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ABSTRACT

We study the quantum tunneling dynamics of many-body entangled solitons com-

posed of ultracold bosonic gases in one-dimensional optical lattices. A bright soliton,

confined by a potential barrier, is allowed to tunnel out of confinement by reducing

the barrier width and for varying strengths of attractive particle-particle interactions.

Simulation of the Bose Hubbard Hamiltonian is performed with time-evolving block

decimation. We find the characteristic 1/e time for the escape of the soliton, substan-

tially different from the mean field prediction, and address how many-body effects

like quantum fluctuations, entanglement, and nonlocal correlations affect macroscopic

quantum tunneling; number fluctuations and second order correlations are suggested

as experimental signatures. We find that while the escape time scales exponentially

in the interactions, the time at which both the von Neumann entanglement entropy

and the slope of number fluctuations is maximized scale only linearly.
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Chapter 1

HISTORY, FORMALISM, AND FUNDAMENTAL CONCEPTS

In this chapter, we introduce macroscopic quantum tunneling in the context of

Bose-Einstein condensates (BECs), while also providing a brief historical overview.

We will develop the basic formalism, and discuss the foundational concepts of BEC,

both of which are necessary tools for understanding the quantum properties of our

system.

1.1 Historical Perspective

In 1928 quantum tunneling was first proposed by George Gamow, and indepen-

dently by Ronald Gurney and Edward Condon, as the mechanism responsible for α

decay, and was recognized thereafter by Max Born as a general feature of quantum

mechanics.1 Its success as a theory may be considered one of the triumphs of quan-

tum mechanics, explaining a wide range of physical phenomena in contexts as diverse

as biophysics [2], astrophysics, and the tunneling between vacuum states in quantum

cosmology and chromodynamics [3, 4, 5]. Furthermore, the theory has been instru-

mental in the development of technological innovations such as the scanning tunneling

microscope (STM), tunneling diodes, Josephson junctions, and many more. As such,

tunneling remains a vibrant and illuminative area of research, especially with regard

to many-body systems, where one can attempt to answer the fundamental question

of how microscopic quantum behavior begets macroscopic phenomena.

Macroscopic quantum tunneling (MQT) is the aggregate tunneling behavior of

a many-body wavefunction, where we refer to “macroscopic” throughout this thesis

as a system with a large number of dynamical microscopic degrees of freedom. The

1An interesting historical account is given by L. Rosenfeld [1].
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remarkable manifestation of distinct nonclassical behavior in MQT is particularly

befitting for Bose-Einstein condensates, where quantum phenomena are regularly

observed on macroscopic length scales. For example, predictions for MQT in BECs

range from cold atom Josephson rings [6] to collapsing BECs [7], and MQT has

been observed in double well potentials [8, 9, 10]. MQT has mainly been treated

under semiclassical approximations such as JWKB and instanton methods, while

more recently significant progress has been made towards a more general many-body

picture via multi-configurational Hartree-Fock theory [11]. In this thesis, we present

the first fully many-body entangled dynamical study of the quantum tunneling escape

problem.

The concept of Bose-Einstein condensation was first motivated by Indian physi-

cist Satyendra Nath Bose in a 1924 seminal paper on the quantum statistical nature

of light, where he derived Planck’s distribution law from first principles. On this

basis, in 1925, Albert Einstein, who had translated Bose’s paper into German and

assisted in its publishing, extended the theory to include massive bosons. Einstein

predicted that noninteracting bosons will undergo a phase transition when cooled

below a critical temperature, in which the bosons macroscopically occupy the lowest-

lying single particle quantum state. The effect occurs at low temperatures when the

de Broglie wavelength of the particles, which scales inversely with the square root of

the temperature, becomes comparable to the mean separation of the particles. At the

critical temperature, the individual particle wavefunctions become sufficiently over-

lapped with one another to the point where the system macroscopically occupies a

single state.

Today this state of matter is called Bose-Einstein condensation, and in 1995 it

was first achieved experimentally in dilute atomic gases by Eric Cornell, Carl Wieman,

Wolfgang Ketterle, and Randy Hulet. The first set of experiments was performed with

ultracold gases of rubidium [12], sodium [13], and lithium [14, 15]. These achievements

were made possible by several pioneering experimental innovations. Magneto-optical

traps, a technique developed in the 1980’s, gave experimentalists the ability to con-
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fine neutral atoms with laser light [16, 17, 18]. Then, using a combination of laser

and evaporative cooling methods, dilute alkali gases were finally brought to the tem-

perature regimes necessary for achieving BEC. Bose-Einstein condensation in alkali

gases has since provided researchers with a new theoretical and experimental setting

in which to explore quantum mechanical phenomena over macroscopic length scales.

We will begin by explaining BECs in the context of the one-body density ma-

trix, which is qualitatively different for a BEC in comparison to the density matrix

for an ordinary state of matter. This will allow us to develop some formalism and

to introduce the essential concepts of off-diagonal long-range order and the order

parameter.

1.2 The One-Body Density Matrix and Long-Range Order

Consider an arbitrary many-body system, which is prepared in a pure state, that

is, it can be completely described by a single N-body wavefunction ΨN(r1, r2, ..., rN).

The density matrix for such a system2 is defined, by the rules of quantum mechanics,

to be

ρ = Ψ∗
N(r1, r2, ..., rN) ΨN(r1, r2, ..., rN). (1.1)

If we take ΨN(r1, r2, ..., rN) to be normalized to 1, then we can define the one-body

density matrix by integrating out the N − 1 coordinates (r2, r3, ..., rN), that is

ρ(1)(r, r′) = N

∫
dr2 ... drN Ψ∗

N(r, r2, ..., rN)ΨN(r′, r2, ..., rN). (1.2)

Equation (1.2), can be more usefully expressed using field operators.3 Consider

the field operators Ψ̂†(r) and Ψ̂(r′), which respectively create a particle at r and

2Note that we are neglecting additional internal degrees of freedom, such as hyperfine degrees of
freedom which can be added to the arguments of the wavefunction if necessary. Also, a dependence
on time is necessary for systems out of equilibrium.

3See Chapter 1.4 for further elaboration.
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destroy a particle at r′. We define the one-body density matrix to be [19],

ρ(1)(r, r′) =
〈
m,N

∣∣Ψ̂†(r)Ψ̂(r′)
∣∣m,N〉

=
〈
Ψ̂†(r)Ψ̂(r′)

〉
. (1.3)

The one-body density matrix can be used to describe any general system, which in

our case is a system of N identical bosons. For now, let the average in (1.3) be taken

over an arbitrary state
∣∣m,N〉

, where m is a general state label, often denoting the

ground state, and N is the number of particles.

Equation (1.3) is a Hermitian quantity and harbors critical information about

physical observables for our system. Namely, if we look at the diagonal elements by

taking r = r′, we can define the total number of particles N to be,

N =

∫
dr ρ(1)(r, r) =

∫
dr

〈
Ψ̂†(r)Ψ̂(r)

〉
. (1.4)

Since the one-body density matrix (1.3) is a Hermitian matrix, it can be diagonalized

to take the form

ρ(1)(r, r′) =
∑

i

ρi χ
∗
i (r)χi(r

′), (1.5)

where χi are eigenfunctions of ρ(1) and ρi are eigenvalues of ρ(1) in the sense that they

obey the relationship,

∫
dr′ ρ(1)(r, r′) χi(r

′) = ρi χi(r). (1.6)

The functions χi correspond to single-particle states and form a complete orthogonal

set, that is, ∫
dr χ∗i (r)χj(r) = δij. (1.7)

The eigenvalues ρi correspond to single-particle occupation numbers and are normal-

ized to the number of particles,
∑

i

ρi = N. (1.8)



5

Moving forward, the one-body density matrix will prove to be a very useful concept,

and will play a central part in the description of Bose-Einstein condensation.

1.2.1 Bose-Einstein Condensation and Off-Diagonal Long Range Order

Bose-Einstein condensation occurs when a many-body system exhibits a macro-

scopic occupation of a single particle state. Looking at Eq. (1.5), this means that

one of the eigenvalues of the one-body density matrix will dominate in comparison to

the others, that is there will be an eigenvalue ρi=0 = N0 which is on the order of the

number of particles N , while all the other eigenvalues are of order 1. The N0 particles,

each occupying the single particle state χ0(r), are said to be Bose-condensed. In an

ideal Bose gas at temperature T = 0 all the particles are Bose-condensed; for a non-

ideal system only a number N0 of the particles will be Bose-condensed, as expressed

by the condensate fraction

N0/N ≤ 1. (1.9)

One may already anticipate that the function χ0(r) is closely related to the wave-

function of the condensate.

The macroscopic occupation of a single particle state implies that a Bose-Einstein

condensate has a one-body density matrix whose dominant eigenvalue remains finite

and non-zero in the limit where r̃ = (r−r′) →∞. This property is better understood

by looking at the momentum representation of the one-body density matrix, as derived

in reference [20]. First write the field operators in the momentum representation using

the Fourier transform

Ψ̂(p) = (2π~)−3/2

∫
dr̃ exp(ip · r̃/~)Ψ̂(r̃), (1.10)

and take the momentum distribution to be defined as

ρ(1)(p) =
〈
Ψ̂†(p)Ψ̂(p)

〉
. (1.11)
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In the momentum distribution of (1.11), the N0 particles all occupying the single

particle state having momentum p′ will take the form of a delta function, while the

other N −N0 particles will take some other functional form f(p):

ρ(1)(p) = N0 δ(p− p′) + f(p) (1.12)

The Fourier transform of the momentum distribution (1.11) is,

ρ(1)(r̃) =
1

V

∫
dp exp(−ip · r̃/~)ρ(1)(p). (1.13)

Inserting Eq. (1.12) for ρ(1)(p) and taking the limit as r̃ →∞, we find that at large

distances the singular delta function term will collapse the integral to a nonzero scalar

value

ρ(1)(r̃ →∞) =
N0

V
. (1.14)

This property is known as off-diagonal long range order.

Off-diagonal long range order was first mentioned by Landau and Lifshitz in

1951 [19] and then later by Penrose and Onsager in 1956. Off-diagonal long-range

order is a distinguishing symmetry property of Bose-Einstein condensates. Ordinary

liquids do not possess this property; they always have ρ(1)(r̃ →∞) = 0. Off-diagonal

long range order becomes very evident in the experimental realization of BECs: during

the cooling process when T > Tc, ρ
(1)(r̃ → ∞) = 0, then after the phase transition,

when T < Tc, ρ
(1)(r̃ →∞) = N0/V .

We should attempt to make sense of this in a qualitative way. Why does off-

diagonal long range order appear when we make the phase transition to Bose-Einstein

condensation? For ordinary matter, the wavefunctions of each individual particle are

all very different. On average one may expect it improbable to be allowed to move

a particle a long way from r to r′. A Bose-Einstein condensate on the other hand

is more like a coherent gas: throughout the condensate the atomic wavefunctions all

overlap one another, and each occupies the same state. From this viewpoint, moving
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a particle from r to r′ is more likely.

Note that for an ideal Bose gas at T = 0 all of the atoms are Bose-condensed and

the condensate fraction, Eq. (1.9), is N0/N = 1. However, when there are interactions

between the particles, even at T = 0 we have N0/N < 1. The effect of interactions

between particles play a crucial role in ultracold quantum gases and will be discussed

in more detail starting in Chapter 2.

1.3 Second Quantization

Since the field operators Ψ̂(r) which compose the one-body density matrix have

only been sparsely mentioned, we endeavor to describe them here in more detail,

starting from their origins in second quantization. The field operators Ψ̂(r) hold in-

formation on the full quantum many-body behavior of the system. The field operator

concept appears in the second quantization formalism of quantum mechanics,4 for

which there are many good references [21, 22, 23].

One approach to the second quantization formalism is to focus on many-body

basis functions which specify the state, χi(α), that each individual particle occupies.

The states are enumerated by the index i; the quantity α can stand for any indepen-

dent variable necessary to characterize the system, for example, the coordinates, the

spin, or other degrees of freedom. The set of the basis functions, χ1(α), χ2(α), . . .,

form a complete set of normalized and orthonormal functions. Using a combination of

basis states, a full many-body wavefunction can be constructed, in principle, for any

system of interest. Additional features may be required, for example, when dealing

with a system of N identical bosons, the rules of Bose statistics demand that the full

many-body wavefunction remain completely symmetric under the exchange of any

two particles.

For Bose-Einstein condensates, our systems have, by definition, many particles

occupying the same single-particle state. Therefore, it is often convenient to use a

4In 1927 P. A. M. Dirac first used the second quantization method to describe a system of photons.
In 1928 fermions were later added by E. Wigner and P. Jordan.
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basis of occupation numbers, n1, n2, . . ., which tell how many particles occupy each of

the available states, χ1(α), χ2(α), . . .. The occupation numbers are positive integers

less than or equal to N and play the role of quantum numbers describing the state.

For example, the occupation state
∣∣ni

〉
describes a situation in which ni particles

occupy the single particle state χi.

The full many-body state can then be represented as,
∣∣n1, n2, . . . , ni, . . .

〉
, which

in general is a tensor product of the individual states
∣∣ni

〉
, that is,

∣∣n1, n2, . . . , ni, . . .
〉

=
∏

i

∣∣ni

〉
. (1.15)

In second quantization, operators change the number of particles that occupy a given

state. The creation operator, b̂†i , adds a particle to state i, while the destruction

operator, b̂i, destroys a particle in state i. The creation and destruction operators

change the many-body state in the following way:

b̂†i
∣∣n1, n2, . . . , ni, . . .

〉
=
√
ni + 1

∣∣n1, n2, . . . , ni + 1, . . .
〉
, (1.16)

b̂i
∣∣n1, n2, . . . , ni, . . .

〉
=
√
ni

∣∣n1, n2, . . . , ni − 1, . . .
〉
, (1.17)

and obey the commutation rules,

[b̂i, b̂j] = [b̂†i , b̂
†
j] = 0, [b̂i, b̂

†
j] = δij. (1.18)

Note that if the destruction operator acts on a vacuum state with no particles, the

vacuum state is unchanged.

The second quantization formalism will be used throughout this thesis to describe

field operators, many-body wavefunctions, and for many other purposes. For example,

we will be able to conveniently express the governing Hamiltonian of our many-

body system, the so–called Bose Hubbard Hamiltonian, in terms of the creation and

destruction operators defined above.
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1.4 Field Operators and the Order Parameter

The field operators can be expressed in terms of a combination of the single

particle wavefunctions, χi(r),5 and the creation b̂†i and annihilation b̂i operators, such

that

Ψ̂(r) =
∑

i

b̂i χi(r). (1.19)

Following in part from Eq. 1.18, the field operators Ψ̂(r) satisfy the following useful

commutation relations:

[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r − r′),

[
Ψ̂(r), Ψ̂(r′)

]
= 0,

[
Ψ̂†(r), Ψ̂†(r′)

]
= 0. (1.20)

As discussed in Section 1.2, BEC occurs when there is a macroscopic occupation

of a single particle state, χ0(r). Separating out this term in Eq. (1.19) the condensate

term can be clearly distinguished from the others,

Ψ̂(r) = b̂0 χ0(r) +
∑

i6=0

b̂i χi(r). (1.21)

In mean field theory, the main quantity describing the single-particle state that

the system Bose-condenses to is the order parameter, or the wavefunction of the con-

densate. The order parameter can be obtained from Eq. (1.21) using what is known as

the Bogoliubov approximation. The critical step in this approximation is to ignore the

non-commutativity between the operators b̂ and b̂† and treat them as complex scalars,

called “c-numbers,” equal to
√
N0 Î, where Î is the identity operator [19, 20, 24]. This

is equivalent to breaking the bosonic field operator into a condensate mean field term,

Ψ0 =
√
N0χ0(r), and a fluctuation term, ζ̂(r) =

∑
i6=0 b̂iχi(r), to obtain,

Ψ̂(r) = Ψ0(r)Î+ ζ̂(r), (1.22)

5Note we have taken α to simply be the coordinates r.
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where Ψ0(r) is the order parameter, or the mean field wavefunction of the condensate,

and ζ̂(r) represents the quantum fluctuations around the mean field. If we neglect the

quantum fluctuations ζ̂(r), we obtain Ψ0(r) =
〈
Ψ̂(r)

〉
, and likewise Ψ∗

0(r) =
〈
Ψ̂†(r)

〉
.

The seemingly ad hoc substitution of b̂0 = b̂†0 =
√
N0Î in the Bogoliubov ap-

proximation will be explained more clearly in Chapter 2, but for now consider the

following: in a BEC there is a macroscopic number of particles N0 À 1, thus, adding

or removing one particle from the system will not drastically affect the physical prop-

erties of the system.6 From this line of reasoning it may seem plausible that the

creation and destruction operators can be replaced by a scalar. Since the order pa-

rameter can be expressed as the expectation value of the full many-body wavefunction,

Ψ0(r) =
〈
Ψ̂(r)

〉
, if we compute the average using stationary states and follow the

eiEt/~ law, we can define a time-dependent order parameter, which takes the form,

Ψ0(r, t) = Ψ0(r)e−iµt/~, (1.23)

where µ = ∂E/∂N is the chemical potential [20]. Equation (1.23) will play an

important role for us in the future. For example, in Chapter 3, we will look for

stationary states of the equations of motion governing the order parameter to find

solitons in BECs. Rather than depending explicitly on the energy of the system, note

that the time-dependent order parameter directly depends on the chemical potential.

6Provided that we add or remove atoms slowly, so as to avoid excitations in ζ̂(r).
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Chapter 2

BOSE-EINSTEIN CONDENSATION AND OPTICAL LATTICES

In this chapter we review some of the fundamental principles of BEC and optical

lattices. First, we describe weakly-interacting Bose gases from a mean field perspec-

tive, as prescribed by the Gross-Pitaevskii equation. Mean field theory provides a

useful first approximation of the behavior of our system, in terms of a physically in-

tuitive set of parameters. Next, we will discuss the theory of optical lattices. Optical

lattices provide a remarkable means of control and manipulation of atoms, allowing

us to investigate previously intractable many-body phenomena, such as macroscopic

quantum tunneling. Within the context of optical lattices, we then derive the quan-

tum many-body Hamiltonian for our system, the Bose Hubbard Hamiltonian, and

discuss its properties. Finally, we will extend the mean field theory to include optical

lattices, as encapsulated in the discrete nonlinear Schrödinger equation.

