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ABSTRACT

Complexity is an intuitively recognized feature of nature, but where does it come from?

Is complexity only apparent at the classical level, or can it be found at the underlying

quantum level as well? We approach these questions by exploring models consistent with

basic quantum theory but which also hold promise for exhibiting complex behaviors – a set

of models we call the quantum elementary cellular automata (QECA). Previously, various

quantum cellular automata models have been studied for both their quantum information

theoretic properties and their ability to simulate key physics equations like the Schrödinger

and Dirac equations. We take the unique approach of analyzing QECA as complexity-

generating systems. Doing so requires a more precise notion of what we mean by complex.

This is done by proposing nine axes of complexity along which the complexity of any system

may be quantified. When applied to QECA, we find evidence of complexity using three of

these axes, namely diversity, persistent dynamical macrostates, and connectivity.

The studies presented are numerical simulations done without approximation using highly

optimized exact diagonalization code which supports a Hilbert space of up to 227 dimensions.

The code is written entirely in the high-level open source programming language Python,

making it easily expandable to future projects requiring exact simulation of quantum systems.

A careful description of an algorithm critical to our method as well as our use of high

performance computing resources on a cluster supercomputer is given.

Powerful quantifiers of entanglement and connectivity such as von Neumann entropy and

complex network measures computed on quantum mutual information adjacency matrices

provide analysis tools for the simulations. Each network measure is defined then tested on

well-characterized entangled states from quantum information theory, like the GHZ and W

states and singlet state arrays. The network measures known as network density, clustering

coefficient, and disparity are specifically considered. We find these network measures offer
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unique information regarding the structure of two point correlations in the states produced

by QECA dynamics, as compared to each other and as quantified by a principal component

analysis.

Using such measures, we address the complexity of QECA models at three levels of

specificity. First, a broad analysis of tens of thousands of simulations gives an overview of

the variety of dynamics available to the models. We quantify the diversity of our simulations

as the density of simulations which appear, on average, unlike typical entangled quantum

states. Second, a more selective analysis identifies QECA by their complexity dynamics,

in the frequency domain. A few QECA which exhibit persistent dynamical macrostates in

the form of highly structured entanglement are also described. Entanglement dynamics are

quantified by the distribution of changes in bond entropy (the von Neumann entropy of

all bipartitionings of the QECA system). Finally, we take a detailed look at the transport

properties, defined as the speed and diffusion rate of an initial localized excitation, in a QECA

model found earlier to exhibit persistent dynamical macrostates. The transport properties

are found to be a function of a model parameter called the phase gate angle. Additionally,

for high phase gate angle we find the emergence of a second trajectory from a single initial

excitation.

Taken together, the analyses in this thesis suggest QECA support elements of complexity

in quantum dynamics. Since QECA are consistent with quantum theory, we conclude that

complexity is not reserved for only the classical realm. The thesis finishes by suggesting

future studies of complexity in quantum cellular automata.
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CHAPTER 1

INTRODUCTION

This chapter introduces what we mean by complexity and makes a case for the importance

of its study. Our discussion will naturally lead us to the question motivating this thesis: Does

quantum mechanics give rise to the complexity we see around us?

In this thesis, the term complexity characterizes a system of multiple individuals which

may interact in many ways resulting in collective group behaviors. We are not concerned

with the many other uses of the word such as computational complexity, which studies the

computational resources required to solve a problem and classifies the problem accordingly [1]

or algorithmic or Kolmogorov complexity, the study of the shortest algorithm capable of

generating some desired output [2]. Additionally, complexity is not chaos; chaos is related

to the study of the sensitivity of a system to changes in initial condition. That being said,

chaos is one mechanism for generating the complexity we are referring to [3]. Furthermore,

complexity is not synonymous with complicated. In fact, we will soon discuss systems with

simple descriptions which do exhibit complexity. Occasionally we will use “complex” to refer

to a number of the form x+ iy where x and y are real numbers and i is the imaginary unit

i ≡
√
−1, though context should make this case apparent. Finally, we note that complexity,

as understood in this thesis, does not have a universally agreed upon definition, but rather

the notion is typically conveyed with examples [4].

Let us return to what we do mean by complexity. Our characterization is intentionally

general because the idea of a complex system is interdisciplinary. If the individuals are

humans then the complex system in question could be the open-ended co-evolution of con-

sumers and economic institutions [5], or the connectivity of social networks which are often

structured in hierarchical or scale-free clusters [6]. Iron atoms in a dilute magnetic alloy

are the individuals in a so-called spin glass. The interactions of the iron atoms give rise to
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an intricate state space responsible for anomalous dynamical behavior of spin glasses like

irreversibility, aging, and memory effects [7]. Perhaps the field most concerned with complex

systems is biology, since the interactions of species in an ecosystem, organs in an organism,

cells in tissue, etc. are all by their nature complex according to our characterization. Thus,

we have found examples of complexity across the disciplines of economics, sociology, physics,

and biology.

Next, let us consider a certain hallmark of complexity, emergence, which describes when

a system of individuals gives rise to group dynamics which are unpredictable even when

given perfect knowledge of the individuals. What makes this feature so striking is that these

emergent group behaviors are often rooted in simple, local rules followed by the individuals

comprising the group. Take for example the behavior of a school of fish. No one fish is

singled out as the leader, deciding where and how the school moves. Rather, each individual

fish takes sensory input from its immediate fish neighbors (local information) then decides

where and how to move in a way that maximizes conformity with the group (simple rules).

The fish move in unison giving the impression of a single organism. That such emergence is

observable in a variety of natural scenarios, from schools of fish, flocks of birds, and colonies

of ants, to the fluid dynamics of a tsunami or Jupiter’s Great Red Spot [8, 9], to the pattern

of synapses in your brain allowing you to read these words, may be taken as evidence for the

apparent preference of nature toward complexity.

A system exhibiting emergence is often considered complex. However, complex systems

need not exhibit emergence. Instead, emergence is an element of a particular axis of complex-

ity. We will give nine axes of complexity in Section 2.1 which are inspired by examples form

various disciplines. In the meantime it suffices to note that emergent phenomenon are often

expressed by a system as persistent dynamical macrostates, one of our axes of complexity.

Further examples of our nine axes include diversity and connectivity. Diversity refers to

the collection of unique individuals in a system, while connectivity describes the relations

between individuals, both important aspects of our characterization of complexity. With
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emergence, diversity, and connectivity in mind, we next consider complexity as it relates to

physics.

The study of particles, their interactions, and their composition into extended bodies has

always been the realm of physics. Progress in physics has long been made by carefully con-

structing approximations, simplifications, and reductions of physical situations while always

being aware of the regimes of validity for these methods. Though immensely critical to our

modern understanding of nature and our ability to devise new technologies, these methods

leave a gap in our predictive power over systems which elude such simplifications, systems

which may often be regarded as complex. For example, a system whose description is re-

sistant to reductive analysis implies emergence; simplifications often limit the diversity of

states in our physical system (e.g., thermodynamics is concerned with states in or near equi-

librium); and assumptions of limited or nonexistent interactions are often explicitly made

(e.g., in the kinetic theory of gases or short-range Ising models). Nonetheless, understanding

complex systems in the context of physics is of technological and epistemological interest.

To get a better picture for why reductive reasoning eventually fails, lets follow its recipe ad

absurdum.

The atomistic view, first forwarded by Leucippus and Democrotis in 400 BC, posits

that reality is reducible down to “atoms,” which are indivisible units of reality, and the

“void,” the empty space serving as the arena for atoms [10]. This view has deeply impacted

physical thinking, and its result, that there are irreducible elements of nature, has since been

validated by modern particle physics. However, implicit in the atomistic view is the idea that

reducibility is successful down to the scale of the indivisible atoms. That is, to completely

understand a system, it is sufficient to completely understand the system’s constituents.

Taken to its extreme, the atomistic view would contend that a complete understanding

of human social behavior is facilitated by a complete understanding of human individuals.

Human individuals are understood through psychology and physiology, rooted in biology,

in turn based on chemistry, which derives from atomic physics, built from the axioms of
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quantum mechanics. Thus, under the atomistic view, human social behaviors may be derived

from the axioms of quantum mechanics, a statement hard to defend.

In our reduction of human social behaviors to the axioms of quantum mechanics, we

passed through several branches of science. These transitions are not as smooth or well

defined as suggested in the above. Instead scientists have given a unique name to a field

when a new scientific framework offers a more efficient or more satisfactory explanation

of natural phenomenon. The more efficient descriptions are often average theories which

leave room for randomness, an important ingredient missing from the atomistic reduction of

the complexities of human social behavior to the axioms of quantum mechanics. That being

said, it is not at all clear that successive averaging procedures like, for example the transition

from molecular dynamics to Hydrodynamics, will eventually result in e.g., human physiology.

Moreover, quantum mechanics, our most successful and most fundamental physical theory,

is inherently probabilistic. We are thus led to ask the question, at a fundamental level, does

quantum mechanics give rise to the complexity we see around us?

While the question posed above is the motivation for the work presented in this thesis,

answering it definitively is a tricky task that will likely take many researchers many more

years to fully address. In any case, we will work toward answering this question using com-

putational methods to simulate model quantum systems, quantify their dynamics, and assess

their results as complex or not complex. Before outlining further details of our methods, we

will describe the classical inspiration for our quantum models.

One way to study complex systems is to simulate them with computers, an approach we

will rely on heavily in this thesis. A particular set of models that have been of considerable

interest for some time are known as cellular automata [11, 12]. Cellular automata are discrete

dynamical systems comprised of individuals which form a collective group. Each individual

may always be found in one of a finite number of states. There are three important spatial

scales in cellular automata. First and smallest is the scale of the individual, also called a

site. Second there is the scale of a site’s neighborhood, which is the set of sites which may
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influence the next state of that site via local interactions. Finally there is the scale of the

group, or the collection of all sites.

Cellular automata are also discretized in time. A transition of the group from one state

to the next in time is called an iteration. A single iteration is complete after each site has

had its state updated conditioned on the state of its neighborhood. The rule for updating a

site based on its neighborhood is performed via a local transition function which encodes the

resulting state for all possible neighborhood configurations. With a finite number of states

available to sites and a finite sized neighborhood, there is a finite, though exponentially

large, number of possible rules with which sites could be updated. The update process is

outlined in Figure 1.1 and defined mathematically in Section 2.4. Cellular automata are

useful models of complexity because one can control the size of the local state space and

thus the potential for diversity among individuals. One can also control the size of the

neighborhood and the precise form of the local interactions which govern cellular automata

dynamics. Moreover, even the simplest of local update rules can give rise to surprising

and often complex behaviors, like unpredictable long-time dynamics, fractal patterns, and

computational completeness. In Figure 1.2 we compare the complexity of a living system to

the pattern generated by a specific cellular automata rule.

Figure 1.1 Schematic diagram of cellular automata update. The state of each neighborhood
(red, green, or blue) is supplied to the function f which encodes the cellular automata update
rule and determines the next state of the center site in the neighborhood.
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(a) (b)

Figure 1.2 Cellular automata as models of complexity. (a) The shell pattern of Conus
textile, a poisonous sea snail, is shown in panel. Interactions between individual cells secreting
proteins and calcium carbonate give rise to the observed pattern. (b) The evolution of a
centered local bit flip initial condition under a specific cellular automata rule is shown in
panel. Time runs top to bottom and space left to right. Every cell transitions to a 0 (white)
unless it is the center site in a neighborhood of the form 100, 011, 010, or 001 in which
case the center site transitions to a 1 (black). Remarkably, this simple rule mimics the shell
pattern in panel (a).

Seeking an answer our motivating question and inspired by the ability of cellular au-

tomata to capture our characterization of complexity, we implement a version of cellular

automata consistent with quantum theory which we call the quantum elementary cellular

automata (QECA). We will give a precise mathematical description of QECA in Section 2.5.

Furthermore, our use of high performance computing facilities, outlined in section 3.3, allows

us to rapidly simulate QECA for a variety of parameters. We develop metrics for under-

standing QECA dynamics and interpret the results through the lens of complex systems. In

particular, some of our most quantitative results will come from analyzing the connectivity of

correlations in QECA dynamics. We will be investigating connectivity with the mathemat-

ical framework of complex network theory. In this framework, individuals are represented

as nodes and there interactions as links between nodes. Together, the links and nodes form

a network, or graph, which illustrates the connectivity of the system. See Figure 1.3 for

an examples of networks with various structure. Complex network measures may then be

applied to graphs to quantify the structure of their connectivity. We will specifically consider

the scalar-valued network measures known as network density, clustering coefficient, and dis-
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parity which quantify the density, transitivity, and uniformity of connections, respectively.

We give mathematical definitions of these measures in Section 2.2.

Figure 1.3 Examples of netwroks with different structure. Nodes are black circles and links
between nodes are gray lines. Complex network theory is concerned with classifying networks
and the structure of their connections with complex network measures.

With our model and methods in place, a natural first question to ask is what types of

quantum states are available to our QECA model? We approach this question in Chapter

4 by considering the long-time average of our measures for over ten thousand simulations,

each with varied model parameters and initial states. This gives a broad, average view of

the quantum states our QECA generate. Comparing these results to a few well character-

ized entangled states from quantum information theory illustrates the diversity of QECA

dynamics.

Once we have better intuition for the broad structure available to our models, we take

a closer look at the dynamics of a few QECA. This analysis reveals immense structure in

dynamics which was hidden by the average picture taken in the broad analysis. In Chap-

ter 5, discrete Fourier transforms are used to better understand the dynamical features of

connectivity in QECA dynamics. Then, in Chapter 6, evidence for persistent dynamical

macrostates is found for a few of our QECA models, though these dynamics are typically

quite sensitive to a free parameter in our models. However, one rule is found with long-time

behavior which remains dynamic and is uniquely robust to changes in model parameters, a

rule we will come to know as rule S = 6.
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Our observation of the unique properties of rule S = 6 lead us to our most focused

analysis which aims to quantify the transport properties of the rule. That is, when initiated

simulations with a localized excitation, this rule transports the information of the initial

excitation back and forth throughout the dynamics. We quantify the speed and diffusion

of this transport and identify a second trajectory which emerges from the single initial

excitation for certain model parameters.

From these three analyses operating at an increasingly focused scope, we conclude that

elements of complex systems like persistent dynamical macrostates, emergence, diversity,

and connectivity are present in some QECA. There is however a larger fraction of our mod-

els which appear non-complex, at least within the scope of the analyses presented here.

We conclude this thesis with a discussion of the complex features observed in our QECA

models and suggest future directions for the use of quantum cellular automata as models of

complexity at the micro scale.
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CHAPTER 2

COMPLEXITY, QUANTUM MECHANICS, AND CELLULAR AUTOMATA

In this chapter, we begin by taking a closer look at what we mean by complexity. We

will also introduce the essentials of quantum mechanics required by this research. Then,

after a brief introduction to the basics of cellular automata, we conclude the chapter with a

construction of our QECA scheme. By the end of the chapter, we will have laid out all of

the most critical theoretical tools used in this thesis.

2.1 Complexity along nine axes

In Chapter 1 we introduced the term complexity to characterize a system of multiple

individuals which may interact in many ways resulting in collective group behaviors. There,

we also met cellular automata as a set of models capable simulating this type of complexity

with simple local rules. While we can create models which simulate complexity such as cel-

lular automata, we lack a set of principles predicting it generally. In this way, complexity is

a phenomenon driven study. Contrast this with the laws of thermodynamics which provide

a predictive framework with which to describe many large scale systems. While limited in

the variety of systems it describes (i.e., typically systems in or near equilibrium), thermody-

namics has been exceedingly useful in building the technology of our modern world. As the

basis of heat and energy transfer, thermodynamics has enabled technological milestones such

as engines, generators, and refrigeration. Understanding how complex systems such as the

internet, social relationships, ecologies, gene networks, and the brain arise as a consequence

of physical law may allow us to predict and control complexity. With predictive power over

the complex, our society could benefit from a technological revolution like the one incited

by the formulation of thermodynamics in the beginning of the 19th century.

A first step towards a theory is to characterize quantitatively the object of study. As

an initial attempt in this direction, we have developed nine axes of complexity. Each axis
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describes an aspect of complexity displayed by physical systems [13]. We do not claim these

axes form a basis for complexity; the principal axes of complexity remain to be identified,

though our nine axes do provide a starting point. The nine axes are as follows:

1. Multiscale hierarchies

Take for example the brain, where biologists have identified at least 7 different length

scales important for cognition from neurotransmitters to axons [14]. Additional ex-

amples include the fractal patterns exhibited by certain bacteria colonies [15] or the

intricate food webs of the rainforest, relating organisms from bacteria to insects, to top

predators like jaguars.

2. Persistent dynamical macrostates

Living organisms, for example, are incredibly complex chemical systems persisting

through time so long as they’re alive. Another example mentioned in Chapter 1 is

the great red spot on Jupiter or tsunamis on Earth. These are particular examples of

emergent phenomenon, which may also appear in materials as rigidity, magnetism [16],

quasi particles (i.e., Exciton-polaritons [17]), etc.

3. Non-Gaussian statistics

Specifically, we have in mind fat-tailed distributions, in which rare events are not so rare

at all. Mathematically, this means complex systems often exhibit power law probability

tails as opposed to the Gaussian or exponential tails seen in e.g. the distribution of

student grades [18].

