the left well [34, 41]. At a later time t > 0, the system is

described in the Schrödinger picture by the time-evolved state

|ψ(t)〉 ≡ e−iĤt/~|ψ〉. (3.27)
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The probability of finding nL particles in the left well at some time t > 0 is

PnL
(t) ≡ |〈nL, N − nL|ψ(t)〉|2, (3.28)

the average occupation of the left well is

nL(t) ≡ 〈ψ(t)|n̂L|ψ(t)〉, (3.29)

and the average variance is

σ2
nL

(t) ≡ 〈ψ(t)|n̂2
L|ψ(t)〉 − n2

L. (3.30)

We will use PnL
(t), nL(t), and σ2

nL
(t) to characterize the dynamics in three regimes:

the non-interacting regime, U = 0; the low barrier regime, J ≫ N |U |; and the high

barrier regime, J ≪ |U |.

3.4.1 Sloshing of Non-Interacting Bosons

We first consider the simple case of noninteracting particles, U = 0, in a sym-

metric potential, ∆V = 0, to illustrate the problem. The probability of finding all

particles in the right well, i.e., nL = 0, is

P0(t) = cos2N (Jt/~). (3.31)

The tunneling period is T ≡ π~/J , which is independent of N . When t = T/2, the

system is in state |N, 0〉 and all particles have tunneled into the left well. The average



56

0

5

10

n
L

0

5

10

n̄
L
(t

)

0 3.14 6.28 9.42 12.57
0

1.3

2.5

σ
2 n

L
(t

)

Jt/h̄

0

0.5

1

(a) Symmetric potential

0

5

10

n
L

0

5

10

n̄
L
(t

)

0 3.14 6.28 9.42 12.57
0

1.3

2.5

σ
2 n

L
(t

)

Jt/h̄

0

0.5

1

(b) Tilted potential

Figure 3.12. Quantum sloshing of non-interacting bosons. (a) Shown are the prob-
ability densities PnL

(t) for all number states when N = 10, U = 0, and ∆V = 2J .
Color indicates probability. Only N/2 = 5 particles tunnel between wells. (b) The
tunneling amplitude and (c) the frequency of oscillation as a function of tilt. When
∆V > 2J

√
N − 1, tunneling is completely suppressed. Particles tunnel between wells

faster in a tilted potential than in a symmetric potential.
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occupation and variance of the left well are

nL(t) = N sin2(Jt/~), (3.32)

σ2
nL

(t) = (N/4) sin2(2Jt/~). (3.33)

Equations (3.31) and (3.32) are proved in Appendix B and Equation (3.33) was ob-

tained numerically. The probabilities PnL
(t) as well as the average occupation an

variance, nL(t) and σ2
nL

(t), are shown in Figure 3.12(a). The particles therefore tun-

nel sinusoidally between wells with a frequency 2J/~. The variance is greatest when

t = T/4. At this time, the probability of finding nL particles in the left well is

PnL
(T/4) =

1

2N

N !

nL!(N − nL)!
. (3.34)

The system is in a truncated coherent state, i.e., a binomial superposition of all

number-states.

When ∆V 6= 0, the occupation of the left well is

nL(t) = A sin2(ωt/2), (3.35a)

where the amplitude and frequency of oscillation are

A ≡ N/[1 + (∆V/2J)2], (3.35b)

ω ≡ (2J/~)
√

1 + (∆V/2J)2. (3.35c)

Equation (3.35) is proved is for N = 1 in Appendix E and has been verified numer-

ically for larger values of N . When ∆V = 2J , only N/2 particles tunnel between

wells. Figure 3.12(b) shows the probability densities PnL
(t), average number nL(t),
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and variance σ2
nL

(t) in this case. Tunneling between wells is completely suppressed

when |∆V | > 2J
√
N − 1. Tunneling is therefore highly sensitive to small tilt.

3.4.2 Modulated Oscillations in the Presence of a Low Barrier

We now turn our attention to the interacting case when the barrier is low,

J ≫ N |U |, in a symmetric potential, ∆V = 0. Whereas a single frequency 2J/~

characterizes nL(t) when U = 0, the average occupation of the left well approaches

nL(t) → (N/2)
[

1 − cos(2Jt/~) cosN−1(Ut/~)
]

, (3.36)

as J/N |U | → ∞. Equation (3.36) is proved for N = 2 in Appendix E and has been

verified numerically for larger values of N . Here the high frequency carrier depends

only on the hopping strength J while the low frequency envelope depends on both the

interaction potential U and the total number of particles N . The envelope reaches

half its maximum value when

t = T1/2 ≡ (~/|U |) cos−1[2−1/(N−1)]. (3.37)

At times t ≪ T1/2, all particles tunnel between wells with period T . At times near

T1/2, on the other hand, only half the particles tunnel between wells with period T .

When t ≃ 2T1/2, there is essentially no tunneling. Small interactions thus damp the

oscillations between wells. However, tunneling revivals occur periodically with period

Tr ≡ π~/U . The first tunneling revival occurs when |t − Tr| < T1/2. The separation

of time scales, T1/2 ≪ Tr, occurs only for N ≫ 1, as evident in Eq. (3.37). The

damping effect is shown in Figure 3.13.
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Figure 3.13. Damped tunneling in the low barrier regime. Top panel: Shown are
the probability densities PnL

(t) for all number states when N = 10 and J/NU =
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At later times, interactions cause the pattern to wash out. Middle panel: Average
occupation of the left well nL(t). Oscillations between wells are damped by atom-atom
interactions. The first tunneling revival occurs when t = Tr ≡ π~/U .



60

3.4.3 Ultra-slow Tunneling Through a High Barrier

For the remainder of our discussion, we turn to the high barrier limit, J ≪ |U |,

as it is key to the dynamic production of few-atom entangled states. We assume

U > 0 without loss of generality with respect to the dynamics. In this regime, the

two highest excited eigenstates are nearly-degenerate entangled cat states of the form

|φ±; 0〉 ≡ (|N, 0〉 ± |0, N〉) /
√

2 to lowest order in J/U . Because the initial state

|ψ(0)〉 = (|φ+; 0〉 − |φ−; 0〉) /
√

2 is a superposition of two eigenstates, the dynamics

are described by the two-state system. The characteristic frequency is ωN = ∆εN/~,

where ∆εN , given by Equation (3.20), is the energy difference of the states |φ±; 0〉.

As ∆εN is a very small number, ωN is also very small.

All particles occupy the right well with probability

P0(t) = 1 − PN (t) = cos2(ωN t/2), (3.38)

In Fig. 3.14(a), we plot the probability densities PnL
(t) and the average occupation

nL(t) as a function of time. The tunneling period is TN ≡ 2π/ωN . The average

occupation and variance are

nL(t) = N sin2(ωN t/2), (3.39)

σ2
nL

(t) = (N2/4) sin2(ωN t). (3.40)

In this regime, as in the noninteracting case, all N particles oscillate sinusoidally

between wells. There are two important differences. The first is that, when J ≪ U ,

the period of oscillation depends on N and can become quite small for large values

of N . Second, at time t = TN/4, we find that PN = P0 = 1/2. At this time,

all particles simultaneously occupy both wells and the system is described by an
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Figure 3.14. Tunneling resonances in a few-atom system. Shown are the probability
densities PnL

(t) when N = 7 and J/U = 0.1, for (a) ∆V = 0 and (b) ∆V = 6U . (a)
All particles tunnel between wells with period TN . At time t = TN/4, the system is
described by a cat state. (b) Only N − 3 = 4 particles tunnel between wells. The
oscillation frequency is 6 orders of magnitude faster than the symmetric case. (c)
Tunneling amplitude as a function of tilt ∆V for N = 5 and J/U = 0.1. Tunneling
resonances occur when ∆V = ∆Vp ≡ 2pU . At resonance, N − p particles tunnel
between wells. The insert is a zoom around ∆V/2U = 2.
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extreme Schrödinger cat-like state.

3.4.4 Tunneling Resonances

When the barrier is high, tunneling between wells is extremely sensitive to tilt

∆V because a small tilt causes the decoherence of the cat-like eigenstates. When

|∆V | & 2∆εN/N , the highest excited eigenstates become number states of the form

|0, N〉 and |N, 0〉. In this case, the initial condition |ψ(0)〉 is stationary and tunneling

between wells is therefore suppressed. Tunneling resonances occur when ∆V = ∆Vp.

Then cat-like eigenstates reappear in the form |φ±; 0, p〉 ≡ (|N − p, p〉 ± |0, N〉) /
√

2

and the two-state dynamics of the symmetric case are restored. At resonance, the

tunneling frequency is ωp
N = ∆εp

N/~ where ∆εp
N , given by Equation (3.25) is the level

splitting between the states |φ±; 0, p〉. The average occupation of the left well is

nL(t) = (N − p) sin2(ωp
N t/2). (3.41)

Here, N − p particles tunnel between wells with period T p
N = 2π/ωp

N . At time

t = T p
N/2, N − p particles are in the left well. To compensate the tilt, p particles

remain in the right well at all times. When t = T p
N/4, the system is described by a

partial cat state such that Pp = P0 = 1/2. In Fig. 3.14(b) the tunneling dynamics

for the second resonance, i.e., p = 2, are illustrated for a system of N = 7 particles.

Near a resonance, tunneling is suppressed when |∆V − ∆Vp| & 2∆εp
N/(N − p), as

shown in Fig. 3.14(c). Note that tunneling resonances only occur for tilt applied to

the left well.

Because ∆εp
N is greater than ∆εN by many orders of magnitude, tunneling near

resonance is both much faster and less sensitive to tilt than tunneling in a symmetric

potential. In Fig. 3.15(a), we show the symmetric tunneling period TN versus N when
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Figure 3.15. Tunneling periods in a many-body system. (a) Shown is the tunneling
period TN versus the total number of particles N when J/U = 0.1 and ∆V = 0. For
large N , tunneling becomes very slow. (b) At resonance, ∆V = ∆Vp ≡ 2pU , only
N − p particles tunnel between wells. Shown are the tunneling periods T p

N versus p
for N = 40 to 100 with J/U = 0.1. At resonance, the oscillations can be hundreds of
orders of magnitude faster than in the symmetric case.
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J/U = 0.1. Clearly, TN becomes very long as N becomes large. For instance, consider

a system of 200 87Rb atoms in typical symmetric, one-dimensional double-well trap

used in experiments [19],

V1(x) = −v1 cos2(2kx) − v2 cos4(kx− π/4), kx ∈ [−π/4, 4π/4], (3.42)

where k = 2π/λ, λ = 810 nm is the wavelength of the laser, v1 = v2 = 153 µK · kB is

the intensity of the laser, ω⊥ = 2π × 91 Hz is the transverse trapping frequency, and

as = 109 aBohr is the s-wave scattering length of the atoms. Under these conditions,

J/U = 0.0964 (see Chapter 2) and all 200 atoms tunnel between wells with period

T200 = 1.15×10635 ms. Furthermore, tunneling is completely suppressed for deviations

in the tilt greater than 4.16×10−636 nK·kB. Obviously, one does not expect to observe

many-body tunneling in this regime. Under the same conditions, systems with as few

as N = 1, 2, and 3 87Rb atoms yield tunneling times as long as T1 = 466 ms,

T2 = 4840 ms, and T3 = 134000 ms, respectively. Even in a few-particle system,

tunneling times can be prohibitively long.

However, tunneling at resonance can be hundreds of orders of magnitude faster

than the symmetric case, as in Fig. 3.15(b). For the 200-atom system discussed

above, when p = 197, we find that N − p = 3 particles tunnel between wells with

period T 197
200 = 117 ms. This resonance occurs when ∆V = ∆V197 = 210 nK · kB.

A partial cat state of the form |ψ〉 = (|3, 197〉 − i|0, 200〉)/
√

2 will be realized at

T 197
200 /4 = 29.25 ms. Likewise, we find that T 198

200 = 34.3 ms and T 199
200 = 33.0 ms when

∆V = ∆V198 = 211 nK · kB and ∆V199 = 212 nK · kB, respectively. At resonance, this

system is sensitive to deviations in the tilt on the order of 0.273 nK · kB, 1.40 nK · kB,

and 2.90 nK · kB for p = 197, 198, and 199, respectively. Thus, the observation

of the tunneling of a few 87Rb atoms is made possible by tunneling resonances in a
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many-body system.

3.5 Summary

In summary, we used the one-level approximation to develop a Fock space picture

of a system of ultracold bosons in a tilted two-well potential. We identified two

categories of stationary states: harmonic oscillator-like states and Schrödinger cat-

like states. Oscillator-like states dominate the spectrum when the barrier between

wells is low. When the barrier is high, the stationary states are primarily cat-like.

Both types of states exist when the interaction energy is on the order of the tunneling

energy. In the case of repulsive interactions, the low-lying eigenstates are oscillator-

like whereas high excited eigenstates are cat-like. The situation is reversed when the

interactions are attractive.

Adaptations of two standard measures were used to characterize the entangle-

ment of cat-like states: Meyer’s impurity measure and the von Neumann entropy.

While both measures yield nonzero values for cat-like states, neither is maximized

for such states. Moreover, neither the impurity nor the entropy distinguish between

cat-like states with different Fock-space peak separations. Therefore, the expectation

value of a Schrödinger cat projection operator was used to provide additional char-

acterization of the cat-like eigenstates. This new measure is maximized for cat-like

states with a Fock-space peak separation greater than some prescribed value.

We also studied the quantum sloshing of bosons through the barrier. In the pres-

ence of a low barrier, atom-atom interactions damp tunneling between wells. Quan-

tum revivals of tunneling occur periodically at times determined only by the interac-

tion energy. In the high barrier limit, a small tilt causes the collapse of Schrödinger

cat-like eigenstates and suppresses tunneling between wells, an effect we call potential



66

decoherence. However, unlike other forms of decoherence, tunneling resonances occur

when the tilt can be exactly compensated by atom-atom interactions. At resonance,

cat-like states reappear and a fraction of the atoms tunnel between wells. Resonant

tunneling is much faster and less sensitive to tilt than in the symmetric case. Fur-

thermore, tunneling resonances constitute a dynamic scheme for the production of

few-atom superposition states in the presence of many bosons. Potential decoher-

ence and tunneling resonances are our main contributions to the dynamics of the

double-well system.
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Chapter 4

TWO-LEVEL APPROXIMATION

In this chapter, we study the behavior of N ultracold bosons in a tilted, d-

dimensional double-well potential in the two-level approximation. When the energy

levels are weakly coupled by interactions, stationary states involving no occupation

of the excited level closely resemble the eigenstates of the one-level Hamiltonian (see

Chapter 3). However, eigenvalue crossings occur even when the energy levels are

completely decoupled. These crossings are induced by the presence of the excited

level and cannot be described by the one-level approximation. Stationary states

which involve nonzero occupation of the excited level emerge among the lowest-lying

eigenstates in the weak coupling regime.