2.1 Weakly-Interacting Bose Gases: Bogoliubov Theory

Consider a Bose gas at zero temperature with a fixed density, n = N/V , that

is composed of N particles and comprises a volume V . The many-body Hamiltonian

for such a system can be described in terms of the field operators Ψ̂†(r) and Ψ̂(r),

which, using the notation of second quantization, may be written as

Ĥ =

∫
drΨ̂†(r)

[
− ~

2

2m
∇2 + V (r)

]
Ψ̂(r)

+
1

2

∫
dr

∫
dr′Ψ̂†(r)Ψ̂†(r′)Vint(r − r′)Ψ̂(r)Ψ̂(r′). (2.1)

In Eq. (2.1), Ψ̂†(r) and Ψ̂(r′) are field operators which respectively create a particle at

r or destroy a particle at r′. The operator V (r) encapsulates any external potentials,

for example, the potential of an underlying optical lattice or an external potential



12

barrier used for tunneling. The operator Vint is the potential associated with the

interactions between particles.

The s-wave scattering length, a, is an experimentally measurable parameter

which can be used to determine the strength and the sign of the particle interactions

of a Bose gas. For attractive interactions a < 0 and for repulsive interactions a > 0.

In the vicinity of a magnetically induced Feshbach resonance, it is well known that a is

extremely sensitive to changes in the magnitude of a magnetic field, hence permitting

the atomic interactions of the condensate to be tuned to any value, over a range of

seven orders of magnitude [25, 26, 27, 28, 29]. Using this now well-established method,

it is possible to realize small negative scattering lengths experimentally, which are the

primary focus of this thesis.

The actual interatomic potential, Vint, between atoms in the Bose gas may be

quite complex. However, for a sufficiently dilute, weakly-interacting Bose gas at low

temperatures, the energy of scattering events is extremely low, and the atoms rarely

get close enough to one another to see the complicated nature of the interatomic po-

tential. By dilute and weakly-interacting, we mean that the range of the interatomic

interactions is typically much smaller than the average distance between the particles,

|a| ¿ d = n−1/3. (2.2)

The assumption of Eq. (2.2) allows for some progress to be made in simplifying the

integrals within the Hamiltonian.

In order to work out the many-body theory in the simplest way, the usual ap-

proach is to replace the actual interatomic two-body potential, Vint, with a contact

potential, Veff , provided that Veff gives the same s-wave scattering length. This ap-

proach has been proven to be correct via renormalization theory [24]. To very good

approximation, we will assume that only binary contact collisions are relevant in the
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interatomic potential, i.e. the interatomic potential takes the form of a delta function,

Vint(r − r′) ≈ Veff(r − r′) = g δ(r − r′), (2.3)

scaled by a parameter, g, which is proportional to the s-wave scattering length via,

g ≡
∫
dr Vint(r) =

4π~2a

m
. (2.4)

In this approximation, the exclusion of three-body and higher collisions in the inter-

atomic potential is very reasonable. When making BECs experimentally, one works

at very low densities to prevent three-body recombination, in which two atoms will

combine to form a diatomic molecule, while the third takes away the excess energy,

kicking both out of the trap.

Although, the approximation made in Eq. (2.3) is a good one, it is easy to forget

how crucial atomic losses are to experiments. Atomic BECs only survive on the order

of one to a hundred seconds before losses destroy the condensate. Three-body losses

can be a problem for experimentalists, because when molecules form, the trap will

be unable to hold those with a magnetic moment. Additionally, BECs composed of

alkali atoms are fundamentally metastable, having a ground state which is a solid.

The formation of molecules provides the gas something to nucleate around,1 which

can prevent the gas from reaching the condensed phase [30]. There is also a possibility

for losses to occur when individual atoms are ejected from the condensate because of

external agents, such as collisions with background atoms from the imperfect vacuum

surrounding the BEC. In principle, the losses from external effects can be mitigated,

for instance, by decreasing the atmospheric pressure in the vacuum system, whereas

for the more intrinsic three-body losses, the only hope is to work at low densities.

1Much in the same way that when cooling water vapor, ice crystals or droplets start to form
around dust and impurities in the air.
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2.2 Mean Field Theory: The Gross-Pitaevskii Equation

A common inroad to achieving quantitative predictions about the general be-

havior of a BEC system, while sidestepping the complications of the full many-body

problem, is to use a mean field approach. The formulation of a mean field description

for dilute Bose gases was first worked out by Bogoliubov in 1947,2 and is documented

extensively throughout the literature [20, 24, 31].

As evident from Section 1.4, the aim of mean field theory is to describe the

behavior of the order parameter, and to do so we need an equation to govern the

dynamics. To obtain an equation of motion for the order parameter we turn to the

Heisenberg picture of quantum mechanics, where Ψ̂(r, t) satisfies the relation

i~
∂Ψ̂(r, t)

∂t
=

[
Ψ̂(r, t), Ĥ

]
. (2.5)

Using Eq. (2.1) for the Hamiltonian, Ĥ, and simplifying with the commutation rela-

tions listed in Eq. (1.20) we obtain [20]

i~
∂Ψ̂(r, t)

∂t
=

[
− ~2

2m
∇2 + V (r, t)

+

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t). (2.6)

The mean field approximation is now manifested through the replacement of the

field operator Ψ̂(r, t) with the order parameter Ψ0(r, t) in Eq. (2.6). Looking back to

Eq. (1.22), this is only justifiable when quantum fluctuations around the mean field,

ζ̂(r), are negligible. This is the case for low-energy cold dilute Bose gases, in which

only binary contact collisions are relevant in the interatomic potential, i.e. when

Eqs. (2.3) and (2.4) are valid. Substituting Eq. (2.3) into Eq. (2.6) we obtain [31]

i~
∂Ψ0(r, t)

∂t
=

[
− ~

2

2m
∇2 + V (r, t) + g|Ψ0(r, t)|2

]
Ψ0(r, t). (2.7)

2Originally as an attempt to study superfluid 4He.
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Equation (2.7) is known as the Gross-Pitaevskii equation and was written down

independently by Gross and Pitaevskii in 1961. The Gross-Pitaevskii equation is the

equation of motion for the order parameter, and describes the macroscopic properties

of a dilute weakly-interacting Bose gas at low temperature. Notice that when we

average over the interaction term in the many-body Hamiltonian, one finds an effective

nonlinearity, the last term of Eq. (2.7). This nonlinearity will play a crucial role in

Chapter 3 when we discuss the formation of solitons. While there are several different

conventions for normalization, throughout this thesis we choose to normalize the

wavefunction of the condensate to the total number of atoms, N =
∫
dr |Ψ0(r)|2. The

Gross-Pitaevskii equation has proven to be very successful in quantitatively describing

the properties of Bose-Einstein condensates, including interference effects, vorticies,

and collective modes.

It is important to remember the assumptions which must be satisfied for Eq. (2.7)

to be valid. First, the s-wave scattering length must be much smaller than the average

distance between two atoms in the condensate. Second, to assume binary contact

collisions the sample must satisfy the diluteness condition, Eq. (2.2), and be at a

sufficiently low temperature. Finally, the number of atoms in the condensate must

be much greater than 1, otherwise the concept of Bose-Einstein condensation is not

applicable.

From the onset we have assumed a three-dimensional (3D) mean field picture. A

quasi one-dimensional (1D) condensate can be formed experimentally by modifying

the external trapping potential, which is a part of V (r), such that the transverse

dimensions of the BEC are on the order of the healing length, and are much smaller

than the longitudinal dimension. The healing length, ξ, is a quantity which defines

the distance over which the condensate wavefunction tends to its bulk value if subject

to a localized perturbation, and can be estimated from Eq. (2.7).
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2.2.1 Gross-Pitaevskii Equation: Reduction to One-Dimension

In this section we will derive a nondimensionalized version of the Gross-Pitaevskii

equation in 1D. The derivation is reproduced along the same lines as documented

in references [32, 33], where additional detail can be found. We assume that our

external trapping potential, which is a part of the term V (r), is a box of dimensions

Lx × Ly × Lz. The quasi 1D limit is obtained when Ly and Lz obey the following

Ly, Lz ≈ ξ, Ly, Lz ¿ Lx (2.8)

where ξ ≡ (8πn|a|)−1/2 is the healing length, n = N/V ≡ N/(LxLyLz) is the mean

particle density of the condensate, and N is the total number of atoms.

We would like to separate out the longitudinal dimension x from the small trans-

verse dimensions y and z, so that we can integrate out the transverse coordinates.

Following Eq. (1.23), we assume a stationary state and write the order parameter as

Ψ0(r, t) =

√
N

LxLyLz

u(x) v(y, z)e−iµt/~ (2.9)

where u(x) and v(y, z) are dimensionless quantities containing the longitudinal and

transverse spatial dependence. Substitution of Eq. (2.9) into the Gross-Pitaevskii

equation Eq. (2.7) gives

µ u(x) v(y, z) =

[
− ~

2

2m
∇2 +

gN |u(x) v(y, z)|2
LxLyLz

+ V (r, t)

]
u(x) v(y, z). (2.10)

We can project this equation onto the ground state, vgs, of v(y, z), which for a dilute,

weakly-interacting system is the particle-in-a-box solution [32] given by

vgs = v0 sin(πy/Ly) sin(πz/Lz), (2.11)

where v0 = 2. To satisfy the normalization condition, the solution must satisfy
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∫ Ly

0
dy

∫ Lz

0
dz |vgs|2 = 1. Then we integrate over the transverse directions y and z to

obtain,

0 =

∫ Ly

0

dy

∫ Lz

0

dz v∗gs(y, z)

[
− µ− ~2

2m
∇2 +

gN |u(x) v(y, z)|2
LxLyLz

+ V (x, y, z, t)

]
u(x) v(y, z). (2.12)

We can say that v(y, z) approaches vgs(y, z) in the limit of Eq. (2.8), so by the

normalization condition for vgs the integral becomes

[
−µ− ~2

2m

(
∂2

∂x2 −
π2

L2
y

− π2

L2
z

)
+

9

4

gN

LxLyLz

|u(x)|2 + V (x, y, z, t)

]
u(x) = 0, (2.13)

where V (x, y, z, t) is assumed to be a constant or piecewise constant function in y

and z. Multiplying through by a factor of 2mξ2/~2 and using the definition of ξ and

g we find

[
−µ̄− ξ2 ∂

2

∂x2 +
π2ξ2

L2
y

+
π2ξ2

L2
z

+
9

4
|u(x)|2 + V̄ (x, y, z, t)

]
u(x) = 0, (2.14)

where µ̄ = (2mξ2/~2)µ and V̄ = (2mξ2/~2)V . To nondimensionalize the equation

above consider a change of variables, taking x̃ ≡ x/Lx. Using the quasi 1D limit, Lx

and Lz can be approximated by the healing length, ξ. Thus, dividing through by a

factor of 9/4 we obtain

µ̃ u(x̃) =

[
−J̃ ∂

∂x̃
+ |u(x̃)|2 + Ṽ (x, y, z, t)

]
u(x̃), (2.15)

where µ̃ ≡ 4/9µ̄− 8/9π2, J̃ ≡ 4/9(ξ/Lx)
2, and Ṽ ≡ 4/9V̄ . The normalization condi-

tion for u(x̃) is
∫ 1

0
dx̃ |u(x̃)|2 = 1. Equation (2.15) is the quasi 1D nondimensionalized

Gross-Pitaevskii equation. The solutions for u(x̃) can be written in terms of Jacobi

elliptic functions.
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2.3 Optical Lattices and Ultracold Atoms

Optical potentials formed by the interference of counter-propagating laser beams

are the basic tool for creating ultracold lattice gases and provide an unprecedented

level of control over the relevant experimental parameters. In this section we describe

how atoms are trapped in optical lattices via the AC Stark shift.

Consider an atom in the electronic ground state |g〉, which may be coupled to

an internal excited state |e〉 by a single-mode laser with frequency ωL. The energy

difference between |g〉 and |e〉 is ~ωeg. The oscillating electric field, E(r, t), of the

laser will impart electrons in the atom with a time-dependent dipole moment d. If

wL is far from the frequencies required to make transitions to any state besides |e〉,
then the induced dipole moment will follow the oscillations of the laser such that [34],

di =
∑

j=x,y,z

αij(ωL)Ej(r, t), (2.16)

where di is the corresponding component of d(i = x, y, z) and αij(ωL) are the ma-

trix elements of the electric polarizability tensor, which is dependent on the laser

frequency. The electric polarizability tensor is inversely proportional to the detuning

of the laser from resonance δ = ωL−ωeg, when the excited state |e〉 is much closer to

resonance than any of the other excited states.

In this situation there is an energy shift δE due to the quadratic3 AC Stark effect

that is proportional to the intensity of the laser beam I(r),

δE(r) =
∑

i,j=x,y,z

αij(ωL)〈E2
j (r, t)〉 ∝ I(r)/δ. (2.17)

The Stark shift in Eq. (2.17) is of great consequence because it causes the atom to feel

an optical potential Vlat(r) ≡ δE(r) ∝ I(r)/δ conforming to the spatial orientation

of the light field. Note that the sign and strength of the optical potential may be

3Second order in perturbation theory.
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modified by controlling the detuning from resonance δ. If the lattice is blue-detuned

Figure 2.1: A Gaussian Laser Focus and a Red- and Blue-Detuned Trap. A schematic
drawing of a Gaussian laser focus for red- and blue-detuned optical lattices. A red-
detuned lattice attracts atoms to points of maximum intensity (left), while a blue-
detuned lattice attracts atoms to points of zero intensity (right).

(δ > 0) then atoms are attracted to points of zero light intensity, where the optical

potential is minimized. In a red-detuned lattice (δ < 0), due to the sign change,

atoms are attracted to points of maximum light intensity, where the potential is most

negative. Figure 2.1 shows a Gaussian laser focus and a red- and blue-detuned lattice.

A critical factor in the design of optical lattices is to reduce the effective rate

of spontaneous emissions Γeff , a quantum jump made by the emission of a photon

accompanied by a transition from |e〉 → |g〉. Spontaneous emission, in practice, is

one of the largest sources of decoherence, shifting the atomic dynamics from obeying

a Schrödinger equation with an optical lattice potential to a stochastic Schrödinger

equation [35]. Consequently, it is often preferable for experiments to be performed

on time scales smaller than 1/Γeff , which is generally on the order of minutes.

Two cross-propagating lasers beams of the same frequency and polarization can

be arranged to form a standing wave, thus creating a spatially oscillating potential for

the atoms. If three pairs of cross-propagating laser beams are oriented perpendicular

to one another, the interference pattern results in a 3D cubic lattice. A quasi 1D

optical lattice can be formed from a 3D cubic lattice by increasing the intensity of

the standing waves in the transverse dimensions such that the probability of hopping

in those directions tends to zero. For low enough temperatures, any radial motion
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is completely frozen out. Using an arrangement of counter-propagating laser beams,

practically any lattice geometry can be attained through optical potentials. These

potentials are the primary basis for the optical manipulation and trapping of ultracold

atoms.

Figure 2.2: A network of 1D optical lattices. A schematic drawing of 1D optical
lattices, where atoms are arranged in a network of tightly confined 1D potential tubes.
The lattice is formed by two orthogonal standing waves. Figure from I. Bloch [36].

The resulting arrangement of trapped atoms behaves analogously to electrons in

a crystal lattice. Instead of interacting with a Coulomb potential created by ionized

atoms, the ultracold atoms are susceptible to the potential created by the laser light

through the AC Stark effect. Unlike their solid state counterparts, optical lattice

systems have several distinct advantages. The periodic potentials formed by optical

lattices are ideal, that is, they are defect and impurity free. The lattice sites are also

rigid, in that they are devoid of the phonon excitations, which are normally present

in naturally-occurring crystals.

Optical lattices offer an immense level of control over the atoms and the un-

derlying lattice, thus allowing for the exploration of many phenomena analogous to

electrons in crystals. Indeed, optical lattices have been used to produce elegant stud-

ies of band structure [37, 38, 39], Bloch oscillations [40], and interferometry with

coherent matter waves [41, 42].
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2.4 Bose Hubbard Hamiltonian

Under the proper conditions, ultracold atoms loaded in an optical lattice are

a nearly perfect realization of the Bose Hubbard Hamiltonian (BHH), a model first

proposed by M. P. A Fisher et al. in 1989 to describe short-range interacting bosons on

a lattice. The BHH is analogous to the well-known Hubbard Hamiltonian, introduced

by J. Hubbard in 1963, and solved analytically in 1D by J. Wu in 1968, which can

describe ultracold fermions in an optical lattice. The focus in this section is to derive

the BHH from first principles and explain its properties.

Due to the periodic nature of the optical lattice, we should expect that the

system will exhibit two features common to solid state physics: first, that the energy

eigenstates for single atoms in the condensate are Bloch functions, and second, that

the system possesses an energy band-like structure. The bands will be well separated

energetically, i.e. the band-gaps are large, for a sufficiently strong lattice potential.

Particles in the lowest bands, with energy less than the height of the lattice potential,

will be in bound states, while particles in higher bands will be in free particle states.

In the ultracold temperature regimes typically associated with Bose-Einstein

condensates, it is easy to arrange the system so that the particles only occupy the

lowest Bloch band. In order to make such a restriction, the gaps between the bands

must be sufficiently large in comparison to the other energy scales of the system. Thus,

the energies associated with temperature kBT , the tunneling J , and the interactions

U , must all be smaller than the spacing between the bands, ~ω. In general, this is a

very good assumption when working at typical experimental temperatures and when

the lattice height is greater than or equal to the recoil energy of the atoms. The

recoil energy for an atom in a quasi 1D optical lattice is given by ~2k2
⊥/2m, where

k⊥ ≡ ky = kz is the wavevector in the transverse dimension.

We begin with the full quantum many-body Hamiltonian from Eq. (2.1), sep-

arating the underlying optical lattice potential from the other external potentials,
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Figure 2.3: Band Structure in an Optical Lattice. A schematic diagram of Bloch state
energy versus the quasi momentum q in the first Brillouin zone. The band structure
is plotted for different lattice depths between 0 and 12Er. Colors are simply meant
to guide the eye. When the lattice becomes deep the lowest band becomes flat.

V (r) = Vlat(r) + Vext(r), to obtain

Ĥ =

∫
drΨ̂†(r)

[
− ~

2

2m
∇2 + Vlat(r) + Vext(r)

]
Ψ̂(r)

+
1

2
g

∫
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (2.18)

As in Eq. (2.3), only two-body contact interactions are assumed to participate, thus

the interaction potential is set to Vint(r) = g ∗ δ(r). Let the lattice potential be a

sinusoidal potential of the form,

Vlat(r) = V0x sin2(kxx) + V0y sin2(kyy) + V0z sin2(kzz), (2.19)

where V0i and ki are the lattice height and the wavevector respectively, in the i =

x, y, z direction.