4. Fractional geometries

For example, many biological systems live somewhere between two and three dimen-

sions, characterized by a fractional dimension [19]. Such systems are often fractal-

like, exhibiting bumpy, wrinkled, folded, or otherwise multiscale environments such as

those in the brain, lungs, and intestines, or even the shorelines of Earth’s land-water
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interfaces. Additionally, dissipative dynamical systems often follow fractal strange

attractors [20] which provide good statistical predictability and characterize chaos.

5. Astronomically large probability spaces

In other words, complex systems often have available to them a large number of unique

configurations, though the system often only explores a local region of them. The

dynamics of protein folding can be seen as complex along this axis. Contrast this

with a box of gas in thermal equilibrium with its environment in which, even if only

a small number of possible configurations are realized during our observation time, a

representative sample is explored [7].

6. Multiple constraints and trade-offs

For instance, robustness vs. fragility trade-offs in immunosenescence [21, 22] or volume

constraints [23] which have clearly given rise to large surface areas in the form of

wrinkly, bumpy surfaces in various organs of multicellular organisms and organelles

of single cells. Other examples may come from model quantum systems with tunable

interaction parameters. Phase transitions are typically found in these models when

the strengths of certain competing interactions are comparable to one another [24],

suggesting a link between criticality and complexity.

7. Diversity

Many complex systems have numerous distinct actors making up the cast. For example

the human gut is a microbiome supporting hundreds or thousands of species [25].

Meanwhile there is only one variety of electron, with two spin states, in a crystal.

8. Selection principles

Natural selection is a mechanism of evolution which gives rise to the diversity of the

life we find on earth. It is not clear if this aspect of complexity is unique to biological

systems, but expanding our notion of selection principles to adaptivity more generally

allows us to be more inclusive. We may then include systems like self-healing nanos-

11



tructures [26], and even computational tools like genetic algorithms, and deep neural

networks used in machine learning applications like speech recognition [27].

9. Connectivity

Complex systems often exhibit numerous interacting parts. Parts may be strongly,

weakly, or not at all interacting with each other, defining an abstract network of con-

nectivity. Representing objects by nodes and interactions between objects as edges on

a graph gives us a way to quantify the structure of connectivity via complex network

measures. Examples of connected complex systems include flight maps of the world’s

airports, the internet, food webs, metabolic pathways, etc. As a well developed quanti-

tative tool currently available to the study of complex systems [28], we will repeatedly

return to the idea of connectivity as quantified by complex networks. Thus, it is worth

taking a closer look at the theory of complex networks.

2.2 Complex network theory

With the nine axes of complexity, we have refined our notion of complexity from the

one sentence characterization given in Chapter 1. As we already mentioned, the axis of

connectivity as quantified by complex networks will provide us with a set of quantitative

tools for complexity. Here we give a very brief overview of the theory of complex networks

relevant to this thesis.

We begin by supposing we are studying a system composed of parts which we may

consider as the set nodes of a complex network. The relationship between parts may be

described by a single, real, positive number, the edge strength. The collection of edges and

nodes of a network may then be represented by an adjacency matrix A. The value of the

matrix element Ajk gives the edge strength connecting node j to node k. If Ajk ∈ {0, 1},

the network is said to be unweighted, otherwise, the network is weighted. Furthermore, for

weighted networks, we will take the normalization 0 ≤ Ajk ≤ 1. If Ajk = Akj the network is

said to be undirected, otherwise it is directed. Clearly undirected networks are represented by
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symmetric adjacency matrices. IfAjj = 0, then the network does not permit self connections.

In this thesis, we deal exclusively with weighted, undirected complex networks which do not

permit self connection.

Once we have an adjacency matrix representing our complex network, there are several

quantities which may be computed from it, known as complex network measures. These

complex network measures are designed to quantify the structure of connectivity in the

network. The measures also offer information compression because they are maps from

matrices to scalars. The study of complex networks and their measures encompasses a broad

and rich field, though we will focus on just three network measures. The interested reader

is directed to [29] for more information.

The network density, denoted D, is the average connection strength between nodes of a

network. Let us consider an adjacency matrix for L nodes. Then, D is given by,

D =
1

L(L− 1)

L−1∑
j,k=0

Ajk. (2.1)

If D is large (note D = 1 maximally since we have Ajj = 0), then each node is likely linked

to many other nodes in the network, meaning the network is dense. Food webs are often

dense networks [30].

Transitivity refers to the relationship between two bodies given that the same relationship

holds between each body and a third intermediate body. Abstractly, a transitive relation

between three bodies A, B, and C states (A ∼ B) + (B ∼ C) → A ∼ C. The zeroth

law of thermodynamics is a transitive law, stating that if bodies A and B are in thermal

equilibrium and bodies B and C are in thermal equilibrium then bodies A and C are also

in thermal equilibrium. The clustering coefficient, C measures the degree of transitivity in a

network and is given by

C =
Tr(A3)∑L−1

k 6=j
∑L−1

j=0 ([A2]jk)
. (2.2)
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We can interpret C as the ratio of triangles to connected triples (triangles with one missing

leg) in the network and thus a measure of transitivity. The larger the value of C, the more

transitive, or clustered, the network is. Social networks are typically highly clustered because

friend groups tend to be more common than isolated friendships [6].

Our last network measure is one which measures the uniformity of connections within

the network. A nonuniform network is called disparate. The disparity of node j, denoted

Yj, may be computed as

Yj =

∑L−1
k=0 (Ajk)2(∑L−1
k=0 Ajk

)2 . (2.3)

Then, the average disparity of the network is

Y =
1

L

∑
j

Yj. (2.4)

Though Eq. (2.4) is technically the average disparity, we will refer to it as simply the dis-

parity because we will not be concerned with the node-wise disparity given in Eq. (2.3).

Disparate networks typically display a strongly connected backbone linking several smaller,

more weakly connected clusters of nodes. This measure is constructed such that

Y =
1

L− 1
(2.5)

for a perfectly homogeneous network, given by

Ajk = a, Ajj = 0. (2.6)

where a is a real, positive constant. The homogeneous network has all nodes connected

uniformly with strength a, except for self connection, and displays the minimum disparity.

One example of a disparate network is that of a metabolic network. Metabolic networks

show pathways of biomolecules through a variety of intricate processing channels. Many

of these processing channels are secondary to the primary role of the biomolecule in the

organism. Disparity has allowed researchers to filter metabolic networks to elucidate their

primary function, effectively filtering out the secondary processes [31].
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Our application of complex network theory will be to an adjacency matrix which comes

from quantities arising in quantum mechanics. Armed with a clearer picture of complexity

and specific quantitative tools from complex network theory, our next task is to recall the cal-

culus of quantum mechanics required to develop QECA and the measures for characterizing

their dynamics.

2.3 Essentials of quantum mechanics

Much of the classical world is best understood through the study of matter and light

with the theories of Newton and Maxwell. In the early 1900’s, Newton’s theories of motion

and Maxwell’s theories of electromagnetism provided a sufficient understanding of our world

save a few unanswered questions.

One of theses questions was explaining the spectrum of black body radiation. The black

body spectrum refers to the distribution of frequencies (colors) emitted by a perfectly ab-

sorbing (black) material in thermal equilibrium with its environment. The solution to this

theoretical problem was found by Max Planck in 1900 who quantized the energy of theo-

retical oscillators making up the radiating black body [32]. Planck’s quantization procedure

was a theoretical device employed in a “desperate act” to give a mathematical form to the

black body spectrum [33].

Then, in 1905, Albert Einstein found a similar quantization useful in his analysis of the

photoelectric effect [34]. Einstein found that electromagnetic energy is absorbed in discrete

chunks which we now call photons. Einstein’s theory explained existing experimental results

but overturned the accepted undular (wave-like) theory of electromagnetic radiation a la

Maxwell.

Planck’s explanation of the black body spectrum and Einstein’s explanation of the pho-

toelectric effect relied on exactly the same smallest unit, or quanta, of angular momentum,

~, known as the reduced Planck constant. By the 1920’s, Planck’s constant and the idea

of quantization permeated the emerging theory of quantum mechanics. We’ve given a very

brief history of the birth of quantum mechanics. Next we will briefly review import elements
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of the mathematical framework of quantum mechanics needed for our study of QECA.

2.3.1 The state vector and its dynamics

The mathematical formulation of quantum mechanics, at least the non-relativistic, many-

body, closed system flavor we will be considering, is underpinned by a set of five postulates.

These postulates describe how to represent a system; how to represent observables; how to

measure observables of the system and how such measurement affects the system; how the

system evolves through time; and how treat identical particles. We will now review the five

postulates of quantum mechanics.

Postulate 1: In quantum mechanics, the system is described by a state vector. In Dirac

notation, the state vector is written as a ket |Ψ〉. The state vector is a unit vector in a

complex-valued, linear vector space with an inner product (a Hilbert space) denoted H. This

essentially means that state vectors can be scaled by complex numbers and added to one

another and the result is always another state vector. Dual to every ket |Ψ〉 we have the bra

〈Ψ|, together forming a bra(c)ket 〈Ψ|Ψ〉, which denotes the inner product of |Ψ〉 with itself

on the Hilbert space in which |Ψ〉 resides. Since |Ψ〉 is a unit vector its inner product must

be unity: 〈Ψ|Ψ〉 = 1.

The state vector is an abstract mathematical object which provides the probabilities as-

sociated with any measurement that can sensibly be made on the system. The inner product

of the state vector with itself being unity expresses the sum of probabilities being one, as ex-

pected. Despite its name, |Ψ〉 is not a vector per se, but rather a ray because multiplication

of |Ψ〉 by a phase factor eiφ does not affect the probabilities of any measurement outcome

for the system. For a more mathematically complete description of Hilbert spaces see [35].

Just as a vector in three dimensions may be expanded into a set of basis vectors r =

xx̂+ yŷ + zẑ, the state vector may be expanded into a set of basis state kets {|n〉} as

|Ψ〉 =
∑
n

〈n|Ψ〉 |n〉 . (2.7)
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The ability to perform this expansion implies our basis is complete,∑
n

|n〉 〈n| =
∑
n

Pn = 1 (2.8)

where we have introduced the projection onto the subspace spanned by the nth basis state

vector Pn = |n〉 〈n| and 1 which denotes the identity operator on our system’s Hilbert space.

Quantum theory also provides us a way to compound subsystems into an aggregate sys-

tem. If our system is composed of L subsystems, the state vector of our system resides in the

Hilbert space formed by the tensor product of the individual Hilbert spaces. Mathematically,

H = H0 ⊗H1 ⊗ · · · ⊗ HL−1 =
L−1⊗
j=0

Hj. (2.9)

If each subspace has dimension

dj = dim(Hj) (2.10)

and is spanned by the set of basis kets {|nj〉} with n = 0 . . . dj − 1, then the Hilbert space

of our composite system has dimension

D = dim(H) =
L−1∏
j=0

dj (2.11)

and is spanned by

{|N〉} =
L−1⊗
j=0

{|nj〉} (2.12)

In the theory of closed quantum systems, the state vector for a system of L subsystems may

always be written

|Ψ〉 =
D−1∑
N=0

〈N |Ψ〉 |N〉 . (2.13)

If the state vector may be written in the less general form

|Ψ〉 =
L−1⊗
j=0

|φj〉 (2.14)

with each |φj〉 of the form given on Eq. (2.7) it is said to be separable, otherwise it is said to

be entangled. In this way, entanglement refers to the ability of a system to be described the
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state of its constituent subsystems.

Separable states have subsystems described by pure states while the subsystems of en-

tangled states are necessarily mixed. Pure quantum states are perfectly well described by

the state vector while mixed quantum states describe a classical mixture (or ensemble) of

different pure quantum states, each with their own unique state vector. The mathematical

representation of mixed states requires the notion of a density operator, also called a density

matrix and denoted ρ, on H. For pure states,

ρ = |Ψ〉 〈Ψ| , (2.15)

while for mixed states, we have

ρ =
∑
i

rij |ai〉 〈aj| (2.16)

for an arbitrary basis {|ai〉} which spans H. By diagonalizing the matrix described by entries

rij, we may write

ρ =
∑
i

pi |Ψi〉 〈Ψi| =
∑
i

piρ
(i) (2.17)

where {|Ψi〉} is the basis which caries out the diagonalization and pi are interpreted as the

probability of having the pure state ρ(i) = |Ψi〉 〈Ψi| in the mixture. Normalization requires

Tr(ρ) =
∑
i

pi = 1. (2.18)

Additionally, ρ is a positive operator, meaning its eigenvalues are positive and possibly zero.

In closed-system quantum mechanics, the state of the system is always pure, but the state

of subsystems may be mixed. Moreover, both pure and mixed states can be either entangled

or separable.

It follows that entangled mixed states must be written

ρ =
∑
i

piρ
(i) (2.19)

while separable mixed states may be written

ρ =
∑
i

pi

L−1⊗
j=0

ρ
(i)
j . (2.20)
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where ρ
(i)
j denotes the density matrix of subsystem j for the ith component of the mixture.

Table 2.1 summarizes the mathematical descriptions of pure, mixed, separable and entangled

quantum states.

Table 2.1 Types of quantum states. Broadly, all quantum states can be regarded either
pure or mixed and separable or entangled. For closed-system quantum mechanics, the state
of the entire system is always pure; subsystems may be described by pure or mixed states;
and both pure and mixed states can be either separable or entangled.

Separable entangled

pure |Ψ〉 =
⊗L−1

j=0

∑dj−1
n 〈nj|φj〉 |nj〉 |Ψ〉 =

∑D−1
N=0 〈N |Ψ〉 |Ψ〉

mixed ρ =
∑

i pi
⊗L−1

j=0 ρ
(i)
j ρ =

∑
i piρ

(i)

When we develop QECA, we will describe the state of the group by a state vector. The

state of the group lives in the Hilbert space constructed from the tensor product Hilbert

spaces for each site. The Hilbert space of each site is taken to be two-dimensional. Such two

dimensional Hilbert spaces describe the simplest possible quantum systems, called two level

systems, which we explore more deeply in Section 2.3.2.

Postulate 2: Every observable in classical physics has a corresponding linear, Hermitian

operator in quantum mechanics. A Hermitian operator Â satisfies the eigenvalue problem

Â |a〉 = a |a〉 and thus has the spectral decomposition Â =
∑

a a |a〉 〈a|. That Â is Hermitian

means that Â = Â† (i.e., Â is its own adjoint); the eigenvalues a are real; and the set {|a〉}

corresponding to unique a may be constructed as an orthonormal basis which is complete,

i.e.,
∑

a |a〉 〈a| = 1, on the Hilbert space H = span({|a〉}). In QECA, we will use operators

defined on individual sites to help visualize the dynamics.

Postulate 3: Each eigenvalue of Â is a possible measurement outcome for observable Â.

The corresponding eigenvector becomes the state of the system after |Ψ〉 is measured to yield

a.
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The probability of obtaining a measurement result of a is found by expanding |Ψ〉 into

Â’s basis as

|Ψ〉 = 1 |Ψ〉 =
∑
a

|a〉 〈a|Ψ〉 =
∑
a

〈a|Ψ〉 |a〉 . (2.21)

The quantity 〈a|Ψ〉 is known as the probability amplitude of measuring a for a system in the

state |Ψ〉. The probability of measuring a, denoted p(a), is the absolute value squared of the

probability amplitude

p(a) = | 〈a|Ψ〉 |2. (2.22)

As long as |Ψ〉 is normalized and the {|a〉} are orthonormal, we have
∑

a p(a) = 1.

Suppose one prepares many systems in an identical state |Ψ〉. Note that this ensemble

is still pure because all the |Ψ〉’s are identical. Then, if Â is measured for each copy of |Ψ〉,

the expectation value of this set of measurements, denoted 〈Â〉, is given by

〈Â〉 = 〈Ψ| Â |Ψ〉 = Tr(ρÂ) =
∑
a

| 〈a|Ψ〉 |2a =
∑
a

p(a)a. (2.23)

Furthermore, it is possible that we want to compute the expectation value of an operator

acting on a subsystem of our system. For this, we need a way of constructing the reduced

density matrix of our subsystem from the density matrix of our system. This is done by

tracing over the part of the system outside the subsystem of interest. To be specific suppose

we have a system composed of L subsystems, enumerated by the set L = {0, 1, ..., L − 1}.

Suppose further we are interested in the expectation value of an operator Â which acts only

on the collection of subsystems N ⊂ L. We must pad Â with identities so that it is the

proper dimension to act on the state vector |Ψ〉 as Â⊗1L\N where 1L\N denotes the identity

operator on the Hilbert space of all subsystems except those in N . Then, for the expectation

value we have

〈Â〉 = Tr(ρÂ⊗ 1L\N ) (2.24)

= Tr(Trj /∈N (ρ)Â) (2.25)

= Tr(ρN Â) (2.26)
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where we have used the partial trace to construct the reduced density matrix

ρN = Trj /∈N (ρ). (2.27)

Using the last equality in Eq. (2.26) to compute the expectation value of local observables

provides an efficient method for numerical calculation. The efficiency comes from avoiding

the need to pad the local operator with identities which can quickly consume several gigabytes

of memory in a computer for even moderately sized systems.

Postulate 4: The evolution of the state vector through time is governed by a unitary

operator

|Ψ(t+ ∆t)〉 = Û(∆t) |Ψ(t)〉 . (2.28)

That Û is unitary means

Û †Û = Û Û † = 1. (2.29)

More importantly, unitary Û necessarily preserves the normalization of |Ψ〉 through time,

which based on Eqs. (2.21) and (2.22) implies that unitary evolution conserves probability.