4.1 Two-Level Hamiltonians

The two-level Hamiltonians Ĥd for d = 1, 2, and 3 dimensions are

Ĥ1 = ĤA
1 + ĤC

1 + Ĥcoup
1 , (4.1a)

Ĥ2 = ĤA
2 + ĤB

2 + Ĥcoup
2 , (4.1b)

Ĥ3 = ĤA
3 + ĤB

3 + ĤC
3 + Ĥcoup

3 , (4.1c)

where

ĤA
d = Ĥ

(0,0)
d + E0

dN̂
(0,0), (4.1d)
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is the Hamiltonian for atoms occupying the lowest energy level,

ĤB
d = Ĥ

(1,−1)
d + Ĥ

(1,1)
d − J−11

d

∑

j 6=j′

{

b̂
(1,−1)†
j b̂

(1,+1)
j′ + h.c.

}

+ E1
d

(

N̂ (1,1) + N̂ (1,−1)
)

,

(4.1e)

is the Hamiltonian for atoms occupying the excited level with nonzero z angular

momentum,

ĤC
d = Ĥ

(1,0)
d + E1

dN̂
(1,0). (4.1f)

is the Hamiltonian for atoms in the excited level with no angular momentum in the

z direction, and

Ĥ
(ℓ,m)
d ≡ −J ℓ|m|

d

∑

j 6=j′

b̂
(ℓ,m)†
j b̂

(ℓ,m)
j′ +U

ℓ|m|
d

∑

j

n̂
(ℓ,m)
j

(

n̂
(ℓ,m)
j − 1

)

+
∆V

2

(

n̂
(ℓ,m)
L − n̂

(ℓ,m)
R

)

,

(4.1g)

is the one-level Hamiltonian with tilt. In a one-dimensional system, the coupling term

is

Ĥcoup
1 = 2U11

1

∑

j

{

∑

ℓ 6=ℓ′

[

n̂
(ℓ,0)
j n̂

(ℓ′,0)
j

]

}

+ U11
1

∑

j

{

(

b̂
(0,0)†
j b̂

(1,0)
j

)2

+ h.c.

}

, (4.1h)

in two dimensions, the coupling is given by

Ĥcoup
2 = 2U11

2

∑

j







∑

(ℓ,m)6=(ℓ′,m′)

[

n̂
(ℓ,m)
j n̂

(ℓ′,m′)
j

]







+ 2U11
2

∑

j

{

(

b̂
(0,0)†
j

)2

b̂
(1,−1)
j b̂

(1,+1)
j + h.c.

}

, (4.1i)
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and the coupling has the form

Ĥcoup
3 = 2U11

3

∑

j







∑

(ℓ,m)6=(ℓ′,m′)

[

ǫℓ
′m′

ℓm n̂
(ℓ,m)
j n̂

(ℓ′,m′)
j

]







+ U11
3

∑

j

{

(

b̂
(0,0)†
j b̂

(1,0)
j

)2

+

[

2
(

b̂
(0,0)†
j

)2

+
(

b̂
(1,0)†
j

)2
]

b̂
(1,−1)
j b̂

(1,+1)
j + h.c.

}

,

(4.1j)

in three dimensions. The element ǫℓ
′m′

ℓm is defined by

ǫℓ
′m′

ℓm ≡







1/2, ℓ = ℓ′ = |m+m′| = 1

1, otherwise
, (4.1k)

and N̂ (ℓ,m) ≡ n̂
(j,m)
L + n̂

(j,m)
R . Equation (4.1) was derived in Chapter 2, and the one-

level Hamiltonian (4.1g) was studied in Chapter 3. For convenience, the discussion

from Chapter 2 concerning the two-level Hamiltonian is repeated here.

Recall that d ∈ {1, 2, 3} is the dimensionality of the trapping potential, j ∈

{L,R} is the well index, ℓ ∈ {0, 1} is the level index, and m is the z-angular momen-

tum index. The allowed values of m depend on both ℓ and d. The hopping strengths

J
±ℓ|m|
d and the interaction energies U

ℓ|m|
d satisfy

J00
d ≪ J−11

d < J10
d < J11

d ≪ ∆E10
d and U00

d = (4/3)U10
d = 2U11

d , (4.2)

An arbitrary state vector in Fock space has the form

|Ψd〉 =

Ωd−1
∑

nd=0

cnd
|nd〉, |nd〉 =

⊗

ℓ,m

|n(ℓ,m)
L , n

(ℓ,m)
R 〉(ℓ,m), (4.3)
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where nd is called the Fock space label and n
(ℓ,m)
j represents the number of atoms in

the ℓth energy level of the jth well with z angular momentum m~. Here Ωd is size of

the Hilbert space {|nd〉}. We require the total number of particles N =
∑

j,ℓ,m n
(ℓ,m)
j

to be constant. Under this restriction, the size of the Hilbert space is given by

Ωd =
(N + 2d+ 1)!

N !(2d+ 1)!
. (4.4)

For large N , the multiplicity Ωd scales like N2d+1.

4.2 Counting Fock States

The Hamiltonian Ĥd, given by Equation (4.1), can be represented as an Ωd ×Ωd

matrix Hd with elements

(Hd)ndn′

d
= 〈nd|Ĥd|n′

d〉, (4.5)

where the Fock states |nd〉 and |n′
d〉 are given by Equation (4.3). In order to compute

the matrix elements (Hd)ndn′

d
, we must choose an indexing of Fock space.

We choose the Fock space label 0 ≤ nd ≤ Ωd − 1 to increase with increasing

number of particles in the left well and increasing number of particles in the excited

energy level. Given n
(ℓ,m)
j , the Fock space label nd in d = 1, 2, and 3 dimensions is
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given by

n1 = n
(0,0)
L + (N0 + 1)n

(1,0)
L +

1

6
N1(N1 + 1)(3N − 2N1 + 5), (4.6a)

n2 = n
(0,0)
L +

1

6
N1

L(N1
L + 1)(N0 + 1)(3N1 − 2N1

L + 5)

+ (N0 + 1)(N1
R + 1)n

(1,+1)
L + (N0 + 1)n

(1,+1)
R

+
1

120
N1(N1 + 1)(N1 + 2)(N1 + 3)(5N − 4N1 + 9), (4.6b)

n3 = n
(0,0)
L +

1

2
(N0 + 1)(N1

R + 1)(N1
R + 2)n

(1,0)
L + (N0 + 1)n

(1,0)
L

+
1

120
N1

L(N1
L + 1)(N1

L + 2)(N0 + 1)
[

10(N1)2 − 15(N1
L − 3)N1

+ 6(N1
L)2 − 33N1

L + 47
]

− 1

2
(N0 + 1)(−2N1

R + n
(1,−1)
R − 3)n

(1,−1)
R

− 1

4
(N0 + 1)(−2N1

L + n
(1,−1)
L − 3)(N1

R + 1)(N1
R + 2)n

(1,−1)
L

− 1

5040
N1

[

(N1)5 + 15(N1)4 + 85(N1)3 + 225(N1)2 + 274N1

+120] (6N1 − 7N − 13), (4.6c)

where N1
j =

∑

m n
(1,m)
j for j ∈ {L,R}, N1 = N1

L + N1
R, and N0 = N − N1. If there

are no atoms in the excited level, i.e., N1 = 0, then nd = n
(0,0)
L . Thus, the one-level

approximation can be reproduced by truncating the dimensionality of the Fock space

to N + 1. Algorithms for generating the matrix representation (4.5) are presented in

Appendix F.
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4.3 Characterization of Stationary States

The energy levels are coupled by the interaction energy U11
d . Energy levels only

become completely decoupled when U11
d = 0, but the effects of coupling are negligible

for N |U00
d | ≪ 2∆E10

d . In the weak coupling regime, the stationary states of the

Hamiltonian (4.1) have definite occupation of each energy level and states with no

occupation of the excited level are well described by the one-level approximation.

Although the energy levels are weakly coupled, eigenvalue crossings are induced by

the presence of the excited level when either the number of particles or the interaction

energy is greater than some critical value.

Eigenvalue crossings involving the ground state energy occur when |U00
d | > 0.

Such crossings in the double-well system, which is a finite lattice, provide evidence

for the possibility of quantum phase transitions in the limit of an infinite lattice [17],

as discussed in Chapter 1. Moreover, we are interested in describing cat-like states

which are typically excited eigenstates. Therefore, a characterization of eigenvalue

crossings of energies other than the ground state are also relevant.

4.3.1 Eigenvalue Crossings: Decoupled Energy Levels

Consider a system of non-interacting bosons, U
ℓ|m|
d = 0, in a symmetric potential,

∆V = 0. In the non-interacting regime, the Hamiltonians Ĥd reduce to

Ĥ1 = ĤA
1 + ĤC

1 , Ĥ2 = ĤA
2 + ĤB

2 , and Ĥ3 = ĤA
3 + ĤB

3 + ĤC
3 , (4.7a)
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where

ĤA
d = − J00

d

∑

j 6=j′

b̂
(0,0)†
j b̂

(0,0)
j′ + E0

dN̂
(0,0), (4.7b)

ĤB
d = − J11

d

∑

j 6=j′

{

b̂
(1,1)†
j b̂

(1,1)
j′ + b̂

(1,−1)†
j b̂

(1,−1)
j′

}

− J−11
d

∑

j 6=j′

{

b̂
(1,−1)†
j b̂

(1,+1)
j′ + h.c.

}

+ E1
d

(

N̂ (1,1) + N̂ (1,−1)
)

, (4.7c)

ĤC
d = − J10

d

∑

j 6=j′

b̂
(1,0)†
j b̂

(1,0)
j′ + E1

dN̂
(1,0). (4.7d)

Clearly, Ĥd is separable and the eigenstates of Ĥd are therefore direct products of the

eigenstates of the Hamiltonians ĤA
d , ĤB

d , and ĤC
d .

Since the Hamiltonians ĤA,C
d are non-interacting one-level Hamiltonians, the

eigenstates are given by

|φk;N〉A =
N

∑

nL=0

AkHk (nL|N)
√

P1/2 (nL|N) |nL, N − nL〉(0,0), (4.8)

|φk;N〉C =
N

∑

nL=0

AkHk (nL|N)
√

P1/2 (nL|N) |nL, N − nL〉(1,0), (4.9)

with corresponding energy eigenvalues

εA,d
k (N) = −J00

d (N − 2k) + E0
dN, (4.10)

εC,d
k (N) = −J10

d (N − 2k) + E1
dN, (4.11)

for 0 ≤ k ≤ N . Here Ak is a constant of normalization, Hk(nL|N) is a kth or-

der discrete Hermite polynomial, and P1/2(nL|N) is the binomial distribution (see
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Figure 4.1. Eigenstate amplitudes: Non-interacting case. Shown are the eigenstate
amplitudes |c(k)

n1
| for all values of n1, k ∈ {0, 1, . . . ,Ω1−1} when U00

1 = 0, J00
1 /∆E

10
1 ≈

4 × 10−7, J10
1 /∆E

10
1 ≈ 3 × 10−5, and N = 8. The number-state label n1 increases

with increasing number of atoms in the excited energy level. For a given value of
n1, the number of atoms in the excited energy level is equal to the number of dotted
horizontal lines below n1. The eigenstate label k increases with increasing energy.
Eigenstates are grouped according to occupation of the excited level. The N + 1
lowest lying states, corresponding to zero occupation of the excited level, are in exact
agreement with the harmonic oscillator-like eigenstates of the one-level Hamiltonian
(see Chapter 3). The magnitude of |c(k)

n1
| is indicated by the colorbar.



75

0 20 40 60 80 100 120 140 160
3

4

5

6

7

8

9

10

11

12

13

k

ε k
/∆

E
1
0

1

∆E10
1

J10
1

J00
1

Figure 4.2. Energy eigenvalues: Non-interacting case. Shown are the energy eigenval-
ues εk for the same system as in Figure 4.1. The line is a guide to the eye. Eigenvalues
occur in groups corresponding to occupation of the excited level. Whereas the en-
ergy difference between eiegnvalues in the same group is on the order of J00

1 and J10
1 ,

the energy difference between groups is on the order of ∆E10
1 . The N + 1 lowest

lying eigenvalues vary linearly in k and are in exact agreement with results from the
one-level approximation. The inserts are zooms of the two lowest groups of eigen-
values. Eigenvalue crossings occur when N > N crit
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∆E10

1 .



76

Appendix B). The eigenstates of ĤB
d satisfy

ĤB
d |φk;N〉B = εB,d

k (N)|φk;N〉B, (4.12)

for 0 ≤ k ≤ Ω1(N) − 1.

In one dimension, the eigenstates of Ĥ1 are given by

Ĥ1|φk;N
0〉A ⊗ |φk′;N1〉C =

[

εA,1
k (N0) + εC,1

k′ (N1)
]

|φk;N
0〉A ⊗ |φk′;N1〉C , (4.13)

for 0 ≤ k ≤ N0 and 0 ≤ k′ ≤ N1. Here N0 and N1 represent the number of particles

in the lowest and excited energy levels, respectively. We require that N0 +N1 = N ,

where N is the total number of atoms in the system. Likewise, in two dimensions,

we have

Ĥ2|φk;N
0〉A ⊗ |φk′;N1〉B =

[

εA,2
k (N0) + εB,2

k′ (N1)
]

|φk;N
0〉A ⊗ |φk′;N1〉B, (4.14)

for 0 ≤ k ≤ N0 and 0 ≤ k′ ≤ Ω1(N
1). Again, we impose the constraint N0+N1 = N .

The eigenstates of the three-dimensional Hamiltonian are given by

Ĥ3|φk;N
0〉A ⊗ |φk′;NB〉B ⊗ |φk′′;NC〉C

=
[

εA,3
k (N0) + εB,3

k′ (NB) + εC,3
k′′ (NC)

]

|φk;N
0〉A ⊗ |φk′;NB〉B ⊗ |φk′′;NC〉C ,

(4.15)

for 0 ≤ k ≤ N0, 0 ≤ k′ ≤ Ω1(N
B), and 0 ≤ k′′ ≤ NC . Here N1 = NB +NC represents

the number of particles in the excited level.

When N0 = N , all atoms occupy the lowest energy level in each well and the

eigenstates and eigenvalues are successfully predicted by the one-level approximation.
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The ground state is

|gd〉 =
1

2N/2

N
∑

nL=0

√

N !

nL!(N − nL)!
|nL, N − nL〉(0,0)

⊗

m

|0, 0〉(1,m), (4.16)

with energy

εgd
= εA,d

0 (N) = N(−J00
d + E0

d). (4.17)

For small N , the eigenvalues of Ĥd are grouped according to occupation of the excited

level. Within each group, eigenvalues are separated by an energy difference on the

order of J
±ℓ|m|
d whereas successive groups are separated by the level spacing ∆E10

d ≫

J
±ℓ|m|
d . In this case, the eigenstates corresponding to N0 = N compose the N + 1

lowest-lying states as can be seen in Figures 4.1 and 4.2 for a system of N = 8

non-interacting atoms in a 1D trap.