The Bloch functions of the lowest band can be more conveniently represented in a

basis of Wannier functions that are localized to the individual lattice sites. The advan-
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tage gained in changing to a site-localized basis is the simplification when describing

on-site interactions between particles. The Wannier functions are not eigenstates of

the single particle Hamiltonian, but form a complete set of orthogonal basis functions.

In the same vein as Eq. (1.19) we expand the field operators in the Wannier basis

such that,

Ψ̂(r) =
∑
i; m

b̂
(m)
i w(m)(r − ri), (2.20)

where b̂
(m)
i destroys a particle from the mth Bloch band in the Wannier state w(m)(r−

ri). Such a particle has primitive translation vectors ri of the lattice and is localized

at site i. The band index is indicated by the superscript indices in parentheses,

while the site index is indicated by the subscript indices. Inserting Eq. (2.20) into

Eq. (2.18), the Hamiltonian takes the form

Ĥ = −
∑

i,j; m,n

Jmn
ij b̂

(m)†
i b̂

(n)
j +

1

2

∑

i,j,k,l; m,n,p,q

Umnpq
ijkl b̂

(m)†
i b̂

(n)†
j b̂

(p)
k b̂

(q)
l +

∑
i,j; m,n

εmn
ij b̂

(m)†
i b̂

(n)
j ,

(2.21)

where,

Jmn
ij ≡ −

∫
dr w(m)∗(r − ri)

[
− ~

2

2m
∇2 + Vlat(r)

]
w(n)(r − rj), (2.22)

Umnpq
ijkl ≡ g

∫
dr w(m)∗(r − ri)w

(n)∗(r − rj)w
(p)(r − rk)w

(q)(r − rl), (2.23)

εmn
ij ≡

∫
dr w(m)∗(r − ri)Vext(r)w(n)(r − rj). (2.24)

Now we apply the tight binding approximation to Eq. (2.21), requiring that only

nearest-neighbor tunneling (j = i ± 1 for the first term) and on-site interactions

(j = i for the second and third terms) contribute to the energy. We truncate the sum

in Eq. (2.21) by neglecting contributions from bands higher than the first, setting

m,n, p, q = 0. Simplifying leads to the Bose Hubbard Hamiltonian,

Ĥ = −J
∑

〈i,j〉
b̂†i b̂j +

U

2

∑
i

b̂†i b̂
†
i b̂ib̂i +

∑
i

εib̂
†
i b̂i, (2.25)
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where b̂i ≡ b̂
(0)
i annihilates a boson in the lowest vibrational Wannier state of the

ith lattice site and 〈i, j〉 denotes a summation over only nearest neighbor sites. The

coefficient J ≡ J00
i(i±1) sets the strength of the hopping, U ≡ U0000

iiii controls the strength

of the on-site interactions, and ε ≡ ε00
ii describes any external potentials, such as the

barrier potential we will use in our studies of macroscopic quantum tunneling.

Figure 2.4: Bose Hubbard model in 1D. A schematic diagram of the Bose Hubbard
model showing the main terms of the Hamiltonian due to hopping J , interatomic
interactions U , and the chemical potential µ.

2.4.1 Bose Hubbard Hamiltonian: Reduction to One-Dimension

As discussed previously, a 3D lattice system can be reduced to a 1D system

by ramping up the lattice strength in the transverse directions, and thereby greatly

reducing the probability of tunneling in those directions. For a 1D lattice in the x-

direction we set V0x ¿ V0y, V0z. Applying this condition to Eq. (2.25) we obtain the

1D Bose Hubbard Hamiltonian, assuming box boundary conditions for L sites,

Ĥ = −J
L−1∑
i=1

(b̂†i b̂i+1 + b̂ib̂
†
i+1) +

U

2

L∑
i=1

n̂i(n̂i − I) +
∑

i

εin̂i. (2.26)
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Here b̂†i (b̂i) are creation (annihilation) operators and n̂i ≡ b̂†i b̂i is the number operator,

which counts the number of bosons at site i. In the 1D limit, for a lattice spacing

aL = π/k, the coefficients in Eqs. (2.22)-(2.24) involve overlap integrals of Wannier

functions of the lowest band and the potentials:

J ≡ −
∫ ∞

−∞
dx w(0)∗(x)

[−~2

2m

d2

dx2
+ Vlat(x)

]
w(0)(x− aL), (2.27)

U ≡ g(1)

∫ ∞

−∞
dx |w(0)(x)|4, (2.28)

εi ≡
∫ ∞

−∞
dx |w(0)(x− xi)|2 ≈ Vext(xi). (2.29)

Equation (2.26) is the Hamiltonian that will be used throughout this thesis for the

quantum many-body description of bosons in 1D optical lattices. Having derived the

governing Hamiltonian of our system, it is important to review the circumstances

under which Eq. (2.26) is an accurate physical description of our system:

1. The interatomic potential Vint is restricted to include only two-body contact

interactions. Three-body and higher order collisions can be safely neglected

when working at the low-densities typical of experiment.

2. The system must satisfy the tight binding approximation, that is, we can safely

neglect interactions and tunneling that extend beyond nearest-neighbors.

3. Contributions from bands higher than the first are neglected. This assumption

is valid when the energies associated with temperature, interactions, and tun-

neling, are all less than or equal to the band spacing ~ω. Such conditions can

be achieved when V0 ≥ ER, where V0 is the lattice depth and ER is the recoil

energy of the particles.

4. The strength of the particle-particle interactions cannot be excessively large, so

as to distort the single-particle wavefunctions, that is (N/L)2U ≤ ~ω.
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2.5 Comparison to Experimental Parameters

The coefficients J and U in this model can be compared to experimental param-

eters like the lattice height, V0, and the recoil energy, ER. For a 1D system, if we

approximate the Wannier functions to be the ground state of the simple harmonic

oscillator and evaluate the integrals and simplify we obtain

J

ER

≈ V0

2ER

exp

(
−π2

4

√
V0

ER

)[
π2 − 2

2
−

√
ER

V0

− exp

(
−

√
ER

V0

)]
, (2.30)

U

ER

≈ 4
√

2π
(aL

λ

) (
V0⊥
ER

)1/2 (
V0

ER

)1/4

, (2.31)

where λ = 2aL is the laser wavelength used to create the lattice. Another way to

find U and J is to use the Fourier transform of Mathieu functions [43, 44]. These are

exact solutions of the single-particle Schrödinger equation for a sinusoidal potential.

By calculating the integrals and performing a numerical fit to the data we obtain

J

ER

≈ A

(
V0

ER

)B

exp

(
−C

√
V0

ER

)
, (2.32)

where A ≡ 1.397, B ≡ 1.051, and C ≡ 2.121.

2.6 Discrete Nonlinear Schrödinger Equation

The mean field theory encapsulated in the Gross-Pitaevskii equation can be ex-

tended to describe a system of ultracold atoms loaded into an optical lattice. This

will recast the mean field methods discussed previously in the same optical lattice

language as the BHH. In turn, we will then be able to make a direct comparison be-

tween mean field and full quantum many-body calculations. The procedure amounts

to discretization of the continuous Gross-Pitaevskii equation in order to obtain the

so-called discrete nonlinear Schrödinger equation (DNLS). Later, we will perform a

much more physically intuitive derivation of the DNLS, through a semiclassical ap-
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proximation of the BHH.

First, working in the lowest Bloch band of the lattice, we expand the condensate

wavefunction Ψ0 in a basis of localized wave functions φi(r − ri, t) such that,

Ψ0(r, t) =
∑

i

φi(t)ψ0(r − ri). (2.33)

In Eq. (2.33) the terms, φi(t) ≡
√
ρi(t)e

iθi(t), are dimensionless c-numbers weighting

the localized wave functions at sites i. The quantity, ρi, is the average particle number

occupation and θi is the phase on the ith site. By phase we mean the phase associated

with the dominant mode of the single-particle density matrix, that is, the BEC. By

combining Eq. (2.33) with the Gross-Pitaevskii equation we obtain

i~
∂φk

∂t
= −J

∑
j∈Ωk

(φk+1 + φk−1) + U |φk|2φk + εkφk, (2.34)

where Ωk denotes site k’s nearest-neighbor sites and the coefficients are defined by

the integrals

J ≡ −
∫
dr φ∗(r)

[−~2

2m

d2

dx2
+ Vint(r)

]
φ(r − a), (2.35)

U ≡ g

∫
dr |φ(r)|4, (2.36)

εk ≡
∫
dr Vext(r)|φ(r − rk)|2 ≈ Vext(rk), (2.37)

where a ≡ rk+1 − rk is a primitive translation vector for a cubic optical lattice. We

invoke the tight binding approximation, thus assuring that φ(r− ri) are localized to

only a single site. This collapses Eq. (2.34) into the final form of the DNLS, given by

i~
∂φk

∂t
= −J(φk+1 + φk−1) + U |φk|2φk + εkφk, (2.38)

where the coefficients J , U , and εk, are the same as Eqs. (2.35)- (2.37) with r replaced

by x, for a 1D lattice of L sites, with site index k ∈ (1, 2, . . . , L).
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An alternate method of deriving the DNLS can be found by taking a mean field

approximation of the Bhh, assuming that the many-body state is in the form of a

product of Glauber coherent states. First, we evolve the destruction operator forward

in time using the Heisenberg picture of quantum mechanics,

i~
d

dt
b̂k = [b̂k, Ĥ]. (2.39)

Using the commutation relations,

[b̂i, b̂j] = [b̂†i , b̂
†
j] = 0 and [b̂i, b̂

†
j] = δi,j, (2.40)

we find that,

i~
d

dt
b̂k = −J(b̂k+1 + b̂k−1) + Ub̂kb̂

†
kb̂k + εkb̂k. (2.41)

Taking the expectation value, we obtain an equation of motion for the order parameter

〈b̂k〉 ≡ φk. If the expectation value is taken with respect to a product of atom-number

Glauber coherent states of the form,

|Ψ〉 =
L⊗

k−1

|φk〉, where |φk〉 ≡ exp

(
−|φk|2

2

∞∑
n=0

(φk)
n

√
n!
|n〉

)
, (2.42)

we recover the DNLS exactly:

i~
dφk

dt
= −J(φk+1 + φk−1) + U |φk|2φk + εkφk. (2.43)

The Glauber coherent states in Eq. (2.42) well describe the ground state of the BHH

in the limit J À U for an infinite system with a fixed filling ν ≡ N/L.
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Chapter 3

SOLITONS AND QUANTUM TUNNELING

In this chapter, we discuss solitons in Bose-Einstein condensates, an emergent

phenomena which is observed even in the context of mean field theory. Then, we will

discuss the fundamental principles of macroscopic quantum tunneling in the context

of matter-wave solitons, and give an overview of several semiclassical methods used to

determine tunneling rates. Finally, we will discuss several experimental applications

for solitons in BECs.

Solitons have a long, storied history, beginning in 1834, when John Scott Russel,

a Scottish naval engineer, discovered solitons quite unexpectedly while conducting

experiments to improve the design for canal boats. In his own words:

“I was observing the motion of a boat which was rapidly drawn along

a narrow channel by a pair of horses, when the boat suddenly stopped–not

so the mass of water in the channel which it had put in motion; it accu-

mulated round the prow of the vessel in a state of violent agitation, then

suddenly leaving it behind, rolled forward with great velocity, assuming

the form of a large solitary elevation, a rounded, smooth and well-defined

heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback,

and overtook it still rolling on at a rate of some eight or nine miles an

hour, preserving its original figure some thirty feet long and a foot to a foot

and a half in height. Its height gradually diminished, and after a chase

of one or two miles I lost it in the windings of the channel. Such, in the

month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which I have called the Wave of Translation.”

-J. S. Russell [45]
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A theoretical explanation of the phenomenon was given by Korteweg and de Vries

in the nineteenth century; however, it was not until after 1965, when Zabusky and

Kruskal proved, with numerical simulations, that these solitary waves retain their

shape in collisions [46, 47]. It is because of this unique property, that they are now

referred to as solitons.

In BECs solitons are special solutions of the time-dependent Gross-Pitaevskii

equation, Eq. (2.7), which correspond to localized, robust waves propagating over

long distances without changing shape or attenuating. These unique properties stem

from the binary interactions between atoms, the sign and magnitude of which are de-

termined by the s-wave scattering length, a, for the low-energy collisions in ultracold

quantum gases. Averaging over the interaction term in the many-body Hamiltonian,

one finds an effective nonlinearity. The nonlinearity, in turn, exactly counteracts the

dispersive tendencies of the wave packet. Solitons regularly appear in a diverse set

of contexts outside of ultracold atoms, because many systems are well-described by

nonlinear wave equations. Solitons find applications in media such as water waves,

photonic crystals, molecular biology, astrophysics, and for long distance communica-

tion over fiber optic cables [48, 49, 50].

3.1 Matter-Wave Solitons via Mean Field Theory: Bright Solitons

To find matter-wave solitons in BECs, we begin by looking for stationary states

of the Gross-Pitaevskii equation, Eq. (2.7), in the spirit of Eq. (1.23). Such states

may be formed by assuming an exponential time dependence for the order parameter,

that is

Ψ0(r, t) = Ψ0(r)e−iµt/~, (3.1)

where µ = ∂E/∂N . If we assume that the external potential Vext is independent of

time, then substitution reduces the Gross-Pitaevskii equation to

[
− ~

2

2m
∇2 + Vext(r)− µ+ g|Ψ0(r)|2

]
Ψ0(r) = 0. (3.2)
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Note that the chemical potential µ is set by the normalization of the order parameter

N =
∫
dr |Ψ0(r)|2. In seeking solutions for Ψ0 we will see that the Gross-Pitaevskii

equation can support several different types of solitons.

If the atomic interactions are attractive, that is when a, g < 0, then Eq. (3.2)

admits solitonic solutions known as bright solitons, which are characterized as a lo-

calized density maxima in the condensate, i.e. a non-dispersive matter wavepacket.

These solutions are given by the wavefunction,

Ψ0(z) = Ψ0(0)
1

cosh(z/
√

2γ)
, (3.3)

which can be easily checked by substitution into Eq. (3.2), where γ = ~/
√

2m|g|n0

and n0 = |Ψ0(0)|2 is the peak density. Note that the solution corresponds to a negative

chemical potential, µ = −1
2
|g|n0. Bright solitons form when the inherent tendency

of a wavepacket to disperse is exactly balanced by the attractive atomic interactions,

and they represent the ground state of the system. One example of a bright soliton

can be seen in Fig. 3.1.

Bright solitons have been realized in cold atom systems for a wide range of

experiments. In 3D, bright solitons are often unstable, however in tightly confined 1D

systems, the mechanism of destabilization can be reduced. Bright solitons have been

created in 1D attractive condensates composed of 7Li atoms both singly [26] and in

trains [27]. An exception to the instability of bright solitons in 3D trap geometries, has

been observed during the collapse of attractive Bose-Einstein condensates composed

of 85Rb [51]. In this experiment, 3D bright solitons emerged from the violent collapse

created by the sudden transition from repulsive to attractive interactions. Such 3D

bright solitons were stable when the interatomic interactions were smaller than a

critical value.

While the general consensus on the mathematical definition of a soliton varies

with context, strictly speaking, solitons are considered to be localized solutions of a

continuous integrable partial differential equation. When working with the DNLS,
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Figure 3.1: Bright, Black, and Gray Solitons. Three types of solitons, bright (left),
black (middle), and gray (right) and their associated phase.

or later, when we consider the full quantum many-body theory to create solitons,

the imposed discretization may break the integrability of the system. Regardless, we

consider such solutions as quantum analogs of solitons in BECs.

3.2 Dark and Gray Solitons

When atomic interactions are repulsive, that is, when a, g > 0, then Eq. (3.2)

admits stationary solutions which correspond to a localized density notch in the con-

densate, as shown in Fig. 3.1. Such objects are known as dark solitons, and have

several characteristic properties. First, dark solitons have a discontinuous phase jump

of π across the density notch. A dark soliton’s width is proportional to the healing

length of the condensate, ξ, and increases as the velocity of the soliton approaches the

speed of sound in the condensate, cs =
√
n0g/2m, where n0 is the peak density of the

condensate. Finally, unlike bright solitons, dark solitons are excited states, having

energies greater than the underlying ground state of the BEC. In the mean field limit,
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dark solitons are well-described by Eq. (2.7), provided that quantum depletion out of

the condensed mode is negligible.

Experimentally, dark solitons were first realized in repulsive 87Rb condensates in

a few pioneering experiments [52] and [53], which sparked a sudden intense interest in

nonlinear waves in BECs. Later, in repulsive 87Rb condensates confined to a periodic

potential, gap solitons were observed by specifying a preferable anomalous dispersion

[54].

The particle-like nature of both bright and dark solitons was revealed by looking

at soliton oscillations [55]. In addition, mean field calculations have predicted that

solitons participate in undamped oscillations, comparable to those of a single particle.

In weakly interacting systems, quantum fluctuations can be calculated with the

Bogoliubov–de Gennes equations, as in reference [56], where the authors demonstrated

that quantum depletion accounts for much less than 1% of the system’s ground state.

While BEC soliton experiments are typically performed in regimes where quan-

tum fluctuations are small, soliton instabilities are known to be caused by dynamical,

thermodynamical and collisional effects. In the strongly interacting limit, finite tem-

perature and quantum fluctuations are known to affect the stability of dark solitons,

causing them to fill in. When a dark soliton’s density notch becomes partially filled

in, as shown in Fig. 3.1, it is called a gray soliton.

Though solitons can be disturbed by quantum fluctuations, in the right pa-

rameter regimes they are still surprisingly robust to external perturbations, and are

well-described by mean field theory. One of the aims of this thesis is to quantitatively

determine the regimes in which mean field theory gives an accurate description of the

system and the regimes in which it does not.

3.3 Macroscopic Quantum Tunneling and Semiclassical Treatments

Macroscopic quantum tunneling is the tunneling of a many-body wavefunction

through a potential barrier. Recent studies of MQT in Bose-Einstein condensates have
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been conducted in cold atom Josephson rings [6] and tilted two-well potentials [10],

among others. Our interest is the MQT of bright solitons under a classically impassi-

ble rectangular potential barrier. Using mean field theory as an initial exploration of

this problem, in Chapter 4 we will numerically evolve the DNLS to obtain real time

dynamics of bright solitons in BECs. Ultimately, in Chapter 7, a full quantum many-

body approach will be undertaken. Beforehand, in this section, it is appropriate to

describe a couple semiclassical methods that are often used for calculating tunneling

rates: the JWKB approximation and the instanton method.