Unitary time evolution also gives time reversal dynamics via the relation

Û(−∆t) = Û †(∆t). (2.30)

Insisting the time evolution operator satisfies the composition law

U(t2)U(t1) = U(t1 + t2) (2.31)

allows us to write

U(t) = [U(t/N)]N (2.32)

With a few more lines, one can deduce the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.33)

where Ĥ, known as the Hamiltonian, is typically the total energy operator and ~ is Planck’s

constant (see [36] for an illuminating discussion). From this point onward, we choose units

such that ~ = 1.
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Much of the study of quantum mechanics is concerned finding the Hamiltonian for a spe-

cific physical system and solving Eq. (2.33) to illuminate the system’s unitary time evolution.

However, our work is concerned only with constructing Û which hold potential for exhibiting

complex dynamics. Similar considerations are often made in the field of quantum computing

where the focus is less on finding Hamiltonians and more on devising systems of unitary

operations for the sake of performing computations more securely [37] or efficiently [38] than

is classically possible. When constructing QECA from the classical notion of cellular au-

tomata, we must take care in ensuring the resulting dynamics conserve probability and are

reversible. Otherwise, our time evolution will not be consistent with the fourth postulate of

quantum mechanics.

Postulate 5: Finally, the fifth postulate concerns the treatment of identical particles. Let

the state of an L particle system be given by |n0 . . . nj . . . nk . . . nL−1〉 where we are only

concerned with the state of two subsystems in the states |nj〉 and |nk〉. Since the subsystems

are identical, exchanging their roles in the system must not affect the joint probability of

obtaining a value a upon measurement of an arbitrary operator Â at each subsystem. That

is,

|〈a . . . a|n0 . . . nj . . . nk . . . nL−1〉|2 = |〈a . . . a|n0 . . . nk . . . nj . . . nL−1〉|2 . (2.34)

It follows that the state vector itself may only change by an arbitrary phase factor γ = eiφ

upon exchange two identical subsystems according to

|n0 . . . nj . . . nk . . . nL−1〉 = γ |n0 . . . nk . . . nj . . . nL−1〉 . (2.35)

However, upon a second exchange of the same two subsystems, the state vector must be

completely unchanged, requiring

γ2 = 1, (2.36)

which restricts γ to be either +1 or −1. Systems for which γ = 1 are completely symmetric,

are called Bosonic, and obey Bose-Einstein statistics while systems for which γ = −1 are

completely antisymmetric, are called Fermionic, and obey Fermi-Dirac statistics.

22



Note that for Fermionic systems, if the two subsystems are in identical states |nj〉 =

|nk〉 then the only resolution to Eq. (2.35) with γ = −1 is the null state vector. This is

the origin of the so called Pauli exclusion principle [39]. There is no such restriction for

Bosonic systems, allowing subsystems to coalesce into the same quantum state. This is the

origin of Bose-Einstein condensation, which is known to give rise to nonlinear and emergent

phenomenon [40]. It turns out that the notions of Bosonic vs Fermionic particles actually

depends on the spatial dimension of the system. In fact, two dimensional systems may exhibit

particles which are neither Bosonic or Fermionic. In one dimensional systems Bosons and

fermions are dual to each other via a technique called Bosonization. Since our QECA system

will be constructed in one spatial dimension, the fifth postulate of quantum mechanics will

not be critical to our discussion, but is included here for completeness.

The postulates of quantum mechanics provide us with the basic tools for performing

calculations. The exact interpretation and even the number of postulates is an open question,

though one which is largely philosophical because any change to the underlying postulates

cannot alter the calculations which agree with experimental observation. In the following

section, we will work with the postulates as stated here to introduce specific models and

measures which we will need for our QECA analysis.

2.3.2 The matrix representation and two-level systems

With the postulates of quantum mechanics laid out, we turn next to an important rep-

resentation of state vectors and operators known as the matrix representation. To make this

discussion as simple and relevant as possible, consider the simplest possible quantum system:

a single 2-level system. Let’s use the computational basis {|0〉 , |1〉}. We will often refer to a

2-level system as a qubit in analogy to the classical bits of 1’s and 0’s in digital computation,

but with the added structure of quantum mechanics. The correspondence between bits and

qubits will be explicitly made when devising QECA inspired by cellular automata.

In general, the state of a two level system may be written as a superposition of the basis

states |Ψ〉 = a |0〉+ b |1〉 with a and b complex-valued scalars, as in Eq. (2.7). We can view
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a and b as components of a two dimensional vector in a complex linear vector space using

the matrix representation with the basis

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
. (2.37)

Normalization requires |a|2 + |b|2 = 1 which, combined with the fact that a global phase can

always be factored out of the state vector, allows us to formulate the state of the qubit as

|Ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (2.38)

The density matrix of a (pure) qubit may be written (with the help of a few trigonometric

identities)

ρ = |Ψ〉 〈Ψ| = 1

2

(
1 + cos θ cosφ sin θ − i sinφ sin θ

cosφ sin θ + i sinφ sin θ 1− cos θ

)
. (2.39)

The density matrix of a mixed qubit may be written as a sum of terms of the form (2.39),

each scaled by the probability for that pure state to be in the mixed ensemble. A maximally

mixed qubit has equal probability for all basis states of the Hilbert space to be in the

ensemble. In general, for a maximally mixed quantum state

ρ =
D−1∑
n=0

1

D
|n〉 〈n| = 1/D. (2.40)

For qubits, we can see that the density matrix can be expanded into the basis

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.41)

as

ρ =
1

2
(σ0 + rΨ · σ) (2.42)

where we’ve introduced the Bloch vector

rΨ = r sin θ cosφx̂+ r sin θ sinφŷ + r cos θẑ (2.43)
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and the vector of Pauli matrices σ = σxx̂+σyŷ+σz ẑ. The inequality 0 ≤ r ≤ 1 holds for the

Bloch vector and r = 0 for a maximally mixed qubit while r = 1 for a pure qubit. Thus, we

can represent the state of a qubit as a point on a unit-ball using rΨ. This useful geometric

visualization of the state of a qubit is called the Bloch sphere and is shown in Figure 2.1.

Unfortunately, there is not a clean geometric picture of the state of a several-qubit system

without significant information loss.

Figure 2.1 Illustration of the Bloch sphere, a useful geometric visualization for the state of
a qubit. The state of an arbitrary qubit is represented by the Bloch vector, pointing from
the origin to some point on the unit ball.

Since the Pauli matrices are unitary (note they are also Hermitian) they may be used

to evolve the state of a qubit according to the fourth postulate of quantum .mechanics. In

addition to the Pauli operators, we will be interested in the Hadamard and phase operators,

or gates, denoted H and P , respectively. We give the matrix representation of H and P

in Eq. (2.44). Note that P is a function of a continuous parameter θ known as the phase

gate angle. The action of the Hadamard gate on an arbitrary Bloch vector is visualized as a

rotation about the ŷ axis by 90◦ followed by a rotation about the x̂ axis by 180◦. Similarly,

the phase gate is a rotation about the ẑ axis by θ.
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H =
1√
2

(
1 1
1 −1

)
, P (θ) =

(
1 0
0 eiθ

)
(2.44)

There are many beautiful mathematical structures within the two level system for de-

scribing quantum rotations and dynamics. For more information on the two-level system or

quantum mechanics as a whole, we refer the reader to one of a number of excellent textbooks

on the subject [41, 42]. We turn next to examining entangled states in a system of qubits.

2.3.3 Entanglement

Quantum entanglement is arguably the quintessential feature of quantum mechanics sep-

arating it from classical mechanics. Entanglement is essentially the idea that two physically

distinct (though perhaps identical in nature) subsystems may give rise to a state of the

system which cannot be understood as the composition of two pure states for each subsys-

tem. In this section, we will explore a few important entangled states and various ways of

quantifying correlation in quantum states.

2.3.3.1 Entanglement by example

In the language of Section 2.3.1, lets take the example of L = 2 and d0 = d1 = 2, i.e. a

system of two qubits. We expect the dimension of our system to be 4, so we will call our

basis states {|N〉} for N = 0, 1, 2, 3. We can construct the basis for our system as the tensor

product of the bases of our single qubit subsystems as

{|N〉} = {|0〉 , |1〉} ⊗ {|0〉 , |1〉} = {|0〉 , |1〉}⊗2 = {|00〉 , |01〉 , |10〉 , |11〉} (2.45)

where we’ve introduced the convenient short hand |mn〉 = |m〉⊗|n〉. In the matrix represen-

tation, the tensor product is implemented as the Kronecker product. The Kronecker product
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for two arbitrary qubits is written

|φ0〉 ⊗ |φ1〉 =

(
a0

b0

)
⊗
(
a1

b1

)
=

a0

(
a1

b1

)
b0

(
a1

b1

)
 =


a0a1

a0b1

b0a1

b0b1

 . (2.46)

Thus, the matrix representation of the basis of our 2-qubit system is written

|0〉 = |00〉 =


1
0
0
0

 , |1〉 = |01〉 =


0
1
0
0

 , |2〉 = |10〉 =


0
0
1
0

 , |3〉 = |11〉 =


0
0
0
1

 . (2.47)

We know that the state of our two qubit system can always be expanded in the basis of

Eq. (2.47) as |Ψ〉 = c0 |0〉+ c1 |1〉+ c2 |1〉+ c3 |3〉 where the ci are the probability amplitudes

associated with |i〉. We also know that if our system cannot be written in the form of

Eq. (2.46), it is entangled. As an example of entanglement, consider the state

|ψ−〉 =
1√
2

(|01〉 − |10〉) . (2.48)

Clearly, we have c0 = 0, c1 = 1√
2
, c2 = 1√

2
, c3 = 0. However if |ψ−〉 is to be separable, we

must have c0 = a0a1, c1 = a0b1, c2 = b0a1, c3 = b0b1, and we quickly run into a contradiction

while solving this system of equations. Since |ψ−〉 is not separable, we have shown that it is

entangled.

The state |ψ−〉 is known as the singlet state. The singlet state naturally arises in the

study of angular momentum addition of two spin-1/2 particles. There are three other 2-

qubit states exhibiting similar entanglement which, when taken together with the singlet

state, form an orthonormal basis for the two-qubit system and are collectively known as the

Bell states, given by

|φ±〉 =
1√
2

(|00〉 ± |11〉) , (2.49)

|ψ±〉 =
1√
2

(|01〉 ± |10〉) . (2.50)
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Upon calculating the reduced density matrix for either qubit in a system described by any

one of the Bell states, one finds the subsystem to be maximally mixed. This feature is quite

remarkable because, as a composite system, the Bell states are pure, meaning there is no

uncertainty about the quantum state of the system. Meanwhile, the component subsystems

are maximally mixed, meaning there is maximal uncertainty of the subsystem’s quantum

state.

Moving to a system of more than two qubits, we can define two other important entangled

states. The Greenberger – Horne – Zeilinger (GHZ) state may be written

|GHZ〉 =
1√
2

(
|0〉⊗L + |1〉⊗L

)
, (2.51)

while the W state is

|W 〉 =
1√
L

(|10 . . . 0〉+ |01 . . . 0〉+ · · ·+ |00 . . . 1〉) . (2.52)

Notice that tracing out any one subsystem leaves |GHZ〉 in a separable mixed state but

leaves |W 〉 in an entangled mixed state.

2.3.3.2 Measuring correlation

If one splits an arbitrary quantum system into two parts, A and B, one may re-express

the quantum state via the Schmidt decomposition

|Ψ〉 =
∑
i

λi |iA〉 ⊗ |iB〉 (2.53)

where the |iA〉 are unitarily connected to some fixed orthonormal basis for subsystem A, call

it {|m〉}, as |iA〉 = Û |m〉. Similarly |iB〉 = V̂ † |n〉. The proof of the Schmidt decomposition

relies on the fact that we can always express the quantum state as |Ψ〉 =
∑

m,nCmn |m〉⊗|n〉

for some matrix of complex numbers Cmn with singular value decomposition Cmn = UΛV †.

By the singular value theorem, U and V are unitary and Λ = diag(λ0, λ1, . . . , λd−1) where

λi ≥ 0 and d is the smaller dimension of the two Hilbert spacesHA andHB, d = min(dA, dB).

The number of non-zero λi is known as the Schmidt rank and is equal to 1 if and only if

subsystems A and B are separable. This property makes λi a useful tool for quantifying the
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entanglement between two parts of a system.

One important measure of entanglement is the von Neumann entropy of a reduced density

matrix ρA, denoted svN(ρA). The von Neumann entropy of subsystem A takes the form

svN(ρA) = −Tr(ρA log2 ρA) = −
∑
i

αi log2 αi, (2.54)

and we define 0 log 0 = 0. The second equality in Eq. (2.54) is obtained by representing ρA in

the basis of its own eigenvectors so that the αi are the eigenvalues of ρA. Phenomenologically,

SvN(ρA) tells us how much information we stand to gain, measured in number of qubits, by

measuring system A.

We state without proof a few important properties of the von Neumann entropy (see [42]

for a more complete discussion)

• sV N(ρA) is nonzero if and only if subsystem A is entangled with subsystem B.

• In a d-dimensional Hilbert space the entropy is at most log2 d and saturates this bound

if and only if the system is in a maximally mixed state.

• svN(ρA) = svN(ρB) whenever the AB composite system is in a pure state.

This work will also make use of the quantum mutual information between two distinct

subsystems A and B

I(ρA:B) = svN(ρA) + svN(ρB)− svN(ρAB) (2.55)

where ρAB denotes the density matrix of the AB composite system. The mutual information

between two subsystems is the information common to both subsystems. The first two

terms combine the information content of systems A and B (double counting the shared

information). The third term then subtracts off the information content of the AB joint

system, leaving us with only the information common to A and B. We will be particularly

interested in I(ρj:k) where j and k are single qubits in a 1-D lattice of L qubits. In this case,

I(ρj:k) for i, j = 0, . . . , L − 1 defines a symmetric L × L adjacency matrix upon which we

can calculate the network measures defined in Section 2.2.
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Network measures of the mutual information adjacency matrix allow us to quantify the

structure of two-point correlations exhibited by a quantum state. This is because mutual

information is bounded from below by any two point correlator [43], defined as

g
(2)
jk (O,O′) = 〈Oj ⊗O′k〉 − 〈Oj〉 〈O′k〉 , (2.56)

where Oj (O′k) is an arbitrary observable on subsystem j (k). We have g
(2)
jk (O,O′) = 0 if

and only if measurements of O at subsystem j are uncorrelated with measurements of O′ at

subsystem k.

While network measures calculated on mutual information adjacency matrices are a very

new tool available to the study of quantum states, they have been shown to detect quan-

tum phase transitions in various models of physical systems (see [44]). A primary goal of

this thesis is to test the utility of these network measures in quantifying the complexity of

dynamical quantum systems, in particular QECA. We therefore turn to a more thorough

description of cellular automata in the following section.

2.4 Cellular automata

Cellular automata (plural for cellular automaton) are dynamical systems which evolve on

a discrete spacetime lattice [45]. In cellular automata, global dynamics are controlled by a

simple local transition function. Each spatial discretization of the lattice, called a site, may

be found in one of a finite number of states. The next state of a site may be updated using

only local information of the site’s neighborhood and the local transition function. A single

temporal discretization of a cellular automata, known as an iteration, is complete once each

site’s new state has been computed and all sites have been updated simultaneously.

For concreteness, consider a one dimensional lattice of L sites, enumerated by the set

L = {0, . . . , L − 1}. Denote the state of the jth site at iteration t by xtj. Each site may

be found in one of k possible local states xtj ∈ Q, where Q is the k-member local state

space. Further suppose our cellular automata have a contiguous neighborhood of N sites

(take N to be odd). This means each site j has a neighborhood defined by the set of sites
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Nj = {j − (N − 1)/2, . . . , j, . . . , j + (N − 1)/2}. The state of the neighborhood at iteration

t, xtNj
, is the list of the states of each site in that neighborhood at iteration t. This means

that the state space of a neighborhood is the N -fold product space of the local state space

QN = Q⊗N , so xtNj
∈ QN . Similarly, the state of the entire lattice at iteration t is described

as xtL ∈ QL where QL = Q⊗L. Then, the local transition function is a map f : QN → Q. To

complete an iteration, f is simultaneously applied to all the neighborhoods in the lattice as

a global transition function which is a map F : QL → QL. In particular, we compute the

state of the lattice at iteration t+ 1 as

xt+1
L = F (xtL) =

L−1⊗
j=0

f(xtNj
.) (2.57)

An exercise in combinatorics reveals that there are kk
N

possibilities for the local transition

function f . Restricting ourselves to homogeneous cellular automata implies there are the

same number of global and local transition functions. This is because homogeneous cellular

automata are those with the same local transition function defined for all sites at all iter-

ations. It is conventional to enumerate the possible f with integers R ∈ [0, kk
N − 1] which

we may use to define the map f : QN → Q. To do this, expand R into kN digits as a

base-k number. Then, enumerate the digits of this expansion from least significant to most

significant with integers r ∈ [0, kN − 1]. Expand r into N digits of base-k. Interpret the

expansion of r as the neighborhood state which results in site j transitioning to the state

given by the rth bit of the R expansion.