However, if N is sufficiently large, the energy difference between groups can

become quite small. Consider the case N0 = N , that is, all atoms occupy the lowest

energy level in each well. The state

|φmax
d ;N0 = N〉 = |φN ;N〉A

⊗

m

|0, 0〉(1,m), (4.18)

with eigenvalue

εmax
d = εA,d

N (N) = N(J00
1 + E0

1), (4.19)

has the highest energy of all states corresponding to N0 = N . Next suppose a single

atom occpies the excited energy level, that is, N1 = 1. In one dimension, d = 1, the

state

|φmin
1 ;N1 = 1〉 = |φ0;N − 1〉A ⊗ |φ0; 1〉C, (4.20)
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with eigenvalue

εmin
1 = εA,1

0 (N − 1) + εC,1
0 (1) = (N − 1)(−J00

1 + E0
1) − J10

1 + E1
1 , (4.21)

has the lowest energy of all states corresponding to N1 = 1. The eigenvalues εmax
1 and

εmin
1 are exactly equal to each other and the system undergoes an eigenvalue crossing

when the condition

N =
1

2
+

∆E10
1 − J10

1

2J00
1

, (4.22)

is met. Define N crit
1 by

N crit
1 =

⌊

1

2
+

∆E10
1 − J10

1

2J00
1

⌋

. (4.23)

Then eigenvalue crossings occur in states involving no occupation of the excited level,

i.e., in the lowest group of eigenvalues, when

N > N crit
1 . (4.24)

Because J00
1 and J10

1 are many orders of magnitude smaller than ∆E10
1 , the critical

value N crit
1 is quite large.

In two and three dimensions, the states

|φmin
2 ;N1 = 1〉 = |φ0;N − 1〉A ⊗ |φ0; 1〉B, (4.25)

|φmin
3 ;N1 = 1〉 = |φ0;N − 1〉A ⊗ |φ0; 1〉B ⊗ |0, 0〉(1,0), (4.26)
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with corresponding energy eigenvalues

εmin
2 = εA,2

0 (N − 1) + εB,2
0 (1), (4.27)

εmin
3 = εA,3

0 (N − 1) + εB,3
0 (1), (4.28)

have the lowest energy of all states corresponding to N1 = 1. Here

|φ0; 1〉B =
1

2

[(

|1, 0〉(1,−1) + |0, 1〉(1,−1)

)

⊗ |0, 0〉(1,1)

+ |0, 0〉(1,−1) ⊗
(

|1, 0〉(1,1) + |0, 1〉(1,1)

)]

, (4.29)

is the ground state of ĤB
d and

εB,d
0 = −J−11

d − J11
d + E1

d , (4.30)

is the energy of the ground state for NB = 1. Thus, eigenvalue crossings occur among

the lowest lying states in two and three dimensional systems when

N > N crit
d =

⌊

1

2
+

∆E10
d − J−11

d − J11
d

2J00
d

⌋

, (4.31)

for d ∈ {2, 3}. Recall that

J00
d = J00

1 , J±11
d = (J10

1 ± J00
1 )/2, J10

3 = J00
1 , for d ∈ {2, 3}, (4.32)

which was derived in Chapter 2. This implies that

N crit
d =

⌊

1

2
+

∆E10
d − J10

1

2J00
1

⌋

, (4.33)
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for d ∈ {1, 2, 3}.

Many eigenvalue crossings occur in the non-interacting two-level system. In one-

dimension, this happens whenever

εA,1
k (N0) + εC,1

k′ (N −N0) = εA,1
q (M0) + εC,1

q′ (N −M0), (4.34)

where 0 ≤ k ≤ N0, 0 ≤ k′ ≤ N − N0, 0 ≤ q ≤ M0, 0 ≤ q′ ≤ N −M0 and εℓ
k(N

ℓ)

is given by Equation (4.10). However, the ground state (4.16) will never undergo a

crossing. Setting N0 = N and k = k′ = 0, Equation (4.34) yields

−2(J00
1 q + J10

1 q
′) = (N −M0)(∆E10

1 + J00
1 − J10

1 ). (4.35)

The left side of Equation (4.35) is less than or equal to zero whereas, for M0 < N ,

the right side is strictly greater than zero. Therefore, condition (4.35) cannot be met

for any allowable values of M0, q, and q′ and the ground state does not undergo an

eigenvalue crossing in the non-interacting case. Similar results hold for two and three

dimensions.

4.3.2 Shadows of Schrödinger’s Cat

We now turn our attention to the effects of the coupling between energy levels in

the regime, |U00
d | ≪ 2∆E10

d . Consider a symmetric 1D potential, ∆V = 0 and d = 1,

in the high barrier limit, J00
1 ≪ U00

1 . Suppose further that J10
1 ≪ U10

1 . We will treat

the coupling potential Ĥcoup
1 as a perturbation to the decoupled Hamiltonian

Ĥdecoup
1 = ĤA

1 + ĤB
1 . (4.36)
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Because Ĥdecoup
1 is separable, its eigenstates are direct products of the eigenstates of

ĤA
1 and ĤB

1 .

The eigenstates of the decoupled Hamiltonian are given by

Ĥdecoup
1 |φ±;nL, N

0〉A ⊗ |φ±;n′
L, N

1〉C

=
[

εA,1
± (nL, N

0) + εC,1
± (n′

L, N
1)

]

|φ±;nL, N
0〉A ⊗ |φ±;n′

L, N
1〉C, (4.37)

for 0 ≤ nL < N0/2 and 0 ≤ n′
L ≤ N1/2. Here the partial Schrödinger cat states

|φ±;nL, N〉A =
1√
2

(

|nL, N − nL〉(0,0) ± |N − nL, nL〉(0,0)

)

, (4.38)

|φ±;nL, N〉C =
1√
2

(

|nL, N − nL〉(1,0) ± |N − nL, nL〉(1,0)

)

, (4.39)

are the eigenstates of ĤA
d and ĤC

d with corresponding energy eigenvalues given by

εA,d
± (n,N) = U00

d

[

2

(

n− N

2

)2

+N

(

N

2
− 1

)

]

+NE0
d ∓ 1

2
∆εN

n (J00
d , U

00
d ), (4.40)

εC,d
± (n,N) = U10

d

[

2

(

n− N

2

)2

+N

(

N

2
− 1

)

]

+NE1
d ∓ 1

2
∆εN

n (J10
d , U

10
d ), (4.41)

to lowest non-vanishing order in J00
1 /|U00

1 | and J10
1 /|U10

1 |, respectively. The energy

difference between symmetric and antisymmetric states is given by

∆εN
n (J, U) = 4U

(N − n)!

n![(N − 2n− 1)!]2

(

J

2U

)N−2n

. (4.42)

These solutions are derived in Appendix C. When U00
1 ≪ 2∆E10

1 , the eigenstates and

eigenvalues of Ĥ1 closely resemble the eigenstates and eigenvalues of the decoupled

Hamiltonian Ĥdecoup
1 , as can be seen in Figures 4.3 and 4.4.



82

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

n
1

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.3. Eigenstate amplitudes: High barrier and weak coupling. Shown are the
eigenstate amplitudes |c(k)

n1
| for all values of n1, k ∈ {0, 1, . . . ,Ω1−1} when J00

1 /U
00
1 ≈

0.1, J00
1 /∆E

10
1 ≈ 4 × 10−7, J10

1 /∆E
10
1 ≈ 3 × 10−5, and N = 8. The number-state

and eigenstate labels n1 and k are described in Figure 4.1. Here NU00
1 ≪ 2∆E10

1 and
the effects of coupling between energy levels are negligible. Just as in the decoupled
case, the eigenstates are grouped according to occupation of the excited level. The
N + 1 lowest lying states, corresponding to zero occupation of the excited level,
closely resemble the Schrödinger cat-like eigenstates of the one-level Hamiltonian (see

Chapter 3). The magnitude of |c(k)
n1
| is indicated by the colorbar.
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Figure 4.4. Energy eigenvalues: High barrier and weak coupling. Shown are the
energy eigenvalues εk for the same system as in Figure 4.3. The line is a guide to
the eye. In the weak coupling regime, eigenvalues occur in groups corresponding to
occupation of the excited level. Whereas the energy difference between eigenvalues in
the same group is on the order of U00

1 and U10
1 , the energy difference between groups is

on the order of ∆E10
1 . The N + 1 lowest lying eigenvalues occur in nearly degenerate

pairs and vary quadratically with k, as expected from our analysis of the one-level
approximation. The inserts are zooms of the two lowest groups of eigenvalues.
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Because the eigenstates of Ĥdecoup
1 are non-degenerate, we employ non-degenerate

perturbation theory to study the effects of the coupling potential Ĥdecoup
1 . The full

Hamiltonian for the one-dimensional system is

Ĥ1 = Ĥcoup
1 + Ĥdecoup

1 . (4.43)

Consider the case N0 = N , that is, all atoms occupy the lowest well. In this case,

the eigenstates of the decoupled Hamiltonian Ĥdecoup
1 are

|φ(0)
± ;nL〉 = |φ±;nL, N〉A ⊗ |0, 0〉(1,0), (4.44)

with eigenvalues

ε
(0)
± (nL) = εA,1

± (nL, N). (4.45)

Then, to first order in |U00
1 |/∆E10

1 , the eigenstates of the full Hamiltonian Ĥ1 are

given by

|φ±;nL〉 = |φ(0)
± ;nL〉 + |φ(1)

± ;nL〉 ± |φ(1)
± ;N − nL〉, (4.46)

where

|φ(1)
± ;nL〉 =αnL

{

|nL − 2, N − nL〉(0,0) ⊗ |2, 0〉(1,0)

±|N − nL, nL − 2〉(0,0) ⊗ |0, 2〉(1,0)

}

(4.47)

with

αnL
=

(

U00
1

2∆E10
1

)

[

√

nL(nL − 1)

(U00
1 /∆E10

1 )(4nL − 9) − 2

]

, (4.48)

where we have neglected terms on the order of J00
1 /|U00

1 | and J10
1 /|U10

1 |. To first order
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in |U00
1 |/∆E10

1 , the corresponding energy eigenvalues are given by

ε±(nL) = ε
(0)
± (nL). (4.49)

The states |φ(1)
± ;nL〉 and |φ(1)

± ;N − nL〉 appear as shadows of the Schrödinger cat

states |φ(0)
± ;nL〉. The eigenstates and eigenvalues of Ĥ1 are shown in Figures 4.5 and

4.6 for this case. Similar results hold for cat states with nonzero occupation of the

excited level. First order coupling effects also cause the appearance of shadows in

two- and three- dimensional systems.

4.3.3 Eigenvalue Crossings: Weakly Coupled Energy Levels

We now turn our attention to the weakly coupled regime, NU0
d ≪ 2∆E10

d . In

this case, the Hamiltonian Ĥd is given by Equation (4.1). Although the Hamiltonian

is no longer separable due to the coupling term Ĥcoup
d , the constant αnL

≪ 1/N and

coupling effects can safely be ignored. In this approximation, the eigenstates closely

resemble direct products of the eigenstates of the Hamiltonians ĤA,B,C
d .

Consider a system of repulsively interacting bosons, U
ℓ|m|
d > 0, in a symmetric

potential with a barrier sufficiently high that no tunneling occurs, ∆V = 0 and

J
±ℓ|m|
d = 0. The eigenstates of ĤA

d and ĤC
d are partial Schrödinger cat-like states

given by Equation (4.38) with energies given by Equation (4.40). When all atoms

occupy the ground level, i.e., N0 = N , the eigenstates of Ĥd are approximately given

by

|φ±;nL〉 = |φ±;nL, N〉A
⊗

m

|0, 0〉(1,m), (4.50)
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Figure 4.5. Eigenstate amplitudes: Shadows of Schrödinger cat states. Shown are the
eigenstate amplitudes |c(k)

n1
| for all values of n1, k ∈ {0, 1, . . . ,Ω1−1} when J00

1 /U
00
1 ≈

6×10−6, J00
1 /∆E

10
1 ≈ 4×10−7, J10

1 /∆E
10
1 ≈ 3×10−5, and N = 8. The number-state

and eigenstate labels n1 and k are described in Figure 4.1. Here NU00
1 /∆E10

1 ≈ 0.5
and coupling between levels cannot be ignored. The faint blue shadows of the orange
Schrod̈inger cat-like states are a first order effect of level coupling. In this regime,
atoms occupying different energy levels are entangled. Moreover, U00

1 = 2U crit
1 and

the system has passed through multiple eigenvalue crossings. Cat-like states involving
definite occupation of the excited level are found among the N +1 lowest eigenstates.
In this regime, the one-level approximation is no longer valid. The magnitude of |c(k)

n1
|

is indicated by the colorbar.
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Figure 4.6. Energy eigenvalues: Shadows of Schrödinger cat states. Shown are the
energy eigenvalues εk for the same system as in Figure 4.5. The line is a guide to the
eye. In this regime, the magnitude of the interaction energy NU00

1 is on the order
of energy level spacing ∆E10

1 and the eigenvalues are no longer grouped according to
occupation of the excited level.
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Figure 4.7. Eigenvalue crossings. The eigenvalues εk are plotted as a function of the
interaction energy U00

1 for all values of k ∈ {0, 1, . . . ,Ω1 − 1}. When there are no
interactions, U00

1 = 0, the eigenvalues occur in groups separated by the energy level
spacing ∆E10

1 . As the interaction energy increases, the energy difference between
successive groups decreases until there is a crossing of the (N + 1)th and (N + 2)th
eigenvalues near |U00

1 | = U crit
1 . These eigenvalues have been plotted in blue to aid

the viewer. The insert is a zoom of the indicated region. Only the (N + 1)th and
(N+2)th eigenvalues are shown in the insert and the dashed vertical lines correspond
to |U00

1 | = U crit
1 . Eigenvalue crossingss cause states with definite occupation of the

excited level to emerge among the N + 1 lowest lying states.
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with an average energy

ε̄A,d
nL

= 〈φ±;nL|Ĥd|φ±;nL〉 = εA,d
nL

(N) +NE0
d . (4.51)

The energy

ε̄max
d = ε̄A,d

0 = U00
d N(N − 1) +NE0

d , (4.52)

is the highest such energy. Now suppose one atom occupies the excited level, that is,

N1 = 1. In d = 1, 2, and 3 dimensions, the states

|φmin
1 ;N1 = 1〉 = |(N − 1)/2, (N − 1)/2〉(0,0) ⊗ |φ+; 0, 1〉C, (4.53a)

|φmax
2 ;N1 = 1〉 = |(N − 1)/2, (N − 1)/2〉(0,0) ⊗ |φ0; 1〉B, (4.53b)

|φmax
3 ;N1 = 1〉 = |(N − 1)/2, (N − 1)/2〉(0,0) ⊗ |φ0; 1〉B ⊗ |0, 0〉(1,0), (4.53c)

have the lowest energy of all direct product states corresponding to N1 = 1. The

average energy of the state |φmin
d ;N1 = 1〉 is

ε̄min
d = 〈φmin

d ;N1 = 1|Ĥd|φmin
d ;N1 = 1〉 =

1

2
U00

d (N − 1)2 + (N − 1)E0
d + E1

d . (4.54)

Then ε̄max
d = ε̄min

d when

U00
d = U crit

d =
2∆E10

d

N2 − 1
. (4.55)

Therefore, we expect an eigenvalue crossing to occur when U00
d ≈ U crit

d . To derive

condition (4.55), we assumed that NU00
d ≪ 2∆E10

d . Clearly, this condition holds for

U00
d ≈ U crit

d when N is large. Moreover, the state |φmin
d ;N1 = 1〉, defined in Equation

(4.53), is only a valid state if N is odd. However, Equation (4.55) is also accurate for

even values of N when N is large. In the attractive case, U
ℓ|m|
d < 0, we find that a
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crossing of eigenvalues occurs when |U00
d | ≈ U crit

d .