3.3.1 JWKB Approximation

The Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation, named after

the physicists who developed it in the 1920’s, is a commonly used semiclassical method

for calculating tunneling rates of a quantum mechanical particle through a barrier. In

1926 G. Wentzel [57], H. A. Kramers [58] and L. Brillouin [59] all applied the method

to the Schrödinger equation. However, three years prior, H. Jeffreys, who is often

neglected credit, first developed the method in a mathematical context [60].

When the JWKB approximation is applied to the Schrödinger equation for a

single particle, the wavefunction is assumed to be an exponential function, whose

amplitude and phase vary slowly in comparison to the de Broglie wavelength, and

then expanded semiclassically. Note that any external potentials, if present, must

also vary slowly as compared to the de Broglie wavelength, because the wavevector

of a plane wave solution to the Schrödinger depends on the external potentials. The

wavefunction is expanded semiclassically, in powers of ~, neglecting terms of ~2 and

higher. It is in this sense that we say the JWKB approximation effectively replaces

the Schrödinger equation with it’s semiclassical limit. The JWKB approximation

breaks down at classical turning points, where the energy of the system approaches

the strength of the external potentials. In these cases, connection formulae can be

applied on either side of the classical turning point to tie the two regions together [61].

The JWKB approximation has many practical limitations when solving quan-



35

tum many-body problems. First, like any other semiclassical or mean field method,

it neglects quantum many-body effects, such as quantum fluctuations. Second, by

definition, the JWKB approximation can only be applied to a single wavefunction. If

a mean field perspective is assumed, then the JWKB approximation can be applied

to the order parameter, allowing one to calculate the rate at which the mean field

of the condensate tunnels under a potential barrier. This method of approach has

been done before, for example, the tunneling of solitons in BECs has been calculated

using the JWKB approximation and variational techniques in reference [62], where

the authors found that MQT occurs on time scales of 10 ms to 10 s. Third, the

JWKB approximation can only be used to calculate specific parameters, such as the

tunneling rate of the mean field, or the lifetime of the condensate. In this thesis,

rather than using the JWKB approximation to calculate properties of the mean field,

we numerically evolve the DNLS to obtain explicit real time dynamics of the order

parameter.

3.3.2 Instanton Methods

Instanton methods are another means by which to calculate the transition prob-

ability of a quantum mechanical particle to tunnel through a potential barrier. In-

stanton methods can be used to describe MQT through a semiclassical approximation

akin to the JWKB approximation, but within the path integral formalism of quan-

tum mechanics [63]. By semiclassical approximation, we mean that path integral

variables are expanded about the classical solutions of the problem of interest. The

term “instanton” arises from the interpretation of certain solutions of the classical

equations of motion in imaginary time, which have the form of an instantaneous kink

that makes a large contribution to the action [63].

The instanton method can be used to calculate MQT in simple cases, such as

for the quantum rotor model, a double well, or a 1D ring lattice, but becomes quite

complicated as the number of degrees of freedom in the system increases. For the

MQT of BECs, we draw specific attention to the work of Ippei Danshita and Anatoli
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Pokolnikov in reference [64], who use the instanton method to study the tunneling

of boson supercurrents in a 1D ring lattice. In reference [64] the authors compare

instanton methods to exact time-evolving block decimation simulations, the same

quantum many-body method implemented in this thesis. In addition, Ueda et al.

applied the instanton method to the Gross-Pitaevskii energy functional to show that

MQT can be a dominant mechanism for the decay of a condensate with attractive

interactions [7].

Experimentally, solitons in BECs are comprised of many particles and lattice

sites, so applying the instanton method to the problem presented in this thesis would

be an extremely complicated task. Also, instanton methods are rendered inaccurate

for larger interaction strengths [64], whereas our quantum many body method time-

evolving block decimation, described in Chapter 7, suffers from no such limitations.

Like the JWKB approximation, the instanton method would not be able to provide

a calculation of the real time dynamics, so for our mean field study we instead elect

to numerically simulate the DNLS. If implemented, the instanton method could be

used as another independent comparison to our calculation of tunneling rates with

the DNLS, presented in Chapter 4, and with time-evolving block decimation.

3.4 Solitons and Macroscopic Quantum Tunneling: Applications

In regards to technological applications, what are the possible advantages of

working with matter-wave solitons in BECs, versus individual particles such as pho-

tons or atoms? Solitons in BECs are macroscopic phenomena that behave entirely

different in regard to measurements, acting similarly to atomic ensembles. In addi-

tion, BECs possess unique coherence properties which have led to many proposed

applications including atom optics and atom interferometry. Matter-wave solitons

in BECs are coherent spatially localized phenomena, and are unique for their non-

dispersive properties. As a motivation for the study of MQT of solitons in BECs, in

this section we outline several promising applications.
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3.4.1 The Atomic Soliton Laser

Coherent matter-waves in Bose-Einstein condensates are analogous to coherent

waves of light. Experimentally, it is well-known that a BEC can release an intense

coherent beam of matter when it is outcoupled from the magneto-optical trap. Such

an “atom laser,” as it is now known, has been demonstrated in several experiments

using repulsive condensates [65, 66, 67]. Solitons are of great interest, because they

would allow for the free propagation of a virtually non-divergent atom laser.

In attractive condensates, it has been shown both numerically and analytically

that an axially confined BEC can be made into a pulsed atomic soliton laser [68]. One

method for achieving this is to take an initially repulsive BEC and tune the scatter-

ing length to be small and negative via a magnetically induced Feshbach resonance,

meanwhile, changing the axial potential from attractive to repulsive. The sudden

change makes the condensate modulationally unstable, and by the self-interference

of the order parameter, solitons begin to form from the center of the BEC outward.

One thus produces a “soliton train of non-phase-locked self-coherent pulses” that is

analogous to the output of a light-wave laser [68].

Atom lasers are one of the applications which would greatly benefit from a better

understanding of quantum many-body effects and MQT. MQT, for example, is one of

the fundamental principles in the atom laser experiments performed in references [65,

66, 67], and in other systems involving optical lattices.

3.4.2 Atom Interferometry

Because BECs have a macroscopic coherence length [69] and offer the experi-

mentalist a nearly unprecedented level of control over the amplitude and phase of the

condensate, they have long been considered the most ideal media in which to study

matter-wave interferometry. Many schemes for atom interferometers have been sug-

gested in the last ten years, for example Bloch oscillation interferometers and bright

soliton interferometers [66, 70, 71]. The performance of atomic interferometers in
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BECs is crucially hindered by particle-particle interactions, which add phase shifts

and decoherence into the system [71]. 1 Interactions and many-body effects are the

primary reason why, so far, the above implementations have failed, and are one of

the motivating factors for the study in this thesis.

In addition, the demonstration of spatially ultra-narrow solitons in lithium BECs [27,

26] has led to other proposed applications for frequency stabilization [72]. There are

many other proposals for atom interferometry experiments with BECs, but perhaps

the strongest motivating factor lies in the promising applications they have in making

precision measurements.

3.4.3 Precision Measurement With Solitons

Since BECs are highly sensitive to outside factors, they are ideal candidates for

probing and measuring various physical quantities with extremely high precision, such

as, acceleration, angular rotation, gravitational fields, and electromagnetic fields.

Using a soliton interferometer, generated by the overlapping of two bright soli-

tons which are accelerated toward one another, for example, in a parabolic external

magnetic field, as discussed in reference [73], can be used to make precise measure-

ments of a magnetic field gradient to orders of 10−2pT/cm.

A soliton interferometer can also be used to make accurate measurements of

angular rotation. Configured in a magnetic waveguide ring, solitons can be accelerated

by gravity and collide at the lower point of the ring. This creates an interference

pattern and allowing for precise measurements of the angular rotation [73].

1Decoherence and many other quantum many-body phenomena will be discussed in Chapter 5.
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Chapter 4

MEAN FIELD SIMULATIONS OF MANY-BODY TUNNELING

4.1 Mean Field Numerical Methods

In this chapter, we discuss the numerical methods used to generate mean field

simulations of macroscopic quantum tunneling of bright solitons in Bose-Einstein

condensates. Mean field theory serves as a useful first attempt to obtain a rough,

yet physically intuitive idea of the dynamics of MQT, without the burden of heavy

numerical computation. Dynamics are thus obtained via numerical simulation of

the discrete nonlinear Schrödinger equation, previously discussed in Eq. (2.38). The

DNLS can be broken into a coupled set of ordinary differential equations which can

be solved with finite difference methods, in particular, the fourth-order Runge-Kutta

method, and the pseudo-spectral method, both of which are discussed here.

In assuming a mean field perspective, for now we are sidestepping the more

challenging aspects inherent to a full quantum many-body description of MQT, which

we will return to in Chapter 5. The quantum many-body escape problem has already

been studied in the context of mean field theory, where it has been found to have quite

different features from single-particle quantum tunneling, including a tunneling time

which is not simply the inverse of the JWKB tunneling rate [62]. The tunneling rate

is dependent on the number of particles remaining behind the barrier, and as such,

the decay time must be calculated by an integral over each time step. Furthermore,

it has been shown that a non-smooth dynamical behavior referred to as “blips,” in

which particles escape through the barrier in bursts, can be found via mean field

theory [74].

Mean field simulations are valuable in that they provide a useful comparison to

our later exact quantum many-body simulations. Once we analyze the full quantum
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many-body simulations in Chapter 7, we can return to the findings of this chapter

and quantitatively answer the question: how accurately does mean field theory de-

scribe MQT? Consequently, we will then reveal the regimes in which mean field is

inadequate, and illustrate the necessity for a full quantum many-body description.

4.1.1 Discrete Nonlinear Schrödinger Equation in Matrix-Vector Form

The 1D DNLS equation can be solved by replacing the partial differential equa-

tion in Eq. (2.38) with a coupled set of ordinary differential equations, in what is

commonly known as the method of lines. In this method we discretize the spatial

components and leave time continuous, allowing us to recast the problem in matrix-

vector form as,

i~
∂ ~ψ(t)

∂t
= H[~ψ(t), t]~ψ(t), (4.1)

where ~ψ(t) is an L-dimensional vector with elements, [~ψ(t)]k ≡ ~ψk(t). The Hamilto-

nian, H[~ψ(t), t], is an L× L matrix of the form,

H =




U |ψ1|2 + ε1 −J 0 . . . 0

−J U |ψ2|2 + ε2 −J ... . . .

0 −J . . . . . . 0

...
. . . . . . . . . −J

0 . . . 0 −J U |ψL|2 + εL




. (4.2)

Box boundary conditions are imposed on the system such that, ψ0 = ψL+1 ≡ 0. By

recasting the problem into matrix-vector form, the coupled set of ordinary differential

equations in Eq. (4.1) can be easily propagated forward in time using finite difference

methods, such as Crank-Nicholson, Runge-Kutta or pseudo-spectral methods.

4.1.2 Runge-Kutta

The Runge-Kutta method for numerically integrating ordinary differential equa-

tions may be readily applied to Eq. (4.1). The general idea of the scheme is to advance
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the solution from ~ψ(t) to ~ψ(t+ δt) by taking a series of trial steps within a given time

interval in order to cancel out the lower order error terms [75]. In the fourth-order

Runge-Kutta method the wavefunction is propagated forward in time according to

the approximation

~ψ(t+ δt) = ~ψ(t) +
δt

6

[
~k1(t) + 2~k2(t) + 2~k3(t) + ~k4(t)

]
+O(δt5), (4.3)

where,

~k1(t) = H[~ψ(t), t]~ψ(t)/i~,

~k2(t) = H[~ψ(t), t]
{
~ψ(t) +

δt

2
~k1(t)

}
/i~,

~k3(t) = H[~ψ(t), t]
{
~ψ(t) +

δt

2
~k2(t)

}
/i~,

~k4(t) = H[~ψ(t), t]
{
~ψ(t) + δt~k3(t)

}
/i~. (4.4)

When using the fourth-order Runge-Kutta method, time steps of δt = 0.001~/J , are

used to obtain converged results.

4.1.3 Pseudo-Spectral Methods

An equation of the form

i~
∂ ~ψ(r, t)

∂t
= H[~ψ(r, t), t]~ψ(r, t), (4.5)

resembles the linear ordinary differential equation, αf(t) = d
dt
f(t) with α = H/i~

and f(t) = ψ(r, t). Using the theory of linear operators, the general solution to the

Schrödinger equation is

ψ(r, t) = e−iHt/~ψ(r, 0), (4.6)

where the exponentiation of operators is defined in the usual way through a power

series. The Hamiltonian is separated into a kinetic term and a potential term such
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that, H = T + V , where T = p2/2m = −~2∇2/2m. If the potential term depends

only on position, V = V (r), and we can write the solution in configuration space as

ψ(r, t) = e−i(T+V (r))t/~ψ(r, 0). (4.7)

To good approximation for small values of t, we can use a symmetric decomposition

to express the solution as

ψ(r, t) ≈ e−iV (r)t/2~e−iT t/~e−iV (r)t/2~ψ(r, 0). (4.8)

The pseudo-spectral method is to iteratively propagate the expression above in time,

that is, for a given ψ(r, t), we find ψ(r, t + ∆t) using small time steps ∆t obtain

the solution at any arbitrary value of t. In 1D, this process begins by calculating

intermediate values starting from the rightmost operator,

ψ(r, t+ ∆t) ≈ e−iV (r)∆t/2~e−iT∆t/~e−iV (r)∆t/2~ψ(r, t)

= e−iV (r)∆t/2~e−iT∆t/~φ1(r, t)

= e−iV (r)∆t/2~φ2(r, t), (4.9)

where,

φ1(r, t) = e−iV (r)∆t/2~ψ(r, t), (4.10)

φ2(r, t) = e−iT∆t/~φ1(r, t). (4.11)

Notice that applying the middle operator, φ2, is an infeasible calculation in config-

uration space. However, in momentum space the calculation is simplified greatly.

Thus we write the expansion in momentum space using the Fourier transform, de-

noted by F , where, Φ1(k) = F [φ1(r, t)] and Φ2(k) = e−i~k2∆t/2mΦ1(k), which requires

only pointwise multiplication. This is very convenient numerically, because we can

employ fast Fourier transform techniques. Therefore the pseudo-spectral method is
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summarized as,

ψ(r, t+ ∆t) ≈ e−iV (r)∆t/2~F−1
[
e−i~k2∆t/2mF [

e−iV (r)∆t/2~ψ(r, t)
]]
. (4.12)

There are many efficient and accurate fast Fourier transform packages that are freely

available. In this thesis, we use the pseudo-spectral method to simulate the DNLS

equation.

4.2 Imaginary Time Propagation

We often wish to start from the system’s ground state, which may be complicated

or unknown, and evolve it forward in time. An easy, reliable method for obtaining

the ground state of a particular Hamiltonian, when the ground state is unknown,

is imaginary time propagation. Imaginary time is a mathematical trick to convert

an arbitrary starting state into a ground state without assuming details about its

functional form. This is achieved by taking τ ≡ it and evolving with respect to τ ,

using either the Runge-Kutta or pseudo-spectral method. Under imaginary time, a

Schrödinger-type equation cleverly becomes a diffusion equation in which the highest

energy eigenstates decay most quickly. After sufficient propagation in imaginary

time, the system converges to its ground state.1 For the imaginary time method to

work properly, one must choose an initial state in which all Fourier components have a

nonzero weight, otherwise the ground state obtained from imaginary time propagation

could be biased. For finding bright solitons, a Gaussian initial state is a convenient

choice because it weights all Fourier components and closely resembles the sech2

function of the bright soliton, thus reducing the amount of imaginary time necessary

to achieve the ground state. The number of steps in imaginary time required to

reach the ground state can be determined by convergence criteria, satisfied when the

difference between two states in imaginary time is a minimum value. Throughout our

1Imaginary time propagation can also be used to find long-lived metastable states.



44

mean field simulations we use imaginary time steps of ∆t = 0.001~/J for converged

results.

4.3 Bright Solitons: Mean Field Simulations

In this section we demonstrate that the fundamental bright soliton solution,

discussed in Chapter 3, may be obtained by evolving the DNLS in imaginary time

using the pseudo-spectral method, as described Eq. (4.12). To achieve bright solitons,

we work with attractive condensates, with U ≤ 0, and a negative chemical potential,

µ ≤ 0. For a system of N bosons loaded into a 1D optical lattice of L sites and box

boundary conditions, the DNLS takes the form

i~
∂φk

∂t
= −J(φk+1 + φk−1) + U |φk|2φk + µφk. (4.13)

Before imaginary time propagation, the system is initialized as a Gaussian shaped

number density, centered at the midpoint of the lattice. Propagation in imaginary

time causes the Gaussian profile to quickly converge to a bright soliton, as shown

in Fig. 4.1, where the number density on each lattice site is plotted over time. The

bright soliton obtained from imaginary time is then used as the initial condition for

real time propagation. The real time dynamics of the fundamental bright soliton are

shown in Fig. 4.1, where the bright soliton preserves its shape over time.

4.4 Confining Solitons With External Potential Barriers

Using a rectangular external potential barrier Vext, a bright soliton can be con-

fined between the barrier and one of the box boundary walls of the system. If a

rectangular potential barrier term, Vext, is inserted into the DNLS it takes the form

i~
∂φk

∂t
= −J(φk+1 + φk−1) + U |φk|2φk + µφk + Vext,kφk. (4.14)
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Figure 4.1: Imaginary and Real Time Propagation. A bright soliton is formed from
an initial Gaussian profile in imaginary time (left), and is then propagated in real
time (right) and shown to preserve its shape. This simulation shows the case for
NU/J = −0.5 over L = 64 sites.

Like other potentials in optical lattice systems, as discussed in Section 2.3, rectan-

gular potential barriers are easily realized experimentally. Before imaginary time

Figure 4.2: Initial State. Bright soliton formed by relaxation in imaginary time with a
barrier of height h and initial width wI (dashed line). Before real time propagation the
barrier is reduced to width w (solid red line) so the soliton can commence macroscopic
quantum tunneling. This plot shows a system with: N = 6, L = 64, J = 1, U =
−0.05, µ = −1.

propagation, we set Vext to a height, h = 0.05, and a width, wI , effectively reducing

the system size as shown in Fig. 4.2. We initialize the many-body wavefunction as

a Gaussian profile, centered in the middle of the potential well created by Vext, and
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then use imaginary time relaxation form a bright soliton behind the potential barrier.