For a concrete example, consider the case with k = 2 and N = 3 on a 1D lattice of L

sites, the so called elementary cellular automata. There are 223 = 256 elementary cellular

automata which have been studied extensively [45]. In Table 2.2 we show an update table

defining f for rule R = 30. In Figure 2.2 we show the evolution of rules R = 30, 90, and 110

with a single bit flip in the center of the lattice as the initial condition.

Using Table 2.2 notice that under rule R = 30 a neighborhood state of 011 could have

had as a predecessor 011 or 001. Such irreversibility is introduced when neighborhood states
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with the same left and right neighbors require different actions to achieve the state specified

by R. In rule R = 30, the neighborhood state 011 requires an identity operation on the

center site while the 001 requires a bit flip on the center site. We highlight this sort of

irreversibility here because it will be important to avoid in any quantum mechanical version

of elementary cellular automata. Otherwise, the quantum version will not be consistent with

the fourth postulate of quantum mechanics. We now turn to the precise construction of our

QECA scheme.

Table 2.2 Update table for rule R = 30, an irreversible elementary cellular automata.
Notice that the bits in the second row of this table form the number 30 in binary. It is
understood that the left and right neighbors are unchanged during the local update.

bit significance (base 2), xtNj
111 110 101 100 011 010 001 000

rule number (base 2), xt+1
j 0 0 0 1 1 1 1 0

(a) (b) (c)

Figure 2.2 Classical elementary cellular automata rules R = 30, 90, and 110. (a) R = 30,
capable of generating encryption-quality random numbers [46], (b) R = 90, exhibiting a
fractal structure known as the Sierpinski triangle, and (c) R = 110, which is capable of
universal computation [47]. Time runs top to bottom and space left to right.

2.5 Quantum elementary cellular automata

Seven years after Feynman’s first mention of a primitive quantum cellular automata in

1981 [48], researchers developed and simulated a quantum cellular automata model with

an approximately unitary quantum transition function. This is where the term “quantum
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cellular automata” first appeared [49]. Today, the 1988 model has more in common with

quantum walks (see [50]) than quantum cellular automata. A more formal quantum cellular

automata model was then developed by [51] and furthered by several other authors [52, 53,

54]. The difficulty with this model lies in the difficulty of determining if a quantum cellular

automata is “well formed.” Essentially a well formed quantum cellular automata is one

which adheres to the postulates of quantum mechanics as presented in Section 2.3.1.

Much of the existing quantum cellular automata research has focused on either the theo-

retical computational capabilities of quantum cellular automata [55], [56], the equivalence of

various quantum cellular automata models [57], [58], or the reconstruction of fundamental

quantum physics, e.g. solving the Schrödinger or Dirac equations or simulating quantum lat-

tice gas models [59]). Additionally, entanglement dynamics are discussed and a construction

of irreversible quantum cellular automata within the framework of open quantum systems

is provided in [60]. The entanglement dynamics are used there to measure the distribution

of entangled states for the purposes of quantum computation. Notably, the study of com-

plexity generation in a Hamiltonian-based quantum cellular automata was initiated in [61].

However, the work presented in this thesis considers a broader class of quantum cellular

automata and considers different quantifiers of complexity.

There is an entirely separate body of literature in which the term quantum cellular au-

tomata refers to quantum dot cellular automata [62, 63, 64, 65]. Quantum dot cellular

automata is a field concerned with the design and fabrication of quantum dot-based cellular

automata of the sort considered in Section 2.4. Quantum dots are nanometer scale semicon-

ducting particles often considered for their applications in solar cells and biological imaging

[66].

The study presented in this thesis is unique in that our focus in on QECA as complexity

generating systems. That focus informs our choice of measures and analysis tools, e.g.

complex network theory applied to quantum mutual information adjacency matrices. Our

QECA is a quantum extension of the elementary cellular automata, so we will rely heavily
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on the details provided in Sections 2.3.1 and 2.4 in the following construction of QECA.

To start, we define our system to be a 1D lattice of L qubits. The state of the lattice at

iteration t is restricted to be pure and thus is denoted |Ψ(t)〉. Our first task is to define the

local transition function for QECA, or equivalently, adapt the numbering scheme of cellular

automata to our QECA model. The fourth postulate of quantum mechanics demands that

the local transition function be realized as a unitary operator; the nearest-neighbor interac-

tions of elementary cellular automata suggest this unitary spans three qubits. Since unitarity

implies reversibility, we are unable to simulate any QECA which exhibit irreversibilities such

as rule 30 discussed in Section 2.4.

The requirement of reversibility suggests our QECA rule numbering scheme ought to

be based on what action we preform on the center site (rather than the next state of the

center site) and that our numbering scheme need only consider the left and right neighbors

of the neighborhood, excluding the center site itself. Thus our QECA rules effectively have

N = 2 and k = 2 resulting in 222 = 16 possible unitary QECA rules. We use S ∈ [0, 15] to

enumerate these rules. A one in the binary expansion of S corresponds to the application

of a single qubit operator (the bit flip operator σx emulates classical elementary cellular

automata, but is denoted V in the general case) to the center site, while a zero in the binary

expansion corresponds to an identity operation. Thus rule S = 0 is the identity operator. If

the local transition operator is to be unitary, then so to must be the single qubit operator

V . Table Table 2.3 gives an example of an update table for rule S = 6. In general, from

the update table for rule S we can construct a corresponding three qubit transition operator

denoted US(V ). Our construction of US(V ) relies on expanding S into four digits of binary

as

S = s1123 + s1022 + s0121 + s0020 (2.58)
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This way, all of the information in S is encoded in a 2× 2 matrix with elements smn. Then

we may give an explicit form of US(V ) as

US(V ) =
1∑

m,n=0

|m〉 〈m| ⊗ V mn ⊗ |n〉 〈n| , (2.59)

where

V mn = smnV + (1− smn)1. (2.60)

It is informative to represent US(V ) as a quantum circuit diagram, which we do in Figure 2.3.

Quantum circuits are a graphical representation of quantum operations on a register of

qubits. Each qubit connects to a horizontal wire which is fed into various quantum gates

and time is thought of as flowing left to right. We take the convention that the top-most qubit

in a circuit diagram represents the left-most qubit on our lattice; likewise, the bottom-most

qubit in the circuit diagram represents the right-most qubit of the lattice. A gate connected

by a vertical wire to a circle on another qubit’s timeline represents a control operation. The

qubit feeding into the gate is called the target and the qubit connected vertically to the gate

is called the control. Control operations apply gates to the target qubit only if the control

qubit is in the proper state.

Table 2.3 QECA update table for Rule S = 6. The first row describes the state of a center
site’s neighbors. The second row indicates whether or not to apply V to the center site.
Notice that the bits in the second row of this table construct the number 6 in binary.

|j − 1, j + 1〉 |11〉 |10〉 |01〉 |00〉
Apply Gate to center site? (smn) 0 1 1 0

Now that we know how to define the local unitary transition operator for QECA, we

need to address how to define an iteration. Recall Eq. (2.57) which defined an iteration for

cellular automata as the simultaneous application of the local transition function to all sites

of the lattice. The only way to preform this operation is by making a copy of the state so
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|qj−1〉
US(V )

⊗ • •
|qj〉 ≡ V mn ≡ V 00 + V 01 + V 10 + V 11

|qj+1〉 ⊗ • •

Figure 2.3 Quantum circuit diagram of the QECA local transition operator. Filled circles
represent control-on-1 operations, open circles represent control-on-0 operations, and x’d
circles represent a linear combination of these two control operations.

that one copy may be read from while the other is written to. This way each read operation

is unaffected by any other write operations.

However, the case for QECA is complicated by the no cloning theorem [67], which pro-

hibits ever making a copy of a quantum state. Our solution is to relax the requirement

of a simultaneous update for each iteration. This relaxation is equivalent to allowing for a

specific order in which each site will be updated and thus allowing earlier local updates to

influence later local updates. We then write a global update as,

|Ψ(t+ 1)〉 =
∏

j∈mode

US(V )⊗ 1L\Nj
|Ψ(t)〉 (2.61)

≡ Umode
S (V ) |Ψ(t)〉 (2.62)

where 1L\Nj
denotes the identity operator for all sites except for the neighborhood of site j

and mode is a set specifying the order in which sites are to be updated. For the purposes of

this thesis, we consider three possible orderings. Our three modes are given the names sweep

(swp), alternate (alt), and block (blk). The swp mode begins by updating site j = 0.

The update is then swept across the lattice to site j = L − 1, so swp = {0, 1, . . . , L − 1}.

The alt mode first updates all the even-indexed sites then all odd-indexed sites. Since the

application of US(V ) centered on site j may only alter site j, the update of all sites with

an index of the same parity may occur simultaneously. Finally, the blk mode updates all

sites with index j mod 3 = 0, then all sites with index j mod 3 = 1, and finally all sites
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with index j mod 3 = 2. The circuit diagram for the swp mode is shown in Figure 2.4. The

circuit diagrams for the alt and blk modes are shown in Figure 2.5.

|q0〉 V ln ⊗

|q1〉 ⊗ V mn ⊗

|q2〉 ⊗ V mn ⊗

|q3〉 ⊗ V mn ⊗

|q4〉 ⊗ V mn ⊗

|q5〉 ⊗ V mn ⊗

|q6〉 ⊗ V mn ⊗

|q7〉 ⊗ V mn ⊗

|q8〉 ⊗ V mr

Figure 2.4 Circuit diagram for a single iteration of mode = swp with L = 9. Information
is maximally transferred rightward (downward in the circuit diagram) at rate of L sites per
iteration. Leftward, (upward in the circuit diagram) information transfer is maximally one
site per iteration.

Specifying the mode of our QECA defines the update procedure for all but the bound-

ary qubits. The qubits at the boundaries may be updated once we specify the boundary

conditions of our simulation. Periodic boundary conditions may be achieved by defining the

neighborhoods N0 = {L− 1, 0, 1} and NL−1 = {L− 2, L− 1, 0}. For fixed boundaries, define

the index labels j = l and j = r to always be referring to a site with a fixed state on the left

or right end of the lattice, |ql〉 and |qr〉 respectively. We can then use Eq. (2.59) to define a

two-site local update operator for the left and right boundary qubits as
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|q0〉 V ln ⊗

|q1〉 ⊗ V mn

|q2〉 V mn ⊗

|q3〉 ⊗ V mn

|q4〉 V mn ⊗

|q5〉 ⊗ V mn

|q6〉 V mn ⊗

|q7〉 ⊗ V mn

|q8〉 V mr ⊗

(a)

|q0〉 V ln ⊗

|q1〉 ⊗ V mn ⊗

|q2〉 ⊗ ⊗ V mn

|q3〉 V mn ⊗ ⊗

|q4〉 ⊗ V mn ⊗

|q5〉 ⊗ ⊗ V mn

|q6〉 V mn ⊗ ⊗

|q7〉 ⊗ V mn ⊗

|q8〉 ⊗ V mr

(b)

Figure 2.5 Circuit diagrams for a single iteration of (a) mode = alt and (b) mode = blk
with L = 9. Under mode = alt information can maximally travel at two site per iteration
in either direction. Under mode = blk, information can maximally travel at three sites per
iteration rightward (downward in the diagram) or two sites per iteration leftward (upward
in the circuit diagram).
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B
(l)
S (V ) =

1∑
m,n=0

〈m|ql〉V ln ⊗ |n〉 〈n| (2.63)

B
(r)
S (V ) =

1∑
m,n=0

|m〉 〈m| ⊗ V mr 〈n|qr〉 (2.64)

All of our simulations will have boundaries fixed to |ql〉 = |qr〉 = |0〉.

We now have completely defined our family of QECA models. Each QECA requires a

rule number S defining how neighbors influence a qubit’s update, a unitary single qubit

operator, V , with which we update each site conditioned on the state of its neighbors, and

an update mode specifying the sequence in which individual qubits are to be updated. In

this chapter we have also carefully described what we mean by complexity, reviewed the

essentials of quantum mechanics, and given a mathematical treatment of cellular automata.

The next chapter is devoted to implementing our QECA formalism numerically.
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CHAPTER 3

NUMERICAL TECHNIQUES FOR QUANTUM ELEMENTARY CELLULAR

AUTOMATA SIMULATION

In this chapter we will introduce a few of the key numerical techniques and considerations

applicable to the simulation of QECA. All of the code for this project has been written in

Python 3.5 and is freely available at [68]. We will begin by summarizing the features of QECA

and the measures upon them which our simulations must consider. We will then describe an

efficient algorithm for exact QECA time evolution. Finally, the high performance computing

architectures used to simulate QECA are reviewed.

3.1 Requirements of simulations and useful computational tools

Broadly, the simulation of QECA requires two tasks, time evolution and measurement.

Time evolution consists of representing the state in the computer and evolving it in time

according to Eq. (2.62). By measurement, we mean applying all the measures of interest,

e.g. Eqs. (2.54), (2.1), (2.2) and (2.4), to the state vector at each iteration. These tasks

are described in detail in the next two section, but our focus now is on the Python libraries

found to be useful in developing our QECA code base.

In addition to standard scientific computing libraries available for Python i.e., Numpy,

Scipy, and Matplotlib, our code makes use of the hdf5 file system via the Python library

h5py [69]. This system allows us to create one file with the .hdf5 extension into which we

save the results of time evolution and the associated measures. Data can be saved to or

accessed from the .hdf5 file at any point in the simulation. More importantly, data from the

file may be accessed without loading the entire file into memory. Thus the hdf5 file system

allows us to create a single data file for each simulation while still while still retaining the

ability to load the results of a single measures at a time.
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Since this project is exploratory, we would like to be able to run many simulations as

quickly as possible. To this end, we have implemented a batch parallelism scheme for running

many independent simulations simultaneously. Because simulations are independent of one

another, this parallelism can be achieved with just a few lines of code using the Python library

mpi4py [70]. This implementation offers a huge time savings when on multicore processors.

Most modern day personal computers have at least a few cores. Even more simulations can

be ran in parallel when working with advanced high performance computing architectures

with hundreds of cores. We will take a closer look at the use of high performance computing

for simulating QECA in Section 3.3, but next we describe the computational tasks of time

evolution and measurement.

3.1.1 Time evolution

Time evolution will be done without approximation. This means we will not be using

matrix product state algorithms like the density matrix renormalization group method of

time evolving block decimation [71, 72]. MPS algorithms are typically used to simulate large

systems with low entanglement. Because of the high degree of entanglement present in many

of our QECA, which is explored in Chapters 4 and 6, MPS algorithms fail to offer significant

simulation advantages after just a few iterations. Because our simulations are exact, we will

be dealing with the entire Hilbert space of our system; this space grows exponentially base

2 with each additional qubit. Thus, our simulations face no challenges simulating highly

entangled dynamics, but struggle to simulate large systems.

To get a feel for the difficulty caused by an exponentially growing state space, consider

the quantum state of L qubits. The quantum state is stored in the computer in the matrix

representation using the computational basis as a vector of 2L complex, double precision (64

bit) floating point numbers. Each complex number has a real and imaginary part so the

number of bytes (recall there are 8 bits per byte) required to store a single state vector is

Nbytes = 16× 2L = 2L+4. (3.1)
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From Eq.(3.1) we can see that L = 16 requires about 1.04 megabytes of memory while L = 26

requires about 1.07 gigabytes of memory to store |Ψ〉. We are able to run simulations with

L = 27 sites which requires about 2.1 gigabytes per state vector to store in the computer.

This theoretical scaling is explicitly tested in Figure 3.1.

5 10 15 20 25
system size [L]

26

210

214

218

222

226

N
by

tes

theoretical
measured

Figure 3.1 Memory consumption of the state vector for increasing system size. The amount
of memory required to store the matrix representation of the state vector of an L-qubit
system is measured to increases exponentially with L. The theoretical prediction is given by
Eq. (3.1). The exponential growth is base two, as expected, since the number of components
in the matrix representation is equal to the dimension of the Hilbert space which increases
exponentially in L with base two.

Since the size of the state vector grows so rapidly with L, we will only ever hold one

state vector in memory at a time. In Python 3.5 this is implemented with the generator

data type. Furthermore, we will not save the states we compute to the hard drive either.

Instead, each time a state vector s computed in a simulation, we immediately calculate all the

one and two site reduced density matrices and save those. This representation of the state

offers significant compression over the full quantum state and still allows us to compute site-

wise expectation values using Eq. (2.26) and the mutual information adjacency matrix using

Eqs. (2.54) and (2.55). We also have the ability to compute and save the reduced density

42



matrix describing any bi-partitioning of the lattice, though this can drastically increase both

simulation time the size of output files.

To be fulley defined, QECA simulations need several parameters to be specified, most

of which we have already met. In addition to the three parameters required to specify the

update sequence (i.e., V , S, and mode), we need to specify L, the length of the lattice and

T , the number of iterations to simulate. We also must have some way of specifying the

initial condition of the lattice. Specifying the initial condition is equivalent to specifying

all 2L complex numbers initially representing |Ψ〉. Since making this specification is very

cumbersome, even for even moderately sized systems, we would like to have simple ways

of specifying useful initial conditions. To do this, we have written a string parsing function

which can create computational basis states and common entangled states like the GHZ, and

W states, defined in Eqs. (2.51) and (2.52), given simple input strings. Table 3.1 collects

all the simulation parameters and a short description of their purpose. Each parameter

in Table 3.1 is in one-to-one correspondence with an input parameter in the main module of

our QECA code base.