The eigenvalue crossing near |U00
d | = U crit

d is the first of many eigenvalue crossings

in the interacting system. As the magnitude of the interacton energy |U00
d | increases,

the excited states undergo multiple crossings, as demonstrated in Figure 4.7. Un-

like the non-interacting case, however, the ground state energy also experiences an

eigenvalue crossing for large values of |U00
d |. The criterion for eigenvalu crossings in

excited states is stronger than for the ground state. Preliminary numerical investi-

gations show that, for small values of N , the ground state energy passes through a

crossing when the interaction energy is on the order of the energy level spacing while,

for large N , this can occur even for smaller values of |U00
d |/∆E10

d .

4.4 Summary

In summary, we developed a Fock space picture of the stationary states of a

system of ultracold bosons in one-, two-, and three-dimensional double-well potential

in a two-level approximation. The energy levels of the double-well are weakly coupled

by atom-atom interactions. When the coupling is weak, eigenstates involving no

occupation of the excited level are well described by the one-level approximation,

which was treated in Chapter 3. However, such states will undergo multiple eigenvalue

crossings, which cannot be described by a one-level approximation, when either the

number of particles or the interaction energy is greater than some critical value. These

crossings cause states with nonzero occupation of the excited level to emerge among

the lowest lying eigenstates in a parameter regime where the one-level approximation

is typically used. Eigenvalue crossings of the ground state energy of the double-well

system suggest that quantum phase transitions may occur in the infinite lattice.

Coupling effects become important and the one-level approximation breaks down
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when the interaction energy is comparable to the energy level spacing. In this regime,

the interaction energy is much greater than the tunneling energy and the eigenstates

are Schrödinger cat states which mix energy levels. First order effects couple states

with N1 atoms in the excited level to states with N1 ± 2 atoms in the excited level,

whereas coupling to states with N1 ± 2p atoms in the excited level is a pth order

effect. Coupling of energy levels causes shadows of cat-like states to appear in the

Fock decomposition of the eigenstates
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Chapter 5

CONCLUSIONS AND OUTLOOK

Ultracold bosons in a double-well potential were investigated via exact diag-

onalization of one- and two-level Bose-Hubbard-like Hamiltonians. Similar studies

commonly assume that the double-well is symmetric and that the trapped atoms all

occupy the ground level of each well [26, 35, 36, 39, 40, 41, 42, 44, 45, 46]. However,

many applications of these systems, such as quantum computing [19, 20] and grav-

itometry [23, 24], require a multi-level description of bosons in a tilted double-well.

In our study, the symmetric trap and one-level assumptions were relaxed in order to

provide a better understanding of these systems. Furthermore, orbital angular mo-

mentum degrees of freedom were introduced in the two-level approximation for two-

and three-dimensional trapping potentials.

Consistent with the results of past studies [40, 42, 44, 45, 46], we identified two

types of stationary states in the one-level approximation: harmonic oscillator-like

and Schrödinger cat-like states. Oscillator-like states dominate the spectrum when

the barrier between wells is low whereas the eigenstates are predominantly cat-like

in the presence of a high barrier. For intermediate barrier sizes, both types of states

exist. When the atom-atom interactions are repulsive, oscillator-like states compose

the low-energy eigenstates. On the other hand, the low lying eigenstates are cat-like

for attractive interactions.

Quantum sloshing, i.e., the dynamics of a system in which all atoms initially

occupy one well, was studied in various parameter regimes [35, 39, 40, 55]. In the
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non-interacting case, the atoms will tunnel sinusoidally between wells with a period

that depends only on the hopping strength. The two-well analog of a superfluid state

is realized at a quarter period. Interactions damp tunneling between wells when the

barrier is low [41, 50, 55]. The damping time decreases with increasing number of

particles. However, tunneling revivals occur periodically at times determined solely

by the interaction energy.

When the barrier is high, the tunneling period is inversely proportional to the

energy difference between symmetric and antisymmetric cat-like eigenstates and de-

pends on the hopping strength, interaction energy, and the total number of atoms

in the system. Because the energy difference becomes quite small when the num-

ber of particles is large, tunneling times are much longer than the lifetime of typical

experiments. Ultralong tunneling times have been attributed to the phenomenon of

self-trapping [41] observed in the experiments of Albiez et al. [34]. Unlike the low

barrier case, the system is described by a Schrödinger cat-like state at a quarter

period.

Cat-like states are highly sensitive to tilt; a small potential difference between

wells causes their collapse and completely suppresses tunneling between wells [52,

54, 55], an effect which we call potential decoherence. This is quite different from

suppression of tunneling due to thermal effects or coupling to a reservoir [47, 49,

51]; our system is closed and suppression is due to an internal parameter, namely,

imperfections in the trapping potential. In our case, potential decoherence is induced

by a slight misalignment of the energy levels in the left and right wells. Partial

cat states are more robust with respect to potenital decoherence than extreme cat

states. Huang et al. demonstrated that partial cat states are also less susceptible

to decoherence due to interactions of atoms with the electromagnetic vacuum [45].
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Clearly, partial Schrödinger cat states are a better candidate for experiments.

Unlike other sources of decoherence, including the electromagnetic vacuum [45],

finite temperature effects [47, 49], and dissipative losses [48, 50], cat-like states reap-

pear and tunneling resonances occur for critical values of the tilt when the barrier is

high [52, 54, 55]. At resonance, the potential difference between wells is exactly com-

pensated by atom-atom interactions and only a fraction of the total atoms tunnels

between wells. The other atoms remain in one well to counteract the tilt. Reso-

nant tunneling is both much faster and less sensitive to potential decoherence than

the symmetric case. Furthermore, tunneling resonances can be used to create robust

few-atom superposition states in a many-body system.

To characterize the entanglement of cat-like eigenstates, we adapted two stan-

dard entanglement measures: Meyer’s measure of the impurity [68, 69] and the von

Neumann entropy [70]. Unfortunately, although both measures yield nonzero values

for cat states, neither distinguishes between cat states with different Fock space peak

separations. The separation of peaks in Fock space is of crucial importance in the

decoherence of cat states [45, 54]. A new quantum measure, called the cat measure,

was therefore proposed to characterize cat-like states. The cat measure, the expecta-

tion value of a Schrödinger cat projection operator, is maximized for cat states with

a peak separation greater than some prescribed value.

In the two-level approximation, energy levels are coupled by atom-atom inter-

actions. The coupling between levels is weak when the interaction energy is much

less than the energy difference between the ground and first excited levels. In this

regime, the eigenstates of the two-level Hamiltonian have definite occupation of each

energy level and states with no occupation of the excited level are well described

by the one-level approximation. However, if either the number of particles is or the
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interaction energy is greater than some critical value, the two-level eigenstates un-

dergo eigenvalue crossings even when the coupling between levels is weak. In the high

barrier limit, eiegnvalue crossings cause cat-like states with nonzero occupation of

the excited level to emerge among the lowest-lying eigenstates. Although eigenvalue

crossings occur in the weak coupling regime, they are induced by the presence of the

excited energy level and cannot be described by the one-level approximation [54].

Coupling effects become important when the interaction energy is comparable to the

energy level spacing. In this case, atoms occupying the ground and first excited level

become entangled and coupling effects cannot be neglected.

There is still much to be learned from the two-level approximation. For instance,

eigenvalue crossings involving the ground state energy occur when the atom-atom

interactions are strong. However, the nature of these crossings has not yet been

investigated. Such crossings could become points of non-analyticity in the ground

state energy in the limit of an infinite lattice. These points, if they exist, would

indicate a quantum phase transition in a lattice with two allowed energy bands [17].

A quantitative treatment of the ground state energy of the two-level approximation

therefore requires attention in future studies of the double-well system. Moreover, the

quantum sloshing of many bosons undoubtedly deviates from the one-level picture

when the energy levels are significantly coupled. Orbital angular momentum degrees

of freedom provide new possibilities for the study of the complex quantum dynamics of

angular momentum states. The extension of the two-level double-well Hamiltonian to

a two-band Bose-Hubbard Hamiltonian can be used to perform a timely and relevant

study of ultracold bosons in an optical lattice with two allowed energy bands. Future

work could also focus on finite temperature effects and dissipation in the two-level

double-well system.
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APPENDIX A

HOPPING STRENGTHS

We are interested in the qualitative behavior of the hopping strengths J ℓm
d . As

seen in Equation (2.46b), only the 1D parameters J00
1 and J10

1 need to be computed.

These are given by Equation (2.43a), which yields

J00
1 = −

∫ ∞

−∞

dxφ
(0,0)
1 (x+ a)

(

− ~
2

2M

∂2

∂x2
+ V1(x)

)

φ
(0,0)
1 (x− a), (A.1)

J10
1 = −

∫ ∞

−∞

dxφ
(1,0)
1 (x+ a)

(

− ~
2

2M

∂2

∂x2
+ V1(x)

)

φ
(1,0)
1 (x− a), , (A.2)

where the localized wavefunctions are given by Equation (2.28a) in the harmonic

oscillator approximation and the double-well potential V1 is defined in Chapter 2.

The wavefunctions are reproduced below for convenience:

φ
(0,0)
1 (x) = a

−1/2
ho π−1/4e−x2/2a2

ho , (A.3)

φ
(1,0)
1 (x) = a

−1/2
ho 21/2π−1/4(x/aho) e

−x2/2a2

ho . (A.4)

To obtain approximate expressions for J00
1 and J10

1 , we will make use of the fact that

the 1D double-well potential V1(x) reaches a local maximum value of V0 at x = 0.

That is, V1(0) = V0 and V ′
1(0) = 0.

Upon direct substitution of Equation (A.3) into Equation (A.1), we obtain

J00
1 = ~ω e−a2/a2

ho

[

1

4
(2a2/a2

ho − 1) − π−1/2

∫ ∞

−∞

dξ e−ξ2

V1(ξ)/~ω

]

, (A.5)
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where ξ ≡ x/aho. The integral containing V1(ξ) is approximated as follows. Since

exp(−ξ2) → 0 very rapidly as ξ → ∞, we can reduce the range of integration to a

finite interval,
∫ ∞

−∞

dξ e−ξ2

V1(ξ) ≈
∫ 1

−1

dξ e−ξ2

V1(ξ). (A.6)

Expanding V1(ξ) about ξ = 0, we obtain V1(ξ) ≈ V0 for |ξ| < 1 up to order ξ2. Here

V1(0) ≡ V0 and V ′
1(0) = 0 since ξ = 0 is a local max of V1(ξ). Then Equation (A.6)

becomes
∫ ∞

−∞

dξ e−ξ2

V1(ξ) ≈ V0

∫ 1

−1

dξ e−ξ2

. (A.7)

Finally, we can extend the range of integration to (−∞,∞) since the contribution of

exp(−ξ2) is small for large |ξ|. This yields

∫ ∞

−∞

dξ e−ξ2

V1(ξ) ≈ V0

∫ ∞

−∞

dξ e−ξ2

= V0

√
π. (A.8)

Then J00
1 is approximately

J00
1 ≈ 1

2
Er

{

(

a

aho

)2
[

(

a

aho

)2

− 1/2

]

− 2V0/Er

}

e−a2/a2

ho . (A.9)

A similar approach can be used to evaluate J10
1 . We find

J10
1 ≈ J00

1

[

(

a

aho

)2

− 1

]

+
1

2
Er

{

(

a

aho

)6

− 9

2

(

a

aho

)4

+

(

a

aho

)2
}

e−a2/a2

ho . (A.10)
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APPENDIX B

HARMONIC-OSCILLATOR-LIKE STATES

We consider the dynamics of a non-interacting Bose-Einstein condensate (U = 0)

in the single-band model. The Bose-Hubbard Hamiltonian for this system is

Ĥ = −J
(

b̂†Lb̂R + b̂†Rb̂L

)

, (B.1)

where the hopping strength J is determined only by the barrier size. We proceed

by first finding the Fock-space expansion of the eigenstates of the Hamiltonian (B.1).

The eigenstates |φk〉 satisfy

Ĥ|φk〉 = εk|φk〉, (B.2)

for 0 ≤ k ≤ N . We will show that

〈nL, N − nL|φk〉 ≡ c(k)
nL

= AkHk(nL|N)
√

P1/2(nL|N),

with corresponding eigenvalues

εk = −J(N − 2k),

where Hk(nL|N) are discrete Hermite polynomials and

P1/2(nL|N) =
1

2N

N !

nL!(N − nL)!
, (B.3)
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is the binomial distribution. Here Ak is a constant of normalization.

Theorem 1. For a system of non-interacting particles, Ĥ|φk〉 = εk|φk〉 if and only if

−λkc
(k)
nL

=
√

nL(N − nL + 1)c
(k)
nL−1 +

√

(nL + 1)(N − nL)c
(k)
nL+1, (B.4)

for 0 ≤ nL, k ≤ N and where λk ≡ εk/J .

Proof. Let |φk〉 =
∑N

nL=0 c
(k)
nL |nL, N − nL〉 where c

(k)
nL ≡ 〈nL, N − nL|φk〉. Suppose

Ĥ|φk〉 = εk|φk〉. Then 〈nL, N−nL|Ĥ|φk〉 = 〈nL, N−nL|εk|φk〉 yields (B.4). Suppose

instead that c
(k)
nL satisfies (B.4). Then it follows that −λk|φk〉 =

(

b̂†Lb̂R + b̂†Rb̂L

)

|φk〉,

thus completing our proof.

Our goal is to find a family of sequences that satisfy (B.4) since, by Theorem 1,

these sequences must represent the eigenstates of the Hamiltonian Ĥ .

Definition. We define the discrete Hermite polynomials as

H0(nL|N) ≡ 1, (B.5a)

H1(nL|N) ≡ 2(N/2 − nL)H0(nL|N), (B.5b)

Hk+1(nL|N) ≡ 2(N/2 − nL)Hk(nL|N) − k(N − k + 1)Hk−1(nL|N), (B.5c)

for 0 ≤ nL ≤ N and 1 ≤ k ≤ N − 1.

The definition of the discrete Hermite polynomials Hk(nL|N) is nearly identical

to the definition of the continuous Hermite polynomials Hk(x) under the transforma-

tion N/2 − nL → x.

Conjecture. The discrete Hermite polynomials satisfy

(N − 2k)Hk(nL|N) = nLHk(nL − 1|N) + (N − nL)Hk(nL + 1|N), (B.6)
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and
N

∑

nL=0

Hk(nL|N)2P1/2(nL|N) =
k!N !

(N − k)!
, (B.7)

for 0 ≤ nL, k ≤ N .

Equations (B.6) and (B.7) can easily be verified for small values of k using the

definition (B.5) of the discrete Hermite polynomials. A formal proof by induction of

these equations for arbitrary k is quite complicated.