One example of a bright soliton state after imaginary time propagation is shown in

Fig. 4.2. Notice that a small portion of the soliton tail extends under the barrier due

to its finite height.

At t = 0, in real time, the barrier is decreased to width w, typically one to five

sites, such that the soliton can escape confinement on a reasonable time scale. By

reasonable, we mean on a time scale within the window of the given simulation and

less than the time in which reflections return to the barrier from the far box bound-

ary. Attractive interactions U < 0 < h ensure that tunneling is always quantum,

not classical. Note that the barrier height must remain constant when transitioning

between imaginary time and real time, otherwise, in real time the soliton will oscillate

within the potential well.

The soliton escapes from behind the barrier on a timescale which increases with

w. A characteristic escape time, tesc, is quantified by the time at which the number

density remaining behind the barrier falls to 1/e of its initial value. We choose L large

enough so that reflections from the box boundary at the far right do not return to the

barrier in times t < tesc. Evolving in real time, we first make a coarse observation of

the dynamics of MQT in Fig. 4.3 by plotting the average particle number in different

regions, in order to determine tesc.

For fixed NU/J , w, and h, the DNLS gives the same result independent of N

and U , i.e N and U may change, provided NU/J remains constant. We denote the

1/e mean field escape time as tMF
esc . In Fig. 4.4 we show the exponential dependence

of the escape time on the barrier area and the interatomic interactions, U , for fixed

L and J . In Chapter 7 we will show the stark contrast between this mean field data

and the full quantum many-body simulations using time-evolving block decimation.
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Figure 4.3: Macroscopic Quantum Tunneling of a Mean Field Bright Soliton With
Weak Interactions. A bright soliton tunnels under a barrier in real time. The barrier
begins at site 16 with a thickness of 1 (left), 3 (middle), and 5 (right) sites. In the lower
panels the decay time is calculated to be the time when the norm inside the barrier
drops to 1/e of its initial value. This simulation shows the case for NU/J = −0.01
over L = 64 sites.

Figure 4.4: Effect of the Strength of the Interatomic Interactions on the Soliton
Escape Time. This simulation shows the case for NU/J = −0.01 over L = 64 sites.





49

Chapter 5

QUANTUM ASPECTS OF SOLITONS IN BOSE-EINSTEIN

CONDENSATES

In BECs, solitons are manifestations of entangled many-body quantum mechan-

ics over macroscopic length scales. The mean field theory of the previous two chapters

offered a simplified perspective by tacitly avoiding several troublesome, yet critical

features which can drastically affect the condensate, and thus the behavior of solitons

within it.

An ideal BEC is one in which all the particles occupy the same single particle

state, χ0(r). So far, atomic BEC has made great strides towards this ideal experi-

mentally, however, it is important to keep in mind the imperfections in such systems.

As discussed in discussed in Section 2.1, three-body and other losses, such as those

due to collisions with the background gas in vaccuum, significantly restrict the life-

time of a condensate. Quantum depletion, arising from particle-particle interactions,

and thermal depletion, arising from thermal fluctuations, both cause atoms to become

depleted from χ0(r) [56]. Additionally, quantum entanglement, nonlocal correlations

induced by the interactions between particles, contribute to the behavior of solitons

in BECs. These type of quantum and many-body effects, not captured in mean field

theory, have proved to significantly alter the dynamics and the lifetime of solitons in

BECs [76, 77].

5.1 Quantum and Thermal Depletion

Quantum depletion is a measure of the occupation of noncondensate modes in

the system. Depletion from the condensate mode is defined to be

D ≡ 1−N0/Navg, (5.1)
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where N0 is the occupation of condensate wavefunction and Navg ≡
∑L

k−1 〈n̂k〉 is the

average number. For typical ground state BEC experiments performed in harmonic

traps the quantum depletion is usually on the order of 0.01 to 0.001 percent [31].

However, when working with excited states, such as solitons, and in optical lattice

geometries, quantum depletion is no longer negligible.

Bright matter wave solitons have been observed during the collapse of attractive

Bose-Einstein condensates composed of 85Rb in a 3D trap geometry [51]. The instabil-

ity causing quantum dark solitons to fill in has been shown to be caused by quantum

fluctuations and particle-particle scattering, which deplete particles out of the con-

densate wavefunction and into modes having non-zero density on sites near the center

of the soliton [76]. Mishmash et al. have successfully simulated dark solitons with

TEBD, the numerical algorithm we employ in this thesis [76, 77], demonstrating how

not only mean field theory, but also how the Bogoliubov de Gennes theory breaks

down. They have shown that dark solitons will decay, even at zero-temperature,

and have demonstrated that dark solitons under these conditions still participate in

inelastic collisions.

Dziamarga et al. have shown that solitons will delocalize, but will not fill in for

particular quantum realizations, even at zero temperature. The many-body character

of quantum depletion is one of the motivating factors for us to utilize TEBD for our

study of the macroscopic quantum tunneling of bright solitons in BECs. Additionally,

many previous studies of matter-wave solitons have focused on classical and mean field

methods, while only a few have used quantum many-body treatments.

Although in this thesis we are working under the assumption of zero tempera-

ture, it is worthwhile to make note of the effects of thermal fluctuations on solitons in

BECs, because, especially for experimentalists, it is a vital contributor to depletion

of the condensate. Finite temperature studies, performed in generalized mean field

models, have shown that solitons will rapidly decay near the edge of the conden-

sate [53, 78]. In addition, at lower temperatures, experimental results have shown
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that the trajectory of solitons can follow an oscillatory pattern [55, 79, 80], which was

previously predicted theoretically [81]. In addition, the dynamics of dark solitons in

BECs at finite temperature has been studied using the stochastic Gross-Pitaevskii

equation, which reveal spreading in individual soliton trajectories, that should be

observable in experimental systems [82]. Additionally, Dziarmaga et al. have shown

the effects of heating by atomic losses in BECs [56].

5.2 Quantum Entanglement

Quantum entanglement is a purely quantum mechanical nonlocal correlation be-

tween two or more quantum systems.1 A general introduction to the topic can be

found in Nielsen and Chuang [83]. The concept of nonlocality led A. Einstein to

question the completeness of quantum theory, and in 1935, A. Einstein, B. Podolsky,

and N. Rosen [84] formulated their now famous EPR paradox, a gedanken experiment

which argued for the possibility of hidden variables not yet discovered in quantum

theory. The paradox prevailed until 1964, when J. Bell introduced a set of inequalities

allowing one to experimentally test for the possibility of hidden variables [85]. Subse-

quent experimental results, in 1972 by S. Freedman and J. Clauser, showed violations

of Bell’s inequalities, thus supporting the validity of nonlocality and quantum entan-

glement [86]. The importance of quantum entanglement was noticed and defended

by E. Schrödinger when he said [87],

“[Entanglement] is not one but rather the characteristic trait of quan-

tum mechanics, the one that enforces its entire departure from classical

lines of thought.”

In BEC, emergent phenomena like solitons appear when many interacting particles

are brought together. The interactions induce quantum entanglement in the system,

and thus the interplay between interactions and quantum entanglement are crucial

1Note that while quantum entanglement is a nonlocal effect, it is generated by local interactions
within the system.
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to determining the emergent behavior of the system.

It has been shown that solitons may become entangled as a result of colliding

with one another. Collision-induced entanglement between fast moving matter-wave

solitons has been studied in BECs with attractive interactions using the Born ap-

proximation. As such, this study was limited to being only a first approximation

in perturbation theory [88]. The author’s suggest that Bell’s inequalities could pos-

sibly be tested on the entangled solitons to determine measurements over different

macroscopic length scales or level of errors than previously tested.

5.2.1 Pure States and Entanglement

Many-body quantum entanglement is still an open problem in quantum me-

chanics. A general consensus still needs to be reached on how to properly quantify

multipartite entanglement, however the procedure, given by the von Neumann en-

tropy, is well-understood for bipartite systems. Depending on whether the system

of interest is in either a pure or a mixed state, bipartite entanglement is calculated

differently. In this and the following section we endeavor to explain that difference.

A system consisting of two subsystems A and B is said to be in a pure state if

it is represented by the products,

|ψ〉 =
∑

jk

ajk|εj〉A|εk〉B. (5.2)

Unentangled pure states, also known as product states, can be identified if the state

is decomposed such that,

|ψ〉 = |φA〉A|φB〉B. (5.3)

Product states do not violate any of Bell’s inequalities, however, entangled pure states

have been shown to violate them in certain circumstances. The Schmidt decompo-

sition, a central idea to TEBD, discussed at length in the following chapter, can be

used to see if an arbitrary state can be decomposed into a product state.
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For pure states the (bipartite) entanglement of the system is quantified by the

von Neumann entropy (the entropy of entanglement),

S(ρi) = −Tr[ρilog2ρi], (5.4)

where ρi stands for the reduced density matrix of system A or B and Tr denotes the

trace. In fact, it easily shown that ρA = ρB.

5.2.2 Particle and Spatial Entanglement

In mean field theory, particle entanglement is overlooked because of the assump-

tion that each particle occupies the same single particle wavefunction, given by the

order parameter. From this viewpoint each individual particle is a pure state, and

thus the entanglement between it and every other particle in the system is zero. In

the full quantum many-body problem, we take into account that there is, in general,

a nonzero amount of entanglement between a given particle and each of the other

N − 1 particles in the system, which we refer to as particle entanglement. In addition

to entanglement between particles, we can have entanglement between the system’s

individual Wannier modes. In general, entanglement between modes can be thought

of as entanglement between one Wannier mode of the system with each of the other

L − 1 spatially distinct Wannier modes. We refer to this kind of entanglement as

spatial entanglement [76]. We define the single-particle von Neumann entropy to be

SvN,particles ≡ −Tr

[
ρ̂(1)

N
logL

(
ρ̂(1)

N

)]
∈ [0, 1], (5.5)

where ρ̂(1) is the single-particle density matrix and Tr denotes the trace. We have

to divide by factors of N , in order to normalize the sum of eigenvalues to unity,

because Tr(ρ̂(1)) = N . The single-particle von Neumann entropy characterizes the

global behavior of the system because all particles in the condensate are assumed to

be indistinguishable.
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Similarly for spatial entanglement we define a localized von Neumann entropy of

the form

SvN,k ≡ −Tr [ρ̂k logd (ρ̂k)] ∈ [0, 1], (5.6)

where k denotes each Wannier mode (equivalently, each site index). In Eq. (5.6), ρ̂k

is the reduced density matrix for a single lattice site k, given by the partial trace

over all lattice sites except one.2 The base d logarithim ensures that SvN,k ≤ 1. In a

mean field treatment the spatial entanglement between Wannier modes is completely

neglected, and thus the local von Neumann entropy is a useful measure for quantifying

deviations from semiclassical behavior.

The density matrix ρ̂ can be used to determine the purity of a quantum state.

The purity is defined as Tr (ρ̂2), and can be used to determine the mixedness of a

given state. A pure state, for example, has density matrix elements of (ρ̂)ij = δi,jδi,0,

while a maximally mixed state has density matrix elements of (ρ̂)ij = δi,j/d, where d

is the dimension of the system’s Hilbert space. The purity of any given system will

lie between the range [1/d, 1]. One usefull quantum measure is to define an average

local impurity defined to be [76, 77],

Qmodes ≡ d

d− 1

[
1− 1

L

L∑

k=1

Tr
(
ρ̂2

k

)
]
, (5.7)

where ρ̂k is the reduced density matrix for a single lattice site k, given by the partial

trace over all lattice sites except one. Equation (5.7) has a factor of d/(d−1) to scale

Qmodes to be less than or equal to one. Thus, Qmodes is a value ranging from [0, 1] and

is maximized when each site is maximally mixed and minimized when each site is in

a pure state.

2Note that ρ̂k is different than the single-particle density matrix, ρ̂(1), the latter is a partial trace
over all particles except one.
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5.3 Decoherence

Studies in emergent quantum phenomena have spurred an increasing interest in

decoherence– the mechanism by which a quantum system recovers classical behavior

from a quantum system. When a quantum system interacts in a thermodynamically

irreversible way with its environment, the two can become “entangled” such that

the quantum coherence of the system is distributed over so many degrees of freedom

that it is rendered unobservable. In this view, decoherence can be thought of as

the loss of information from a system to its environment.3 Decoherence theory has

been complemented by experiments using matter waves coupled to external photons

or molecules, and by investigations using coherent photon states, trapped ions and

electron interferometers. Decoherence of matter-wave solitons can not only arise from

quantum fluctuations in the spatial location or the phase of the soliton, but also due to

the excitation of the many-body degrees of freedom of the condensate (like Bogoliubov

de Gennes modes). Decoherence may explain why some macroscopic systems, such

as matter-wave solitons, seem to possess classical properties.

3It may be more apt to say that decoherence is a disturbance (or change of state) of the environ-
ment by the system.
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Chapter 6

QUANTUM MANY-BODY SIMULATIONS USING TIME-EVOLVING

BLOCK DECIMATION

In this chapter, we provide a detailed description of the theoretical and compu-

tational aspects of time-evolving block decimation, an algorithm for simulating the

1D Bose Hubbard Hamiltonian, Eq. (2.26), which uses a Schmidt decomposition to

truncate the Hilbert space. In the process, we will confront the challenges behind

solving the quantum many-body problem and explain the methods for alleviating

such difficulties.

6.1 Time-Dependent Calculations of Many-Body Systems

Efficient numerical simulation of quantum many-body systems is an ongoing

challenge. A standard diagonalization of the BHH for large systems is computation-

ally infeasible due to the exponential increase of the Hilbert space dimension with

the number of particles and lattice sites. For a system of N particles and L sites the

dimension of the Hilbert space is,

D(N,L) =
(N + L− 1)!

N !(L− 1)!
. (6.1)

Even for the simple situation of a system, passing through a quantum phase

transition in the thermodynamic limit, in which L = N , the difficulties of exact

diagonalization become readily apparent: for N = 8, 12, 16 the dimension of the

associated Hilbert space burgeons to D(8, 8) = 6 435, D(12, 12) = 1 352 078, and

D(16, 16) = 300 540 195. Using a computer with 1Gb of memory and adopting sparse-

matrix methods, one may face problems for N = L > 10. In a more quantitative
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sense, the observation that

lim
NÀ1

D(N + 1, N + 1)

D(N,N)
≈ 4, (6.2)

shows the rapid growth of the Hilbert space with the system size. Experimental

setups are typically comprised of particles and lattice sites numbering in the hundreds;

thus, it is unlikely for standard diagonalization methods to overcome their severe

limitations, even with extensive computational improvements.

To surmount the difficulties presented by an extremely large Hilbert space, we

simulate the dynamics of the 1D BHH with a method called time-evolving block dec-

imation (TEBD), commonly referred to as Vidal’s algorithm. TEBD adaptively per-

forms a partial trace over a particular bipartite splitting of our 1D lattice, and keeps

the largest χ eigenvalues of the resulting reduced density matrix. Such a truncation

is motivated by the fact that real, physical quantum many-body systems, particularly

materials whose particles are lowly-entangled, typically only involve a small fraction of

the total Hilbert space. Unlike exact diagonalization methods, TEBD scales linearly

with the system size, thus allowing for the study of rather large systems.

TEBD, and its origins, are linked to the density matrix renormalization group

(DMRG) method and the matrix product states ansatz. DMRG techniques, first

developed by S. White in 1992, were similarly designed to find the ground state of a

large 1D system through a systematic truncation of the Hilbert space. In the likeness

of a numerical renormalization group (NRG) routine, in which the lowest energy states

are retained, DMRG retains a small set of states in the truncation, corresponding to

the most probable eigenstates of a reduced density matrix. Today, DMRG methods

have gained interpretation as matrix product state routines. In this view, DMRG is

an algorithm for optimizing a variational wavefunction with the structure of a matrix

product state.

Before G. Vidal initially developed TEBD, several attempts were made to gener-

alize DMRG methods to time-dependent simulations. The idea was to use standard
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DMRG calculations to find the ground state of a system, and from this information

ascertain a proper truncation of the Hilbert space for time evolution. The critical

step was made by Vidal in 2003 [89, 90] when he discovered an optimal way to adap-

tively modify the truncation at each time step. This method generates a quasi-exact

solution of the time-dependent many-body Schrödinger equation in 1D, provided that

the Hamiltonian only links at most nearest-neighboring sites and that the state can

always be represented by a sufficiently small number of retained basis states. The

latter criterion requires that the amount of entanglement in the system be small, since

the number of basis states necessary to effectively represent a quantum state, for a

given bipartitate splitting, is a measure of the entanglement.

6.2 Vidal’s Time-Evolving Block Decimation Algorithm

Assume that our system is a set of atoms in a 1D optical lattice, with L sites,

that is well described by the BHH. To apply Vidal’s algorithm, any pure state, |ψ〉,
in the system’s Hilbert space must be composed of a series of tensor products of local

Hilbert spaces of dimension d, that is,

|ψ〉 =
d∑

i1,i2,...,iL=1

Ci1i2...iL|i1〉|i2〉 . . . |iL〉, (6.3)

where {|il〉} (l = 1, 2, . . . L) are the basis states in the local Hilbert space at site i.

The ansatz in Eq. (6.3) is a general representation of a state in such a Hilbert space,

and when d = N , it is an exact representation of the state. The essence of the TEBD

algorithm is to decompose the coefficients Ci1i2...iL of Eq. (6.3) into a favorable series

of tensors using the Schmidt decomposition procedure.

6.2.1 Schmidt Decomposition

Let us split our 1D system into two blocks, block A and block B, with local

subspace dimensions dA and dB, such that the pure state in Eq. (6.3) lives in the
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Hilbert space HA ⊗HB. For this, or any other finite-dimensional bipartite splitting,

there exists a decomposition of the form,

|ψ〉 =

χS∑
α=1

λα|φ[A]
α 〉 |φ[B]

α 〉, (6.4)

known as a Schmidt decomposition [91]. The states |φ[A]
α 〉 form an orthonormal basis

for block A and the states |φ[B]
α 〉 form an orthonormal basis for block B. The Schmidt

coefficients λα are unique real values, arranged in decreasing order λ1 ≥ λ2 ≥ . . . ≥
λχS

≥ 0, which satisfy the relationship
∑

α |λα|2 = 1.