Table 3.1 QECA simulation parameters. Specifying these six parameters fully defines the
QECA simulation. Using batch parallelism, our code can simultaneously perform many
simulations with varied parameters. The exact number of simulation which can be performed
simultaneously depends on the computer architecture running the code. We have performed
up to 72 simulations simultaneously using a cluster-based super computer.

parameter description
L Lattice length
T No. iterations to simulate
S QECA rule number
V Single qubit unitary

mode Update ordering
initial condition String describing initial state
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3.1.2 Measures

For each simulation, we will also compute a suite of measures in addition to the reduced

density matrices. For each iteration, these include all one and two site expectation values of

the Pauli operators 〈σαj 〉 and g
(2)
jk (σα, σα) for j, k = 0, . . . , L − 1 and α = x, y, z as defined

in Eq. (2.56). We also compute and save the site-wise von Neumann entropy, the quantum

mutual information adjacency matrix I, defined in Eqs. (2.54) and (2.55), and the three

network measuresD, C, and Y computed on the adjacency matrix, defined in Eqs. (2.1), (2.2),

and (2.4). Furthermore, the code is easily configured to also measure the bipartite von

Neumann entropy and correlators of the form g
(2)
jk (σα, σβ) with α, β = x, y, x, though such

correlators are not considered in this thesis due to the fact that they bound from below the

quantity of interest, namely quantum mutual information [43].

3.2 Algorithm for time evolution

The ability to exactly simulate 27 qubits in a high-level scripting language like Python

took several optimization layers. Furthermore, the only way we are able to keep the simu-

lations exact and reach this system size is because Eq. (2.62) is exactly local. Often local

evolution schemes are used as an approximation for more general systems via the Trotter

expansion [73]. We have found that our algorithm for QECA simulations works equally well

for the Trotter expansion, although such simulations are approximate. In any case, it is very

useful to have a function which accepts an n-site operator, a list of n site indices, and a

state vector and returns a new state vector with that operator applied only to the provided

indices. We’ll call this function op on state.

One obvious way to simulate the time evolution of Eq. (2.62) is to explicitly construct

Umode
S (V ) as the product of L 2L×2L matrices. This procedure is very memory intensive and

quickly saturates several gigabytes of random access memory for just L = 14. We will call

this “big matrix method” version zero of the op on state function. As system size increases,

the big matrix becomes more sparse, making sparse matrix methods an appealing option.
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A sparse matrix is essentially a data structure which stores the row index, column index

and value of every nonzero value in an array. Sparse arrays typically provide considerable

memory savings and speed up when the array is less than 5% non-zero. However, we can

do better than standard sparse array methods by leveraging out knowledge of the tensor

product structure of the state vector. The method we develop here will be for a system of

qubits for simplicity, however our code provides support for a list of sites with arbitrary local

dimension.

Consider a three qubit system in a separable state. Let the state of the jth qubit be given

by |ψj〉 = aj |0〉+ bj |1〉. The full state vector is then given by

|Ψ〉 =



a0a1a2

a0a1b2

a0b1a2

a0b1b2

b0a1a2

b0a1b2

b0b1a2

b0b1b2


=



c0

c1

c2

c3

c4

c5

c6

c7


. (3.2)

Next consider an operation on qubit j = 2 as Â ⊗ 10,1 |Ψ〉 where Â is some single-qubit

operator. Notice that information about site j = 2 has entered into every component of the

system’s state vector. More generally, every component of the system’s state vector depends

on some component of the state of each subsystem. Thus, if we wish to update the state

of |ψ2〉 with Â, we potentially have to update every component of |Ψ〉. This updating can

be done with only Â and |Ψ〉 without the need for padding Â with identities. To do this,

regroup the components of |Ψ〉 into a list of 4 ordered pairs, each ordered pair contains one

component with an a2 factor and a second with a b2 factor. The list of components in this

case is given by {{c0, c1}, {c2, c3}, {c4, c5}, {c6, c7}}. Then operate Â on each of the pairs,

and reshape the components back into the original order. If instead one wanted to operate

on site j = 1, use the grouping {{c0, c2}, {c1, c3}, {c4, c6}, {c5, c7}}. Similarly, for site j = 0

the appropriate grouping is {{c0, c4}, {c1, c5}, {c2, c6}, {c3, c7}}.
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The next generation of the op on state function, version one, used this idea to greatly

increase the number of sites that could reasonably be simulated. However, version one needed

to create a list of indices with which it selected the proper components of |Ψ〉 to be fed into

Â. The third and final version of op on state, version two, vectorized the entire calculation

and works with the state vector itself rather than a list of indices. In Figure 3.2 we plot the

computation time required for each improvement of the op on state function. In Listing 3.1

we show our Python implementation of this algorithm for the case of L qubits. Next we

comment on this code line by line.

5 10 15 20 25
number of sites [L]

10 4
10 3
10 2
10 1
100
101

co
m

pu
tat

io
n 

tim
e [

s]

Application of 3-site operator

V2
V1
V0

Figure 3.2 Time scaling of algorithm for efficient local operator application. Tests were done
on three version of the algorithm using a 4th generation Intel Core i7-4700MQ Processor. V0
labels version zero, the big matrix method; V1 labels version one, which removes the need
for padding with identities; and V2 labels version two, which vectorizes the calculation done
in version one. The connecting lines are a guide to the eye. The computation time reported
here is for the application of a three-site-wide operator, analogous to Umode

S (V ), to a set of
three qubits in a lattice of size L. Since a single QECA iteration requires L such applications
we can estimate the computation time for simulating an iteration for a system size of L. For
example, it takes about 25 seconds to simulate one iteration of an 25-site QECA.

The first line imports numpy, the only package necessary for this function. Next, in line 3,

we define the function’s name and inputs. The argument A is an n-site operator, js is a list

of n sites onto which we will apply A, and state is the matrix representation of the system’s

state vector. Lines 4 and 5 compute the length of the lattice and the number of sites our
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operator will act on. In line 6, we define ds which is a list of the local dimensions for each

of our subsystems (all 2’s for a lattice of qubits). Lines 7 and 8 compute the dimension of

our n sites of interest, and the dimension of our entire Hilbert space. Then, in line 9, we

compute the site indices which are to be unaffected by the local update (the “rest” of the

lattice). In line 10, we concatenate rest with js to create a list of all the site indices but

ordered such that the sites we are interested in are at the end of the list. Lines 11, 12, and

13 are really a single Python command, but with line breaks inserted for clarity. This one

command is a major factor in what allows us to efficiently simulate with up to 27 sites, so

it is work breaking down.

We begin with our current state, stored as a vector of length dL, which we reshape into

an L-nested array. This is an L-index object. We then rearrange these L indices using

ordering and the transpose function. This operation arranges the components of state

into the correct groupings given the supplied js. We’re now at line 12 where we do another

reshaping of state’s components, transforming it into a list of column vectors, each of

the correct size and grouping to be right multiplied by A. The Numpy command dot is a

vectorized dot product, meaning it will apply A to each column vector in our list. Once

entries of state have been updated, we reshape back into an L-nested array. Next, at line

13, we unscramble the original transpose by transposing with respect to the argsort of our

input ordering. The Numpy function argsort returns a list of indices which sort the input

list in ascending order, in this case, ordering. Finally, we reshape back into the standard

1D shape of the state vector and set the net result to the variable new state. The method

is complete when new state is returned in line 15. The generalization to arbitrary local

dimension is done by allowing the user to input a list of local dimensions which are then

used to calculate the dimension of the entire Hilbert space and the Hilbert space of the sites

which we are operating on.

We’ve highlighted important considerations for the numerical implementation of QECA

and described our key algorithm for time evolution. In the next section we will describe our
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Listing 3.1 Python code for efficient application of a local operator. This is the qubit-
specific implementation of version two of op on state. The computation time of this al-
gorithm is benchmarked against older versions in Figure 3.2. This algorithm is not only
useful for the exact simulation of QECA but also for the approximate time evolution of
Hamiltonian-based quantum dynamics via the Trotter expansion.

3.1 import numpy as np
3.2
3.3 def op on s ta t e (A, j s , s t a t e ) :
3.4 L = int ( l og ( len ( s t a t e ) , 2) )
3.5 n = len ( j s )
3.6 ds = [ 2 ] ∗L
3.7 dn = 2∗∗n
3.8 dL = 2∗∗L
3.9 r e s t = np . s e t d i f f 1 d (np . arange (L) , j s )
3.10 orde r ing = l i s t ( r e s t ) + l i s t ( j s )
3.11 new state = s t a t e . reshape ( ds ) . t ranspose ( o rde r ing ) \
3.12 . reshape (dL/dn , dn) . dot (A) . reshape ( ds ) \
3.13 . t ranspose (np . a r g s o r t ( o rde r ing ) ) . reshape (dL)
3.14
3.15 return new state

use of high performance computing facilities.

3.3 High performance computing for quantum elementary cellular automata

Our simulations were performed on the Colorado School of Mines cluster supercomputer

known as Mio. The computer is a collections of nodes, each with a number of cores. Com-

putations may be accelerated on these sort of machines by dividing a computation into

parallelizable tasks. Memory is shared between cores of a node while each node has its own

memory bank. A challenge of parallel programming is to avoid simultaneous reading and

writing to the shared memory of a core, which could result in a race condition, while also

allowing a single computation to span the distributed memory of several nodes [74]. This

challenge is often faced using the Message Passing Interface (MPI) library, which provides

programmers with a cross-platform set of tools for dealing with both shared and distributed

memory in their computations [75]. The parallelism employed in our QECA studies is to
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run each simulation, all of which are completely independent of one another, simultaneously

on the cores of several nodes. Since each task is independent, minimal message passing is

required and thus this is a basic use case of MPI.

Mio utilizes an Intel x86 instruction set architecture, which is a set of instructions for

dealing with native data types, low-level operations for registers, addressing modes, memory

architecture, interrupt and exception handling, and external I/O [76]. As such, the processors

used in Mio are all Intel-based. In our research, we specifically made use of eight nodes.

Two of the nodes each have 20 cores operating at 2.70 gigahertz with 64 gigabytes of shared

memory per node. The other six nodes each have 12 cores operating at 2.93 gigahertz with

24 gigabytes of shared memory per node. Combined, there are 112 cores, each of which can

run one independent QECA simulation. While elementary compared to what is possible

with MPI, our parallelization allows us to run more than 100 QECA simulations in the same

amount of time that a serial use of our code would complete just one. In next chapter, we

will take advantage of our ability to quickly run many QECA simulations to characterize the

broad average properties of QECA evolution.
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CHAPTER 4

BROAD ANALYSIS

with many qeca parameters which can be varied and many measures to apply to each

simulation, we first seek a coarse grained picture of what qeca are capable of. to do this

we will consider the spacetime averages of the measures d, c, †, and svn for a set of over

10,000 simulations. in this chapter, we describe the simulation parameters used to generate

this data set and examine how the simulations distribute themselves along the axes of these

measures. for context, the same measures are computed for a few well-characterized states

from quantum information theory as well as random quantum states.

4.1 A mesoscopically large data set

all possible combinations of the following parameters are simulated:

L ∈ {11, 14, 17, 20} (4.1)

S ∈ [1, 15] (4.2)

V = HP (θ) with θ ∈ [0◦, 90◦] in 15◦ increments (4.3)

mode ∈ {swp, blk, alt} (4.4)

for T = 1000 iterations and two classes of initial conditions, low density Fock states and

well-characterized entangled states. By Fock state we are referring to the separable class of

states corresponding to classical bit strings i.e., no super position in the computational basis.

The given range of system sizes was selected because it spans nine sites, which is two powers

of the neighborhood size. All rules are simulated except for rule 0 because, as can be see

from Eqs. (2.59) and (2.60), it is the identity rule. Our choice of V = HP (θ) is motivated by

the ability of the Hadamard gate to introduce local superposition, which can be visualized on

the Bloch sphere as describe in Section 2.3.2. Additionally, the phase gate makes it possible

to test the sensitivity of QECA dynamics to phase effects. To test the effect of local update
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ordering, we also simulate all three update modes defined in Section 2.5.

Four low density Fock states, enumerated

1. |0 . . . 010 . . . 0〉

2. |0 . . . 110 . . . 0〉

3. |0 . . . 101 . . . 0〉

4. |0 . . . 111 . . . 0〉

are each simulated for every combination of simulation parameters given above. These

Fock states are chosen because they correspond to the four unique neighborhood configu-

rations. Since the states |0 . . . 100 . . . 0〉 and |0 . . . 001 . . . 0〉 are equivalent to the first Fock

state in the above enumeration up to a translation, they are not considered unique. The

same goes for the state |0 . . . 011 . . . 0〉 in relation to the second Fock state in the above

enumeration. In total, four lattice lengths, 15 rules, seven phase gate angles, three update

modes, and four initial conditions leads to 4 · 15 · 7 · 3 · 4 = 5, 040 Fock state simulations.

The six entangled states we simulate are given by

1. |GHZ〉

2. |W 〉

3. |0 . . . 0〉 ⊗ |ψ+〉 ⊗ |0 . . . 0〉

4. |0 . . . 0〉 ⊗ |ψ−〉 ⊗ |0 . . . 0〉

5. |0 . . . 0〉 ⊗ |φ+〉 ⊗ |0 . . . 0〉

6. |0 . . . 0〉 ⊗ |φ−〉 ⊗ |0 . . . 0〉

where |GHZ〉 and |W 〉 are the GHZ and W states defined in Eqs. (2.51) and (2.52), respec-

tively, and |ψ±〉 and |φ±〉 are the four Bell states defined in Eq. (2.50). Thus, there are a

total of 7,560 initially entangled simulations.
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Combined, this makes for 12,600 simulations ran for this study. At order of 104, This

isn’t quite big data, but is instead what we call mesoscopic data. If one was willing, one could

spend two minutes analyzing the results of each simulation so that, assuming a 40 hour work

week, one could view each simulation in 10.5 weeks. Instead of this, we will automatically

analyze simulations and bin them based on their average value of von Neumann entropy and

network measures on the mutual information adjacency matrices.

Before analyzing the average broad structure of QECA dynamics, it is helpful to build our

intuition for how a rule numbers affect QECA dynamics in a spatiotemporally resolved way.

To this end, consider the 15 nontrivial rules evolving from a centered localized excitation of

the form given as the first Fock state initial condition above. In Figure 4.1 we plot 〈σzj (t)〉 for

each site j and iteration t with L = 21 and T = 60. Additionally, we have set V = HP (0◦),

mode = alt, and allowed S to vary from 1 to 15. A system size of L = 21, or indeed

any odd numer, makes for symmetric dynamics given the centered localized excitation initial

condition. The expectation value of σzj is bound between 1 and −1 and is equal to 1 (−1)

if site j is in the basis state |0〉 (|1〉). Similarly, in Figure 4.2, we show the von Neumann

entropy for the same set of simulation parameters. Clear symmetries with respect to rule

number are apparent in Figure 4.1 and Figure 4.2. For example, rule 2 is the mirrored

version of rule 4, and rule 6 appears symmetric and shows features common to rules 2 and

4.

The relative behavior of rules 2, 4, and 6 is a consequence of how the binary expansion

of rule S informs the application of V to a site conditioned on that site’s neighbors. The

following analysis of these three rules is a direct application of the QECA numbering system

defined in Section 2.5 and exemplified in Table 2.3. The binary expansion of 2 is 0010.

Recall that each nonzero digit of this expansion encodes which configuration of neighbors

results in an application of V . The second least significant bit is nonzero, and the binary

expansion of that bit’s significance, enumerated from zero, is 01. From the binary expansion

of the nonzero digit’s significance, we deduce that rule 2 applies V to a site conditioned
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on that site’s left neighbor neighbor being |0〉 and its right neighbor being |1〉. We find

exactly the opposite recipe in rule 4, which expands to 0100. The only nonzero bit has

significance 2, or 10 in binary. Thus, in rule 4, V is applied based on the left neighbor being

|1〉 and the right neighbor being |0〉. To complete the example, consider rule 6 which has

the binary expansion 0110. Since the nonzero elements of this expansion are the same two

which appeared in rules 2 and 4, we say that rule 6 is the symmetrized version of rules 2

and 4. Combining what we already know about rules 2 and 4, we immediately realize that

rule 6 applies V conditioned on the left and right neighbor being in opposite basis states.

Similar symmetry triples can be formed with the rest of the rules, which we summarize in

Table 4.1. The 11 unique dynamical structures observed in Figure 4.1 and Figure 4.2 come

from seven symmetric rules and four unique asymmetric rules. The remaining four rules are

equivalent to the first four asymmetric rules up to a reflection.

Table 4.1 Pairing QECA rules by symmetry. SA and SB are asymmetric partners, mean-
ing that, for symmetric initial conditions, they are equivalent to each other up to spatial
reflections. SC is the symmetrized version of rules SA and SB. The subscript on S is either
2 or 10 and denotes the base of the rules representation. The rules labeled under SA have an
asymmetry in the application of V to sites with a |0〉 left neighbor and a |1〉 right neighbor.
The rules labeled under SB have an asymmetry in the application of V to sites with a |1〉
left neighbor and a |0〉 right neighbor. The states labeled SC symmetrically apply V to sites
with neighbors in opposite basis states. Additionally, rules 1, 8, and 9, not shown, are all
symmetric and don’t have asymmetric partners in the sense described here.