Theorem 2. Let

c(k)
nL

= Ak Hk(nL|N)
√

P1/2(nL|N), (B.8a)

where

Ak =

√

(N − k)!

k!N !
, (B.8b)

for 0 ≤ nL, k ≤ N . Then the states

|φk〉 =

N
∑

nL=0

c(k)
nL
|nL, N − nL〉, (B.8c)

are the orthonormal eigenstates of the Hamiltonian (B.1) with corresponding eigen-

values εk = −J(N − 2k).

Proof. Set λk = −(N − 2k). Using Equation B.6, we have that

−λkc
(k)
nL

= (N − 2k)AkHk(nL|N)
√

P1/2(nL|N)

= (nLHk(nL − 1|N) + (N − nL)Hk(nL + 1|N))Ak

√

P1/2(nL|N)

= nLHk(nL − 1|N)Ak

√

N − nL + 1

nL
P1/2(nL − 1|N)

+(N − nL)Hk(nL + 1|N)Ak

√

nL + 1

N − nL

P1/2(nL + 1|N)

=
√

nL(N − nL + 1)c
(k)
nL−1 +

√

(N − nL)(nL + 1)c
(k)
nL+1 (B.9)
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for 0 ≤ nL, k ≤ N . Therefore, c
(k)
nL satisfies Equation (B.4) with λk = −(N − 2k). By

Theorem 1, the states |φk〉 defined by (B.8c) are the eigenstates of the Hamiltonian

(B.1) with eigenvalues −J(N−2k). Because Ĥ is a hermitian operator, the eigenstates

|φk〉 are orthogonal. That is,

〈φk|φk′〉 = 0 for k 6= k′. (B.10)

Using Equation (B.7), we get

〈φk|φk〉 =

N
∑

nL=0

c(k)
nL
c(k)
nL

= A2
k

N
∑

nL=0

Hk(nL|N)2P1/2(nL|N) = 1, (B.11)

completing our proof.

From Theorem 2, the states |φk〉 defined by Equation (B.8) are the orthogonal

eigenstates of the Hamiltonian (B.1). Using the recursive definition of the discrete

Hermite polynomials, we can derive a recursion relation for the eigenstates.

Corollary 1. The eigenstates satisfy the recursion relation

(N̂ − 2n̂L)|φk〉 =
√

k(N − k + 1)|φk−1〉 +
√

(k + 1)(N − k)|φk+1〉, (B.12)

for 0 ≤ k ≤ N .

The recursion relation (B.12) is extremely useful as it provides a simple method

for determining the matrix elements of the number operator n̂L.

Lemma 1. The matrix elements of the number operator n̂L are

(n̂L)k′k =
N

2
δk,k′ − 1

2

√

k(N − k + 1)δk′,k−1 −
1

2

√

(k + 1)(N − k)δk′,k+1, (B.13)
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where (n̂L)k′k = 〈φk′|n̂L|φk〉 and 0 ≤ k, k′ ≤ N .

Lemma 1 is easily proved by multiplying Equation (B.12) by 〈φk′| on the left.

We are finally in a position to describe the dynamics of a system in which nL particles

initially occupy the left well.

Theorem 3. Suppose a system is described by state |Ψ〉 = |nL, N−nL〉 at time t = 0.

Then the average number of particles in the left well at some time t > 0 is given by

nL(t) =
N

2
+

(

nL − N

2

)

cos(2Jt/~), (B.14)

where

nL(t) = 〈Ψ|Û †(t)n̂LÛ(t)|Ψ〉, (B.15)

and Û(t) = exp(−iĤt/~) is the time evolution operator.

Proof. Consider the number operator n̂L(t) = Û †(t)n̂LÛ(t) in the Heisenberg picture.

Inserting closure twice yields

n̂L(t) =

N
∑

k,k′=0

eiωk′kt (n̂L)k′k |φ′
k〉〈φk|, (B.16)

where ωk′k ≡ (εk′ − εk)/~ = −2J(k′ − k). Using Lemma 1, we find

n̂L(t) =
N̂

2
− 1

2

N
∑

k=0

[

ei2Jt/~
√

k(N − k + 1)|φk−1〉

+e−i2Jt/~
√

(k + 1)(N − k)|φk+1〉
]

〈φk|, (B.17)



109

where we used
∑N

k=0 |φk〉〈φk| = 1. Recursion relation (B.12) gives us

n̂L(t) =
N̂

2
− 1

2

N
∑

k=0

ei2Jt/~

[

(N̂ − 2n̂L)|φk〉 −
√

(k + 1)(N − k)|φk+1〉
]

〈φk|

− 1

2

N
∑

k=0

e−i2Jt/~

[

(N̂ − 2n̂L)|φk〉 −
√

k(N − k + 1)|φk−1〉
]

〈φk|, (B.18)

which can be rewritten as

n̂L(t) =N̂ −
(

N̂ − 2n̂L

)

cos(2Jt/~) −
{

N̂

2
− 1

2

N
∑

k=0

[

e−i2Jt/~
√

k(N − k + 1)|φk−1〉

+ei2Jt/~
√

(k + 1)(N − k)|φk+1〉
]

〈φk|
}

. (B.19)

Together, Equations (B.17) and (B.19) imply that

nL(t) = N − (N − 2nL) cos(2Jt/~) − n∗
L(t), (B.20)

which, upon recognizing that n∗
L(t) = nL(t), completes our proof.

Finally, we consider the dynamics of a system in which all N atoms initially

occupy the right well. We are interested in the probability that the system remains

in the initial state as a function of time.

Theorem 4. Suppose a system is described by state |Ψ〉 = |0, N〉 at time t = 0. The

probability of finding all N atoms in the right well at some time t > 0 is

PR(t) = cos2N(Jt/~), (B.21)

where PR(t) = |〈0, N |Ψ(t)〉|2 and |Ψ(t)〉 = Û(t)|Ψ〉 is the time-evolved ket.
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Proof. Expanding the initial condition in an energy eigenbasis yields

|Ψ〉 = |0, N〉 =

N
∑

k=0

√

P1/2(k|N)|φk〉, (B.22)

where c
(k)
0 =

√

P1/2(k|N). Then 〈0, N |Ψ(t)〉 is

〈0, N |Ψ(t)〉 =
N

∑

k=0

P1/2(k|N)e−iεkt/~ =
N

∑

k=0

P1/2(k|N)eiJt/~(N−2k), (B.23)

where we used εk = −J(N − 2k). We can rewrite Equation (B.23) as

〈0, N |Ψ(t)〉 =
1

2N

N
∑

k=0

N !

k!(N − k)!

(

e−iJt/~
)k (

eiJt/~
)N−k

. (B.24)

Using the Binomial Theorem and Euler’s Formula, this reduces to

〈0, N |Ψ(t)〉 =
1

2N

(

e−iJt/~ + eiJt/~
)N

= cosN(Jt/~), (B.25)

which, after squaring both sides, is what we wanted to show.
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APPENDIX C

SCHRÖDINGER CAT-LIKE STATES

We consider the stationary states of a system of N ultracold bosons in a tilted

double-well with a very high barrier. In the one-level approximation, the Hamiltonian

for this system is

Ĥ = −J
∑

j 6=j′

b̂†j b̂j′ + U
∑

j

n̂j (n̂j − 1) +
∆V

2
(n̂L − n̂R) . (C.1)

Equation (C.1) was derived in Chapter 2. Because there are no angular momentum

degrees of freedom in the lowest energy level, the cumbersome sub- and super-scripts

of Equation (2.52) have been dropped. Recall that the subscript j ∈ {L,R} is the

well index, J is the hopping strength, U is the interaction potential, and ∆V is the

potential difference between wells, or tilt.

For convenience, we define the following operators,

ĤU ≡ U
∑

j

n̂j (n̂j − 1) , ĤJ ≡ −J
∑

j 6=j′

b̂†j b̂j′, and Ĥ∆V ≡ ∆V

2
(n̂L − n̂R) . (C.2)

The Hamiltonian can then be written Ĥ = ĤU + ĤJ + Ĥ∆V . We consider the high

barrier case, J ≪ |U |.
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C.1 Cat-Like States in a Symmetric Potential

Consider a symmetric potential, ∆V = 0. Suppose further that the barrier is

sufficiently high that J ≪ |U | so that we can treat ĤJ as a perturbation to ĤU . The

eigenstates and eigenvalues of ĤU are given by

ĤU |nL, N − nL〉 = ε(0)
nL
|nL, N − nL〉, (C.3)

with

ε(0)
nL

= U
[

2(nL −N/2)2 +N(N/2 − 1)
]

. (C.4)

Because ε
(0)
N−nL

= ε
(0)
nL , the states |nL, N − nL〉 and |N − nL, nL〉 are degenerate and

we employ degenerate perturbation theory.

The first step is to diagonalize the perturbing potential ĤJ in the degenerate

subspace. In the case of two-fold degeneracies, the perturbation matrix P is given by

the following 2 × 2 matrix:

P =





0 〈nL, N − nL|ĤJ |N − nL, nL〉

〈N − nL, nL|ĤJ |nL, N − nL〉 0



 . (C.5)

The off-diagonal elements of the matrix P are zero for nL 6= N/2 ± 1 implying that

we must turn to higher order perturbations. Because

〈nL, N − nL|
(

ĤJ

)x

|nL, N − nL〉 = 〈nL, N − nL|
(

ĤJ

)x

|N − nL, nL〉 = 0, (C.6)

for x < N−2nL, the effects of the perturbing potential ĤJ require (N−2nL)th order
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degenerate perturbation theory. In this case, the perturbation matrix becomes

P ′ =





0 P ′
12

P ′
12 0



 , (C.7)

where

P ′
12 =

〈nL, N − nL|
(

ĤJ

)N−2nL

|N − nL, nL〉
∏N−nL−1

n′

L
=nL+1

(

ε
(0)
n′

L
− ε

(0)
nL

)

= 2U
(N − nL)!

nL![(N − 2nL − 1)!]2

(

J

2U

)N−2nL

, (C.8)

and ε
(0)
nL is given by Equation (C.4). The eigenvectors and eigenvalues of the pertur-

bation matrix P ′ are

χ± =





1

∓1



 and λ± = ±P ′
12, (C.9)

which implies that the eigenstates of the perturbed matrix are

|φ(0)
± ;nL〉 =

1√
2

(|nL, N − nL〉 ± |N − nL, nL〉) , for 0 ≤ nL < N/2. (C.10)

to (N − 2nL − 1)th order J/|U | and the energy difference between states is

∆εnL
= 2P ′

12 = 4U
(N − nL)!

nL![(N − 2nL − 1)!]2

(

J

2U

)N−2nL

, (C.11)

to (N − 2nL)th order in J/|U |. Therefore, the eigenstates of the Hamiltonian Ĥ =

ĤU + ĤJ are nearly degenerate pairs of partial Schrödinger cat states in the high

barrier limit, J ≪ |U |.
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C.2 Potential Decoherence

We now investigate the effects of a small tilt, ∆V ≪ J in the presence of a high

barrier, J ≪ |U |. The eigenstates |φ(0)
± ;nL〉 of the of Hamiltonian Ĥ = ĤU + ĤJ are

given by Equation (C.10) with a level splitting ∆εnL
given by Equation (C.11). Here

the superscript (0) indicates the zeroth order eigenstate with respect to both hopping

J and tilt ∆V . We now introduce a small tilt |∆V | ≪ J by taking Ĥ → Ĥ + Ĥ∆V .

Because ĤJ lifts all degeneracies, we can use non-degenerate perturbation theory to

find the approximate eigenstates. Furthermore, because the level splitting between

entangled pairs ∆EnL
is much smaller than all other energy differences, the first- and

second- order corrections to the state |φ(0)
+ ;nL〉 are given by

|φ(1)
+ ;nL〉 = |φ(0)

− ;nL〉
H

(∆V )
∓;nL

∆εnL

, (C.12)

and

|φ(2)
+ ;nL〉 = |φ(0)

− ;nL〉
H

(∆V )
−;nL

H
(∆V )
∓;nL

−H
(∆V )
∓;nL

H
(∆V )
+;nL

∆ε2
nL

, (C.13)

where

H
(∆V )
−;nL

≡ 〈φ(0)
− ;nL|Ĥ∆V |φ(0)

− ;nL〉 = N∆V, (C.14)

H
(∆V )
+;nL

≡ 〈φ(0)
+ ;nL|Ĥ∆V |φ(0)

+ ;nL〉 = N∆V, (C.15)

and

H
(∆V )
∓;nL

≡ 〈φ(0)
− ;nL|Ĥ∆V |φ(0)

+ ;nL〉 = ∆V (nL −N/2) . (C.16)
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To second order, the eigenstates satisfy

|φ+;nL〉 ≈ |φ(2)
+ ;nL〉 − |φ(2)

+ ;nL〉∆V
N/2 − nL

∆εnL

. (C.17)

The eigenstate |φ+;nL〉 becomes a number state of the form |nL, N − nL〉 when

|∆V | =
∆εnL

N/2 − nL
, (C.18)

for nL < N/2. A small tilt thus destroys the entangled eigenstates in the presence of

a high barrier. If we let N = 1 particle, then the eigenstates become localized when

∆V = 2∆ε0 which is agreement with results obtained from an exact treatment of the

Schrödinger equation (see Appendix D).

C.3 Tunneling Resonances

Consider J = 0 and ∆V = ∆Vp ≡ 2pU where p ≤ N − 1 is an integer. In

this case, the Hamiltonian is Ĥ = ĤU + Ĥ∆Vp
. The eigenstates are number states

|nL, N − nL〉 with corresponding energy eigenvalues

εp
nL

= U
[

2(nL −N/2 + p/2)2 +N(N/2 − 1) − p2/2 + pN
]

. (C.19)

In this case, the states |nL, N − nL〉 and |N − p − nL, nL + p〉 are degenerate for

0 ≤ nL ≤ N − p.

Now consider Ĥ → Ĥ + ĤJ with J ≪ |U |. Similar to the treatment in Sec-

tion C.1, we employ degenerate perturbation theory to (N − 2nL − p)th order. The
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eigenstates of the perturbed matrix are therefore

|φ±;nL, p〉 ≡
1√
2

(|nL, N − nL〉 ± |N − p− nL, nL + p〉) , (C.20)

to (N − 2nL − p− 1)th order J/|U | and the energy difference between states is

∆εp
nL

= 2
〈nL, N − nL|

(

ĤJ

)N−2nL−p

|N − p− nL, nL + p〉
∏N−nL−p−1

n′

L
=nL+1

(

εp
n′

L

− εp
nL

) , (C.21)

to (N − 2nL − p)th order in J/|U | where εp
nL

is given by Equation (C.19). Thus,

partial cat states reappear for critical values of the tilt given by

∆V = ∆Vp ≡ 2pU, p ∈ {1, 2, . . . , N − 1}. (C.22)

Furthermore, the procedure for determining the maximum deviation from ∆Vp for

which the entangled eigenstates still exist is the same as in Section C.2. The stationary

states will become localized when

|∆V − ∆Vp| =
2∆εp

nL

N − 2nL − p
, (C.23)

where ∆εp
nL

is defined in (C.21). For the special case nL = 0, we find that

∆εp
0 =

4U(J/2U)N−p(N − p)

(N − p− 1)!