The number of Schmidt coefficients used in the expansion (Eq. (6.4)) is the

Schmidt rank, χS, which is bounded by the dimension of the smaller subspace in

the bipartite splitting, that is, 1 ≤ χS ≤ min(dA, dB). The Schmidt rank indicates

the level of entanglement for pure states. When χS = 1 the system is in a product

state, i.e. systems A and B are not entangled, while larger values of χS correspond

to more highly entangled subsystems. This inequality demonstrates that the number

of degrees of freedom which can be entangled between blocks A and B is restricted

by the number of degrees of freedom inherent to the smaller subsystem.

6.2.2 Singular Value Decomposition

The Schmidt decomposition can be expressed through the language of the singu-

lar value decomposition theorem (SVD) from linear algebra. Consider a state for the

bipartite system written in terms of two arbitrary orthogonal bases, |iA〉 for block A

and |jB〉 for block B such that,

|ψ〉 =
∑
i,j

Ci,j |iA〉 |jB〉. (6.5)

where block A and B have dimensionalities m and n, and Ci,j is m × n matrix of

coefficients.

The SVD theorem says that there always exists two unitary matrices Γ[A] and
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Γ[B]T (where T denotes the transpose) and a diagonal matrix λ, such that the matrix

C satisfies the relation, C = Γ[A] λΓ[B]T . Applying the SVD theorem to the state |ψ〉,
we obtain the Schmidt decomposition in Eq. (6.4):

|ψ〉 =
∑
i,j

Ci,j |iA〉 |jB〉 =
∑

α

(∑
i

Γ
[A]
i,α |iA〉

)
λα,α

(∑
j

Γ
[B]
α,j

T |jB〉
)

=
∑

α

λα|φ[A]
α 〉|φ[B]

α 〉, (6.6)

where we have defined,

|φ[A]
α 〉 ≡

∑
i

Γ
[A]
i,α |iA〉, |φ[B]

α 〉 ≡
∑

j

Γ
[B]
α,j

T |jB〉, λα ≡ λα,α. (6.7)

As we will see in the next section, the superscript in brackets [l] denotes the site index,

and the superscript without brackets il indicates that the system is in the local state

|il〉; the α subscripts are the Schmidt indices from the Schmidt decomposition. Since

ΓA and ΓB are unitary, it guarantees that {|φ[A]
α 〉} and {|φ[B]

α 〉} are orthonormal.

6.2.3 Vidal Representation Using Singular Value Decomposition

The key to the TEBD algorithm is to use the Schmidt decomposition to conve-

niently express the coefficients in Eq. (6.3),

|ψ〉 =
d∑

i1,i2,...,iL=1

Ci1i2...iL|i1〉|i2〉 . . . |iL〉,

as a series of local tensors Γ[l] and local vectors λ[l], at sites l. To see how this

is possible, first let’s apply the Schmidt decomposition to our 1D system, with the

bipartite splitting occurring between sites 1 and 2. In such a case, block A is composed

of a single site while block B is composed of the remaining L− 1 sites. The state is

then expressed as,

|ψ〉 =

χS∑
α1=1

λ[1]
α1
|φ[1]

α1
〉 |φ[2...L]

α1
〉, (6.8)
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where we have chosen to label the block (super scripts) by the site number. Now,

rewriting the state |φ[1]
α1〉 in the local basis for site 1, as defined in Eq. (6.7), we obtain,

|ψ〉 =

χS∑
α1;i1

Γ[1]i1
α1

λ[1]
α1
|i1〉|φ[2...L]

α1
〉, (6.9)

where we have shifted all the i indices to be superscripts and α indices to be subscripts.

The superscript in brackets [l] denotes the site index, and the superscript without

brackets il indicates that the system is in the local state |il〉; the α subscripts are the

Schmidt indices from the Schmidt decomposition.

We perform a similar expansion for the state |φ[2...L]
α1 〉 in the local basis for site 2

|i2〉 in terms of the orthonormal basis for sites 3 . . . L:

|φ[2...L]
α1

〉 =
∑
α2;i2

|i2〉Γ[2]i2
α1,α2

λ[2]
α2
|φ[3...L]

α2
〉. (6.10)

Notice that the Γ tensor corresponding to the first site depended on only one α index,

since there is only one adjacent block, while the Γ tensor for site 2 depends on two

indices, α1 and α2, since there are two adjacent blocks next to site 2. Substituting

Eq. (6.10) into Eq. (6.9) we obtain,

|ψ〉 =

χS∑
α1,α2;i1,i2

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1,α2

λ[2]
α2
|i1〉|i2〉|φ[3...L]

α2
〉. (6.11)

We can repeat the process for the state |φ[3...L]
α2 〉 in the local basis for site 3 |i3〉, and

iteratively repeat for each subsequent state, until we reach site L, in order to form

the Vidal decomposition

|ψ〉 =
d∑

i1,i2,...,iL=1

Ci1i2...iL|i1〉|i2〉 . . . |iL〉,

Ci1i2...iL =

χS∑
α1,...,αL−1

Γ[1]i1
α1

λ[2]
α1

Γ[2]i2
α1α2

λ[3]
α2

Γ[3]i3
α2α3

. . .Γ[L]iL
αL−1

, (6.12)
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for open boundary conditions.1 A pictorial way of seeing this is shown in Fig. 6.1;

for purposes of interpretation it is useful to associate the Γs with sites and the λs

with the links between sites. The lines represent the contractions over the Schmidt

indices.

 

λ
[l-1]

λ
[l]

λ
[l+1]

λ
[l+2]

λ
[l+3]

Γ
[l-1]

Γ
[l]

Γ
[l+1]

Γ
[l+2]

SiteLink

Figure 6.1: Vidal Decomposition Schematic. A pictorial way to view the Vidal
decomposition is to associate the Γs with sites and the λs with the links between
sites. The lines represent the contractions over the Schmidt indices.

One major reason why the TEBD algorithm is successful is because the coeffi-

cients of the Schmidt decomposition decay exponentially, λ
[l]
α exp(−α), thus, with the

removal of sufficiently small coefficients, the Hilbert space can be truncated to some

degree of optimality, while still capturing the many-body physics.

Note that the TEBD algorithm is not restricted to splittings corresponding to

physical sites in a lattice. In fact, the subsystems can be separated in whatever

manner we may choose.

The Schmidt coefficients λα are intimately related to the reduced density matrices

for the two blocks of the system via,

ρA = TrB(|ψ〉〈ψ|) =

χS∑
α=1

λ2
α|φ[A]

α 〉〈φ[A]
α |, (6.13)

ρB = TrA(|ψ〉〈ψ|) =

χS∑
α=1

λ2
α|φ[B]

α 〉〈φ[B]
α |, (6.14)

1Eq. (6.12) has a slightly different representation for periodic boundary conditions due to the
difference in conditions for the first and last blocks. The extra indices incurred lead to a less
favorable numerical scaling.
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and obey the eigen-relations,

ρA|φ[A]
α 〉 = |λα|2|φ[A]

α 〉 (6.15)

ρB|φ[B]
α 〉 = |λα|2|φ[B]

α 〉. (6.16)

This is critical to our descriptions of entanglement, due to the fact that the amount

of information in a system and the entanglement between two subsystems can both

be quantified by the von Neumann entropy, given by,

S(A) = −Tr[ρA log2 ρA] = −
χ∑
α

λ2
α log2 λ

2
α (6.17)

which is the same for subsystems A and B.

6.2.4 One-Site Operations

Applying the Vidal decomposition to a Hamiltonian like the BHH, requires that

we be able to handle both one-site and two-site operators acting on a state in the 1D

system. A one-site unitary operator,Û , acting on site l can be represented as

Û =
∑

il,i
′
l

Uil,i
′
l
|il〉〈i′l|. (6.18)

In the Vidal state representation (6.12), the 1D chain is broken down into a series of

Γs and λs. The effect of the operation Û is to change the Γ[l]il tensor into a new Γ̃

tensor given by,

Γ̃[l]il
αl−1αl

=
∑

i
′
l

Uil,i
′
l
Γ

[l]i
′
l

αl−1αl . (6.19)

Since Û is local to site l only the Γ[l]il tensor should be altered and not any of the

other Γs or links λ.

Computationally, one-site operations only require updating Γ[l]il → Γ̃[l]il , a pro-

cedure which scales as O(dχ2). As we will see in the next section, two-site operations
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λ
[l]

Γ
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λ
[l+1]

λ
[l]

λ
[l+1]~

Γ
[l]

Figure 6.2: One-site Operation Schematic. A pictorial way to view the one-site
operation. The operator Û changes the Γ[l] tensor into a new Γ̃[l] tensor.

are much more costly.

6.2.5 Two-Site Operations

Now consider a two-site unitary operator V̂ acting on sites l and l+ 1 in our 1D

system. Such an operator can be represented by,

V̂ =
∑

il,il+1;i
′
l ,i
′
l+1

V
ilil+1

i
′
li
′
l+1

|ilil+1〉〈i′li
′
l+1|. (6.20)

We write the state |ψ〉 as a bipartite splitting between l and l + 1 in terms of the

Schmidt vectors to the left of the two sites [1 . . . l − 1] and to the right of the two

sites [l + 2 . . . L], as

|ψ〉 =
∑

αl−1,αl,αl+1;il,il+1

λ[l]
αl−1

Γ[l]il
αl−1αl

λ[l+1]
αl

Γ[l+1]il+1
αlαl+1

λ
[l+2]
αl+1|φ[1...l−1]

αl−1
〉 ⊗ |ilil+1〉 ⊗ |ψ[l+2...L]

αl+1
〉

=
∑

αl−1,αl,αl+1;il,il+1

Θilil+1
αl−1αl+1

|φ[1...l−1]
αl−1

〉 ⊗ |ilil+1〉 ⊗ |ψ[l+2...L]
αl+1

〉 (6.21)

where the object Θ is,

Θilil+1
αl−1αl+1

≡ λ[l−1]
αl−1

Γ[l]il
αl−1αl

λ[l]
αl

Γ[l+1]il+1
αlαl+1

λ[l+2]
αl

. (6.22)

Schematically, think about this two-site operation as consisting of two Γs and three

λs, where the middle λ is replaced by an effective Γ. When the two-site operation V̂

acts on the state |ψ〉, similar to the one-site operation, it changes the two Γs and the
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Figure 6.3: Two-site Operation Schematic. A pictorial way to view the two-site
operation. The operator V̂ changes both the Γ[l] tensor and the Γ[l+1] tensor into a
new Γ̃[l] and Γ̃[l+1] tensor. The operator V̂ also modifies the link λ[l+1] to a new λ̃[l+1]

link λ in between. Thus, the Θ object becomes an effective Θ̃ such that,

V̂ |ψ〉 =
∑

αl−1,αl,αl+1;il,il+1

Θ̃ilil+1
αl−1αl+1

|φ[1...l−1]
αl−1

〉 ⊗ |ilil+1〉 ⊗ |ψ[l+2...L]
αl+1

〉 (6.23)

where,

Θ̃ilil+1
αl−1αl+1

=
∑

i
l
′ ,i

l
′
+1

V
ilil+1

i
′
li
′
l+1

Θ
i
′
li
′
l+1

αl−1αl+1 (6.24)

=
∑
αl

λ[l−1]
αl−1

Γ̃[l]il
αl−1αl

λ̃[l]
αl

Γ̃[l+1]il+1
αlαl+1

λ[l+2]
αl

. (6.25)

The Schmidt coefficients are normalized in the fashion,

χS∑
αl

(
λ[l+1]

αl

)2
= 1. (6.26)

Thus when we perform SVD on the matrix Θ̃, and keep only the χ largest singular

values λ̃
[l+1]
αl , the truncation error involved with such a procedure, called the Schmidt

error, may be calculated, and is given by

τS
l ≡ 1−

χ∑
αl

(
λ[l+1]

αl

)2
. (6.27)

For large enough χ the Schmidt error tends to zero. Since this error is dependent on

the choice of χ, which is an indicator of the level of entanglement, we say that TEBD

is best suited for lowly entangled systems. The entropy, at worst, scales as log(L)
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at critical points, and otherwise follows the area law so that it does not depend on

system size [92].

6.3 Time Evolution and Suzuki-Trotter Decomposition

To perform time-dependent simulations of a Hamiltonian with TEBD, the time

evolution operator, exp(−iĤδt/~), which contains our Hamiltonian and hence one-

and two-site unitary operations, must be expressed in the language introduced in

Sections 6.2.4 and 6.2.5. A convenient means of decomposing the exponential is

through a Suzuki-Trotter expansion.

The form of the time evolution operator is obtained from integration of the time-

dependent Schrödinger equation, Ĥ|ψ(t)〉 = i~ ∂
∂t
|ψ(t)〉. Given an initial state |ψ(0)〉

and a time independent Hamiltonian, the state at a later time δt can be expressed as

|ψ(δt)〉 = exp(−iĤδt/~) |ψ(0)〉.
A Suzuki-Trotter expansion is a general way of writing exponential operators,

and to first-order is given by

e(F̂+Ĝ) = lim
n→∞

(
e

F̂
n e

Ĝ
n

)n

(6.28)

or, equivalently,

e(F̂+Ĝ)δt = lim
δt→0

[
eF̂ δteĜδt +O(δt2)

]
, (6.29)

where F̂ and Ĝ are, for now, arbitrary operators. The size of the correction term can

be reduced with higher order expansions, for example, the trick to the second-order

Suzuki-Trotter expansion relies on expressing the time evolution operator as:

e−i(F̂+Ĝ)T =
[
e−i(F̂+Ĝ)δt

]T/δt

=
[
e

δt
2

F eGδte
δt
2

F
]n

, (6.30)

where n = T/δt is called the Trotter number.

Defining the operators F̂ and Ĝ in the context of our Hamiltonian is fairly
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straightforward. If the Hamiltonian consists of only one- and two-site operations,2

that act on the local Hilbert spaces for sites i and i+ 1, then we can break the total

Hamiltonian into two sums

Ĥ =
∑

l odd

Ĥl,l+1 +
∑

l even

Ĥl,l+1 = F̂ + Ĝ, (6.31)

where the one-site operations in Ĥ can be easily expressed as two-site operations by

taking the tensor product with the identity operator. For example, in the BHH, the

particle-particle interaction operator Û (a one-site operator), can be written in terms

of two-site operations with 1
2
(Û ⊗ 1̂ + 1̂⊗ Û). Notice that because Ĥ is composed of

terms that couple only at most nearest-neighbor sites, i.e., [Ĥl, Ĥl+j] = 0 for j ≥ 2,

the terms within F̂ and Ĝ commute (although F̂ and Ĝ themselves do not commute).

The time evolution operator for such a Hamiltonian is neatly decomposed, as in

Eq. (6.30), by the second-order Suzuki-Trotter expansion:

e−iĤδt/~ = e−iF̂ δt/2~e−iĜδt/~e−iF̂ δt/2~ +O(δt3), (6.32)

where,

e−iF̂ δt/2~ = exp

(
−i

∑

l odd

Ĥl,l+1δt/2~

)
=

∏

l odd

e−iĤl,l+1δt/2~ (6.33)

e−iĜδt/2~ = exp

(
−i

∑

l even

Ĥl,l+1δt/2~

)
=

∏

l even

e−iĤl,l+1δt/2~. (6.34)

This process involves on the order of O(L) two-site operations per time step.

A fourth-order Suzuki-Trotter expansion of the time evolution operator can be

obtained from the Forrest-Ruth formula, first discovered in 1990, and in most cases

will reduce the error even further [93]. Using the same operators F̂ and Ĝ from

2For example, the BHH.
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Eqs. (6.33) and (6.34), the fourth-order Suzuki-Trotter expansion is given by

e−iĤδt/~ =e−iF̂ θδt/2~e−iĜθδt/~e−iF̂ (1−θ)δt/2~ + e−iĜ(1−2θ)δt/~+

e−iF̂ (1−θ)δt/2~ + e−iĜθδt/~ + e−iF̂ θδt/2~ +O(δt5), (6.35)

where θ ≡ 1/(2− 21/3) is called the Forrest-Ruth parameter.

Higher order Suzuki-Trotter expansions separate the time evolution operator into

a larger number of factors, for example, two factors in the first-order, three in the

second-order, and seven in the fourth-order, which increases the computation time.

However, in situations where the Hamiltonian is not changing rapidly over short time

scales, higher order expansions allow us to take substantially coarser time steps with

the same level of accuracy, hence reducing our overall computation time and the total

Schmidt error. The fourth-order decomposition is the most common method used in

simulations throughout this thesis.

For pth-order expansions, the Schmidt error is of order O(δtp+1). After a time T

the error is

ε
T

δt
δtp+1 = Tδtp, (6.36)

where n = T/δt. Notice that the Trotter error is independent of the dimension of the

1D chain.

6.4 Initializing States and Imaginary Time Propagation

If the initial state we wish to prepare for time evolution is a simple product state

|ψp〉, initialization is simple. In the context of Eq. (6.12), we take

λ[l+1]
αl

= δα,l (6.37)

where δαl,l is a Kronecker delta, thus reducing Ci1,i2,...iL to a single term.

To find the system’s ground state, which may be complicated or unknown one can



70

use the imaginary time propagation method, discussed in Section 4.2. It is straightfor-

ward to show that an initial product state |ψp〉 will converge to a value proportional

to the system’s ground state |ψG〉 in the limit τ → ∞, provided that the starting

state and the ground state are not orthogonal, that is, 〈ψp|ψG〉 6= 0. Thus the proce-

dure is: (1) choose a product state |ψp〉 that has some overlap to the desired ground

state, (2) evolve in imaginary time to obtain the ground state |ψG〉, (3) with the

ground state thus obtained, we can evolve it in real time using the methods described

in Section 6.3. It is also common to take a perturbed form of the ground state as

the starting point for real time evolution. For example, we will take bright solitons

localized in the well behind the barrier as the initial states in our investigations of

quantum many-body tunneling.

Imaginary time evolution is not unitary. Thus we have to renormalize and re-

orthogonalize the state, specifically the Θ tensor from Section 6.2.5, at each step in

imaginary time. A fourth-order Suzuki-Trotter expansion is usually preferred, because

taking larger time steps means a fewer number of times that we must renormalize

and reorthogonalize the state.
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Chapter 7

QUANTUM MANY-BODY TUNNELING OF BRIGHT SOLITONS

In this chapter, we investigate quantum many-body tunneling of bright solitons

in Bose-Einstein condensates, and compare the simulations obtained from the time-

evolving block decimation and mean field methods. Through such a comparison, in

this chapter we will now be able to address the question: when is a full quantum

many-body approach necessary for adequately describing our system? In turn, we

will quantitatively determine the extent to which mean field theory fails to predict

the escape time of a bright soliton from behind a potential barrier for large interaction

strengths. Finally, the full quantum-many body method provides us with the added

benefit of utilizing a wide arsenal of quantum measures to analyze macroscopic quan-

tum tunneling. Thus, we use tools, such as the block entropy and density-density

correlation functions to name a few, to probe the dynamics of MQT. Bright solitons

in BECs have already been observed [26, 27], including in optical lattices [54], so

that our predictions and ideas can be tested with present experimental apparatus. In

particular, the small number of atoms we work with, from a few to 70, can be created

in a 2D array of 1D systems [94].