SA10 SA2 , SB10 SB2 SC10 SC2
2 0010 4 0100 6 0110
3 0011 5 0101 7 0111
10 1010 12 1100 14 1110
11 1011 13 1101 15 1111

Our considerations thus far have helped build our intuition for how the QECA rule num-

ber affects its dynamics as observed in local expectation values and von Neumann entropy.

We are almost ready to examine how our mesoscopically large data set is broadly character-

ized by entropy and network measure calculations. However, we will first calculate network

measures on a few well-characterized quantum states so we may better interpret the results
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Figure 4.1 Visualizing QECA dynamics with expectation values. Spacetime grids of 〈σzj 〉
for 15 different ECA rules, each initiated by a centered local excitation. Overall, we see
11 unique dynamical structures because rules 2, 3, 10, and 11 are mirrored version of rules
4, 5, 12, and 13, respectively. As an example of the variability in the observed dynamical
structures, notice how the initial excitation may be be quickly dissipated into the lattice as
with rule rule 7, coherently transferred to either end as with rule 6, or something in-between
as with rule 14.
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Figure 4.2 Visualizing QECA dynamics with von Neumann entropy. Spacetime grids of
svN(ρj) for 15 different rules each initiated by a centered local excitation. Comparing to
Figure 4.1, we see that entropy (and thus entanglement) tends to follow the initial excita-
tion, with the exception being rule 15 which generates no entanglement. These diagrams
demonstrate that QECA are capable of generating diverse patterns of entanglement growth
from a separable initial condition.
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of our broad analysis.

4.2 Network measures for common entangled states

The motivation for computing mutual information network measures for a few well-

characterized entangled states is twofold. First, such calculations allow us to intuit the

structure of connectivity measured by the network measures. Second, it serves as a sanity

check for our numerics by comparing to analytic results. In this section we will derive D, C

and Y for |GHZ〉, |W 〉, a localized singlet, and an array of singlets for a lattice of length L.

It is convenient to note that Eqs. (2.1), (2.2), and (2.4) imply that, for a constant adjacency

matrix Ijk = a for j,k = 0, . . . , L − 1, we have D = a, C = a, and Y = 1/(L − 1). In the

case of a constant adjacency matrix, we will drop the jk subscript.

Start by computing the mutual information adjacency matrix for |GHZ〉. Notice that the

reduced density matrix of any site j is completely mixed, that is,

ρGHZ
j =

1

2
(|0〉 〈0|+ |1〉 〈1|). (4.5)

The reduced density matrix for any two sites j and k is given by

ρGHZ
jk =

1

2
(|00〉 〈00|+ |11〉 〈11|), (4.6)

a separable mixed state. Using Eqs. (2.54) and (2.55), we conclude that the mutual infor-

mation adjacency matrix is a constant L × L matrix IGHZ = 1/2, except for the diagonal

which we always define to be zero. We then can immediately write D = 1/2, C = 1/2,

and Y = 1/(L− 1)

Next, for |W 〉 we compute the one and two site reduced density matrices to be

ρWj =
1

L
(|1〉 〈1|+ (L− 1) |0〉 〈0|) (4.7)

ρWjk =
1

L
(|01〉 〈01|+ |01〉 〈10|+ |10〉 〈01|+ |10〉 〈10|+ (L− 2) |00〉 〈00|) . (4.8)

The entropies needed for IWjk are again computed with Eq. (2.54), but this time we need to

diagonalize the subspace perpendicular to |11〉. This gives the fierst three eigenvalues α1 = 0,
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α2 = 2/L, and α3 = (L − 1)/L. Since |11〉 does not have support in ρWjk , it contributes a

zero eigenvalue. Finally, Eq. (2.55) gives the constant adjacency matrix

IW =
1

L
+

1

2
log(L) +

(
L− 2

2L

)
log(L− 2)− L− 1

L
log(L− 1) (4.9)

where, as before, we have dropped the subscript jk because the right-hand side of Eq. (4.9)

is a constant with respect to entries of the adjacency matrix. Thus, D = IW , C = IW , and

Y = 1/(L− 1).

Both |GHZ〉 and |W 〉 are states with spatially homogeneous entanglement. Therefore,

it is no surprise that they both form completely connected mutual information adjacency

matrices. Let us now consider a simple quantum state with inhomogeneous entanglement,

an isolated singlet |0 . . . 0〉⊗ |ψ−〉⊗ |0 . . . 0〉. Suppose that the singlet is shared between sites

j = a and k = b with a 6= b. Intuitively, the mutual information adjacency matrix is then

Ijk = 1 if (j, k) = (a, b) or (b, a) and 0 otherwise. It follows that [I2]jk = 1 if (j, k) = (a, a)

or (b, b) and [I3]jk = [I]jk. Then, we arrive at D = 2/(L2 − L), C = 0, and Y = 2/L where

we have used [I3]jk = Ijk in evaluating the clustering coefficient.

Finally, consider a 1D array of singlets |ψ−〉 ⊗ |ψ−〉 ⊗ · · · ⊗ |ψ−〉. For convenience take L

to be even. Since each qubit is a part of a singlet, we have Ijk = 1 if j is even and k = j + 1

or j is odd and k = j−1. Otherwise Ijk = 0. Again, we have [I3]jk = [I]jk and after similar

manipulations to the localized singlet case, we see D = 1/(L− 1), C = 0, and Y = 1.

In Figure 4.3 we compare our analytics and numerics for D, C and Y as a function

of L for the states |GHZ〉, |W 〉, a localized singlet, and an array of singlets. We also

show these results with the network measures as mutually perpendicular axes in Figure 4.4.

Additionally, in Figure 4.4 we show the results of network measures computed for a random

vector in Hilbert space. For a each L, 300 random states were generated, on which network

measures were computed. The average measure value for the 300 samples is what is shown in

Figure 4.4, where the standard deviation of each measure is of the same order or smaller than

the symbol size. Now that it is clear how the network measures behave for random and well-
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characterized entangled quantum states, we are ready to use these measures to characterize

the average behavior of the mesoscopically large data set introduced at the beginning of this

chapter.

4.3 Equilibrium measure values

Because they are a novel new tool, we would like to quantify the amount of information

gained by considering network measures for the broad analysis of the mesocopically large

data set of over 104 simulations. To this end, we perform a principal component analysis on

the set of time averaged values of D, C, and Y . The time averages are taken for the last 500

iterations, after an initial period of 500 iterations which is ignored to allow for transients to

dissipate. All of these values can be thought of composing an N ×3 scatter matrix Z, where

N is the number of simulations for which we are computing averages, e.g., N = 5, 040 for

the Fock initial conditions. After shifting the column-wise mean of Z to zero, we compute

the three orthonormal eigenvectors of the matrix

C = ZTZ. (4.10)

We interpret C as a symmetric correlation matrix and its eigenvectors point in the direction

of the greatest spread of Z when Z’s rows are plotted on orthogonal axes of D, C, and Y .

These eigenvectors are then the principal components of Z. For the Fock initial conditions,

we find the three principal components to be

v1 = 0.10482173D + 0.98234926C − 0.15492689Y (4.11)

v2 = 0.41855966D − 0.1848939C − 0.88916931Y (4.12)

v3 = 0.90211985D − 0.02835811C + 0.43055267Y . (4.13)

In Figure 4.5 we plot the scatter matrix Z and its three principal components for the Fock

initial conditions. Similarly, the principal component analysis for the entangled initial con-

ditions yields
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Figure 4.3 Network measures of well-characterized entangled states. Agreement between
numerics (circles) and analytics (solid black) displays a maximum absolute error on the order
of 10−15. Notice that the localized singlet is a decaying function of disparity because, as sys-
tem size increases, the adjacency matrix approaches the uniform null network. Meanwhile,
the singlet array is seen to be maximally disparate because each each node in the adja-
cency matrix is connected to exactly one other node, independent of system size, leading to
disparate backbone-like structure.
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Figure 4.4 Network measures for well-characterized entangled and random states scaling
with system size L. Notice how all of these states remain near the limits of the measures,
except for |GHZ〉 which bisects the range of D and C and the singlet array which saturates
Y . The similarly small magnitude of network measures for |GHZ〉, |W 〉, and random states
implies that larger values for network measures describe quantum states which are neither
random nor structured like these well-characterized quantum states.

v1 = 0.47691937D + 0.87792771C − 0.04231838Y (4.14)

v2 = 0.87798586D − 0.47359428C + 0.06963687Y (4.15)

v3 = −0.0410944D + 0.07036611C + 0.9966744Y (4.16)

which are plotted in Figure 4.6. Notice that in both cases there is one vi with a large

D component, another with a large C component, and a third with a large Y component,

meaning each of the three network measures is revealing unique information about the broad

structure of our QECA simulations. An exception to this observation is seen in Eqs. (4.11)

and (4.12) since both have D and Y components which are comparable. This implies that

D and Y reveal redundant information about the quantum state of QECA evolving from an

initial Fock state.

Next, in addition to D, C, Y , we consider svN(ρj). This lets us reduce each simulation

to an ordered-quadruple which we visualize on scatter plots of six possible 2D slices. For

the Fock initial conditions, these six slices are shown in Figure 4.7 where we’ve colored

the scatter points by L and Figure 4.8 where the scatter points are colored by S. In both
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Figure 4.5 Principal component analysis for Fock state initial conditions. Each of the 5,040
simulations is reduced to three scalars, the averages of D, C, and Y over the last 500 iter-
ations of 1000 iteration simulations. The principal components given by Eqs. (4.11), (4.12)
and (4.13) are plotted as v1 in blue, v2 in green, and v3 in red. We have normalized by the
max value seen for each measure for clarity.
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Figure 4.6 Principal component analysis for the entangled initial conditions. The principal
given by Eqs. (4.14), (4.15) and (4.16) are plotted as v1 in blue, v2 in green, and v3 in red.
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figures panel (c) shows a clear one-to-on trend between D and C. This trend is to be expected

because denser networks are naturally more transitive. For both figures we also see a positive

trend between D and svN for svN < 0.6 and a negative trend for svN > 0.6 in panel (d). In

Figure 4.8 rules 2 and 4 tend to cluster together, as do rules 10 and 12, because these rule

pairs are asymmetric partners, as listed in Table 4.1.

In Figure 4.9 we show the frequency with which simulations fall into a binning of the

axes determined by the six slices. Notice that most simulations average out to having

relatively low values for all three of our complex network measures, though there are also

many simulations which have network measures far different from those of the common

entangled and random states seen in Figure 4.4.

Similarly, in Figure 4.10 we show the scatter plots of the entangled initial conditions

colored by L. Observe in panel (c) the strong correlation between D and C which persists

for larger magnitudes than seen with the Fock initial conditions. When the average network

quantities are colored by rule number, as in Figure 4.11, we find in panel (c) the one-to-one

correspondence between C and D is most strongly violated by rules 2, 4, 10, and 12. These

rules are biased towards lower D because of the large asymmetry inherent in their dynamics,

visualized in e.g., Figure 4.1. Finally, in Figure 4.12 we show histograms of points falling

into a binning of the axes given by the six slices for initially entangled initial conditions.

Notice the average dynamics of initially entangled quantum states are best distinguished by

the disparity and von Neumann entropy axes because there are more points spread over a

larger area of this slice.

Overall, the network measures are larger for initially entangled initial conditions than

for the Fock initial conditions. Additionally, disparity’s dependence on L is the cause of of

several clusters in Figure 4.10 panels (a) and (b) at about Y = 0.1 and in panel (f) at about

Y = 0.2.

In this chapter we have seen how random and well-characterized quantum states appear

on the axes of network density, clustering coefficient, and disparity. This was contrasted with
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the average value of these measures found in QECA dynamics. Comparing Figure 4.4 to e.g.

Figure 4.11, it is clear that, on average QECA are capable of generating states which are

neither random nor a well-characterized quantum state. In the next chapter, we will begin

to unravel QECA dynamics using discrete Fourier transforms in one and two dimension.
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Figure 4.7 Broad structure of QECA highlighting L dependence: Fock initial conditions.
Six 2D slices of the long time average of 4 measures of QECA dynamics. Panels (a), (b),
and (c) demonstrate the diversity of highly structured two point correlation as compared
to Figure 4.4. Panels (d), (e) and (f) demonstrate the relationship between one and two
point-entropic quantities. Network measures are derived from quantum mutual information,
which depends on the two point von Neumann entropy, while the entropy of the vertical axes
of (d), (e), and (f) are the average one-point entropy.
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Figure 4.8 Broad structure of QECA highlighting S dependence: Fock initial conditions.
The data shown here is identical to that of Figure 4.7 but with points colored by S to
demonstrate the clustering of values for simulations with the same rule number.
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Figure 4.9 Diversity of QECA broad structure: Fock initial conditions. Histograms showing
a 20 × 20 binning for the six slices of four measures. The highest density of simulations is
found near the origin of these slices which means these simulations are, on average, exhibiting
a network structure like |W 〉 or random states.
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Figure 4.10 Broad structure of QECA highlighting L dependence: entangled initial condi-
tions. Six 2D slices of the long time average of 4 measures on QECA dynamics. We find
similar structures to the Fock initial conditions but across a wider range of observed for the
measures.
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Figure 4.11 Broad structure of QECA highlighting S dependence: entangled initial condi-
tions.
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Figure 4.12 Diversity of QECA broad structure: entangled initial conditions. Histograms
showing a 20×20 binning for the six slices of four measures. As seen in ??, highest density of
simulations is found near the origin of meaning these simulations are, on average, exhibiting
a network structure like |W 〉 or random states.
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CHAPTER 5

COMPLEXITY DYNAMICS IN THE FREQUENCY DOMAIN

In this chapter we will investigate QECA dynamics using Fourier analysis. Doing so

uncovers a rich structure of QECA dynamics missed by the average analysis presented in 4.

A one-dimensional discrete Fourier transform is applied to the network measures D, C, and

Y as well as the spatial average of the expectation values 〈σzj (t)〉, defined as

〈σz(t)〉 =
1

L

L−1∑
j=0

〈σzj (t)〉 . (5.1)

Since the network measures quantify complexity in terms of connectivity, one of the nine axes

of complexity outlined in Section 2.1, the Fourier transforms of network measures describes

complexity dynamics. Significant spectral features present in the one dimension transforms

are found as peaks above an estimated a red noise spectrum. Similarly, a two-dimensional

discrete Fourier transform is applied to the spacetime grid of expectation values 〈σzj (t)〉. In

both the one and two dimensional case, our primary focus will be on the effects of rule number

on the observed spectra for otherwise identical simulations. Before showing the results of

this chapter, a few important definitions and properties of discrete Fourier transforms are

recalled.

5.1 Discrete Fourier transforms

The fundamental idea underlying Fourier analysis is that single-frequency signals, e.g.

complex exponentials, with different frequencies may be used as an orthonormal basis for

constructing an arbitrary signal. The Fourier transform of a signal reveals the relative

weights, or amplitudes, with which each single-frequency component present in that signal.

In general, it takes a continuum of frequencies to reproduce an arbitrary signal. In practice,

one often uses a discrete Fourier transform to approximate the input signal with a finite

number of single-frequency components. In this way, if the input signal is a measurement
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of some process in a physical system, the Fourier transform of that signal reveals the time

scales on which that process is occurring.

Since all of the signals we intend to transform are discrete, we will refer to the discrete

Fourier transform as just the Fourier transform for brevity. Moreover, we will be using the

following definition for the Fourier transform of a signal a of length T which is a function of

the discrete variable t

A(f) =
T−1∑
t=0

a(t) exp

(
−2πi

tf

T

)
for t = 0, 1, . . . , T − 1 (5.2)

where A(f) is the amplitude assigned to the discrete reciprocal space variable f and i is the

imaginary unit. The inverse transform is then

a(t) =
1

T

T−1∑
f=0

A(f) exp

(
2πi

tf

T

)
for f = 0, 1, . . . , T − 1. (5.3)

Analogously, in two dimensions the transform and inverse transform pair is

A(f, k) =
T−1∑
t=0

L−1∑
x=0

a(t, x) exp

(
−2πi

[
tf

T
+
xk

L

])
(5.4)

a(t, x) =
1

TL

T−1∑
f=0

L−1∑
k=0

A(f, k) exp

(
2πi

[
tf

T
+
xk

L

])
. (5.5)

Additionally, for a real-valued signal, the transformed signal is symmetric with respect to

positive and negative frequencies, though it is possibly complex-valued. For this reason, our

plots of a signal’s Fourier transform show the power spectrum

F(a(t, x)) ≡ |A(f, k)|2 (5.6)

for only positive frequencies.

The minimum and maximum frequencies which can be resolved in a Fourier transform

are determined by the sampling rate with which the signal was obtained. Since QECA are

updated through time in discrete iterations, our sampling rate is one sample per iteration.

Since at least two samples are required to resolve a periodic signal, the highest resolvable

frequency is 0.5 cycles per iteration, known as the Nyquist frequency. Similarly, the lowest
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resolvable frequency is zero cycles per iteration, which is the average value of the signal and is

sometimes called the DC-level. The overall resolution of the Fourier transform is determined

by the number of samples in the original signal and is given by 1/T cycles per iteration

where T is the number of samples in the original signal. In the next section, we use Fourier

transforms to determine the frequencies of dominant processes in QECA dynamics.

5.2 Spectral features of one-dimensional measures

The complex network measures D, C, and Y are scalar-valued functions at each iteration.