√

N !

p!(N − p)!
. (C.24)
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APPENDIX D

LOCALIZATION OF A SINGLE PARTICLE IN A TILTED SQUARE

TWO-WELL POTENTIAL

Consider a single particle in a square two-well potential of the form

V (x) =



















V0 , |x| < a/2

0 , a/2 < |x| < b/2

∞ , |x| > b/2

(D.1)

The Hamiltonian for this system is given by

H = − ~
2

2m

∂2

∂x2
+ V (x) (D.2)

where m is the mass of the particle. The ground state ψ
(0)
0 (x) of (D.2) is symmetric

and the first excited state ψ
(0)
1 (x) is antisymmetric. If we assume that the barrier is

high, then the probability density inside the barrier is negligible. That is,

∫

dxψ
(0)
0 (x)2 ≈

∫

L

dxψ
(0)
0 (x)2 +

∫

R

dxψ
(0)
0 (x)2, (D.3)

where
∫

L
dx ≡

∫ −a/2

−b/2
dx and

∫

R
dx ≡

∫ b/2

a/2
dx. Furthermore, because the ground state

is symmetric, we have that

∫

L

dxψ
(0)
0 (x)2 =

∫

R

dxψ
(0)
0 (x)2 ≈ 1

2
. (D.4)
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We introduce a small tilt by taking

H → H + ∆V (x) (D.5)

where

∆V (x) =



















+∆V/2 , −b/2 < x < −a/2

−∆V/2 , a/2 < x < b/2

0 otherwise

(D.6)

This system represents a tilted two-well system in one dimension. Suppose ∆V ≪ V0.

Then we can use non-degenerate perturbation theory to investigate the stationary

states of a tilted two-well system. The first-order correction to the ground state is

ψ
(1)
0 (x) =

∑

n 6=0

ψ(0)
n (x)

∫

dx′ ψ
(0)
n (x′)∆V (x′)ψ

(0)
0 (x′)

E
(0)
0 − E

(0)
n

. (D.7)

If the barrier is high, it is safe to assume that the level splitting between the first two

excited states is very small. That is,

E
(0)
1 − E

(0)
0 ≪ E(0)

n − E
(0)
0 , (D.8)

for n > 1. Then Eq. (D.7) becomes

ψ
(1)
0 (x) ≈ ψ

(0)
1 (x)

∫

dx′ ψ
(0)
1 (x′)∆V (x′)ψ

(0)
0 (x′)

E
(0)
0 −E

(0)
1

, (D.9)

where

∫

dxψ
(0)
1 (x)∆V (x)ψ

(0)
0 (x) =

∆V

2

[
∫

L

dxψ
(0)
1 (x)ψ

(0)
0 (x) −

∫

R

dxψ
(0)
1 (x)ψ

(0)
0 (x)

]

.

(D.10)



119

Because ψ
(0)
1 (x) is the antisymmetric compliment to ψ

(0)
0 (x), we have

∫

L

dxψ
(0)
1 (x)ψ

(0)
0 (x) ≈

∫

L

dxψ
(0)
0 (x)2,

∫

R

dxψ
(0)
1 (x)ψ

(0)
0 (x) ≈ −

∫

R

dxψ
(0)
0 (x)2. (D.11)

Substituting (D.11) into (D.10) yields

∫

dxψ
(0)
1 (x)∆V (x)ψ

(0)
0 (x) ≈ ∆V/2, (D.12)

and Eq. (D.9) becomes

ψ
(1)
0 (x) ≈ − ∆V/2

E
(0)
1 −E

(0)
0

ψ
(0)
1 (x) = − ∆V

2∆E10

ψ
(0)
1 (x), (D.13)

where ∆E
(0)
10 ≡ E

(0)
1 −E

(0)
0 . The second order correction to the ground state is given

by

ψ
(2)
0 (x) =

∑

i6=0







∑

j 6=0

∆Vij∆Vj0
(

E
(0)
0 −E

(0)
i

)(

E
(0)
0 −E

(0)
j

) − ∆Vi0∆V00
(

E
(0)
0 − E

(0)
i

)2






ψ

(0)
i (x), (D.14)

where

∆Vij ≡
∫

dxψ
(0)
i (x)∆V (x)ψ

(0)
j (x). (D.15)

Condition (D.8) reduces Eq. (D.14) to

ψ
(2)
0 (x) ≈ ∆V11∆V10 − ∆V10∆V00

(

E
(0)
0 − E

(0)
1

)2 ψ
(0)
1 (x). (D.16)

By symmetry considerations alone, since ψ
(0)
0 (x) is even and ψ

(0)
1 (x) and ∆V (x) are
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odd, we see immediately that ∆V00 = ∆V11 = 0 and

ψ
(2)
0 (x) ≈ 0. (D.17)

The true ground state of Hamiltonian (D.5) is given by

ψ0(x) ≈ ψ
(0)
0 (x) + ψ

(1)
0 (x) + ψ

(2)
0 (x) = ψ

(0)
0 (x) − ∆V

2∆E10
ψ

(0)
1 (x), (D.18)

to second order. Therefore, the single particle ground state is localized when

|∆V | = δVcritical ≡ 2∆E
(0)
10 . (D.19)

This result is consistent with the results obtained in Appendix C.
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APPENDIX E

EXACT SOLUTIONS FOR THE ONE-LEVEL APPROXMATION

In the one-level approximation, the Hamiltonian for N weakly interacting bosons

in a double-well potential is

Ĥ = −J
∑

j 6=j′

b̂†j b̂j′ + U
∑

j

n̂j (n̂j − 1) +
∆V

2
(n̂L − n̂R) . (E.1)

where the subscript j ∈ {L,R} is the well index, J is the hopping strength, U is

the interaction potential, and ∆V is the tilt. The energy eigenstates of the one-level

Hamiltonian Ĥ satisfy

Ĥ|φk〉 = εk|φk〉, (E.2)

and can be expanded in terms of the number states |nL, N − nL〉 as

|φk〉 =
N

∑

nL=0

c(k)
nL
|nL, N − nL〉. (E.3)

Here |c(k)
nL |2 is the probability of finding nL particles in the left well when the system

is in the kth excited state.

In particular, we are interested in the dynamics of a system in which all particles

initially occupy the right well, i.e., |ψ〉 = |0, N〉. At a later time t > 0, the system is

described in the Schrödinger picture by the time-evolved state

|ψ(t)〉 ≡ e−iĤt/~|ψ〉. (E.4)
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The average occupation of the left well at some time t > 0 is given by

nL(t) ≡ 〈ψ(t)|n̂L|ψ(t)〉. (E.5)

We provide exact solutions expressions for nL(t) for systems of N = 1 and 2 atoms.

E.1 One Atom

Consider a single atom, N = 1, in a double well potential. The energy eigenstates

and eigenvalues are given by

χ± =
1

Z±





∆V/(2J) − ε±

1



 and ε± = ±J
√

1 + [∆V/(2J)]2, (E.6)

where

Z± =

√

[∆V/(2J) − ε±]2 + 1, (E.7)

is a constant of normalization. The Fock space probability amplitudes are the el-

ements of the vectors χ±. That is, c
(±)
nL = (χ±)nL

for nL ∈ {0, 1}. The average

occupation of the left well is

nL(t) = A sin2(ωt/2), (E.8)

where the amplitude and frequency of oscillation are

A = 1/[1 + (∆V/2J)2] and ω = (2J/~)
√

1 + (∆V/2J)2. (E.9)

For a system of N non-interacting bosons, we find that the average occupation of the

left well is simply given by [nL(t)]N .
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E.2 Two Atoms

Next, consider two atoms, N = 2, in a symmetric potential, ∆V = 0. The

eigenvalues are given by

ε± = U



1 ±

√

4

(

J

U

)2

+ 1



 and ε0 = 2U, (E.10)

with corresponding eigenvectors

χ± =
1

Z±











1/
√

2

ε∓/(2J)

1/
√

2











and χ0 =











−1/
√

2

0

1/
√

2











, (E.11)

where

Z± =

√

[ε∓/(2J)]2 + 1, (E.12)

is a constant of normalization. The average occupation of the left well is

nL(t) = 1 −A+ cos(ω+t/2) + A− cos(ω−t/2), (E.13)

where the amplitudes and frequencies of oscillation are

A± =
1

2

(

ε± − ε0

2ε+ − ε0

)

and ~ω± = |ε± − ε0|. (E.14)

Note that A± ≈ 1/2 when J/|U | ≫ 1. Then

nL(t) ≈ 1 − 1

2
[cos(ω+t/2) + cos(ω−t/2)]

= 1 − cos[(ω+ + ω−)t/2] cos[(ω+ − ω−)t/2], (E.15)
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where we used a sum-to-product trigonometric identity. Since ω+ + ω− ≈ 4J/~ and

ω+ − ω− ≈ 2U/~ when J/|U | ≫ 1, Equation (E.2) becomes

nL(t) ≈ 1 − cos(2Jt/~) cos(Ut/~) for J/|U | ≫ 1. (E.16)

Thus, a pair of interacting atoms will undergo modulated oscillations between wells

in the low barrier limit.
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APPENDIX F

MATLAB CODE FOR GENERATING TWO-LEVEL HAMILTONIANS

In this section, we present MATLAB code for generating the two-level Hamil-

tonians Ĥd, given by Equation (4.1), for d = 1, 2, and 3 dimensions. The function

colindex.m takes the values n
(ℓ,m)
j as input and computes the corresponding Fock

state label nd ∈ {0, 1, . . . ,Ωd−1} where the multiplicity Ωd is given by Equation (4.4)

and computed in the function multiModeMultiplicity.m. The Fock state label is

given by Equation (4.6) for d = 1, 2, and 3 dimensions. The function operators.m

generates the Fock space matrix representation of the operators b̂
(ℓ,m)†
j b̂

(ℓ′,m′)
j′ for a sys-

tem with N total atoms in d dimensions. These operators are represented as Ωd ×Ωd

square, Hermitian matrices. As Ωd ∝ N2d+1, these matrices are quite large even for

small values of N .

The interaction energies U
ℓ|m|
d and the hopping strengths J

±ℓ|m|
d are computed

by the function params.m. The input to this function are the barrier size V ′′
1 (a)a2/Er

and the coupling constants Gd (see Chapter 2). All energies are in units of the level

spacing ∆E10
1 . The interaction energies have a power law dependence on the barrier

size whereas the hopping strengths decay exponentially with increasing barrier size.

Finally, the matrix representation (Hd)ndn′

d
of the two-level Hamiltonian, given

by Equation (4.5), is generated by the function twoLevelHamiltonian.m. In Figure

F.1, we show the time required to generate and diagonalize the matrix (Hd)ndn′

d
. For

N = 6, 9, and 22, diagonalization takes approximately two minutes in d = 1, 2, and

3 dimensions, respectively.
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Figure F.1. Time required to generate and diagonalize the two-level Hamiltonian. The
time required to generate and diagonalize the two-level Hamiltonian Ĥd is plotted
versus the total number of atoms N . Results for d = 1, 2, and 3 are plotted in
blue circles, green squares, and red triangles, respectively. The multiplicity of the
d-dimensional system scales like N2d+1. In 1D, the Hamiltonian for a 6-atom system
can be diagonalized in sbout 20 ms whereas this process takes over 2 minutes for the
3D case. The curves are a guide to the eye.
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F.1 MultiModeMultiplicity.m

function omega = multiModeMultiplicity(N, M)

% omega = multiModeMultiplicity(N, M)

%

% omega is the multiplicity of a double-well system with N total particles

% allowed to occupy M total single-particle energy levels.

omega = binomial(N + 2.*M - 1, N); %%% compute the multiplicity

omega = floor(omega); %%% to avoid doubles, i.e., 61.0000)

function y = binomial(n, r) %%% subfunction

% y = binomial(n, r)

%

% y = n!/r!(n-r)! is the binomial coefficient

y = factorial(n)./( factorial(r).*factorial(n-r) );

F.2 Colindex.m

function j = colindex(data, D)

%j = colindex(data, D)

%

%j is the column (or row) index. the form of the data used to compute j

%depends on the number of dimensions D.

% D = 1: data = [mL0, mR0, mL1, mR1]

% D = 2: data = [mL0, mR0, mLp, mRp, mLm, mRm]

% D = 3: data = [mL0, mR0, mL1p, mR1p, mL10, mR10, mL1m, mR1m]

switch D

case 1 %one dimension

N = sum( data );

M1 = sum( data([3:4]) );

mL0 = data(1);

mL1 = data(3);

%compute j

j0 = (1/6) * M1 * (M1+1) * (5 + 3*N - 2*M1) + 1;

j1 = j0 + mL1*(N-M1+1);



128

j2 = j1 + mL0;

j = int16(j2);

return

case 2 %two dimensions

N = sum( data );

M1 = sum( data([3:6]) );

M0 = N-M1;

ML = sum( data([3,5]) ); %in 1st level of L

MR = sum( data([4,6]) ); %in 1st level of R

mLp = data(3);

mRp = data(4);

mL0 = data(1);

%compute j

j0 = (1/120)*M1*(M1+1)*(M1+2)*(M1+3)*(9+5*N-4*M1) + 1;

j1 = j0 + (1/6)*(M0+1)*ML*(ML+1)*(5+3*M1-2*ML);

j2 = j1 + mLp*(MR+1)*(M0+1);

j3 = j2 + mRp*(M0+1);

j4 = j3 + mL0;

j = int16(j4);

return

case 3 %three dimensions

N = sum( data );

M1 = sum( data([3:8]) );

M0 = N-M1;

ML = sum( data([3,5,7]) ); %in 1st level of L

MR = sum( data([4,6,8]) ); %in 1st level of R

mL1m = data(3);

mL10 = data(7);

mR1m = data(4);

mR10 = data(8);

mL0 = data(1);

%compute j

j0 = 1 - (M1*(120+274*M1+225*M1^2+85*M1^3+15*M1^4+M1^5)* ...

(-13+6*M1-7*N))/5040;

j1 = j0 + ((1+M0)*ML*(1+ML)*(2+ML)* ...