7.1 Forming Bright Solitons With Imaginary Time Propagation

The governing Hamiltonian is the 1D BHH from Eq. (2.26), which when explicitly

including the chemical potential is written as

Ĥ = −J
L−1∑
i=1

(b̂†i b̂i+1 + b̂ib̂
†
i+1) +

U

2

L∑
i=1

n̂i(n̂i − I) + µ
∑

i

n̂i. (7.1)

To attain bright solitons, we use condensates with attractive particle interactions,

U ≤ 0, and a negative chemical potential, µ ≤ 0. As in the mean field case, the
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system consists of N bosons loaded into an optical lattice with L sites and box

boundary conditions.

Imaginary time propagation, discussed in Section 6.4, is used to find the bright

soliton many-body state. For imaginary time propagation, an initial state that is

roughly Gaussian in structure will quickly converge to a bright soliton solution, due to

the substantial overlap between the two states. For number conserving simulations, we

initialize our system as a simple “wedding cake” product state– a structure designed

to approximate a Gaussian number density in which all of the Γs are expressed in a

basis of number eigenstates. The wedding cake consists of two tiers which differ in on-

site number by one, and whose dimensions are specified by three integer parameters:

tops, center, and hole, whose names originate from variable definitions in the TEBD

code. The upper tier is “tops” sites long, with “center” being the on-site number in

the upper tier, and (center − 1) being the on-site number in the lower tier. “Hole”

is the number of sites to the left of the upper tier without a particle. These three

parameters are controlled by the filling, and whether the number of sites with the

fewest amount of particles is even or odd. For integer filling, there is a uniform

number of particles per site, thus there can be no hole, i.e. hole = 0. For non-integer

filling, and an even number of sites with the fewest particles, the hole is given by

hole = 1
2
(L −MOD(N,L)). If the number of sites with the fewest particles is odd,

then hole = 1
2
(L−MOD(N,L) + 1). In summary, the wedding cake procedure is:

tops ≡MOD(N − 1, L) + 1,

center ≡ [N/L− 10−8] + 1, (7.2)

hole ≡





0 if, MOD(N,L) = 0

1
2
(L−MOD(N,L)) if, MOD(L−MOD(N,L), 2) = 0

1
2
(L−MOD(N,L) + 1) otherwise

(7.3)
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The procedure is made more clear by a picture of the wedding cake state, shown in

Fig. 7.1.

Figure 7.1: Wedding Cake Initial State. A wedding cake state is used as the initial
setup for imaginary time evolution in order to form a bright soliton. The figure shows
the configuration for a system with: N = 2, N = 6, and N = 10 particles. Other
arrangements can be made with Eq. (7.2).

Due to the scaling of the computation time with χ, the number of basis states

retained for every two-site operation in TEBD, we propagate in two iterations of

imaginary time. First, we use a small, χmin, to quickly shape the initial state, and

then apply a larger, χmax > χmin, to refine the state into a bright soliton. Con-

vergence for each iteration in imaginary time is defined by two convergence criteria,

“convCriterion1” and “convCriterion2” respectively.1 The first (second) iteration

of imaginary time propagation is said to be converged if the difference between all

λ
[l]
α at imaginary time τ and imaginary time τ + stepsForJudge ∗ dtITP is less than

convCriterion1 = 10−7 (convCriterion2 = 10−9). The number of imaginary time

steps after which we check for convergence, stepsForJudge, is set to 500, with dtITP

as the time step. Once imaginary time is completed, the bright soliton state is be

checked by fitting the profile to a sech2 function. The height and width of the soliton

is determined by the quantity NU/J and the system size L.

Using a rectangular external potential barrier Vext, as in the mean field case,

we can confine a bright soliton between the barrier and one of the system walls. A

1Terminology derives from variable definitions in our TEBD code.
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rectangular potential barrier term is thus added to the BHH, yielding

Ĥ = −J
L−1∑
i=1

(b̂†i b̂i+1 + b̂ib̂
†
i+1) +

U

2

L∑
i=1

n̂i(n̂i − I) + µ
∑

i

n̂i +
∑

i

Vext,i n̂i. (7.4)

We initialize the many-body wavefunction as a wedding cake product state, and

by way of imaginary time propagation, form a bright soliton behind the potential

barrier. We use the same barrier setup as in the mean field case, shown in Fig. 4.2.

That is, we set Vext to a height h = 0.05 and an initial width wI during imaginary

time propagation. At t = 0, in real time, the barrier is decreased to width w, typically

one to five sites, such that the soliton can escape confinement on a time scale within

the window of the given simulation.

7.2 Real Time Soliton Dynamics

Evolving in real time, we first make a coarse observation of the dynamics of

MQT in Fig. 7.2 by plotting the average particle number in different regions of the

system. As opposed to the mean field case, where we plotted the number density, for

the quantum many-body problem we must plot a number density which is averaged

over many experimental runs. The average particle number is simply the expectation

value of the number operator,

〈n̂〉 =
d−1∑
n=0

n|n〉〈n|, (7.5)

where the expectation value is calculated via 〈n̂i〉 = Tr (ρ̂in̂), using the reduced

density matrix ρ̂i, at site i. An observable useful for determining the escape time of

a bright soliton is the average number of particles to the left of site i, 〈Ni〉, where we

typically set i to be the site at the outer edge of the barrier. The advantage of using

〈Ni〉, as opposed to the average particle number at a specific site, is that as a bright

soliton tunnels through the barrier, 〈Ni〉 will normally exhibit a smooth decay, from

which tMB
esc , i.e., the time at which the average number of particles remaining behind
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Figure 7.2: Many-Body Tunneling, and Calculation of Decay Time. Average particle
number per site (top row) and number of trapped (blue) and escaped (red) particles
(bottom row), for barrier widths w = 1 (left), w = 2 (middle), and w = 4 (right); the
1/e decay time is tMB

esc = 96.9, 123.9, and 219.4, all ±1.25, respectively. This example
shows systems all of N = 40, U = 0.0075 and J = 1.

the barrier falls to 1/e of its initial value, can be easily calculated. In Fig. 7.2, we

plot 〈Ni〉 to the left of the barrier, and the average number to the right of the barrier

for three barrier widths, demonstrating that tMB
esc increases with w.

Absorbing boundary conditions have not been implemented with number con-

serving BHH simulations, so reflections occur off of the box boundaries, as shown in

Fig. 7.2, for t ≥ 250. Reflections from the far boundary will return to the barrier on

time scales tref ≥ tJ ∗ 2wI , where tJ is the hopping time, the average time it takes

for a particle to move one site. We may ignore reflections when calculating tMB
esc if we

consider only t < tref . If tMB
esc > tref , the escape time can be extrapolated by fitting

the norm to an exponential.

Several parameters will control the dynamics of MQT: νU/J sets the initial

mean field, ν = N/L controls the initial average density, U/J serves as a ground

state phase transition control parameter, and w2h determines the barrier area. We

define the barrier area as w2h to make it unitless. Since the barrier height h has units
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of energy, we divide by ~2/mw2 taking ~,m → 1 to obtain w2h. The dependence

of the escape time on these parameters, using both the DNLS and the BHH, will be

shown later in Fig. 7.4.

7.3 Comparison to Mean Field Theory

The BHH approaches the DNLS in the mean field limit N → ∞, U → 0,

NU/J = const. We emphasize that both the BHH and the DNLS are single band

models, valid when the soliton covers many sites; a continuum limit is possible for

νJ = const., ν ≡ N/L → 0 and J → ∞; however, a continuum limit would restrict

us numerically to very small numbers of particles [95].

When the interaction strength is nonzero an appropriate mapping is required to

compare BHH and DNLS simulations, due to the factor of 1/2 that appears in the

interaction term of the BHH. The mapping, for fixed N and J , is to set U = 2g while

normalizing the mean field wavefunction to N . This scaling ensures that when one

approaches the mean field the limit, for small but nonzero on-site interactions, the

difference between the two methods becomes negligible.

When the interaction strength is sufficiently large, the DNLS simulations begin

to deviate from the BHH simulations. For instance, the height and width of the

bright soliton state, generated after imaginary time evolution, varies between the two

methods. In Fig. 7.3, using both the BHH and the DNLS, we plot the average on-site

number of the bright soliton state and the standard deviation of the difference between

the two methods for various values of the interaction strength. When the interaction

strength approaches zero, we find that the difference between the two methods is less

than 10−5. The difference in the initial states between the two methods is important

to consider, since the height and width of the soliton largely determines the rate of

macroscopic quantum tunneling.

Turning now to real time simulations, how do many body predictions compare

to mean field ones? We define tMF
esc and tMB

esc as the mean field and many body escape
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Figure 7.3: Initial State vs. Interaction Strength Using the BHH and the DNLS. The
bright soliton state for the BHH (dashed lines) and the DNLS (dots) simulations is
slightly different, due the the inaccuracy of mean field theory for large interaction
strengths. In the noninteracting limit, the difference between the two methods is
driven to zero. This example shows values of |U | = 0.01 (blue), 0.21 (red), and 0.33
(yellow), for N = 2 and w = 3.

times, respectively. For fixed NU/J , w, and h, the DNLS gives the same result

independent of N and U ; tMB
esc → tMF

esc only for N → ∞ and U → 0; and w2h

determines the barrier area. Figure 7.4 illustrates our exploration of this parameter

space, where we plot the escape time, for different barrier areas calculated using

both the DNLS and the BHH. Consistent with our previous simulations, we again

set J = 1, L = 64, with the barrier starting at site 16, and plot the escape time for

various values of N and U . In Fig. 7.4(a)-(d), we illustrate comparisons for N = 1 to

N = 40, for systems of fixed N |U |/J = 0.05, 0.15, 0.3, and 0.5.

We find distinctive differences in the dynamics of MQT predicted by the DNLS

and BHH. Generally, the DNLS grossly under predicts tesc when N |U |/J is sufficiently

large, even for N = 40. Since our well width is 16 lattice sites, we expect the mean

field limit will only be relevant for 70 or more particles, when the filling ν À 1.

Except for N = 1, the BHH predicts an increase in tesc over the DNLS, approaching a
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Figure 7.4: Many Body vs. Mean Field Escape Time Predictions. (a)-(d) Dependence
of tMB

esc on barrier area and particle number for (a) NU/J = −0.05, (b) −0.15, (c)
−0.3, and (d) −0.5. (e) tMB

esc plateaus for 10 to 40 particles and then decreases back
down to tMF

esc , shown for NU/J = −0.15. (f) In the plateau region of N = 40, tMB
esc

significantly differs from tMF
esc for a range of barrier areas and interaction strengths.

Curves are a guide to the eye, points represent actual data.

maximum value for N = 40. We have shown that tMB
esc will subsequently decrease back

down to tMF
esc when N > 70. Figure 7.4(e) shows this scenario for fixed NU/J = −0.15,

showing that tesc plateaus at a maximal value for N ≥ 20 up to N = 40 and then

decreases back down to tMF
esc in the mean field limit. It is clear that in the plateau

region tMB
esc is substantially different that the predicted mean field value.

The main point to take away from these comparisons is that when N |U |/J or w
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increases, the difference between tMF
esc and tMB

esc increases exponentially. Thus, we can

quantitatively show the parameter regimes in which the DNLS fails to predict the

correct escape time for MQT, and to what extent. It is especially remarkable to note

that a weakly interacting system cannot be modeled accurately with mean field theory

if the number of particles, N , is sufficiently large and the filling factor is sufficiently

small. For example, for a very weakly interacting system with U = −0.015J and

N = 20, we have a value of NU/J = −0.3; in this case, mean field theory will under

predict the escape time by over 10 percent. The disparity between the two methods

is shown in Fig. 7.4(f), where in the plateau region we plot the percent difference in

tMF
esc and tMB

esc over the average.

Systematic error in tMB
esc results from the Schmidt truncation used in TEBD [90],

χ, the truncation in the on-site Hilbert space dimension, d, and the time resolution

at which we write out data, δt. The hardest many-body measures to converge, such

as the block entropy, at χ = 25 have an error smaller than 10−3 for N = 40, and

have been checked up through χ = 55; due to very small interaction strengths much

lower χ is required than usual in TEBD. A thorough discussion of convergence with

respect to χ is presented in Appendix A.

Error bars in Fig. 7.4(d) are due solely to δt; there is additional error from our

Suzuki-Trotter expansion, contributing an error of O(δt6) per time step, which is

always smaller than our χ-induced error. For up to N = 20 we have not truncated

d, but for larger N up to 60, we truncated to d = 12. A lower truncation results

in decreased tMB
esc , e.g. by 10% for d = 5, NU/J = −0.1, and N = 10, even though

max(〈n̂〉) < 1, since more weight is given to spread-out Fock states. Our use of TEBD

for dynamics of the attractive BHH is the first, to our knowledge, and much higher d

is required than in repulsive BHH simulations, since attractive interactions increase

number fluctuations in high density regions. The BHH also has a number of sources

of systematic error, the most important of which is virtual fluctuations to the second

band; however, since we compare single-band DNLS to single-band BHH this does

not effect our comparison.
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7.4 Analyzing Real Time Dynamics With Quantum Measures

TEBD is a powerful tool that provides one with a wide array of quantum mea-

sures with which to study many-body systems. In this section we aim to give a brief

overview of several useful quantum measures which will subsequently allow us to gain

a better understanding of MQT.

In addition to the average particle number, real time dynamics can be observed

from the number variance and the localized von Neumann entropy. The number

variance characterizes the deviations of the average particle number away from the

classical Poissonian limit, defined to be

η ≡ 〈(∆n)2〉 ≡ 〈n̂2〉 − 〈n̂〉2. (7.6)

The number variance is typically greatest on sites with large average number. There-

fore, in our simulations with bright solitons, typically the number variance behaves

similarly to the average on-site particle number. In Fig. 7.5, we plot the average

on-site number alongside the number variance during MQT for a system of N = 6,

U = −0.066, J = 1, and w = 2.

Figure 7.5: Quantum Measures: Average Particle Number, Number Variance, and
von Neumann Entropy. The real time dynamics revealed by plotting the average
particle number (left) are similar in character to the number variance (middle), and
the localized von Neumann entropy (right), which assume their largest values when
the average number of particles is large.

The localized von Neumann entropy, SvN,k, discussed previously in Eq. (5.6), is
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another on-site observable useful for observing real time dynamics. SvN,k quantifies

the amount of information which is lost at a single site k, and can be used to classify

deviations of the system away from the mean field limit. Since mean field calculations

neglect any spatial entanglement in the system, the localized von Neumann entropy,

calculated with TEBD, can show the regions during time-evolution where the mean

field simulations will deviate most from the TEBD simulations. Naturally, the local

von Neumann entropy is greatest in the regions where there are large collections of

particles, as shown in Fig. 7.5, since many-body interactions play a strong role in

those areas of the system.

To characterize the quantum nature of MQT, in Fig. 7.6(b), for the same system,

we plot the fluctuations in the number of particles behind the barrier, defined as

fl =
〈N2

l 〉 − 〈Nl〉2
〈Nl〉 , (7.7)

where Nl is the number of particles to the left of site l. This choice is indicative of the

fact that number fluctuations will mainly reside at the barrier boundary. As shown in

Fig. 7.6(b) fluctuations in the number of particles behind the barrier tend to increase

over time, as more particles tunnel out of the well. Once MQT commences, fl in time

increases with |U | because number densities just outside the barrier have more of an

influence to “pull” additional particles through the barrier, and vice versa.

The quantum depletion D ≡ 1 − N0/Navg, which in the low temperature limit

describes quantum fluctuations due to particle-particle interactions in the system, is

another useful quantum measure. As discussed in Section 5.1, quantum depletion is

the proportion of particles that are not in the condensed mode; in TEBD we calculate

the depletion via

D ≡ 1−
(

L∑
m=2

λm

)/ (
L∑

m=1

λm

)
, (7.8)

where {λm} are the eigenvalues of the single particle density matrix, 〈b̂†i b̂j〉. During

the time-evolution of the system, quantum depletion increases to values usually on
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the order of ten percent or less, as shown in Fig. 7.6(c), but becomes large with strong

interactions. When quantum depletion is higher than a few percent, we are working

in a regime where DNLS simulations will tend to deviate from BHH simulations.

Of particular interest to MQT is the von Neumann block entropy characteriz-

ing entanglement between the remaining particles and the escaped particles, Sl ≡
−Tr(ρ̂l log ρ̂l), where ρ̂l is the reduced density matrix for the well plus barrier. In the

language of TEBD we calculate the block entropy via,

Sl = −
χ∑
a

λ[l]
a logd(λ

[l]
a ). (7.9)

When plotted versus time for the tunneling bright soliton, Sl at the outside edge of

the barrier increases to a maximum value as shown in Fig. 7.6(d), and then decreases

as particles tunnel out of the well. The block entropy is maximal at the time when

the system is in its most uniform probability distribution and is closely related to the

slope of the average number fluctuations, dfl/dt, as we will investigate in the next

section.

In addition, we can plot the localized von Neumann entropy at a given site, as

shown in Fig. 7.6(e). At the site were the soliton peak is located, SvN,mid, the localized

von Neumann entropy is very reminiscent of the average on-site number. Finally, as

another quantum measure, we plot the average local impurity in Fig. 7.6(f), previously

discussed in Eq. (5.7), which quantifies the amount of multiparticle entanglement in

the system, in the sense that it calculates the bipartite entanglement between each

site and every other site in the system. During the time-evolution of the system, the

average local impurity usually does not change very significantly.