Along with the average expectation value of the Pauli z operator defined in Eq. (5.1), we

have four one-dimensional measures to compute power spectra for.

To compare the frequencies of dominant processes between different rule numbers, the

noise floor is estimated for all the Fourier transforms we compute. Then, peaks which are

significant at a > 95% confidence level with respect to this noise floor are deemed significant

and collected for comparison. The noise floor is estimated by fitting a red noise spectrum

to the power spectrum of each measure. Red noise has zero mean, constant variance, and

is serially correlated in time [77]. The degree to which red noise is correlated in time is

given by a parameter called redness, denoted r. Since white noise has zero mean, constant

variance, and is uncorrelated in time, red noise is like white noise (also called Gaussian or

normal noise) but with a short-term memory. While the power spectrum of white noise is

equally distributed across all frequencies, red noise is biased towards low frequencies, hence

its name.

The noise floor of the power spectrum of a signal a(t) is estimated by

Prn(f ; r) = P0
1− r2

1− 2r cos(2πf) + r2
(5.7)

where the redness r is estimated by the autocorrelation at lag one of the input signal and

the normalization factor P0 is chosen so that the red noise power spectrum has the same

total power as the power spectrum of the input signal. The autocorrelation at lag m of a
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signal a(t) with mean µ is given by∑
t(a(t)− µ)(a(t+m)− µ)∑

t(a(t)− µ)2
. (5.8)

where the t is summations are from 0 to T − 1.

Next, treat the red noise spectrum as a null hypotheses for the presence of spectral

features. That is, we reject the null hypotheses that the input signal’s power spectrum is

nothing more than red noise if spectral features rise above the estimated noise floor. To

make a more statistically rigorous statement, compute a 95% confidence red noise spectrum

by multiplying Eq. (5.7) by χ2
2, the chi-squared distribution with two degrees of freedom

corresponding to the desired confidence level. For a 95% confidence level, we use χ2
2 at a

p-value of 0.05 which has the approximate value 5.991 [78].

In Figure 5.1 we show the power spectrum of each measure for an L = 17 site simulation

of rule 14 with V = HP (θ), mode=alt for T = 1000 iterations initiated with a centered

localized excitation of the form |0 . . . 010 . . . 0〉. In this figure and throughout the remainder

of this analysis, the first 300 iterations are removed before transforming the signal to remove

transient effects without a major loss of spectral resolution. Additionally, to aid in the task

of peak finding, we smooth the power spectrum with a five-point moving average, then reject

peaks found below the 95% confidence level. The results of simulations with rules 4 and 6

and otherwise identical simulation parameters to those stated above are shown in Figure 5.2

and Figure 5.3, respectively. Observe that no significant spectral features are found in the

power spectrum for rule 14. For rule 4, the power spectrum of the average expectation value

of the Pauli z operator is found to be comparatively cleaner than the other measures, though

significant spectral features are found for each measure. Rule 6 yields power spectra which

all show prominent spectral features in the same vicinity as one another.

The results of similar analyses under the same simulation parameters but for rules 1

through 15 are summarized in Figure 5.4. In this figure, the horizontal axis is partitioned by

rule number and the vertical axis gives the frequency of significant spectral features found in

73



10 4

10 2

(
)

10 4

10 3

10 2

10 1

(
)

10 5

10 3

10 1

(
)

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

10 4

10 2

(
z (t

) )
U ALT

14 (HP(0 ))

Figure 5.1 Spectral features of rule 14 present in the power spectrum of network measures
and the average expectation value of the Pauli z operator. The solid blue line is the raw red
noise spectrum and the dashed blue line is the 95% confidence red noise spectrum. Since no
significant spectral features are found, we may not reject the red noise null hypothesis and
further analysis would be required to claim the power spectrum or rule 14 only exhibits red
noise.
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Figure 5.2 Spectral features of rule 4 present in the power spectrum of network measures
and the average expectation value of the Pauli z operator. The solid blue line is the raw
red noise spectrum and the dashed blue line is the 95% confidence red noise spectrum. The
average expectation value of the Pauli z operator yields a power spectrum quite different
in character than the network measures, though each have significant spectral features in
common.
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Figure 5.3 Spectral features of rule 6 present in the power spectrum of network measures
and the average expectation value of the Pauli z operator. The solid blue line is the raw red
noise spectrum and the dashed blue line is the 95% confidence red noise spectrum.
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the power spectra of the four measures under consideration. Rules for which no significant

spectral features were found, like rule 14, have been omitted. For reference, the frequency

of magnitude 1/L is also shown. For a lattice of size L, there is a natural frequency one

may expect to see significant features assuming the initial excitation travels at a constant

speed v. If one takes this speed to be v = 1 site per iteration, the natural frequency we

are referring to has a magnitude of 1/L cycles per iteration, which we will call the v = 1

bouncing frequency. In Figure 5.4, we find that there are significant spectral features which

tend to cluster just above the v = 1 bouncing frequency, suggesting transport at speeds

greater than v = 1 site per iteration. Rules 6, 9, 10, and 12 show spectral features below

the v = 1 bouncing frequency. Additionally, Notice that the symmetries in rule number

discussed in Section 4.1 and summarized in Table 4.1 are recapitulated in Figure 5.4. That

is, rules which yield mirrored dynamics, such as rules 2 and 4, display similar significant

spectral features.

5.3 Inspection of two-dimensional transforms

By substituting Eq. (5.2) into Eq. (5.1) we can see that the Fourier transform of an

average quantity is the average of the Fourier transforms of each quantity making up the

average. It is possible that such an averaging procedure will obscure relevant structure in

the frequency domain. To get a spatially resolved picture of the dynamics in the frequency

domain, consider instead the two-dimensional transform of the spatially resolved expectation

values 〈σzj (t)〉. Using Eq. (5.5) we compute the power spectrum F(〈σzj (t)〉) as a function of

spatial frequency, or wave number, k, which is dual to the site index j and the temporal

frequency f , which is dual to the iteration number t. Thus, a two dimensional Fourier

transform can be visualized as a reciprocal-space grid with f and k on mutually orthogonal

axes. The relationship between f and k is often referred to as a dispersion relation. In

Figure 5.5 we show the dispersion relation for rules 4, 6 and 14 simulated with V = HP (0◦),

mode=alt for T = 1000 iterations and initiated with a centered localized excitation. Notice

that rule 14, for which we could not reject the red noise null hypothesis in the one-dimensional
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Figure 5.4 Summary of significant spectral features of the one dimensional power spectrum
of network density, clustering coefficient, disparity, and the spatial average of expectation
values of the Pauli z operator. The vertical dashed lines partition different rules. The
horizontal dotted line is at a magnitude of 1/L and represents the frequency of processes
occurring at the natural time scale induced by a lattice of finite size L assuming a constant
velocity of one site per iteration, the v = 1 bouncing frequency. Rules 7, 8, 11, 13, and 14
were found to have no significant spectral features and thus are omitted here.
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case, shows much more structure in the two dimensional Fourier transform.

In Figure 5.6, we show the dispersion relation for rule 1 for increasing phase gate angle,

but with otherwise identical simulation parameters to those used in this chapter thus far.

Observe the spatial period-doubled band structure at high temporal frequency. A similar

dispersion relation is found for Bose-Einstein condensates in a periodic optical lattice [79, 80].

In our case, the period-doubled band is a decreasing function of phase gate angle. As phase

gate angle increases, the period-doubled band approaches a low frequency continuum portion

of the spectrum which is present at high wave number, independent of phase gate angle.

In this chapter we have supplemented our understanding of QECA dynamics with an

analysis in the frequency domain. In Chapter 4 we found that the average value of network

measures attained by QECA can be quite different from the values of network measures of

both well-characterized and random quantum states. In this chapter we quantified the most

significant frequencies in the complexity dynamics which give rise to the observed average

values. In the next chapter, we will continue our investigation of QECA dynamics but with

an emphasis on entanglement generation.
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Figure 5.5 Two-dimensional power spectrum of rules 4, 6, and 14 shown in panels (a),
(b), and (c), respectively, as the reciprocal-space grid of F(〈σzj (t)〉). For rule 4, the strong
horizontal bands of constant f in panel (a), agree with the strong peaks observed in the
average power spectrum of the expectation values of the Pauli z operator, shown in Figure 5.2.
The linear dispersion of rule 14 apparent in panel (c) was hidden by the average picture
presented in Figure 5.1. From panel (b), it appears that rule 6 shows a linear trend similar
to rule 14 and lines of constant f similar to rule 4.
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Figure 5.6 Two-dimensional power spectrum of rule 1 for θ = 0◦, 45◦ and 90◦ in panels (a),
(b), and (c), respectively. In all cases there is a continuum at low temporal frequency and
high wave number. At high frequency we notice a spatial-period doubled band structure.
The gap between the continuum and the spatial period-doubled band is a decreasing function
of phase gate angle.
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CHAPTER 6

THE APPROACH TO EQUILIBRIUM

We have seen how the long time averages of thousands of QECA simulations are dis-

tributed with respect to the various quantum measures. While this averaging procedure

allowed us to get a broad picture of QECA, we would like a clearer picture of the entan-

glement dynamics which are underlying these averages. In this chapter we will investigate

entanglement dynamics using bond entropy. Some QECA will show quick equilibration of

entanglement while others remain dynamic. We will argue that the QECA which remain

dynamic are exhibiting complexity in the sense of persistent dynamical macrostates. Specif-

ically, these persistent dynamical macro states are quantum states exhibiting dynamical

many-body entanglement, as quantified by the bond entropy.

6.1 Characterizing many body entanglement

Bond entropy is the von Neumann entropy of a bipartitioning of the lattice at cut c =

0, . . . L− 2, where L is the length of the QECA lattice and the cth cut splits the lattice into

two sets of site indices A = {0, . . . , c} and B = {c + 1, . . . , L − 1}. At each cut we need

only compute the reduced density matrix and von Neumann entropy of the smaller of the

two partitions, thanks to the Schmidt decomposition. Without loss of generality, take A to

be the smaller bipartition at cut c. Then, the bond entropy is

sbond
c (t) = svN(ρA(t)) (6.1)

Even though the bond entropy is nothing more than the von Neumann entropy, we give

it a unique name and symbol for brevity and to remind us it is a has a slightly different

interpretation than the single-site von Neumann entropy. We normalize sbond
c to lie between

zero and one as sbond
c /min(c + 1, L − c) (recall that the von Neumann entropy of d qubits

is largest for the maximally mixed state and has a value of d). Under this normalization, a
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bond entropy equal to one implies the entirety of the smaller half of the lattice is entangled

with the rest of the lattice. Thus, the physical significance of the bond entropy is that it

quantifies the entanglement between larger portions of the lattice in a spatially resolved way.

That is, for cuts c = 0 and c = L − 2, the bond entropy is equivalent to the local von

Neumann entropy of sites j = 0 and j = L− 1, respectively. Notice that the bond entropy

for all cuts quickly becomes an expensive computation for large L, as it involves solving for

the eigenvalues of L− 2 reduced density matrices, the largest of which is 2bL/2c × 2bL/2c. In

Figure 6.1 we show the bond entropy for the first 60 iterations of rules 1 through 15 using

mode = alt, V = HP (0◦), and L = 19 for the initial condition |0 . . . 010 . . . 0〉.

6.2 Iteration-wise deviation

For the purposes of this study, we will consider the entanglement in our QECA simulation

to have equilibrated when its fluctuations from iteration to iteration are no longer trending

positively or negatively. To this end, consider the iteration-wise difference of bond entropy

given by

∆sbond(t) = sbond
c (t+ 1)− sbond

c (t) for c = 0, . . . L− 2. (6.2)

If an element of ∆sbond(t) is positive (negative), entanglement has undergone a net increase

(decrease). If we collect all of the iteration-wise deviations into a histogram we can get a

rough picture of the entanglement dynamics in a particular simulation. A wide distribution

of ∆sbond(t) means that entanglement is changing nonuniformly from iteration to iteration,

while a narrow distributions is indicative of fast-equilibrating entanglement. In Figure 6.2

we show the histograms of iteration-wise deviation of the bond entropy for rules 6, 7, 9, and

14 using mode = alt, V = HP (0◦), and L = 19 for the initial condition |0 . . . 010 . . . 0〉.

To better understand how different segments of iterations contribute to the aggregate

binning of the iteration-wise bond entropy observed in Figure 6.2, we subdivide the dynamics

into groups of τ iterations and compute the average of ∆sbond for each subdivision. In

Figure 6.3 we show the results for τ = 19 with rules 6, 7, 9, and 14 using mode = alt,
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Figure 6.1 Bond entropy illustrating the structure and dynamics of many body entangle-
ment in QECA. Bond entropy tends to be lower for cuts near the center of the lattice than
for those at the edges, but a bond entropy greater than 0.5 in the center of the lattice implies
many body entanglement involving at least L/4 sites. As such, we observe highly structured
many body entanglement in most of these simulations.
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Figure 6.2 Aggregate distribution of ∆sbond for 1000 iterations. Rule 7 generates more en-
tanglement than it destroys while rules 6, 9, and 14 tend to create and destroy entanglement
equally. Rules 6 and 9 have broad distributions and thus are not equilibrating quickly.
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V = HP (θ) with θ = 0◦, 45◦, and 90◦ and L = 19 for the initial condition |0 . . . 010 . . . 0〉.

The choice of τ = 19 was made because it is the same as the system size.

Using Figure 6.3 we identify rule 9 as a fragile persistent macrostate because introducing

a nonzero phase gate drives ∆sbond to a value two orders of magnitude smaller than its

value at θ = 0◦. Meanwhile, ∆sbond remains within a single decade for S = 6 at all θ

shown, meaning its dynamics are more robust to changes in phase gate. Comparing relative

magnitudes of ∆sbond, we see that rules 6 and 9 typically remain more dynamic than rules

7 and 14.

Overall we conclude that, of rules 6, 7, 9, and 14 for θ = 0◦, rule 7 exhibits the least

dynamical many body entanglement. Additionally, rule 6 remains the most dynamical for

nonzero θ. To summarize the results we’ve obtained for these four rules as well as to check the

long time behavior of other rules, we plot the last 60 iterations (of 1000) of the entanglement

dynamics first visualized in Figure 6.1. In Figure 6.4 and Figure 6.5 we show the late-time

entanglement dynamics at θ = 0◦ and θ = 90◦, respectively. We conclude that rule 6 exhibits

the most robust entanglement dynamics. Apparently, rule 1 also shows robust dynamical

many body entanglement dynamics, but the overall level of entanglement is lower than that

seen in rule 6. In the next chapter, we will take a closer look at the dynamics or rule six

with a particular emphasis on its ability to transport initially localized excitations.
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Figure 6.3 Average distribution of ∆sbond for 1000 iterations subdivided in groups of τ = 19
iterations. Open circles are the data while connecting lines are a guide to the eye. All plots
have been placed on the same vertical scale to highlight differences. Decaying curves describe
a simulation’s approach to equilibrium while constant, large values imply no equilibrium level
of entanglement is being approached.
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Figure 6.4 Examples of the late-time evolution of bond entropy for θ = 0◦ show obvious
dynamical many body entanglement for rules 6, and 9. Smaller fluctuations are also apparent
in rules 1, 7, and 14.
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Figure 6.5 Examples of the late-time evolution of bond entropy for θ = 90◦ shows smoother
fluctuations for all rules as compared to the θ = 0◦ case, though rule 6 remains noticeably
more dynamic than other rules.
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CHAPTER 7

SPEED AND DIFFUSION RATE

In Section 4.1 we deduced rule S = 6 symmetrically applies V to site j conditioned on

j’s left and right neighbors being in opposite basis states. This rule can transport local-

ized excitations across the lattice. In this chapter, we investigate the speed at which local

excitations are transported, a quantity we call the speed of sound, a term often used in

solid state physics for the group velocity of phonon excitations. Like the group velocity, our

speed of sound is the speed with which information is propagated across the lattice (with

high probability). We also investigate the rate at which the local excitation diffuses into

the rest of the lattice, what we call the diffusion rate. Together, the speed of sound and

diffusion rate describe a rule’s transport properties. Our main focus will be on how these

transport properties depend on the phase gate angle of V and the update mode. We will

compare these results with transport properties observed in the classical version of rule 6,

i.e. V = σx, which exhibits what we call the QECA’s native transport properties. Our defi-

nitions of speed and diffusion rate are based on the first and second moments (respectively)

of the probability of measuring the excitation at all sites for all iterations. We first turn to

making these definitions.

7.1 Center and diffusion of probability

The initial condition for this analysis will be a single localized excitation at either end of

the lattice. The localized excitation can be described as a single |1〉 qubit in an otherwise

|0〉 lattice. For the left excitation, the initial state is written |1〉 ⊗ |0〉⊗L−1 while the right

excitation is written |0〉⊗L−1 ⊗ |1〉.

The probability of measuring a 1 at site j and iteration t is given by Tr(ρj(t)P̂1) where

ρj(t) is the reduced density matrix of site j at iteration t and P̂1 is the projector onto the

subspace spanned by the |1〉 basis state. We will use the short hand P1(j, t) to denote this
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probability spacetime grid. P1(j, t) can be thought of as a time series of spatial probability

distributions for measuring a 1. The first moment of P1(j, t0) at some iteration t0 gives

the average location for measuring a 1, making it a measure of the center of probability.