(47+10*M1^2-15*M1*(ML-3)-33*ML+6*ML^2))/120;

j2 = j1 - ((1+M0)*mL1m*(-3-2*ML+mL1m)*(1+MR)*(2+MR))/4;

j3 = j2 + ((1+M0)*mL10*(1+MR)*(2+MR))/2;
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j4 = j3 - ((1+M0)*mR1m*(-3-2*MR+mR1m))/2;

j5 = j4 + ((1+M0)*mR10);

j6 = j5 + mL0;

j = int16(j6);

return

end

F.3 Operators.m

function ops = operators(N, D)

%ops = operators(N, D)

switch D

case 0 %two mode approximation

ops = operators_twoMode(N); %see subfunction below

case 1 %one dimension

ops = operators1D(N); %see subfunction below

return

case 2 %two dimensions

ops = operators2D(N); %see subfunction below

return

case 3 %three dimensions

ops = operators3D(N); %see subfunction below

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: two mode %%

function ops = operators_twoMode(N) %subfunction

i = 0:N-1;

bRbdL = sparse(2:N+1, 1:N, sqrt( (i+1).*(N-i) ), N+1, N+1);

i = 0:N;

nR = sparse(1:N+1, 1:N+1, N-i, N+1, N+1);

nL = sparse(1:N+1, 1:N+1, i, N+1, N+1);
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ops = {nL, bRbdL’;

bRbdL, nR };

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 1D %%

function ops = operators1D(N) %subfunction

omega = multiModeMultiplicity(N, 2); %omega is four-mode multiplicity

L00L00 = spalloc(omega,omega,omega); %allocate space for the operators

R00L00 = spalloc(omega,omega,omega);

R00R00 = spalloc(omega,omega,omega);

L10L00 = spalloc(omega,omega,omega);

L10R00 = spalloc(omega,omega,omega);

L10L10 = spalloc(omega,omega,omega);

R10L00 = spalloc(omega,omega,omega);

R10R00 = spalloc(omega,omega,omega);

R10L10 = spalloc(omega,omega,omega);

R10R10 = spalloc(omega,omega,omega);

for nL00 = 0:N %cycle through all possible combinations

for nR00 = 0:N-nL00

for nL10 = 0:N-nL00-nR00

nR10 = N - nL00 - nR00 - nL10; %number conserving: sum(njlm = N)

n = [nL00, nR00, nL10, nR10]; %fock-state

i = colindex(n,1); %compute the row index: see colindex.m

%NOTE: we have to compute 10 matrices

%number operators are diagonal

L00L00(i,i) = nL00; %1

R00R00(i,i) = nR00; %2

L10L10(i,i) = nL10; %3

R10R10(i,i) = nR10; %4

%compute bdR00*bL00
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if nL00 < N & nR00 > 0 %5

K = 1;

L = 2;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,1);

R00L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL10*bL00

if nL00 < N & nL10 > 0 %6

K = 1;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,1);

L10L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR10*bL00

if nL00 < N & nR10 > 0 %8

K = 1;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,1);

R10L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL10*bR00

if nR00 < N & nL10 > 0 %7

K = 2;

L = 3;

m = n;
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m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,1);

L10R00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR10*bR00

if nR00 < N & nR10 > 0 %9

K = 2;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,1);

R10R00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR10*bL10

if nL10 < N & nR10 > 0 %10

K = 3;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,1);

R10L10(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

end %nL10 loop

end %nR00 loop

end %nL00 loop

%note that bjlm*bdJLM = (bdjlm*bJLM)’

ops = {L00L00, R00L00’, L10L00’, R10L00’;

R00L00, R00R00, L10R00’, R10R00’;

L10L00, L10R00, L10L10, R10L10’;

R10L00, R10R00, R10L10, R10R10};
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 2D %%

function ops = operators2D(N) %subfunction

omega = multiModeMultiplicity(N, 3); %omega is six-mode multiplicity

L00L00 = spalloc(omega,omega,omega); %allocate space for the operators

R00L00 = spalloc(omega,omega,omega);

R00R00 = spalloc(omega,omega,omega);

L1mL00 = spalloc(omega,omega,omega);

L1mR00 = spalloc(omega,omega,omega);

L1mL1m = spalloc(omega,omega,omega);

R1mL00 = spalloc(omega,omega,omega);

R1mR00 = spalloc(omega,omega,omega);

R1mL1m = spalloc(omega,omega,omega);

R1mR1m = spalloc(omega,omega,omega);

L1pL00 = spalloc(omega,omega,omega);

L1pR00 = spalloc(omega,omega,omega);

L1pL1m = spalloc(omega,omega,omega);

L1pR1m = spalloc(omega,omega,omega);

L1pL1p = spalloc(omega,omega,omega);

R1pL00 = spalloc(omega,omega,omega);

R1pR00 = spalloc(omega,omega,omega);

R1pL1m = spalloc(omega,omega,omega);

R1pR1m = spalloc(omega,omega,omega);

R1pL1p = spalloc(omega,omega,omega);

R1pR1p = spalloc(omega,omega,omega);

for nL00 = 0:N %cycle through all possible combinations

for nR00 = 0:N-nL00

for nL1m = 0:N-nL00-nR00

for nR1m = 0:N-nL00-nR00-nL1m;

for nL1p = 0:N-nL00-nR00-nL1m-nR1m;

nR1p = N - nL00 - nR00 - nL1m - nR1m - nL1p; %number conserving: sum(njlm = N)

n = [nL00, nR00, nL1p, nR1p, nL1m, nR1m]; %fock-state



134

i = colindex(n,2); %compute the row index: see colindex.m

%NOTE: we have to compute 21 matrices

%number operators are diagonal

L00L00(i,i) = nL00; %1

R00R00(i,i) = nR00; %2

L1mL1m(i,i) = nL1m; %3

R1mR1m(i,i) = nR1m; %4

L1pL1p(i,i) = nL1p; %5

R1pR1p(i,i) = nR1p; %6

%compute bdR00*bL00

if nL00 < N & nR00 > 0 %7

K = 1;

L = 2;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R00L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bL00

if nL00 < N & nL1p > 0 %8

K = 1;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

L1pL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bL00

if nL00 < N & nR1p > 0 %9

K = 1;

L = 4;
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m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1pL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1m*bL00

if nL00 < N & nL1m > 0 %10

K = 1;

L = 5;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

L1mL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1m*bL00

if nL00 < N & nR1m > 0 %11

K = 1;

L = 6;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1mL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bR00

if nR00 < N & nL1p > 0 %12

K = 2;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);
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L1pR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bR00

if nR00 < N & nR1p > 0 %13

K = 2;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1pR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1m*bR00

if nR00 < N & nL1m > 0 %14

K = 2;

L = 5;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

L1mR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1m*bR00

if nR00 < N & nR1m > 0 %15

K = 2;

L = 6;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1mR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end
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%compute bdR1m*bL1m

if nL1m < N & nR1m > 0 %21

K = 5;

L = 6;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1mL1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bL1m

if nL1m < N & nL1p > 0 %17

K = 5;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

L1pL1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bL1m

if nL1m < N & nR1p > 0 %19

K = 5;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1pL1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bR1m

if nR1m < N & nL1p > 0 %18

K = 6;

L = 3;
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m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

L1pR1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bR1m

if nR1m < N & nR1p > 0 %20

K = 6;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1pR1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bL1p

if nL1p < N & nR1p > 0 %16

K = 3;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,2);

R1pL1p(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

end %nL1p loop

end %nR1m loop

end %nL1m loop

end %nR00 loop

end %nL00 loop

%note that bjlm*bdJLM = (bdjlm*bJLM)’

ops = {L00L00, R00L00’, L1mL00’, R1mL00’, L1pL00’, R1pL00’;
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R00L00, R00R00, L1mR00’, R1mR00’, L1pR00’, R1pR00’;

L1mL00, L1mR00, L1mL1m, R1mL1m’, L1pL1m’, R1pL1m’;

R1mL00, R1mR00, R1mL1m, R1mR1m, L1pR1m’, R1pR1m’;

L1pL00, L1pR00, L1pL1m, L1pR1m, L1pL1p, R1pL1p’;

R1pL00, R1pR00, R1pL1m, R1pR1m, R1pL1p, R1pR1p};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 3D %%

function ops = operators3D(N) %3D subfunction

omega = multiModeMultiplicity(N, 4); %omega is eight-mode multiplicity

L00L00 = spalloc(omega,omega,omega); %allocate space for the operators

R00L00 = spalloc(omega,omega,omega);

R00R00 = spalloc(omega,omega,omega);

L10L00 = spalloc(omega,omega,omega);

L10R00 = spalloc(omega,omega,omega);

L10L10 = spalloc(omega,omega,omega);

R10L00 = spalloc(omega,omega,omega);

R10R00 = spalloc(omega,omega,omega);

R10L10 = spalloc(omega,omega,omega);

R10R10 = spalloc(omega,omega,omega);

L1mL00 = spalloc(omega,omega,omega);

L1mR00 = spalloc(omega,omega,omega);

L1mL1m = spalloc(omega,omega,omega);

R1mL00 = spalloc(omega,omega,omega);

R1mR00 = spalloc(omega,omega,omega);

R1mL1m = spalloc(omega,omega,omega);

R1mR1m = spalloc(omega,omega,omega);

L1pL00 = spalloc(omega,omega,omega);

L1pR00 = spalloc(omega,omega,omega);

L1pL1m = spalloc(omega,omega,omega);

L1pR1m = spalloc(omega,omega,omega);

L1pL1p = spalloc(omega,omega,omega);

R1pL00 = spalloc(omega,omega,omega);

R1pR00 = spalloc(omega,omega,omega);

R1pL1m = spalloc(omega,omega,omega);

R1pR1m = spalloc(omega,omega,omega);

R1pL1p = spalloc(omega,omega,omega);
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R1pR1p = spalloc(omega,omega,omega);

L10L1m = spalloc(omega,omega,omega);

L10R1m = spalloc(omega,omega,omega);

R10L1m = spalloc(omega,omega,omega);

R10R1m = spalloc(omega,omega,omega);

L1pL10 = spalloc(omega,omega,omega);

L1pR10 = spalloc(omega,omega,omega);

R1pL10 = spalloc(omega,omega,omega);

R1pR10 = spalloc(omega,omega,omega);

for nL00 = 0:N %cycle through all possible combinations

for nR00 = 0:N-nL00

for nL1m = 0:N-nL00-nR00

for nR1m = 0:N-nL00-nR00-nL1m

for nL10 = 0:N-nL00-nR00-nL1m-nR1m

for nR10 = 0:N-nL00-nR00-nL1m-nR1m-nL10

for nL1p = 0:N-nL00-nR00-nL1m-nR1m-nL10-nR10

nR1p = N - nL00 - nR00 - nL1m - nR1m - nL10 - nR10 - nL1p;

n = [nL00, nR00, nL1p, nR1p, nL10, nR10, nL1m, nR1m]; %fock-state

i = colindex(n,3); %compute the row index: see colindex.m

%number operators are diagonal

L00L00(i,i) = nL00; %1

R00R00(i,i) = nR00; %2

L10L10(i,i) = nL10; %3

R10R10(i,i) = nR10; %4

L1mL1m(i,i) = nL1m; %5

R1mR1m(i,i) = nR1m; %6

L1pL1p(i,i) = nL1p; %7

R1pR1p(i,i) = nR1p; %8

%compute bdR00*bL00

if nL00 < N & nR00 > 0 %5

K = 1;

L = 2;

m = n;

m(K) = m(K)+1;
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m(L) = m(L)-1;

j = colindex(m,3);

R00L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL10*bL00

if nL00 < N & nL10 > 0 %6

K = 1;

L = 5;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L10L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR10*bL00

if nL00 < N & nR10 > 0 %8

K = 1;

L = 6;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R10L00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL10*bR00

if nR00 < N & nL10 > 0 %7

K = 2;

L = 5;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L10R00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );
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end

%compute bdR10*bR00

if nR00 < N & nR10 > 0 %9

K = 2;

L = 6;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R10R00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR10*bL10

if nL10 < N & nR10 > 0 %10

K = 5;

L = 6;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R10L10(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bL00

if nL00 < N & nL1p > 0 %8

K = 1;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L1pL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bL00

if nL00 < N & nR1p > 0 %9
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K = 1;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1pL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1m*bL00

if nL00 < N & nL1m > 0 %10

K = 1;

L = 7;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L1mL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1m*bL00

if nL00 < N & nR1m > 0 %11

K = 1;

L = 8;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1mL00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bR00

if nR00 < N & nL1p > 0 %12

K = 2;

L = 3;

m = n;

m(K) = m(K)+1;
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m(L) = m(L)-1;

j = colindex(m,3);

L1pR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bR00

if nR00 < N & nR1p > 0 %13

K = 2;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1pR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1m*bR00

if nR00 < N & nL1m > 0 %14

K = 2;

L = 7;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L1mR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1m*bR00

if nR00 < N & nR1m > 0 %15

K = 2;

L = 8;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1mR00(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );
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end

%compute bdR1m*bL1m

if nL1m < N & nR1m > 0 %21

K = 7;

L = 8;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1mL1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bL1m

if nL1m < N & nL1p > 0 %17

K = 7;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L1pL1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bL1m

if nL1m < N & nR1p > 0 %19

K = 7;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1pL1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdL1p*bR1m

if nR1m < N & nL1p > 0 %18
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K = 8;

L = 3;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

L1pR1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bR1m

if nR1m < N & nR1p > 0 %20

K = 8;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1pR1m(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%compute bdR1p*bL1p

if nL1p < N & nR1p > 0 %16

K = 3;

L = 4;

m = n;

m(K) = m(K)+1;

m(L) = m(L)-1;

j = colindex(m,3);

R1pL1p(i,j) = sqrt( m(K) )*sqrt( m(L) + 1 );

end

%L10L1m

%L10R1m

%R10L1m

%R10R1m

%L1pL10

%L1pR10
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%R1pL10

%R1pR10

end

end

end

end

end

end %nR00 loop

end %nL00 loop

ops = {L00L00, R00L00’, L1mL00’, R1mL00’, L10L00’, R10L00’, L1pL00’, R1pL00’;

R00L00, R00R00, L1mR00’, R1mR00’, L10R00’, R10R00’, L1pR00’, R1pR00’;

L1mL00, L1mR00, L1mL1m, R1mL1m’, L10L1m’, R10L1m’, L1pL1m’, R1pL1m’;

R1mL00, R1mR00, R1mL1m, R1mR1m, L10R1m’, R10R1m’, L1pR1m’, R1pR1m’;

L10L00, L10R00, L10L1m, L10R1m, L10L10, R10L10’, L1pL10’, R1pL10’;

R10L00, R10R00, R10L1m, R10R1m, R10L10, R10R10, L1pR10’, R1pR10’;

L1pL00, L1pR00, L1pL1m, L1pR1m, L1pL10, L1pR10, L1pL1p, R1pL1p’;

R1pL00, R1pR00, R1pL1m, R1pR1m, R1pL10, R1pR10, R1pL1p, R1pR1p};

F.4 Params.m

function [E0,E1,J0,J1,J11,U00,U11,U10] = parameters(B, L, D)

%[E0,E1,J0,J1,J11,U00,U11,U10] = parameters(B, L, D)

%

%E0,E1 are the energies of the 0th,1st levels. J0,J1 are the hopping

%strengths between L and R wells in the 0th,1st levels. J11 is the hopping

%strength between +/-1 angular momentum states in the 1st level. U00 is

%the on-site interaction potential in the (0,0) mode. U11 is the on-site

%potential in the (1,+/-1) mode; U10 in the (1,0) mode; and U01 is the

%inter-mode interaction potential between (1,0) and (1,+/-1) modes.

%barrier size: B = M * Vx’’(a) * a^4 / hbar^2

%interaction strength: L = a * as / aperp^2

%where a is such that Vx’(a) = 0.