Additionally, we can plot the single-particle density matrix (SPDM), as shown

in Fig. 7.7, and examine how off-diagonal long-range order, previously discussed in

Section 1.2, changes during MQT. Similar to g(2), the SPDM should be symmetric

with respect to the diagonal. Off-diagonal long-range order is a generalized measure

of macroscopic quantum coherence in the system, and can be seen where there are
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Figure 7.6: Quantum Measures and Observables. (a) The average number of particles
to the left of the barrier is a smooth decaying function from which the escape time
can be calculated. The fluctuations in the number of particles behind the barrier
(b) and the quantum depletion (c) increase over time. The block entropy (d) peaks
when the soliton is the most spread out over the system. The localized von Neumann
entropy at the peak of the soliton (e) follows a similar trend as the average particle
number. The average local impurity (f) changes only slightly. This example is for
N = 6, U = −0.066, J = 1, and w = 2.

large2 off-diagonal components of the SPDM.

Another quantum measure, useful for determining how the barrier alters nonlocal

2Dark spots in Fig. 7.7.
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Figure 7.7: The Single-Particle Density Matrix. Time evolution of the single-particle
density matrix shows how off-diagonal long-range order develops during MQT. Dashed
lines indicate the position of the barrier. This example shows the single-particle
density matrix at three different time slices for N = 6, U = −0.066, J = 1, and
w = 2.

correlations in the system, is the density-density correlation function,

g(2)(ni, nj) = 〈ninj〉 − 〈ni〉〈nj〉, (7.10)

where ni (nj) is the particle number at the ith (jth) site. The g(2) correlation is the

expectation value of simultaneously measuring particles at sites i and j. It can be used

in experiments as another signature of our many-body findings, as g(2) is extractable

from noise measurements [96] and is zero in mean field theory. As customary, we

subtract off the large diagonal matrix elements of g(2) to view the underlying off-

diagonal structure. g(2) should always be symmetric with respect to the diagonal,

since there is no preference to the labeling of i and j. In Fig. 7.8(a)-(c) we show g(2) for

N = 40, NU/J = −0.015, and w = 2, dividing up the system to observe correlations

between the three physical regions: trapped, under the barrier, and escaped. We

initially observe near-zero correlations everywhere except near the soliton peak. At

tMB
esc , g(2) shows many negatively-correlated regions (g(2) < 0) which are broken up by

the potential barrier. In Fig. 7.8(d) for a large N comparison of N = 20 we also show

rapidly growing quantum depletion for a large interacting system with U = 0.025,

J = 1 and w = 2. This growth in D emphasizes the many-body nature of the escape
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Figure 7.8: Time-dependence of Density-density Correlations. (a)-(c) g(2) shows
correlations between trapped and escaped particles. The barrier, indicated by dashed
lines, breaks up negatively-correlated regions (red); shown are time slices at t =
0, 62, 125. (d) Quantum depletion also grows rapidly.

process.

Figure 7.9: Schmidt Truncation Error. For χ = 55, the Schmidt truncation error
remains below a very acceptable order of 10−6 for the duration of the tunneling
process. The relevant parameters for this plot are: N = 6, U = −0.066, J = 1, and
w = 2.

When using BHH simulations, it is important to be aware that each individual

quantum observable has its own distinct dependence on χ. All of the plots in this

section were performed with a large value of χ = 55, however, usually only a mini-
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mum of χ = 15 is required. A detailed analysis of the convergence of each quantum

observable with χ is performed in Appendix A. For the convergence of BHH simu-

lations it is also important to be aware of the Schmidt truncation error, which, for

the simulations discussed in this section, is plotted in Fig. 7.9, and is discussed in

additional detail in Appendix A.

7.5 Dependence of Quantum Measures On Interaction Strength

Plotting the dependence of several quantum observables versus the interaction

strength reveals several important results. In Fig. 7.10(a) we plot the average number

at the peak of the soliton. There are points in time when the number density exhibits

steep exponential decay, and others during which it is nearly constant, similar to the

density bursts found by Dekel et al. [74]; thus their predictions are correct even in the

many-body regime. The first burst is independent of U . The initial flat horizontal

region, at t ' 25, originates from initially left moving particles that are reflected

off the leftmost infinite boundary and return back to the barrier. All subsequent

deviations from exponential decay appear to be dependent on U .

In the escape time, tMB
esc , we find exponential scaling dominates for stronger in-

teractions, as shown in Fig. 7.10(d). The dependence is exponential for two reasons:

the many-body wavefunction tends to have large number fluctuations at the soliton

peak, keeping particles away from the barrier; and the averaged density creates an

effective potential which increases the effective barrier size, as in mean field theory.

Escape times depend exponentially on barrier area even in JWKB.

To characterize the quantum nature of MQT, in Fig. 7.10(b) we plot the fluc-

tuations in the number of particles behind the barrier, fl, where l is taken at the

outer edge of the barrier. Once MQT commences, the maximum value of fl in time

increases with |U | because number densities just outside the barrier have more influ-

ence to “pull” additional particles through the barrier, and vice versa. For example,

fitting an s-shaped curve fl = a/[b + c exp(−kt)] to Fig. 7.10(b), with a, b, c, k fit
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parameters, we find max(fl) = a/(b+ c) = x|U |+ y. For early times, less than t = 50

in Fig. 7.10(b), fl increases faster for smaller values of |U | because the initial soliton

is wider, but interactions take over shortly thereafter.

Figure 7.10: Quantum Measures Vs. Interaction Strength (a) Average number at
the peak of the soliton shows bursts of particles [74]. (b) Fluctuations in the number
of trapped particles increases with |U |. (c) Universal curve for the entropy of en-
tanglement vs. the average number of trapped particles. (d) Exponential vs. linear
increase in escape vs. many body times as a function of interactions. (Inset) Block
entropy and dfl/dt closely follow each other, here for |U | = 0.06. The key applies to
panels (a)-(c) and all plots treat N = 6.

Song et al. [97] have shown that in 1D conformal systems for which there is a

conserved quantity, such as particle number, the variance of the fluctuations in that

quantity between two subsystems A,B scales with the von Neumann entanglement

entropy between A,B. Of particular interest to MQT is the von Neumann block

entropy characterizing entanglement between the remaining particles and the escaped

particles, Sl. The key features of Sl are illustrated in a universal curve in Fig. 7.10(c):
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Figure 7.11: Block entropy and the slope of number fluctuations The block entropy
Sl (left) and the slope of the number fluctuations behind the barrier dfl/dt(right) are
plotted vs. time. The Block entropy and dfl/dt closely follow each other but do not
scale precisely due to density bursts. All plots treat N = 6.

on the lower right side tunneling has not yet commenced; Sl maximizes part way

through the tunneling process in the center of the curve; and Sl then decreases again to

the left as the particles finish tunneling out. We cannot followNl/N all the way to zero

in every case due to reflections off the far boundary. As MQT commences, particles

tunnel out from behind the barrier, and the curves, which indicate different values of

U , begin to split apart. The splitting of the curves begins around 〈Nl〉/N = .95, a

value which can be used to characterize the onset of MQT. Note the starting point of

each curve, which is indicated by a marker, is different because the tail of the initial

bright soliton extends into the barrier depending on the value of U .

Defining ts as the time at which Sl is maximized and tf as the time at which the

slope of the number fluctuations, dfl/dt, is maximized, we find ts and tf both increase

linearly with U , in a dynamical extension of the static predictions of Ref. [97], as shown

in Fig. 7.10(d). This behavior is in contrast to tMB
esc which increases exponentially with

|U |. Moreover, Sl and dfl/dt follow the same general trends in time, as shown in the

inset of Fig. 7.10(d). The two do not scale precisely, as dfl/dt is distorted by the

density bursts illustrated in Fig. 7.10(a). In Fig. 7.11 we plot, for the same values as

in Fig. 7.10(d), Sl and dfl/dt versus time to show the qualitative relationship between

the two for various interaction strengths.
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Chapter 8

CONCLUSION

We have presented a study of the quantum tunneling dynamics of many-body

entangled bright solitons composed of ultracold bosonic gases in one-dimensional op-

tical lattices. Bright solitons in cold atom systems have been realized for a wide range

of experiments [26, 27, 51] and are the central focus of many promising applications

such as atom lasers, soliton interferometers, and precision measurements. Past stud-

ies of bright solitons in BECs have leaned on mean field approaches, starting from

the Gross-Pitaevskii equation or the DNLS, however, these methods are only valid if

quantum fluctuations in the system are negligible. It is known that solitons in BECs

are critically susceptible to quantum fluctuations, for example, recent studies have

shown that quantum fluctuations restrict the lifetime of dark solitons by causing them

to fill in [76, 77].

In this thesis we have presented, to our knowledge, the first exact quantum

many-body simulations of bright solitons in BECs via time-evolving block decima-

tion. Specifically, we have applied the method to the BHH to study the macroscopic

quantum tunneling of bright solitons in BECs. We have predicted the escape time for

a bright soliton, that is, the time in which the average number of atoms remaining

behind the barrier drops to 1/e of its initial value. Using both BHH and DNLS sim-

ulations, we have modeled how the interaction strength, U , the number of particles

N , and the barrier dimensions affect the escape time.

We found strong deviations from mean field predictions, and quantitatively

demonstrated the parameter regimes in which the DNLS fails to predict the cor-

rect escape time for MQT, and to what extent. Generally, the DNLS grossly under

predicts tesc when N |U |/J is sufficiently large, even for N = 40. With a well width

of 16 lattice sites, we showed the mean field limit is only relevant for 70 or more
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particles, when the filling ν À 1. This is an important step in defining boundaries

and benchmarks by which one can judge the legitimacy of applying mean field theory

to these systems.

Clearly, for strongly interacting systems, quantum fluctuations will substantially

alter the dynamics of macroscopic quantum tunneling, rendering mean field theory

inadequate. However, as we have shown, it is especially remarkable that a weakly

interacting system with a low filling factor cannot be modeled accurately with mean

field theory if the number of particles is sufficiently large. For example, for a very

weakly interacting system with U = −0.015J and N = 20, we have a value of

NU/J = 0.3; in this case, mean field theory will under predict the escape time by over

10 percent. When the ratio NU/J increases, the difference between the calculated

escape time for mean field, tMF
esc , and the BHH, tMB

esc , increases exponentially in the

plateau region of N = 20 to 40 particles.

In addition, we have demonstrated several clear-cut advantages in adopting a full

quantum many-body treatment. TEBD has allowed us to characterize the quantum

dynamics of MQT with a full set of quantum observables that are unaccessible to

mean field approaches. Such observables can be used to deepen our understanding,

and provide new interpretations of the many-body character of MQT. Several notable

findings came out of this analysis. The average number of particles at the site of the

soliton peak, shows time intervals when the number density exhibits steep exponential

decay, and others during which the number density is nearly constant, a behavior

similar to the density bursts found in reference [74]. Furthermore, by plotting the

block entropy versus the average number of particles behind the barrier, we discovered

a universal curve which can be used to characterize the onset of MQT.

The escape time was shown to increase exponentially with interactions while

block entropy and the slope of number fluctuations maximized at a time which scaled

linearly; entropy generally followed closely the slope of number fluctuations, suggest-

ing a dynamical extension of the static concepts of Song et al. [97]. This suggests

that many body effects in macroscopic quantum tunneling can be observed via num-
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ber fluctuations. We found that once MQT commences, the maximum value of the

fluctuations in the number of particles to the left of the barrier, fl, increases as a

function of U . This is because number densities just outside the barrier have more

influence to “pull” additional particles through the barrier, and vice versa.

Finally, using density-density correlation functions g(2) we have been able to view

how a potential barrier alters nonlocal correlations during MQT. It can be used in ex-

periments as another signature of our many-body findings, as g(2) is extractable from

noise measurements [96] and is zero in mean field theory. Our study provides several

other experimental signatures via the average particle number, number fluctuations,

and the increased escape time.

8.1 Outlook and Open Questions

There are many possible future directions for this work and ways to improve

on this study. It would be interesting to apply instanton methods to this problem,

which would provide a useful comparison to the mean field and TEBD simulations.

Instanton methods may be able to capture other many-body features that the DNLS

does not, and could perhaps yield different predictions of the escape time than the

DNLS. Instanton calculations could therefore be used in conjunction with TEBD, to

more clearly distinguish between the semiclassical and quantum many-body aspects

of MQT. Improvements could be made to the TEBD code so as to include absorbing

boundary conditions, which would allow one to examine a broader range of parameters

without restricting one’s view to a time frame determined by reflections, which occur

off of the system boundaries.

In addition, it would also be worthwhile to investigate finite temperature effects

with TEBD. The inclusion of both quantum and thermal fluctuations into the TEBD

code would allow the simulations to more closely resemble actual experiments, en-

abling one to make direct comparisons between experiment and theory. In addition,

it may be fruitful to examine the role of finite size effects on MQT in BECs. In this
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thesis we have focused on rather large systems, but it would be interesting to exam-

ine how many-body solitons behave when restricted to only a few lattice sites. The

spatial granularity imposed on a system by the optical lattice geometry could alter

the escape time of bright solitons from behind a potential barrier. Also, one could

perform the study presented here using non-rectangular potential barriers, such as

smoothly varying or trapezoidal type geometries.

Finally, other characteristic aspects of bright solitons could modeled with TEBD,

for example, one could study how quantum fluctuations affect the dynamics of colli-

sions of two bright solitons. Experimental applications, such as soliton interferometry

could be modeled using TEBD. Using periodic optical lattices, one could examine the

quantum many-body aspects of gap solitons in BECs.
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APPENDIX A

CONVERGENCE STUDIES

This appendix concerns the sources of error with the TEBD method. We will

examine two primary aspects of error which ultimately determine the accuracy of a

given TEBD simulation. First, we will consider the crucial effect of χ, the number

of basis states saved for every two-site operation in TEBD, on convergence. Each

physical observable, such as the quantum depletion or the average local impurity,

may behave differently with χ, so we will examine each individually. In the second

section of this appendix we will discuss the other errors inherent to the algorithm,

for example the accumulated errors accrued during real and imaginary time evolution

from Suzuki-Trotter step, and due to the truncation of the Hilbert space to a local

dimension d.

A.1 The Effects of χ on Convergence

As previously stated, the TEBD algorithm rests on the premise that an expo-

nentially large Hilbert space for a many-body system can be accurately represented

after a truncation, such that only the χ largest singular values are retained. When we

perform a SVD on a matrix Θ̃, of dimensions (χd)× (χd), and choose keep only the

χ largest singular values λ̃i, we effectively discard the smallest χ(d− 1) eigenvalues.

Generally for lowly entangled systems, the number of eigenvalues required to yield a

good representation of the many-body state is small, thus allowing for highly-efficient

computation times. It is in this sense that we say that TEBD is best suited for the

study of lowly entangled systems. The surest way to test for convergence is to make

a relative comparison between simulations at a given value of χ versus simulations

with larger values of χ, for each output observable. Such an analysis will allow one

to determine the minimum value of χ required to adequately perform simulations to
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Figure A.1: Dynamics At Different χ. No noticeable differences are detected in
the average number, the number variance, and the von Neumann entropy between
simulations with χ = 15 (Top) and χ = 55 (Bottom). The simulations are for a
system with L = 63, N = 6, NU/J = 0.25, w = 2.

a desired level of accuracy. Generally, for our purposes, converged physically sensible

results are obtained for χ as low as 25. At χ = 15 the overall real time dynamics are

unchanged in comparison to simulations with χ = 55. This is shown in Figure A.1

where no noticeable difference can be seen in the average number, the number vari-

ance, and the von Neumann entropy.

To demonstrate convergence we plot the time dependence of each quantum mea-

sure and observable with respect to χ. In Fig. A.2 we plot the hardest many-

body measures to converge, quantum depletion and the block entropy, for χ =

15, 25, 35, 45, 55. At χ = 25 have an error smaller than 10−4 for N = 6, and were

checked up through χ = 55; due to small U and effective system size, much lower χ is

required than usual in TEBD. Additionally we plot the relative error in each observ-

able for each value of χ in comparison to that for χ = 55. At χ = 15 the observable

with the largest discrepancy is the quantum depletion, which can reach errors of order

10−3. In general, the convergence of the quantum depletion will be lower than other
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observables because it is calculated using the nonlocal observables
〈
b̂†j b̂i

〉
which are

elements of the single-particle density matrix. However, for χ = 25, the relative error

drops to an order of 10−5. In general, faster convergences with respect to χ occurs

for observables that are more local. For example, the relative error for observables

like the average local impurity is small.

Figure A.2: Quantum Depletion and Block Entropy vs. χ. (top): With larger values
of χ the quantum depletion and the block entropy, are converged during all times in
the simulations. (bottom): We plot the relative error in each observable, for each
value of χ in relation to the previous simulation. This example shows a system of
L = 63, N = 6, NU/J = 0.25, w = 2.

Another useful check on the algorithm is to examine the ability of the code to

maintain conserved quantities inherent to the Hamiltonian of interest, such as the

total average number and the total average energy. We have checked the relative

error in these quantities at the final time step in comparison to at the initial step.

The errors in the total average number is ≤ 1% and decreases with increasing values

of χ. The error in the total average energy similarly is ≤ 1%, however does not

generally correlate strongly with the value of χ.

The local Schmidt truncation error τS
l arises form the discarded eigenvalues of

the reduced density matrix. The total Schmidt truncation error, τS, is the total sum
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Figure A.3: Schmidt error and von Neumann entropy vs. χ (left): With larger values
of χ the Schmidt error is reduced in the simulations. (right): The von Neumann
entropy is converged to 10−5 for χ = 25. These are simulations for a system with
L = 63, N = 6, NU/J = 0.25, w = 2.

of the τS
l errors for each site l. Recall that the Schmidt coefficients are normalized

in the fashion,
∑χS

αl

(
λ

[l+1]
αl

)2

= 1. Using this relation we define the total Schmidt

truncation error as,

τS
l ≡ 1−

χ∑
αl

(
λ[l+1]

αl

)2
. (A.1)

The total Schmidt truncation error is critically dependent on χ, but in principle, for

sufficiently large χ the total Schmidt error will tend to zero. In this sense, we describe

TEBD as a quasi-exact method. Over the course of the time-evolution of a system,

the total Schmidt truncation errors accumulate, thus it is important to bear in mind

the length of any given simulation. The total Schmidt truncation error plotted versus

time and χ is shown in Fig. A.3. We plot the relative Schmidt truncation error for

for different values of χ in Fig. A.3.

When we use the Suzuki-Trotter expansion to numerically approximate the ex-

ponential time propagator, for a fourth-order Suzuki-Trotter method we incur errors

of order O(δt6) per time step. After 5000 time steps, of length δt = 0.1~/J , the
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error accumulates to O(10−3). We have tested the validity of using a time step of

δt = 0.1~/J by verifying the simulations remain unchanged for δt = 0.01~/J , and

δt = 0.005~/J .