Similarly, the second moment gives a width around the first moment in which a 1 will be

found with high probability, a measure of the diffusion of probability. Let µP1(t) and ∆P1(t)

denote the first and second moment of P1(j, t). To first order, we may compute the speed of

sound as the slope of a linear fit to µP1(t) and the diffusion rate to be the slope of a linear

fit to ∆P1(t). The fits are restricted to the set of iterations prior to impact of µP1(t) with

the opposite end of the lattice.

7.2 Native and emergent transport

Before describing the main result of this chapter, let’s look at a few examples of the

excitation propagation in rule 6. First, for a classical QECA, which we define as one with

V = σx, we can deduce how the update mode (swp, blk, or alt) affects the excitation’s

propagation speed. The classical speeds are the same as those deduced from the circuit

diagrams given at the end of Section 2.5 and thus display the bounds of the speed of sound.

In Figure 7.1 we plot P1(j, t) for the swp, blk and alt modes. Notice that the classical

QECA display no diffusion. Of these examples, the maximum speed is observed for rightward

propagation with mode = swp and is L sites/iteration while the minimum speed is observed

to be 1 site/iteration for leftward propagation, also appearing with mode = swp. In the

blk scheme, the speeds are 3 sites/iteration rightward and about 1.5 sites/iteration leftward.

The alt mode exhibits propagation speeds of 2 sites/iteration in both directions. All three

update modes have the same average speed of 2L/(L+ 1) sites/iteration. Since the classical

version of rule 6 exhibits the maximal speed of sound and the minimum diffusion rate we say

the transport properties are ideal and particle like. Furthermore, since the speed of sound for

each mode agrees with what can be inferred from each mode’s circuit diagram, the classical

QECA may be thought of as defining the native transport properties.
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Figure 7.1 Native rightward and leftward transport in rule 6 can be seen for the swp, blk,
and alt modes when using V = σx.

It is interesting that the transport properties of rule 6 depend on the choice of V . More-

over, the transport properties can be coarsely controlled by introducing a nonzero phase

gate angle. In Figure 7.2, Figure 7.4, and Figure 7.3 we show the probability spacetime grids

for rule 6, and mode =swp, blk, and alt, respectively, with examples of V = HP (θ) for

θ = 0◦, 45◦, and 90◦. Qualitatively it is clear that as θ increases, both speed of sound and

diffusion rate decrease. This is a clear divergence from the native transport properties in

Figure 7.1, though the relative left-right and right-left transport asymmetry in swp and blk

is preserved. This new behaviors are interpreted as emergent transport features, signaling

some level of complexity. That is, introducing a decisively quantum V (by which we are re-

ferring to the ability of HP (θ) to introduce new local superpositions with each application),

we observe new transport features including a non-zero diffusion rate and a slower speed

of sound. Perhaps more striking is the ghostly trail with a high speed of sound and high

diffusion rate observable for large θ. This phantom particle travels with the same speed of

sound as the primary excitation when simulated with θ = 0.
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Figure 7.2 Emergent rightward and leftward transport of rule 6 with mode = swp with
V = HP (θ). Here we show θ = 0◦, 45◦, 90◦.

7.3 Transport properties and phase gate angle

In this section we will outline a procedure for quantitatively measuring the transport

properties of rule 6. For this study, we use a system size of L = 21 and θ ∈ [0, 90◦] in 5◦

increments. The phantom trajectory makes P1(j, t0) bimodal (has two peaks) for most θ. We

will quantify the transport properties of the primary trajectory because it changes with θ. To

do this, we must have a way of distinguishing two peaks so that we can ignore the phantom

trajectory. We do this by applying a 2-mode Gaussian mixture model to each iteration

of P1(j, t). This allows us to estimate two pairs of transport properties {µ(1)
P1

(t),∆
(1)
P1

(t)}

and {µ(2)
P1

(t),∆
(2)
P1

(2)} where the superscripts (1) and (2) denote the primary and phantom

trajectories, respectively. In practice, one has to track which pair relates to which trajectory

from iteration to iteration. This can be done by first initializing the (1) index to be the peak

with the highest vaue of P1(j, 0). Then, for iteration t = 2, we set the (1)-index pair to be

the pair for which µP1(t = 2) is closest to µP1(t = 1).
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Figure 7.3 Emergent rightward and leftward transport of rule 6 for mode = blk with
V = HP (θ). Here we show θ = 0◦, 45◦, 90◦.

This process can be iterated to keep track of which pair of moments belongs to which

trajectory until the pairs intersect. Instead of passing through each other as is apparent in

e.g., Figure 7.4, the two peaks are seen to “bounce” off of one another. This computational

artifact is due to the fact that at the iteration of the intersection, tint, P (j, tint) isn’t bimodal,

and hence a 2-mode Gaussian mixture model is a poor hypothesis. To remedy this situation,

we set an interaction radius inside of which, the results of the 2-mode Gaussian mixture

model are averaged, yielding the single pair of moments {µP1(tint),∆P1(tint)}. We found

the quantity 1
2
(∆

(1)
P1

(t) + ∆(2)(t)) to provide an effective definition for the interaction radius

using the proximity measure |µ(1)
P1
− µ(2)

P1
|. This technique solves the bouncing problem and

also allows us to effectively measure the transport properties for simulations with low θ. In

Figure 7.5 we show the results of our 2-mode Gaussian mixture model for tracking the two

trajectories in the vicinity of their interaction.
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Figure 7.4 Emergent rightward and leftward transport of rule 6 for mode = alt with
V = HP (θ). Here we show θ = 0◦, 45◦, 90◦.

The final results detailing the transport properties of rule 6 are shown in Figure 7.8. Near

θ = 45◦ there is an inflection point in the speeds of sound for both left and right moving

particles and for all modes. Thus near θ = 45◦ the speed of sound is most sensitive to

perturbations in θ. As expected from the observations made with V = σx, swp possesses

the largest variability between leftward and rightward speeds of sound, followed by blk,

and finally alt which is completely symmetric transport properties. However, blk is more

similar to alt than it is to swp. That is blk is shows more symmetric transport properties

than swp.

Diffusion rate peaks near θ = 25◦ then falls rapidly. Beyond θ = 55◦ diffusion is nearly

zero. Thus, here the primary excitation propagates with soliton-like qualities in that it does

not diffuse after intersection with the phantom particle on impact with the end of the lattice.

The character of the diffusion rate can be understood by examining the separation of the

primary and phantom trajectories. For small θ, the two trajectories have significant overlap,
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Figure 7.5 Two-mode Gaussian mixture model used for peak and width finding of the two
trajectories under alt update mode. The raw data is plotted in blue, the net mixture model
is plotted in green, and the mixture components corresponding to the main and phantom
trajectories are plotted in solid and dashed black, respectively. Rightward propagation is
plotted in panel (a), and leftward propagation is plotted in (b).

meaning the highly diffusive phantom trajectory is inseparable from the soliton-like primary

trajectory. This overlap also poses fitting challenges when using the 2-mode Gaussian mix-

ture model. As θ gets larger the primary trajectory exhibits a slower speed of sound, while

the phantom trajectory remains nearer the native speed, causing a separation between the

two trajectories. Near θ = 25◦ the trajectories have separated enough to noticeably increase

the diffusion rate, but are still not individually distinguishable. Beyond θ = 25◦ the two tra-

jectories begin to be distinguishable and thus diffusion rate begins to fall as P1(j, t) becomes

bimodal. By θ = 55◦ the two trajectories are completely distinguishable and the primary

trajectory exhibits near zero diffusion.
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Figure 7.6 Example linear fits for the extraction of transport properties of rightward prop-
agation.
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Figure 7.7 Example linear fits for the extraction of transport properties of leftward propa-
gation.
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Figure 7.8 Transport properties for rule 6 with V = HP (θ) under the swp, blk and
alt update modes. The results for rightward propagation are in column 1 and leftward
propagation in column 2. Error bars show the standard uncertainties associated with slope
of each fit.
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CHAPTER 8

DISCUSSION AND OUTLOOK

We have defined, simulated, and explored a family of quantum elementary cellular au-

tomata (QECA). We will take this chapter to recapitulate our results, highlighting when

they bear signatures of complexity. We will conclude with suggestions for future work on

quantum cellular automata as complexity generating systems.

8.1 Are quantum elementary cellular automata complex?

We argue that QECA indeed exhibit elements of complexity, though certainly not all

QECA may be considered complex. Specifically, we find our QECA to be complex along

three of the axes of complexity: diversity, in the types of quantum states available to QECA

as compared to a few typical quantum states; persistent dynamical macrostates, in the form

of highly structured entanglement dynamics and emergence; and dynamic connectivity, as

quantified by complex network measures computed on quantum mutual information adja-

cency matrices and their associated Fourier transforms.

In chapter 4 we found that well-characterized states from quantum information theory,

such as the W and GHZ states as well as the localized singlet, singlet array, and random

states, tend to be at extreme values of the network quantities known as network density,

clustering coefficient, and disparity. This is contrasted with the average value of these

quantities found at long times in QECA dynamics, which cover much more area when plotted

with network measures as mutually orthogonal axes. We have shown that, while often

related, the network measures offer a unique characterization of the structure of correlations

in QECA dynamics, as quantified by a principal component analysis. For example, we

observe a linear trend relating clustering coefficient and network density, which makes sense

because dense networks are naturally more transitive. However, a principal component
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analysis reveals three principal components, one of which was dominated by network density,

another by clustering coefficient, and the third by disparity.

Further, we have shown that the average values of these measures, with the addition

of average local von Neumann entropy, tend to form clusters of simulations with like rule

numbers. Meanwhile, altering the initial condition, phase gate angle, and lattice size tend

to spread these clusters. For example, increasing system size from 11 to 20 can be seen to

decrease disparity by a factor of one-tenth, which can be deduced by comparing panel (f) of

Figure 4.7 and Figure 4.8.

While it is true that our QECA exhibit diverse average values of network quantities, there

is a higher density of simulations which are still at the extreme values of the measures. Thus,

some QECA exhibit clear diversity in correlation structure, but the majority of simulations

result in states similar to the well-characterized and random quantum states. We also find an

equally high density of simulations which saturate the von Neumann entropy, meaning there

is a high degree of entanglement in these simulations. In the three-dimensional histograms

presented in Section 4.3, the density of simulations that saturate the network measures and

von Neumann entropy is approximately a factor of 10 larger than that of simulations with

intermediate values. Such maximal entropy should not be regarded as complex because the

system is characterized as maximally mixed, meaning each basis vector of the Hilbert space

is equally represented in the state’s density matrix. Similarly, maximal values of network

quantities ought to not be regarded as signalling complexity because such saturation would

mean network structure lacks the intricacies which typically characterize connectivity in

complex systems. That is, a fully clustered or completely disparate network are efficiently

described by a single scalar, the clustering coefficient or disparity, while a complex system

like a metabolic network contains smaller clusters connected by, a strong disparate backbone.

Chapter 5 was devoted to examining QECA dynamics in the frequency domain. In

particular, we quantified complexity dynamics in terms of the significant spectral features

found in the power spectra of network quantities. The significance of a peak was determined
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using a 95% confidence red noise spectrum. Simulations for which the red noise hypothesis

could not be rejected, like rule 14, were found to have a more intricate two dimension

spectrum, or dispersion, when computed from the spacetime grid of expectation values 〈σzj 〉.

Under the same analysis, rule 1 was found to show a dispersion relation with features like a

phase dependent spatial period-doubled band structure. The period-doubled band structure

is remansecent of the dispersion relation for a Bose-Einstein condensate in a periodic optical

lattice.

Then, in chapter 6 we implemented the iteration-wise deviation for the bond entropy on a

few specific simulations. The mean of this measure over all cuts and a segment of τ iterations

quantifies the entanglement generation in those iterations. Plotting this result for adjacent

segments of τ iterations illustrates a simulation’s approach to equilibrium. Using this tech-

nique, we identified rule 6 as exhibiting uniquely robust persistent dynamical macrostates in

the form of many body entanglement. By robust we mean relatively insensitive to changes

in phase gate angle. By unique we mean that all other rules tend to show faster equilibration

of entanglement as phase gate is increased.

Inspired by the entanglement dynamics observed for rule 6, we spent Chapter 7 making

a detailed analysis of this rule’s speed of sound and diffusion rate. Together, these transport

properties characterize how the information of an initial localized defect is transfered during

the first few iterations of rule 6 simulations. We found emergent, phase-gate-angle dependent

transport properties, as compared to the classical version of rule 6 which used V = σxj . Using

a two-mode Gaussian mixture model, we were able to identify a second phantom trajectory

emerging from a single localized initial condition for a phase gate angle greater than 25◦.

The phantom trajectory was insensitive to phase gate angle and showed high diffusion rate

and speed of sound.

The broad analysis, frequency space, approach to equilibrium, and transport property

analyses have lead us to conclude that our QECA exhibit complexity along three axes:

diversity, persistent dynamical macrostates, and connectivity. We have found that only a
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limited number of simulations exhibited features which we deem complex based on these axes

of complexity, but those that do, do so obviously. In particular, we found rule 6 is unique in

its ability to generate complex phenomenon across more than one axis of complexity. It is

possible that there are complex phenomenon in more QECA rules which were not observed

in our studies. This prospect brings us to a discussion for further studies of QECA beyond

what has been presented in this thesis.

8.2 Suggestions for future work

Our family of QECA models was inspired by the simplest possible classical cellular au-

tomata with nearest neighbor interactions and a local state space of two bits. As we saw

in Chapter 7, introducing a quantum mechanical update operator substantially altered an

otherwise well-characterized classical cellular automata. It is likely that adapting our model

to include next nearest neighbor interactions – or even long-range interactions as one finds in

ultracold Rydberg gas optical lattice-based quantum simulators [81, 82, 83] – will allow us to

find even more complexity generating quantum cellular automata. One could also consider a

larger local state space (i.e., replacing qubits with so-called qudits). However, both of these

options will dramatically increase the number of rules one could simulate. For example, the

number of reversible quantum cellular automata with a neighborhood of five sites, and a two

dimensional local state space is given by 224 ≈ 6.55×104. Using techniques presented in this

thesis, like the iteration-wise deviation of bond entropy, one could automatically search this

large rule set for persistent dynamical macrostates. With three orders of magnitude more

rules than considered here, it is likely that one would find many more complexity generating

quantum cellular automata. One could then address the relative density of complex rules

to non complex rules for an increasing neighborhood size (or local dimension) using genetic

algorithms or other machine learning tools. Doing so provides an opportunity for yet another

axis of complexity, selection principles, to enter the discussion.

Additionally, one could consider the introduction of randomness to the simulations. Ran-

domness is key in simulating certain complex dynamics like protein folding which, without
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randomness, can converge to configurations which are only at a local energy minimum. The

randomness in these simulations allows configurations to overcome local minimum barriers

in search of a global energy minimum, completely changing the outcome of the simulation.

In the case of quantum cellular automata, one could consider the introduction of quantum

or classical noise to our simulations in a number of ways. One option is to introduce in-

homogeneous rules which, based on the outcome of a random number generator, applies a

different quantum cellular automata rule to a given site. Alternately one could consider in-

troducing randomness into the measurement process rather than the time evolution process.

This could be done by, again based on the outcome of a random number generator, adding a

maximally mixed component to the single site reduced density matrices used for measuring

local observables. We predict the introduction of randomness could make otherwise bland

rules exhibit complex phenomenon. Because the theory of noise in quantum systems is quite

subtle, we refer the interested reader to [84].

Furthermore, those QECA which display fast growth of bond entropy, like rules 5, 7, and

11, for example, would not gain substantial speed up from an approximate time evolution

scheme like matrix product states. While matrix product state methods are useful for sim-

ulating much larger systems than we are able to with our exact method, they suffer from

insurmountable inefficiencies when simulating highly entangled dynamics. This means that

an analysis of many of the QECA defined in this thesis for much larger systems is impossible

without the realization of a quantum computer, where an exponentially large Hilbert space

becomes a resource rather than a nuisance [85, 42]. With a quantum computer comes the

ability to simulate many orders of magnitude of neighborhood size; one could then investigate

multiscale hierarchies in QECA dynamics.

The possibilities offered by quantum cellular automata are very large indeed, perhaps

even astronomically large, yet another axis of complexity one might explore in the future.

This thesis was an analysis of the complex phenomenon available to the simplest possible

quantum cellular automata models, quantum elementary cellular automata. With future
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studies of quantum cellular automata as complexity generating systems, it is possible we

could begin to form underlying principles of complexity generation in quantum systems. We

could then leverage such complexity principles to analyze and develop complex systems of

technological interest.
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[34] A. Einstein, On a heuristic viewpoint concerning the production and transformation of
light. Annalen der Physik 17, 132 (1905).

[35] K. Riley, M. Hobson, and S. Bence, Mathematical Methods for Physics and Engineering:
A Comprehensive Guide (Cambridge University Press, Cambridge, 2006).

[36] K. Gottfried and T. Yan, Quantum Mechanics: Fundamentals, Graduate Texts in Con-
temporary Physics (Springer, New York, 2003).

[37] C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on
Computers, Systems, and Signal Processing (IEEE, India, 1984), p. 175.

[38] L. K. Grover, in ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
(ACM, ADDRESS, 1996), pp. 212–219.

[39] W. Pauli, The Connection Between Spin and Statistics. Physical Review 58, 716 (1940).

108



[40] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent nonlinear
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