%energy is in units of hbar*omega where omega is the effective trapping

%frequency of the wells
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%parameters obtained analytically by using a SHO approximation

E0 = D/2; %zero-point energy

E1 = D/2 + 1; %first excited energy level

J0 = 1/2 .* exp( -sqrt(B) );

switch D

case 1 %one dimension

%define the hopping terms

J1 = J0 .* ( 6 * sqrt(B) - 3 );

J11 = 0;

%define the interaction terms

U00 = L .* B.^(-1/4) / sqrt(2*pi);

case 2 %two dimensions

%define the hopping terms

J1 = +J0 .* ( 3 * sqrt(B) - 1 );

J11 = -J0 .* ( 3 * sqrt(B) - 2 );

%define the interaction terms

U00 = L / sqrt(2*pi);

case 3%three dimensions

%define the hopping terms

J1 = +J0 .* ( 3 * sqrt(B) - 1 );

J11 = -J0 .* ( 3 * sqrt(B) - 2 );

%define the interaction terms

U00 = L .* B.^(1/4) / sqrt(2*pi);

end

U11 = (1/2)*U00;

U10 = (3/4)*U00;

F.5 TwoLevelHamiltonian.m

function H = twoLevelHamiltonian(B, L, V, ops)

%H = twoLevelHamiltonian(B, L, V, ops)

%

%H is the Hamiltonian for N weakly interacting bosons in a D-dimensional
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%double-well potential with two allowed energy levels. B is the

%dimensionless "barrier size" and L is the dimensionless "interaction

%strength".

%barrier size: B = M * Vx’’(a) * a^4 / hbar^2

%interaction strength: L1 = a * as / aperp^2

% L2 = as / az

% L3 = as / a

%where a is such that Vx’(a) = 0.

%energy is in units of hbar*omega where omega is the effective trapping

%frequency of the wells

%NOTE: B > Bmin where Bmin = ( (D/2) * V"(a) * a^2 / V0 )^2. For a

%sinusoidal potential, we have that Bmin = (D*pi^2/4)^2

number_of_modes = length(ops);

switch number_of_modes

case 2 %two mode approximation

H = H_twoMode(B, L, V, ops); %see subfunction below

case 4 %four modes = one dimension

H = H1D(B, L, V, ops); %see subfunction below

return

case 6 %six modes = two dimensions

H = H2D(B, L, V, ops);

return

case 8 %eight modes = three dimensions

H = H3D(B, L, V, ops);

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 1D %%

function H = H_twoMode(B, L, V, ops) %subfunction
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J = B;

U = L;

nL = cell2mat( ops(1,1) ); %see operators.m

bdRbL = cell2mat( ops(1,2) );

bRbdL = cell2mat( ops(2,1) );

nR = cell2mat( ops(2,2) );

I = speye( size(nL) ); %identity

%compute two-mode hamiltonian

H = -J*(bdRbL+bRbdL) + U*(nL*(nL-I) + nR*(nR-I)) + (V/2)*(nL-nR);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 1D %%

function H = H1D(B, L, V, ops) %subfunction

%compute 1D hopping/interaction parameters

[E0,E1,J0,J1,J11,U00,U11,U10] = parameters(B, L, 1);

nL00 = cell2mat( ops(1,1) ); %see operators.m

bR00bdL00 = cell2mat( ops(1,2) );

bL10bdL00 = cell2mat( ops(1,3) );

bR10bdL00 = cell2mat( ops(1,4) );

bdR00bL00 = cell2mat( ops(2,1) );

nR00 = cell2mat( ops(2,2) );

bL10bdR00 = cell2mat( ops(2,3) );

bR10bdR00 = cell2mat( ops(2,4) );

bdL10bL00 = cell2mat( ops(3,1) );

bdL10bR00 = cell2mat( ops(3,2) );

nL10 = cell2mat( ops(3,3) );

bR10bdL10 = cell2mat( ops(3,4) );

bdR10bL00 = cell2mat( ops(4,1) );

bdR10bR00 = cell2mat( ops(4,2) );
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bdR10bL10 = cell2mat( ops(4,3) );

nR10 = cell2mat( ops(4,4) );

I = speye( size(nL00) ); %identity

%compute two-mode hamiltonians

H00 = -J0*(bR00bdL00 + bdR00bL00) + U00*(nL00*(nL00-I) + nR00*(nR00-I)) ...

+ (V/2)*(nL00-nR00);

H10 = -J1*(bR10bdL10 + bdR10bL10) + U10*(nL10*(nL10-I) + nR10*(nR10-I)) ...

+ (V/2)*(nL10-nR10);

%compute energy of levels 0 and 1

E = E0*(nL00 + nR00) + E1*(nL10 + nR10);

%compute inter-level, same site interactions

Uint = 4*U11*(nL00*nL10 + nR00*nR10);

%compute inter-level, same site hopping

Uhop = U11*(bL10bdL00^2 + bdL10bL00^2 + bR10bdR00^2 + bdR10bR00^2);

%compute 1D hamiltonian

H = H00 + H10 + E + Uint + Uhop;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 2D %%

function H = H2D(B, L, V, ops) %subfunction

%compute 2D hopping/interaction parameters

[E0,E1,J0,J1,J11,U00,U11,U10] = parameters(B, L, 2);

nL00 = cell2mat( ops(1,1) ); %see operators.m

bR00bdL00 = cell2mat( ops(1,2) );

bL1mbdL00 = cell2mat( ops(1,3) );

bR1mbdL00 = cell2mat( ops(1,4) );

bL1pbdL00 = cell2mat( ops(1,5) );

bR1pbdL00 = cell2mat( ops(1,6) );
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bdR00bL00 = cell2mat( ops(2,1) );

nR00 = cell2mat( ops(2,2) );

bL1mbdR00 = cell2mat( ops(2,3) );

bR1mbdR00 = cell2mat( ops(2,4) );

bL1pbdR00 = cell2mat( ops(2,5) );

bR1pbdR00 = cell2mat( ops(2,6) );

bdL1mbL00 = cell2mat( ops(3,1) );

bdL1mbR00 = cell2mat( ops(3,2) );

nL1m = cell2mat( ops(3,3) );

bR1mbdL1m = cell2mat( ops(3,4) );

bL1pbdL1m = cell2mat( ops(3,5) );

bR1pbdL1m = cell2mat( ops(3,6) );

bdR1mbL00 = cell2mat( ops(4,1) );

bdR1mbR00 = cell2mat( ops(4,2) );

bdR1mbL1m = cell2mat( ops(4,3) );

nR1m = cell2mat( ops(4,4) );

bL1pbdR1m = cell2mat( ops(4,5) );

bR1pbdR1m = cell2mat( ops(4,6) );

bdL1pbL00 = cell2mat( ops(5,1) );

bdL1pbR00 = cell2mat( ops(5,2) );

bdL1pbL1m = cell2mat( ops(5,3) );

bdL1pbR1m = cell2mat( ops(5,4) );

nL1p = cell2mat( ops(5,5) );

bR1pbdL1p = cell2mat( ops(5,6) );

bdR1pbL00 = cell2mat( ops(6,1) );

bdR1pbR00 = cell2mat( ops(6,2) );

bdR1pbL1m = cell2mat( ops(6,3) );

bdR1pbR1m = cell2mat( ops(6,4) );

bdR1pbL1p = cell2mat( ops(6,5) );

nR1p = cell2mat( ops(6,6) );

I = speye( size(nL00) ); %identity

%compute two-mode hamiltonians

H00 = -J0*(bR00bdL00 + bdR00bL00) + U00*(nL00*(nL00-I) + nR00*(nR00-I)) ...

+ (V/2)*(nL00-nR00);
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H1m = -J1*(bR1mbdL1m + bdR1mbL1m) + U11*(nL1m*(nL1m-I) + nR1m*(nR1m-I)) ...

+ (V/2)*(nL1m-nR1m);

H1p = -J1*(bR1pbdL1p + bdR1pbL1p) + U11*(nL1p*(nL1p-I) + nR1p*(nR1p-I)) ...

+ (V/2)*(nL1p-nR1p);

%compute energy of levels 0 and 1

E = E0*(nL00 + nR00) + E1*(nL1m + nR1m + nL1p + nR1p);

%compute inter-level, same site interactions

Uint = 4*U11*(nL00*nL1m + nL00*nL1p + nL1m*nL1p ...

+ nR00*nR1m + nR00*nR1p + nR1m*nR1p);

%compute inter-level, same site hopping

Uhop = 2*U11*(bdL1mbL00*bdL1pbL00 + bL1mbdL00*bL1pbdL00...

+ bR1mbdR00*bR1pbdR00 + bdR1mbR00*bdR1pbR00);

%compute diagonal hopping: from (1,+/-1) to (1,-/+1)

Jdia = -J11*(bdL1pbR1m + bL1pbdR1m + bR1pbdL1m + bdR1pbL1m);

%compute 2D hamiltonian

H = H00 + H1m + H1p + E + Uint + Uhop + Jdia;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SUBFUNCTION: 3D %%

function H = H3D(B, L, V, ops) %subfunction

%compute 2D hopping/interaction parameters

[E0,E1,J0,J1,J11,U00,U11,U10] = parameters(B, L, 3);

nL00 = cell2mat( ops(1,1) ); %see operators.m

bR00bdL00 = cell2mat( ops(1,2) );

bL1mbdL00 = cell2mat( ops(1,3) );

bR1mbdL00 = cell2mat( ops(1,4) );

bL10bdL00 = cell2mat( ops(1,5) );

bR10bdL00 = cell2mat( ops(1,6) );

bL1pbdL00 = cell2mat( ops(1,7) );
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bR1pbdL00 = cell2mat( ops(1,8) );

bdR00bL00 = cell2mat( ops(2,1) );

nR00 = cell2mat( ops(2,2) );

bL1mbdR00 = cell2mat( ops(2,3) );

bR1mbdR00 = cell2mat( ops(2,4) );

bL10bdR00 = cell2mat( ops(2,5) );

bR10bdR00 = cell2mat( ops(2,6) );

bL1pbdR00 = cell2mat( ops(2,7) );

bR1pbdR00 = cell2mat( ops(2,8) );

bdL1mbL00 = cell2mat( ops(3,1) );

bdL1mbR00 = cell2mat( ops(3,2) );

nL1m = cell2mat( ops(3,3) );

bR1mbdL1m = cell2mat( ops(3,4) );

bL10bdL1m = cell2mat( ops(3,5) );

bR10bdL1m = cell2mat( ops(3,6) );

bL1pbdL1m = cell2mat( ops(3,7) );

bR1pbdL1m = cell2mat( ops(3,8) );

bdR1mbL00 = cell2mat( ops(4,1) );

bdR1mbR00 = cell2mat( ops(4,2) );

bdR1mbL1m = cell2mat( ops(4,3) );

nR1m = cell2mat( ops(4,4) );

bL10bdR1m = cell2mat( ops(4,5) );

bR10bdR1m = cell2mat( ops(4,6) );

bL1pbdR1m = cell2mat( ops(4,7) );

bR1pbdR1m = cell2mat( ops(4,8) );

bdL10bL00 = cell2mat( ops(5,1) );

bdL10bR00 = cell2mat( ops(5,2) );

bdL10bL1m = cell2mat( ops(5,3) );

bdL10bR1m = cell2mat( ops(5,4) );

nL10 = cell2mat( ops(5,5) );

bR10bdL10 = cell2mat( ops(5,6) );

bL1pbdL10 = cell2mat( ops(5,7) );

bR1pbdL10 = cell2mat( ops(5,8) );

bdR10bL00 = cell2mat( ops(6,1) );

bdR10bR00 = cell2mat( ops(6,2) );
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bdR10bL1m = cell2mat( ops(6,3) );

bdR10bR1m = cell2mat( ops(6,4) );

bdR10bL10 = cell2mat( ops(6,5) );

nR10 = cell2mat( ops(6,6) );

bL1pbdR10 = cell2mat( ops(6,7) );

bR1pbdR10 = cell2mat( ops(6,8) );

bdL1pbL00 = cell2mat( ops(7,1) );

bdL1pbR00 = cell2mat( ops(7,2) );

bdL1pbL1m = cell2mat( ops(7,3) );

bdL1pbR1m = cell2mat( ops(7,4) );

bdL1pbL10 = cell2mat( ops(7,5) );

bdL1pbR10 = cell2mat( ops(7,6) );

nL1p = cell2mat( ops(7,7) );

bR1pbdL1p = cell2mat( ops(7,8) );

bdR1pbL00 = cell2mat( ops(8,1) );

bdR1pbR00 = cell2mat( ops(8,2) );

bdR1pbL1m = cell2mat( ops(8,3) );

bdR1pbR1m = cell2mat( ops(8,4) );

bdR1pbL10 = cell2mat( ops(8,5) );

bdR1pbR10 = cell2mat( ops(8,6) );

bdR1pbL1p = cell2mat( ops(8,7) );

nR1p = cell2mat( ops(8,8) );

I = speye( size(nL00) ); %identity

%compute two-mode hamiltonians

H00 = -J0*(bR00bdL00 + bdR00bL00) + U00*(nL00*(nL00-I) + nR00*(nR00-I)) ...

+ (V/2)*(nL00-nR00);

H1m = -J1*(bR1mbdL1m + bdR1mbL1m) + U11*(nL1m*(nL1m-I) + nR1m*(nR1m-I)) ...

+ (V/2)*(nL1m-nR1m);

H10 = -J0*(bR10bdL10 + bdR10bL10) + U10*(nL10*(nL10-I) + nR10*(nR10-I)) ...

+ (V/2)*(nL10-nR10);

H1p = -J1*(bR1pbdL1p + bdR1pbL1p) + U11*(nL1p*(nL1p-I) + nR1p*(nR1p-I)) ...

+ (V/2)*(nL1p-nR1p);
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%compute energy of levels 0 and 1

E = E0*(nL00 + nR00) + E1*(nL1m + nR1m + nL10 + nR10 + nL1p + nR1p);

%compute inter-level, same site interactions

Uint = 4*U11*(nL00*nL1m + nL00*nL10 + nL00*nL1p + nL1m*nL1p ...

+ nR00*nR1m + nR00*nR10 + nR00*nR1p + nR1m*nR1p) ...

+ 2*U11*(nL10*nL1m + nL10*nL1p + nR10*nR1m + nR10*nR1p);

%compute inter-level, same site hopping

Uhop = 2*U11*(bdL1mbL00*bdL1pbL00 + bL1mbdL00*bL1pbdL00...

+ bR1mbdR00*bR1pbdR00 + bdR1mbR00*bdR1pbR00)...

+ U11*(bL10bdL00^2 + bdL10bL00^2 + bR10bdR00^2 + bdR10bR00^2);

%compute same-level, same site hopping: from (1,0) to (1,+/-1)

Uhop_2 = U11*(bdL1mbL10*bdL1pbL10 + bL1mbdL00*bL1pbdL10...

+ bR1mbdR00*bR1pbdR10 + bdR1mbR00*bdR1pbR10);

%compute diagonal hopping: from (1,+/-1) to (1,-/+1)

Jdia = -J11*(bdL1pbR1m + bL1pbdR1m + bR1pbdL1m + bdR1pbL1m);

%compute 3D hamiltonian

H = H00 + H1m + H10 + H1p + E + Uint + Uhop + Uhop_2 + Jdia;


